JP2014232829A - Method for manufacturing silicon wafer for solar batteries - Google Patents

Method for manufacturing silicon wafer for solar batteries Download PDF

Info

Publication number
JP2014232829A
JP2014232829A JP2013113726A JP2013113726A JP2014232829A JP 2014232829 A JP2014232829 A JP 2014232829A JP 2013113726 A JP2013113726 A JP 2013113726A JP 2013113726 A JP2013113726 A JP 2013113726A JP 2014232829 A JP2014232829 A JP 2014232829A
Authority
JP
Japan
Prior art keywords
silicon wafer
polycrystalline silicon
weight
etching
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013113726A
Other languages
Japanese (ja)
Inventor
阿部 秀司
Hideji Abe
秀司 阿部
竜暢 鈴木
Tatsunobu Suzuki
竜暢 鈴木
光男 大沼
Mitsuo Onuma
光男 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP2013113726A priority Critical patent/JP2014232829A/en
Publication of JP2014232829A publication Critical patent/JP2014232829A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Weting (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon wafer for solar batteries which uses, as a silicon wafer, a polycrystalline silicon wafer obtained by slicing a polycrystalline silicon ingot according to a fixed abrasive-grain-wire-saw method, and adopts a wet etching as an etching method, and is arranged so that a surface of the wafer can be sufficiently roughened without the need for a pretreatment such as a sand blast treatment.SOLUTION: A method for manufacturing a silicon wafer for solar batteries comprises the step of isotropically etching a surface of a polycrystalline silicon wafer with an etchant, provided that has a three dimensional surface roughness of 1.0-1.3, which is measured by a laser-microscope. The etchant includes 55-85 wt.% of a sulfuric acid, 4-21 wt.% of a nitric acid, 2-10 wt.% of a hydrofluoric acid, and 2-14 wt.% of water (to a total of 100 wt.% of the etchant); and the weight ratio of the water to the sulfuric acid is 0.20 or less.

Description

本発明は、太陽電池用シリコンウエハーの製造方法に関する。   The present invention relates to a method for producing a silicon wafer for solar cells.

ウェハ内に様々な結晶面方位を持つ多結晶シリコンウエハーは、単結晶シリコンウエハーに比して安価であるため、大面積の太陽電池用基板としての利用が期待されている。   Polycrystalline silicon wafers having various crystal plane orientations within the wafer are less expensive than single crystal silicon wafers, and are expected to be used as large-area solar cell substrates.

ところで、単結晶シリコンウエハーの粗面化(表面テクスチャー構造の形成)は、異方性エッチングによりピラミッド形状の形成が可能なため、硫酸、硝酸および弗酸の混合物(混酸)をエッチャントとして使用する異方性エッチング方法が提案されている(特許文献1)。しかしながら、多結晶シリコンウエハーは、単結晶シリコンウエハーと異なり、異方性エッチングが出来ないため、等方性エッチングによる微細孔形状の形成による粗面化が行われる。そして、従来、パターン膜を介してプラズマによる等方性エッチングについての数多くの提案がなされている(特許文献2〜5)。しかしながら、斯かる方法は、前期の湿式エッチングに比して操作性に劣る。   By the way, the roughening of a single crystal silicon wafer (formation of a surface texture structure) can form a pyramid shape by anisotropic etching. An isotropic etching method has been proposed (Patent Document 1). However, since the polycrystalline silicon wafer cannot be anisotropically etched unlike the single crystal silicon wafer, the surface is roughened by forming a fine hole shape by isotropic etching. Conventionally, many proposals for isotropic etching by plasma via a pattern film have been made (Patent Documents 2 to 5). However, such a method is inferior in operability as compared with the previous wet etching.

