JP2014226163A - Composite-type optical fiber equipped with functional probe - Google Patents

Composite-type optical fiber equipped with functional probe Download PDF

Info

Publication number
JP2014226163A
JP2014226163A JP2013105462A JP2013105462A JP2014226163A JP 2014226163 A JP2014226163 A JP 2014226163A JP 2013105462 A JP2013105462 A JP 2013105462A JP 2013105462 A JP2013105462 A JP 2013105462A JP 2014226163 A JP2014226163 A JP 2014226163A
Authority
JP
Japan
Prior art keywords
poly
optical fiber
temperature
organic polymer
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013105462A
Other languages
Japanese (ja)
Other versions
JP6336713B2 (en
Inventor
美和子 尾崎
Miwako Ozaki
美和子 尾崎
中山 徳夫
Tokuo Nakayama
徳夫 中山
高橋 克幸
Katsuyuki Takahashi
克幸 高橋
晴之 槇尾
Haruyuki Makio
晴之 槇尾
崇 畦崎
Takashi Azezaki
崇 畦崎
松居 成和
Narikazu Matsui
成和 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASIA MEDICAL CENTER PRIVATE Ltd
ASIA MEDICAL CT PRIVATE Ltd
Mitsui Chemicals Inc
Original Assignee
ASIA MEDICAL CENTER PRIVATE Ltd
ASIA MEDICAL CT PRIVATE Ltd
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASIA MEDICAL CENTER PRIVATE Ltd, ASIA MEDICAL CT PRIVATE Ltd, Mitsui Chemicals Inc filed Critical ASIA MEDICAL CENTER PRIVATE Ltd
Priority to JP2013105462A priority Critical patent/JP6336713B2/en
Publication of JP2014226163A publication Critical patent/JP2014226163A/en
Application granted granted Critical
Publication of JP6336713B2 publication Critical patent/JP6336713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that it is difficult to obtain high spatial resolution while an outside diameter maintains 1 mm or 1 mm or less in an existing optical fiber, and further there exists no such a multifunctional diagnostic device as enabling biofunction observation while having an ultrafine diameter.SOLUTION: A composite-type extra-fine diameter optical fiber bundle is capable of observing a visible light and a fluorescent light at the same time, and has a high spatial resolution capable of observing cells. The irradiation using a laser and an LED light source is made possible along with the fluorescent light observation at the same time. An environment-responsive sensor is equipped on a tip part. An ultrafine form is maintained by optimizing a fiber component and bundle structure, and holds multi-functions. Vital observation and function measurement are made possible by mounting a functional probe on a fiber tip. The functional probe seals a low molecular substance in nanoparticles, and bonds it to fibers.

Description

本発明は、生体内の温度等を測定・解析すること、患部を診断するための装置、及びその装置の製造技術に関するものである。   The present invention relates to a device for measuring / analyzing in-vivo temperature and the like, diagnosing an affected area, and a technique for manufacturing the device.

生体情報を取得する方法として、内視鏡検査、X線撮影、CT検査、超音波検査など様々な技術が実用化されている。このうち、内視鏡技術は人間に様々な部位に適用できる極めて重要な計測法のひとつであり、内視鏡先端部に多様な機能を搭載することにより患者の負担がかからない様々な診断、治療法の確立が可能となり、ロボット手術等応用範囲が広い技術である。更に、MRI下での診断、治療も患者の負担軽減とともに、術中リアルタイムにダイナミックな状況をモニタリングできるメリットがあり、診断と治療の質向上に大きく貢献できるものである。しかしながら、内視鏡に関しては、外径1.7mmの壁がなかなか超えられないのと、現在の極細径内視鏡(外径2mm前後)、その他非侵襲性診断方法の空間分解能は必ずしも十分なものでなく、病巣部特定の精度向上や、細胞レベルでの診断や治療のための診断、治療方法確立が要求されている。   Various techniques such as endoscopy, X-ray photography, CT examination, and ultrasonic examination have been put to practical use as methods for obtaining biological information. Of these, endoscopic technology is one of the most important measurement methods that can be applied to various parts of humans. Various diagnostics and treatments that do not impose a burden on the patient by installing various functions at the distal end of the endoscope. The technology can be established and has a wide range of applications such as robotic surgery. Furthermore, diagnosis and treatment under MRI has the advantage of reducing the burden on the patient and monitoring the dynamic situation in real time during the operation, which can greatly contribute to improving the quality of diagnosis and treatment. However, with regard to endoscopes, the wall with a 1.7 mm outer diameter cannot be easily exceeded, and the spatial resolution of current ultra-thin endoscopes (around 2 mm outer diameter) and other noninvasive diagnostic methods is always sufficient. In addition, there is a demand for improvement in the accuracy of identifying a lesion, and establishment of a diagnosis and treatment method for diagnosis and treatment at the cellular level.