さらに、シリコン太陽電池のコスト削減として、多結晶シリコンインゴットのスライス方法を遊離砥粒ワイヤーソー方式から加工時間がより少ない固定砥粒ワイヤーソー方式に変更する試みがなされている。しかしながら、固定砥粒ワイヤーソー方式を採用した多結晶シリコンウエハーの表面は、切断痕が少なくて比較的滑らかである。そのため、湿式エッチングによる十分な粗面化は困難である。そこで、多結晶シリコンウエハーの表面をサンドブラスト処理した後に湿式エッチングを行う方法も検討されつつある。   Furthermore, as a cost reduction of the silicon solar cell, an attempt has been made to change the slicing method of the polycrystalline silicon ingot from the free abrasive wire saw method to the fixed abrasive wire saw method with less processing time. However, the surface of the polycrystalline silicon wafer adopting the fixed abrasive wire saw method is relatively smooth with few cut marks. Therefore, it is difficult to sufficiently roughen the surface by wet etching. Therefore, a method of performing wet etching after the surface of the polycrystalline silicon wafer is sandblasted is also being studied.

因に、固定砥粒ワイヤーソー方式を採用した多結晶シリコンウエハーの表面粗さは、後述する立体的表面粗さ(三次元表面粗さ)で表すと1.0〜1.3である。これに対し、遊離砥粒ワイヤーソー方式を採用した多結晶シリコンウエハーの表面粗さは、上記の立体的表面粗さ(三次元表面粗さ)で表すと1.5〜1.9である。   Incidentally, the surface roughness of the polycrystalline silicon wafer adopting the fixed abrasive wire saw method is 1.0 to 1.3 in terms of the three-dimensional surface roughness (three-dimensional surface roughness) described later. On the other hand, the surface roughness of the polycrystalline silicon wafer adopting the free abrasive wire saw method is 1.5 to 1.9 in terms of the above-mentioned three-dimensional surface roughness (three-dimensional surface roughness).

特開平8−124894号公報JP-A-8-124894 特開2005−252210号公報JP 2005-252210 A 特開2008−198269号公報JP 2008-198269 A 特開2011−077359号公報JP 2011-077359 A 特開2011−077370号公報JP 2011-077370 A

本発明は、上記実情に鑑みなされたものであり、その目的は、シリコンウエハーとして多結晶シリコンインゴットを固定砥粒ワイヤーソー方式でスライスして得た多結晶シリコンウエハーを使用し、エッチング法として湿式エッチングを採用し、しかも、サンドブラスト処理などの前処理を必要とせず、ウエハーの表面を十分に粗面化し得る、太陽電池用シリコンウエハーの製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to use a polycrystalline silicon wafer obtained by slicing a polycrystalline silicon ingot by a fixed abrasive wire saw method as a silicon wafer, and wet as an etching method. An object of the present invention is to provide a method for producing a silicon wafer for solar cells, which employs etching and does not require a pretreatment such as a sandblasting process and can sufficiently roughen the surface of the wafer.

本発明者らは、鋭意検討を重ねた結果、硫酸、硝酸および弗酸を使用して所定の濃度に調節された混酸をエッチャントとして使用することにより、上記の目的を容易に達成し得るとの知見を得た。   As a result of intensive studies, the present inventors have found that the above object can be easily achieved by using a mixed acid adjusted to a predetermined concentration using sulfuric acid, nitric acid and hydrofluoric acid as an etchant. Obtained knowledge.

本発明は、上記の知見に基づき完成されたものであり、その要旨は、レーザーマイクロスコープを利用して測定される立体的表面粗さが1.0〜1.3の多結晶シリコンウエハーの表面を、硫酸濃度が55〜85重量%、硝酸濃度が4〜21重量%、弗酸濃度が2〜10重量%、水分濃度が2〜14重量%(但し、これらの合計量は100重量%)であり、水/硫酸の重量比率は0.20以下であるエッチャントで等方性エッチングすることを特徴とする太陽電池用基板の製造方法に存する。   The present invention has been completed based on the above findings, and the gist thereof is the surface of a polycrystalline silicon wafer having a three-dimensional surface roughness of 1.0 to 1.3 measured using a laser microscope. The sulfuric acid concentration is 55 to 85% by weight, the nitric acid concentration is 4 to 21% by weight, the hydrofluoric acid concentration is 2 to 10% by weight, and the water concentration is 2 to 14% by weight (the total amount is 100% by weight). In the method of manufacturing a solar cell substrate, isotropic etching is performed with an etchant having a water / sulfuric acid weight ratio of 0.20 or less.