体温測定は、バイタルサインの1つとして、古くから用いられている生体の状態を知るための基本的な手法である。細胞分子レベルにおいても多くの反応に温度変化があることは科学的に証明されているが、細胞レベルでの温度測定を診断や治療に役立てたり、環境応答性を利用した生体機能計測に応用されるには至っていない。   Body temperature measurement is a basic technique for knowing the state of a living body that has been used for a long time as one of vital signs. Although it has been scientifically proven that there are temperature changes in many reactions at the cellular molecular level, temperature measurement at the cellular level is useful for diagnosis and treatment, and is applied to biological function measurement using environmental responsiveness. It has not reached.

本発明において、環境応答性色素のうち、温度感受性色素を用いて有機高分子に封入(カプセル化)し、このカプセル化された色素を光ファイバ先端に固定化させることにより、接触部位での温度計測が可能となり、例えば脳表面や生体内深部などの温度を計測することもできるようになる。有機高分子の種類を変えることにより温度領域、感度を制御できる。色素団の種類を変えることにより感度、色調を変えることもできる。本計測機器が0.1℃以下温度変化を検出できる場合、組織や細胞の構造を温度マップを通して可視化することができる。また、脳神経系においては神経活動計測が可能になる。   In the present invention, among the environmentally responsive dyes, the temperature sensitive dye is encapsulated (encapsulated) in an organic polymer, and the encapsulated dye is fixed to the tip of the optical fiber, so that the temperature at the contact site is increased. Measurement is possible, and for example, the temperature of the brain surface or deep part in the living body can be measured. Temperature range and sensitivity can be controlled by changing the type of organic polymer. Sensitivity and color tone can be changed by changing the type of chromophore. When this measuring instrument can detect temperature changes below 0.1 ° C, the structure of tissues and cells can be visualized through a temperature map. In addition, it is possible to measure neural activity in the cranial nervous system.

本発明にかかる生体組織情報をセンシングする機能を搭載した複合型光ファイバ装置は、環境応答性色素を包含した有機高分子を先端に固定化した光ファイバがパーツとして用いられていることを特徴としている。この環境応答性色素に与えられた生体内の情報を光ファイバを通じて解析することができる。   The composite optical fiber device equipped with the function of sensing biological tissue information according to the present invention is characterized in that an optical fiber in which an organic polymer containing an environmentally responsive dye is immobilized at the tip is used as a part. Yes. In vivo information given to the environmentally responsive dye can be analyzed through an optical fiber.

1) 環境応答性色素
請求項1〜5に記載の環境応答性色素として、例えば、温度感受性蛍光色素、圧力感受性蛍光色素、酸素感受性蛍光色素、金属(金属イオン)感受性蛍光色素、pH(酸、塩基)感受性蛍光色素などが挙げられる。代表例として温度感受性蛍光色素について説明する。
1) Environmentally Responsive Dye As the environmentally responsive dye according to claims 1 to 5, for example, a temperature sensitive fluorescent dye, a pressure sensitive fluorescent dye, an oxygen sensitive fluorescent dye, a metal (metal ion) sensitive fluorescent dye, pH (acid, Base) sensitive fluorescent dyes and the like. A temperature sensitive fluorescent dye will be described as a representative example.

[温度感受性蛍光色素]
本発明で用いる温度感受性蛍光色素としては、温度に対して線形的に蛍光強度が変化する化合物が挙げられる。好ましくは、所定の温度範囲において、0.1%/1℃以上、さらに好ましくは1.0%/1℃以上の蛍光強度変化を示す物が好ましい。好適にはユウロピウム(Eu)、ランタン(La)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ツリウム(Tm)、イットリビウム(Yb)、ルテチウム(Lu)から選ばれる希土類元素とβ−ジケトンキレート類との錯体化合物、あるいはイリジウム(Ir)と芳香族類との錯体化合物が用いられる。この内、ユウロピウムとβ−ジケトンキレート類との錯体化合物、イリジウム(Ir)と芳香族類との錯体化合物が好ましい。具体的には、トリス(テノイルトリフルオロアセトナート)ユウロピウム(III)(Eu(III)(TTA))またはその誘導体(水和物等)、トリス(ベンゾイルアセトナート)ユウロピウム(III)(Eu(III)(bac))、トリス(ジベンゾイルメタナート)ユウロピウム(III)(Eu(III)(dbm))、トリス(ヘキサフルオロアセチルアセトナート)ユウロピウム(III)(Eu
(III)(hfacac))、トリス(アセチルアセトナート)ユウロピウム(III)(Eu(III)(acac))、(1,10−フェナントロリン)トリス(テノイルトリフルオロアセテート)ユウロピウム(III)(Eu(III)(TTA)PHEN)、トリス(2-フェニルピリジン)イリジウム(III)(Ir(III)(ppy))が挙げられ、特に室温付近での蛍光の収率が高いことなどから、トリス(テノイルトリフルオロアセトナート)ユウロピウム(III)(Eu(III)(TTA))またはその誘導体(水和物等)が最も好適に用いられる。
[Temperature sensitive fluorescent dye]
Examples of the temperature-sensitive fluorescent dye used in the present invention include compounds whose fluorescence intensity changes linearly with respect to temperature. Preferably, a substance exhibiting a change in fluorescence intensity of 0.1% / 1 ° C. or more, more preferably 1.0% / 1 ° C. or more in a predetermined temperature range is preferable. It is preferably selected from europium (Eu), lanthanum (La), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), thulium (Tm), yttrium (Yb), and lutetium (Lu). A complex compound of a rare earth element and a β-diketone chelate or a complex compound of iridium (Ir) and an aromatic is used. Among these, a complex compound of europium and β-diketone chelates and a complex compound of iridium (Ir) and aromatics are preferable. Specifically, tris (thenoyltrifluoroacetonato) europium (III) (Eu (III) (TTA) 3 ) or a derivative thereof (such as a hydrate), tris (benzoylacetonato) europium (III) (Eu ( III) (bac) 3 ), tris (dibenzoylmethanato) europium (III) (Eu (III) (dbm) 3 ), tris (hexafluoroacetylacetonato) europium (III) (Eu
(III) (hfacac) 3 ), tris (acetylacetonato) europium (III) (Eu (III) (acac) 3 ), (1,10-phenanthroline) tris (thenoyltrifluoroacetate) europium (III) (Eu (III) (TTA) 3 PHEN), tris (2-phenylpyridine) iridium (III) (Ir (III) (ppy) 3 ), and particularly because the yield of fluorescence near room temperature is high. Tris (thenoyltrifluoroacetonate) europium (III) (Eu (III) (TTA) 3 ) or a derivative thereof (such as a hydrate) is most preferably used.

温度感受性蛍光色素含有共重合体粒子が濃度差を持って封入、固定化された場合、蛍光強度にばらつきが生じ、温度検出素子として誤差を生じる。そのばらつきに対し、リファレンスとして非温度感受性蛍光色素を同時封入させることにより補正することが出来る。非温度感受性蛍光色素としては、用いる温度感受性蛍光色素の蛍光の波長分布と重ならないことが好ましい。Eu錯体は300nm付近の波長で励起した場合、600nm付近(赤色光)のエネルギー放出が見られる。この場合、リファレンスとしては500nm以下(青〜緑色光)に発色が観察される蛍光色素が好ましく、フルオレセリンやその誘導体、ローダミン誘導体、シアニン誘導体などが挙げられ、具体的にはフルオレセインイソチオシアネート(FITC)、ローダミンB等挙げられる。   When the temperature-sensitive fluorescent dye-containing copolymer particles are encapsulated and fixed with a difference in concentration, the fluorescence intensity varies and an error occurs as a temperature detection element. The variation can be corrected by simultaneously enclosing a non-temperature sensitive fluorescent dye as a reference. The non-temperature sensitive fluorescent dye is preferably not overlapped with the fluorescence wavelength distribution of the temperature sensitive fluorescent dye used. When the Eu complex is excited at a wavelength near 300 nm, energy emission near 600 nm (red light) is observed. In this case, the reference is preferably a fluorescent dye whose color is observed at 500 nm or less (blue to green light), and examples thereof include fluorescein, its derivatives, rhodamine derivatives, cyanine derivatives, and the like. Specifically, fluorescein isothiocyanate (FITC). , Rhodamine B and the like.