本発明によれば、前述の課題が達成される。   According to the present invention, the aforementioned problems are achieved.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明においては、シリコンウエハーとして多結晶シリコンインゴットを固定砥粒ワイヤーソー方式でスライスして得た多結晶シリコンウエハーを使用する。多結晶シリコンは、ウェハ内に様々な結晶面方位を持つ、すなわち、隣り合う結晶の方向がばらばらで単結晶のように全体の原子の並び方が一定していない特徴を有する。固定砥粒ワイヤーソー方式(例えば芯線にダイヤモンド砥粒を固定したワイヤーソーを使用する方式)でスライスした場合、そのスライス面は、前述のとおり、切断痕が少なくて比較的滑らかであり、レーザーマイクロスコープを利用して測定される立体的表面粗さが1.0〜1.3であることによって特徴付けられる。   In the present invention, a polycrystalline silicon wafer obtained by slicing a polycrystalline silicon ingot by a fixed abrasive wire saw method is used as the silicon wafer. Polycrystalline silicon has various crystal plane orientations in a wafer, that is, the direction of adjacent crystals is different and the arrangement of atoms as a whole is not constant like a single crystal. When sliced by a fixed abrasive wire saw method (for example, a method using a wire saw in which diamond abrasive grains are fixed to the core wire), the slice surface is relatively smooth with few cutting marks, as described above. It is characterized by a three-dimensional surface roughness measured using a scope of 1.0 to 1.3.

上記の立体的表面粗さは、レーザーマイクロスコープ(例えば、KEYENCH社製「VK−9700」)を使用し、測定時倍率:3,000倍、観察視野:6,512μmの条件下で、シリコンウエハーの凹凸表面の表面積を計測し、その値を観察視野で除した値として定義される。 The above three-dimensional surface roughness was measured using a laser microscope (for example, “VK-9700” manufactured by KEYENCH) under the conditions of magnifying power: 3,000 times and observation field of view: 6,512 μm 2. It is defined as the value obtained by measuring the surface area of the uneven surface of the wafer and dividing the value by the observation field.

レーザーマイクロスコープ:KEYENCH社製「VK−9700」は、短波長レーザ光源」と「白色光源」を用いた2Way光源方式を採用し、この2つの光により、カラー超深度・レーザ超深度・高低画像を構築するために必要な、色・光量・高さの情報を得ることができる装置である。この装置においては、レーザ光源は点光源のため、X−Yスキャン光学系を介して観察視野内を1024×768ピクセルに分割してスキャンし、各ピクセルごとの反射光を受光素子で検出する。そして、対物レンズをZ軸方向に駆動し、スキャンを繰り返すことにより各ピクセルのZ軸位置ごとの反射光量を取得する。これにより、3次元で凹凸を測定することが出来、凹凸表面の立体的表面粗さを把握することが出来る。しかも、最も反射光量の高いZ軸位置を焦点として、高さ情報と反射光量を検出することが出来る。これにより、全体に焦点の合った光量超深度画像と高低画像(情報)が得られる。   Laser microscope: “VK-9700” manufactured by KEYENCH employs a two-way light source system using a short-wavelength laser light source and a white light source. It is a device that can obtain the information of color, light quantity, and height necessary for constructing. In this apparatus, since the laser light source is a point light source, the observation field is divided into 1024 × 768 pixels and scanned through an XY scanning optical system, and the reflected light for each pixel is detected by a light receiving element. Then, the objective lens is driven in the Z-axis direction, and scanning is repeated to obtain the reflected light amount for each Z-axis position of each pixel. Accordingly, the unevenness can be measured in three dimensions, and the three-dimensional surface roughness of the uneven surface can be grasped. In addition, height information and the amount of reflected light can be detected with the Z-axis position having the highest amount of reflected light as a focal point. Thereby, an ultra-deep light amount image and a high / low image (information) focused on the whole are obtained.