2)有機高分子
請求項2記載の有機高分子の好ましい例として、例えば、Poly(ethylene); Poly(propylene); Poly(ethylene-co-propylene); Poly(ethylene-co-butene); Poly(ethylene-co-hexene); Poly(ethylene-co-octene); Poly(4-methyl-1-pentene); Poly(acrylic acid); Poly(acrylamide); amphiphilic derivative of dextran; Poly(acrylonitrile); Poly(butyl acrylate); Poly(n-butyl cyanoacrylate); Poly(butyl methacrylate); Poly(methacrylic acid); polymeric surfactant based on carboxymethyl cellulose and alkyl poly(etheroxy)acrylate; Carboxymethylated poly(ethylene glycol); Poly(chloromethyl styrene); Poly(styrene); Poly(methyl methacrylate); Poly(isobutyl methacrylate); Poly(dodecyl methacrylate); Poly((dimethylamino)ethyl methacrylate); Poly(ethyl cyanoacrylate); Poly(ethylene glycol); Poly(glycidyl methacrylate); Poly(hydroxylethyl methacrylate); Poly(hexyl methacrylate); Poly(ethylene-co-butylene); Poly(ethylene-co-butylene)-b-poly(ethylene oxide); Poly(lauryl methacrylate); monomethoxy-poly(ethylene glycol); monomethoxy-poly(ethylene oxide)-poly(lactic acid); Poly(N-methylolacrylamide); Poly(N-vinyl pyrrolidone); Poly(oligo(ethylene oxide) monomethyl ether methacrylate); Pullulan acetate; Polyaniline-poly(styrenesulfonic acid); Poly(γ-benzyl-l-glutamate)-b-poly(ethylene oxide); Poly(ε-caprolactum); Poly(N,N-dimethylacrylamide) with a reactive trithiocarbonate; Poly(oxyethylene)-poly(oxypropylene) copolymer; Poly(hydroxyl butyrate); Poly(heptadecafluorodecylacrylate); Poly(hydroxyethyl methacrylate); Poly(lactide-fumarate); Poly(d,l-lactic acid-co-glycolic acid); Poly(lactide-co-glycolide fumarate); Poly(l-lactic acid); Poly(α,β-l-malic acid); Poly(methacrylic acid-co-styrene); Poly(N-isopropylacrylamide); Poly(N-isopropylacrylamide-co-methacrylic acid); Poly(ethylene oxide)-poly(propylene oxide) ethylene diamine co-polymer; Poly(organophosphazene); Poly[2-(3-thienyl) acetyl-3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctanoate]; Poly(styrenesulfonic acid); Poly(trimethylene carbonate); Poly(vinyl alcohol); SHOA, Poly(stearyl methacrylate); 5-sulfoisophthalic acid dimethyl ester sodium salt modified tetracarboxylic acid-terminated polyester; Poly(vinyl acetate) などが挙げられるがこれらに限定されるものではない。
2) Organic polymer Preferred examples of the organic polymer according to claim 2 include, for example, Poly (ethylene); Poly (propylene); Poly (ethylene-co-propylene); Poly (ethylene-co-butene); Poly ( (ethylene-co-hexene); Poly (ethylene-co-octene); Poly (4-methyl-1-pentene); Poly (acrylic acid); Poly (acrylamide); amphiphilic derivative of dextran; Poly (acrylonitrile); Poly ( butyl acrylate); Poly (n-butyl cyanoacrylate); Poly (butyl methacrylate); Poly (methacrylic acid); polymeric surfactant based on carboxymethyl cellulose and alkyl poly (etheroxy) acrylate; Carboxymethylated poly (ethylene glycol); Poly (chloromethyl styrene) Poly (styrene); Poly (methyl methacrylate); Poly (isobutyl methacrylate); Poly (dodecyl methacrylate); Poly ((dimethylamino) ethyl methacrylate); Poly (ethyl cyanoacrylate); Poly (ethylene glycol); Poly (glycidyl methacrylate) Poly (hydroxylethyl methacrylate); Poly (hexyl methacrylate); Poly (ethylene-co-butylene); Poly (ethylene-co-butylene) -b-poly (ethylene oxide); Poly (lauryl methacrylate) ); monomethoxy-poly (ethylene glycol); monomethoxy-poly (ethylene oxide) -poly (lactic acid); Poly (N-methylolacrylamide); Poly (N-vinyl pyrrolidone); Poly (oligo (ethylene oxide) monomethyl ether methacrylate) ; Pullulan acetate; Polyaniline-poly (styrenesulfonic acid); Poly (γ-benzyl-l-glutamate) -b-poly (ethylene oxide); Poly (ε-caprolactum); Poly (N, N-dimethylacrylamide) with a reactive trithiocarbonate Poly (oxyethylene) -poly (oxypropylene) copolymer; Poly (hydroxyl butyrate); Poly (heptadecafluorodecylacrylate); Poly (hydroxyethyl methacrylate); Poly (lactide-fumarate); Poly (d, l-lactic acid-co-glycolic acid) Poly (lactide-co-glycolide fumarate); Poly (l-lactic acid); Poly (α, β-l-malic acid); Poly (methacrylic acid-co-styrene); Poly (N-isopropylacrylamide); Poly ( N-isopropylacrylamide-co-methacrylic acid); Poly (ethylene oxide) -poly (propylene oxide) ethylene diamine co-polymer; Poly (organophosphazene); Poly [2- (3-thienyl) acetyl-3,3,4,4 , 5,5,6,6,7,7,8,8,8-tridecafluorooctanoate]; Poly (styrenesulfonic aci d); Poly (trimethylene carbonate); Poly (vinyl alcohol); SHOA, Poly (stearyl methacrylate); 5-sulfoisophthalic acid dimethyl ester sodium salt modified tetracarboxylic acid-terminated polyester; Poly (vinyl acetate) It is not limited.