本発明においては、上記の装置を使用した3次元計測として、測定時倍率:3,000倍の画像上に任意で指定した領域(但し観察視野:6,512μm)における対象物の表面積を測定し、その値を観察視野で除した値を立体的表面粗さと定義している。 In the present invention, as a three-dimensional measurement using the above-described apparatus, the surface area of an object is measured in an arbitrarily designated area (observation field of view: 6,512 μm 2 ) on an image having a measurement magnification of 3,000 times. The value obtained by dividing the value by the observation field is defined as the three-dimensional surface roughness.

多結晶シリコン基板は、p型多結晶シリコン基板であってもよく、n型多結晶シリコン基板であってもよい。この場合、シリコン基板に含まれる不純物は、例えば、p型の場合、ホウ素やアルミニウムなどであり、n型の場合、リン、砒素、アンチモンなどである。多結晶シリコン基板がp型多結晶シリコン基板またはn型多結晶シリコン基板の場合、不純物の濃度は、特に限定されないが、例えば、1013/cm〜1021/cmである。 The polycrystalline silicon substrate may be a p-type polycrystalline silicon substrate or an n-type polycrystalline silicon substrate. In this case, the impurity contained in the silicon substrate is, for example, boron or aluminum in the case of p-type, and phosphorus, arsenic, antimony or the like in the case of n-type. When the polycrystalline silicon substrate is a p-type polycrystalline silicon substrate or an n-type polycrystalline silicon substrate, the concentration of impurities is not particularly limited, but is, for example, 10 13 / cm 3 to 10 21 / cm 3 .

多結晶シリコン基板の厚さは、特に限定されないが、通常100〜300μmである。100μm以上とすることにより、シリコン基板が十分な強度を有することができ、300μm以下とすることにより、太陽電池などを低コストで製造することができる。多結晶シリコン基板の大きさは、特に限定されないが、例えば126mm×126mm又は156mm×156mmである。   The thickness of the polycrystalline silicon substrate is not particularly limited, but is usually 100 to 300 μm. By setting it as 100 micrometers or more, a silicon substrate can have sufficient intensity | strength, and a solar cell etc. can be manufactured at low cost by setting it as 300 micrometers or less. The size of the polycrystalline silicon substrate is not particularly limited, but is, for example, 126 mm × 126 mm or 156 mm × 156 mm.

本発明においては、硫酸、硝酸および弗酸の混合物をエッチャントとして使用する。エッチャントの調製に使用する原料の酸としては、各種の濃度のものを使用することが出来る。硫酸原料としては、希硫酸、濃硫酸、発煙硫酸などが挙げられる。濃硫酸とは96〜98重量%硫酸、発煙硫酸とは濃硫酸に過剰の三酸化硫黄を吸収させたものである。硝酸としては、希硝酸、濃硝酸、発煙硝酸などが挙げられる。濃硝酸とは70〜98重量%硝酸、発煙硝酸とは濃硝酸に気体の二酸化窒素を吹き込んだものである。原料弗酸としては、弗酸の他に弗化水素ガス(無水弗酸)を使用することが出来る。   In the present invention, a mixture of sulfuric acid, nitric acid and hydrofluoric acid is used as an etchant. As the raw material acid used for the preparation of the etchant, those having various concentrations can be used. Examples of the sulfuric acid raw material include dilute sulfuric acid, concentrated sulfuric acid, fuming sulfuric acid and the like. Concentrated sulfuric acid is 96-98% by weight sulfuric acid, and fuming sulfuric acid is concentrated sulfuric acid in which excess sulfur trioxide is absorbed. Examples of nitric acid include dilute nitric acid, concentrated nitric acid, and fuming nitric acid. Concentrated nitric acid is 70 to 98% by weight nitric acid, and fuming nitric acid is obtained by blowing gaseous nitrogen dioxide into concentrated nitric acid. As the raw material hydrofluoric acid, hydrogen fluoride gas (anhydrous hydrofluoric acid) can be used in addition to hydrofluoric acid.