3)バインダー
本発明において、請求項5記載のバインダーの好ましい例として、有機高分子化合物、珪素酸化物などの無機酸化物、珪素系高分子化合物などが挙げられるが、これに限定されるものでない。
3) Binder In the present invention, preferred examples of the binder according to claim 5 include organic polymer compounds, inorganic oxides such as silicon oxide, silicon-based polymer compounds, and the like, but are not limited thereto. .

バインダーによる、ファイバ先端への刺激応答性色素が封入された有機高分子微粒子の固定化方法としては、バインダーまたはその前駆体、及び環境応答性色素が封入された有機高分子微粒子が溶解または分散した液をファイバ先端に塗布し、乾燥固化する方法が挙げられる。   As a method for immobilizing organic polymer fine particles in which a stimulus-responsive dye is encapsulated in the fiber tip using a binder, the organic polymer fine particles in which a binder or a precursor thereof and an environment-responsive dye are encapsulated are dissolved or dispersed. There is a method in which a liquid is applied to the fiber tip and dried and solidified.

外径〜1mmを維持した状態で固定化されたナノ粒子は、脳組織の構造やトラクト構造を可視化できた。脳深部に挿入することにより脳内構造を容易に可視化できると同時に、細胞構造まで同定が可能であった。   Nanoparticles immobilized with the outer diameter maintained at 1 mm could visualize the structure of brain tissue and tract structure. By inserting into the deep brain, the brain structure can be easily visualized, and at the same time, the cell structure can be identified.

本発明により、例えば、感度の高い温度感受性色素を用いて、体内深部の温度変化を感知することで内視鏡診断のスピードや精度の向上が期待できる。また、本発明を治療用内視鏡と複合したり、MRIと併用することにより、従来より正確な診断・治療が可能となる。   According to the present invention, for example, an improvement in the speed and accuracy of endoscopic diagnosis can be expected by sensing a temperature change in the deep part of the body using a highly sensitive temperature-sensitive dye. In addition, by combining the present invention with a therapeutic endoscope or in combination with MRI, more accurate diagnosis and treatment than before can be achieved.