本発明において、エッチャントの組成は次のように調節される。すなわち、硫酸濃度は55〜85重量%、好ましくは60〜80重量%、硝酸濃度は4〜21重量%、好ましくは10〜21重量%、弗酸濃度は2〜10重量%、好ましくは2〜5重量%、水分濃度は2〜14重量%、好ましくは7〜14重量%(但し、これらの合計量は100重量%)である。また、水/硫酸の重量比率は0.20以下であることが重要である。   In the present invention, the composition of the etchant is adjusted as follows. That is, the sulfuric acid concentration is 55 to 85 wt%, preferably 60 to 80 wt%, the nitric acid concentration is 4 to 21 wt%, preferably 10 to 21 wt%, and the hydrofluoric acid concentration is 2 to 10 wt%, preferably 2 to 2 wt%. 5% by weight and water concentration is 2 to 14% by weight, preferably 7 to 14% by weight (however, the total amount is 100% by weight). It is also important that the water / sulfuric acid weight ratio is 0.20 or less.

硫酸濃度が55重量%未満の場合はエッチング速度が遅すぎる傾向があり、85重量%を超える場合は、硝酸、弗酸、水の適正量の配合に支障を来す。硝酸濃度が4重量%未満の場合はエッチング速度が遅すぎ、21重量%を超える場合はエッチング速度が速すぎてコントロール困難となる傾向がある。水分濃度は特に重要である。水分濃度が2重量%未満の場合はエッチング速度が遅すぎる。すなわち、湿式エッチングでは硝酸によりシリコンウエハー表面が酸化され、生成したSiOとHFの反応によりエッチングが進行するが、水の含有量が少な過ぎる場合はHFがイオン化せずSiOが除去されないためエッチングが進行しない。一方、水分濃度が14重量%を超える場合や水/硫酸の重量比率が0.20を超える場合は硝酸の酸化力が低くなりエッチングが困難となる。 When the sulfuric acid concentration is less than 55% by weight, the etching rate tends to be too slow, and when it exceeds 85% by weight, mixing of appropriate amounts of nitric acid, hydrofluoric acid and water is hindered. When the nitric acid concentration is less than 4% by weight, the etching rate is too slow, and when it exceeds 21% by weight, the etching rate tends to be too fast and difficult to control. The moisture concentration is particularly important. When the water concentration is less than 2% by weight, the etching rate is too slow. That is, in wet etching, the surface of the silicon wafer is oxidized by nitric acid, and etching proceeds due to the reaction between the generated SiO 2 and HF. However, if the water content is too small, HF is not ionized and SiO 2 is not removed. Does not progress. On the other hand, when the water concentration exceeds 14% by weight or when the weight ratio of water / sulfuric acid exceeds 0.20, the oxidizing power of nitric acid becomes low and etching becomes difficult.

因に、スライスしたままのウエハーには、表面に機械的ダメージ(欠陥)の残った層が存在するが、上記のエッチャントによる湿式エッチングによれば、ダメージ層の除去と、表面テクスチャー構造の形成とを同じ工程で行うことが出来る。そのため、本発明においては、酸又はアルカリ等でエッチングするダメージ層の除去工程を予め行う必要はない。   Incidentally, the wafer that has been sliced has a layer with mechanical damage (defects) remaining on the surface, but according to the wet etching using the above etchant, the damage layer is removed and the surface texture structure is formed. Can be performed in the same process. For this reason, in the present invention, it is not necessary to perform in advance the step of removing the damaged layer by etching with acid or alkali.

エッチングに要する時間は、エッチャント組成および温度と、多結晶シリコン基板の厚さと所望のエッチング後の厚さとによって決められるが、例えば、ディップ式で行った場合は、通常0.1〜10分程度であり、エッチング量は、片面で、ウェハ面内平均1〜20μm程度となるエッチング量が最適である。また、エッチングの温度(エッチャントの温度)は通常0〜30℃である。   The time required for etching is determined by the etchant composition and temperature, the thickness of the polycrystalline silicon substrate, and the desired post-etching thickness. For example, in the case of a dip method, it is usually about 0.1 to 10 minutes. In addition, the etching amount is optimally an etching amount that is about 1 to 20 μm on the wafer surface average on one side. The etching temperature (etchant temperature) is usually 0 to 30 ° C.

次に、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらに何ら制限されるものではない。なお、エッチャントの調製用酸には、97重量%硫酸、98重量%硝酸、50重量%弗酸を使用した。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not restrict | limited to these at all. Note that 97 wt% sulfuric acid, 98 wt% nitric acid, and 50 wt% hydrofluoric acid were used as acids for preparing the etchant.