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.

〈環境応答性蛍光色素含有共重合体粒子水分散液の調整〉
有機高分子微粒子15重量部と温度感受性蛍光色素であるトリス(テノイルトリフルオロアセトナート)ユウロピウム(III)(Eu(III)(TTA)3)0.03重量部、非温度感受性蛍光色素であるフルオレセインイソチオシアネート(FITC)0.00001重量部、蒸留水85重量部を100mlのオートクレーブに装入し、135℃、800rpmの速度で30分間加熱撹拌の後、撹拌を保ったまま室温まで冷却して、環境応答性蛍光色素含有共重合体粒子水分散液を得た。
<Adjustment of environmentally responsive fluorescent dye-containing copolymer particle aqueous dispersion>
15 parts by weight of organic polymer fine particles, 0.03 part by weight of tris (thenoyltrifluoroacetonato) europium (III) (Eu (III) (TTA) 3) which is a temperature sensitive fluorescent dye, fluorescein which is a non-temperature sensitive fluorescent dye 0.00001 parts by weight of isothiocyanate (FITC) and 85 parts by weight of distilled water were charged into a 100 ml autoclave, heated and stirred at 135 ° C. and 800 rpm for 30 minutes, and then cooled to room temperature while maintaining stirring. An environmentally responsive fluorescent dye-containing copolymer particle aqueous dispersion was obtained.

[実施例1]
上記で得られた環境応答性蛍光色素含有重合体粒子水分散液を50重量部、10%TMOS/メタノール溶液を25重量部、1%NH3溶液を3重量部を混合した液を調製し、診断装置のプローブとなる光ファイバ先端に塗布後に、100度のオーブンで30分間加熱することで、環境応答性蛍光色素を光ファイバ先端に固定化させた。
[Example 1]
Prepare a liquid prepared by mixing 50 parts by weight of the aqueous dispersion of environmentally responsive fluorescent dye-containing polymer particles obtained above, 25 parts by weight of 10% TMOS / methanol solution, and 3 parts by weight of 1% NH 3 solution. After coating on the tip of the optical fiber to be the probe of the apparatus, the environment-responsive fluorescent dye was immobilized on the tip of the optical fiber by heating in an oven at 100 degrees for 30 minutes.

[実施例2]
トリス(テノイルトリフルオロアセトナート)ユウロピウム(III)(Eu(III)(TTA)3)0.23重量部、非温度感受性蛍光色素であるフルオレセインイソチオシアネート(FITC)0.000077重量部、10%TMOS/メタノール溶液を25重量部、1%NH3溶液3重量部を混合した液を調製し、診断装置のプローブとなる光ファイバ先端に塗布後に、100度のオーブンで30分間加熱することで、環境応答性蛍光色素を光ファイバ先端に固定化させた。
[Example 2]
0.23 parts by weight of tris (thenoyltrifluoroacetonato) europium (III) (Eu (III) (TTA) 3), fluorescein isothiocyanate (FITC) as a non-temperature sensitive fluorescent dye 0.000077 parts by weight, 10% TMOS Prepare a mixture of 25 parts by weight of methanol / methanol solution and 3 parts by weight of 1% NH3 solution, apply it to the tip of the optical fiber that will be the probe of the diagnostic device, and then heat it in an oven at 100 degrees for 30 minutes. Fluorescent dye was immobilized on the tip of the optical fiber.

[実施例3]
Eu-TTAとFITCを封入したナノ粒子を用い、マウス急性脳切片の温度計測を行った。一番左は小脳切片、残りの2つは大脳部位である。赤が濃い部分は相対的に温度が高く、緑が濃い部分は温度が低い。温度マップを利用することにより組織構造と神経線維が観察できることが解る。Eu-TTAの蛍光強度を、23〜37℃付近で温度依存的蛍光強度変化を受けないFITCに対し相対比(レシオ)をとることにより生体温度差をより明確に示す事ができる。数値化も可能である。
マウス矢状切片が、95%O2/5%CO2で飽和されたKrebs-Ringer液内中で、250mmの厚みで調整された。Eu-TTAとFITCを封入した実施例1で用いた微粒子を超純水に融解し、微粒子を直接脳切片に適用した。下記はそれを顕微鏡下で観察したものである。