実施例1〜4及び比較例1〜2:
サイズ156mm×156mm±0.5mm、厚さ200μm±20μmのP型多結晶シリコンウエハーを、表1に示した組成のエッチャントでエッチングし、得られた凹凸表面の立体的表面粗さを測定した。上記のシリコンウエハーは、多結晶シリコンインゴットを固定砥粒ワイヤーソー方式でスライスして得られたものであり、前述の立体的表面粗さは1.1である。また、エッチング温度は25℃、エッチング時間は60秒とした。立体的表面粗さ測定結果を表1に示す。
Examples 1-4 and Comparative Examples 1-2:
A P-type polycrystalline silicon wafer having a size of 156 mm × 156 mm ± 0.5 mm and a thickness of 200 μm ± 20 μm was etched with an etchant having the composition shown in Table 1, and the three-dimensional surface roughness of the resulting uneven surface was measured. The silicon wafer is obtained by slicing a polycrystalline silicon ingot by a fixed abrasive wire saw method, and the above-mentioned three-dimensional surface roughness is 1.1. The etching temperature was 25 ° C. and the etching time was 60 seconds. Table 1 shows the three-dimensional surface roughness measurement results.

(1)凹凸表面の立体的表面粗さの測定:
レーザーマイクロスコープ:KEYENCH社製「VK−9700」を使用し、測定時倍率:3,000倍、観察視野:6,512μmの条件下で、多結晶シリコンウエハーの凹凸表面の表面積を計測し、その値を観察視野で除し、立体的表面粗さ値を算出した。
(1) Measurement of three-dimensional surface roughness of uneven surface:
Laser microscope: Using “VK-9700” manufactured by KEYENCH, measuring the surface area of the concavo-convex surface of the polycrystalline silicon wafer under the conditions of the magnification at the time of measurement: 3,000 times and the viewing field: 6,512 μm 2 , The value was divided by the observation field, and the three-dimensional surface roughness value was calculated.

Figure 2014232829
Figure 2014232829

Claims (2)

レーザーマイクロスコープを利用して測定される立体的表面粗さが1.0〜1.3の多結晶シリコンウエハーの表面を、硫酸濃度が55〜85重量%、硝酸濃度が4〜21重量%、弗酸濃度が2〜10重量%、水分濃度が2〜14重量%(但し、これらの合計量は100重量%)であり、水/硫酸の重量比率は0.20以下であるエッチャントで等方性エッチングすることを特徴とする太陽電池用基板の製造方法。   The surface of a polycrystalline silicon wafer having a three-dimensional surface roughness of 1.0 to 1.3 measured by using a laser microscope, a sulfuric acid concentration of 55 to 85% by weight, a nitric acid concentration of 4 to 21% by weight, An etchant having a hydrofluoric acid concentration of 2 to 10% by weight, a water concentration of 2 to 14% by weight (the total amount of which is 100% by weight), and a water / sulfuric acid weight ratio of 0.20 or less. The manufacturing method of the board | substrate for solar cells characterized by performing etching. 等方性エッチング後のシリコンウエハーの表面の立体的表面粗さが1.8〜4.0である請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the three-dimensional surface roughness of the surface of the silicon wafer after isotropic etching is 1.8 to 4.0.
JP2013113726A 2013-05-30 2013-05-30 Method for manufacturing silicon wafer for solar batteries Pending JP2014232829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113726A JP2014232829A (en) 2013-05-30 2013-05-30 Method for manufacturing silicon wafer for solar batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113726A JP2014232829A (en) 2013-05-30 2013-05-30 Method for manufacturing silicon wafer for solar batteries

Publications (1)

Publication Number Publication Date
JP2014232829A true JP2014232829A (en) 2014-12-11

Family

ID=52126040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113726A Pending JP2014232829A (en) 2013-05-30 2013-05-30 Method for manufacturing silicon wafer for solar batteries

Country Status (1)

Country Link
JP (1) JP2014232829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107971933A (en) * 2016-10-21 2018-05-01 乐山新天源太阳能科技有限公司 A kind of minimizing technology of polysilicon chip surface diamond wire cutting damage layer
JP2018535558A (en) * 2015-11-23 2018-11-29 インテグリス・インコーポレーテッド Composition and method for selectively etching p-type doped polysilicon relative to silicon nitride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102368A1 (en) * 2011-01-27 2012-08-02 京セラ株式会社 Solar battery element manufacturing method, solar battery element, and solar battery module
JP2014225633A (en) * 2013-04-26 2014-12-04 株式会社Tkx Silicon wafer for solar batteries, and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102368A1 (en) * 2011-01-27 2012-08-02 京セラ株式会社 Solar battery element manufacturing method, solar battery element, and solar battery module
JP2014225633A (en) * 2013-04-26 2014-12-04 株式会社Tkx Silicon wafer for solar batteries, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535558A (en) * 2015-11-23 2018-11-29 インテグリス・インコーポレーテッド Composition and method for selectively etching p-type doped polysilicon relative to silicon nitride
US10991809B2 (en) 2015-11-23 2021-04-27 Entegris, Inc. Composition and process for selectively etching p-doped polysilicon relative to silicon nitride
CN107971933A (en) * 2016-10-21 2018-05-01 乐山新天源太阳能科技有限公司 A kind of minimizing technology of polysilicon chip surface diamond wire cutting damage layer
CN107971933B (en) * 2016-10-21 2020-05-01 乐山新天源太阳能科技有限公司 Method for removing diamond wire cutting damage layer on surface of polycrystalline silicon wafer

Similar Documents

Publication Publication Date Title
CN102656297B (en) SiC epitaxial wafer and method for manufacturing same
CN102576666B (en) SiC epitaxial wafer and manufacture method thereof
JP7088210B2 (en) Silicon carbide substrate
JP2006202831A (en) Crystal silicon wafer, method of manufacturing the same crystal silicon solar cell, and method of manufacturing the same
WO2013028802A1 (en) Formulation for acidic wet chemical etching of silicon wafers
EP1852905A1 (en) Method of selective etching and silicon single crystal substrate
JP5231449B2 (en) Method for producing a smooth wafer
TW201213510A (en) Aqueous acidic solution and etching solution and method for texturizing the surface of single crystal and polycrystal silicon substrates
WO2010107863A1 (en) Textured silicon substrate and method
CN104505437A (en) Texturing preprocessing solution and method of diamond wire cutting polycrystalline silicon wafer, texturing preprocessing silicon wafer and application of texturing preprocessing silicon wafer
US11376703B2 (en) Indium phosphide (InP) wafer having pits of olive-shape on the back side, method and etching solution for manufacturing the same
Sheng et al. Controllable nano-texturing of diamond wire sawing polysilicon wafers through low-cost copper catalyzed chemical etching
JP2014232829A (en) Method for manufacturing silicon wafer for solar batteries
JP2014086458A (en) Method of manufacturing gallium oxide-based substrate
JP2008282943A (en) Wet etching method of gallium oxide single crystal
CN105671641A (en) Method for preparing silicon wafers for solar cells
JP5717309B2 (en) Silicon wafer for solar cell and method for producing the same
CN103828064A (en) Wafer for use in solar cells, manufacturing method of wafer for use in solar cells, solar cell manufacturing method and solar cell module manufacturing method
Zhang et al. Morphologies of porous silicon etched by the electrochemical etching method with alcohols additives
US20220403550A1 (en) Silicon carbide substrate and method for manufacturing silicon carbide substrate
Choi et al. Effects of mirror polishing brick surface on process yield of multi-wire slicing for thin single-crystalline silicon solar cells
CN1326214C (en) Manufacturing method of nano-line on semiconductor material
Glynn et al. Raman scattering spectroscopy of metal-assisted chemically etched rough Si nanowires
Han et al. A comparative study of selective dry and wet etching of germanium–tin (Ge1− xSnx) on germanium
Xiao et al. Morphology of etch-pits on HF-HNO3-H2O vapor-etched diamond wire sawn multi-crystalline silicon wafers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170502

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180426