Figure 2014226163
[Example 3]
Using nanoparticles encapsulating Eu-TTA and FITC, we measured the temperature of mouse acute brain sections. The leftmost is a cerebellar slice, and the other two are cerebral regions. The dark red part has a relatively high temperature and the deep green part has a low temperature. It can be seen that the tissue structure and nerve fibers can be observed by using the temperature map. By taking a relative ratio (ratio) of the fluorescence intensity of Eu-TTA relative to FITC that does not undergo a temperature-dependent fluorescence intensity change in the vicinity of 23 to 37 ° C., the temperature difference of the living body can be shown more clearly. Digitization is also possible.
Mouse sagittal sections were prepared with a thickness of 250 mm in Krebs-Ringer solution saturated with 95% O2 / 5% CO2. The microparticles used in Example 1 in which Eu-TTA and FITC were encapsulated were melted in ultrapure water, and the microparticles were applied directly to brain slices. The following is the result of observation under a microscope.

Figure 2014226163

Claims (6)

環境応答性色素を封入した有機高分子微粒子により生体組織情報をセンシングする方法。 A method for sensing biological tissue information using organic polymer particles encapsulating environmentally responsive dyes. 環境応答性色素を封入した有機高分子微粒子を含む複合型光ファイバ。 A composite optical fiber containing organic polymer particles encapsulating environmentally responsive dyes. 環境応答性色素が温度感受性を示すことを利用して体内の温度センシングすることを特徴とする請求項2記載の複合型光ファイバ。 The composite optical fiber according to claim 2, wherein temperature sensing in the body is performed using the fact that an environmentally responsive dye exhibits temperature sensitivity. 有機高分子粒子が体積50%平均粒径が1〜35nmである高分子粒子であることを特徴とする請求項2または3記載の複合型光ファイバ。 4. The composite optical fiber according to claim 2, wherein the organic polymer particles are polymer particles having a 50% volume average particle diameter of 1 to 35 nm. 環境応答性色素を封入した有機高分子粒子がバインダーを用いて光ファイバ先端に固定化されていることを特徴とする請求項2〜4のいずれか1項記載の複合型光ファイバ。 5. The composite optical fiber according to claim 2, wherein organic polymer particles encapsulating an environmentally responsive dye are fixed to the tip of the optical fiber using a binder. 請求項5記載の有機高分子微粒子を光ファイバ先端に固定化する方法。 A method for immobilizing the organic polymer fine particles according to claim 5 on the tip of an optical fiber.
JP2013105462A 2013-05-17 2013-05-17 Method of operating apparatus equipped with optical fiber for visualizing biological tissue information Active JP6336713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013105462A JP6336713B2 (en) 2013-05-17 2013-05-17 Method of operating apparatus equipped with optical fiber for visualizing biological tissue information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013105462A JP6336713B2 (en) 2013-05-17 2013-05-17 Method of operating apparatus equipped with optical fiber for visualizing biological tissue information

Publications (2)

Publication Number Publication Date
JP2014226163A true JP2014226163A (en) 2014-12-08
JP6336713B2 JP6336713B2 (en) 2018-06-06

Family

ID=52126567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013105462A Active JP6336713B2 (en) 2013-05-17 2013-05-17 Method of operating apparatus equipped with optical fiber for visualizing biological tissue information

Country Status (1)

Country Link
JP (1) JP6336713B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652143A (en) * 1984-11-29 1987-03-24 Luxtron Corporation Optical temperature measurement techniques
JPH02193027A (en) * 1989-01-20 1990-07-30 Hitachi Ltd Photometry method and apparatus
JPH02293635A (en) * 1989-04-12 1990-12-04 Luxtron Corp Optical fiber sensor capable of measuring three parameters and system therefor
JPH03120446A (en) * 1989-10-03 1991-05-22 Olympus Optical Co Ltd Fluorescence measuring instrument
JPH11258159A (en) * 1998-01-07 1999-09-24 Univ Rockefeller Method for measuring temperature of single cell in cell specimen or tissue biopsy
JP2001124768A (en) * 1999-05-27 2001-05-11 Univ Rockefeller Fluorescent bead for obtaining cell temperature and its use method
US20090135881A1 (en) * 2007-11-22 2009-05-28 Yamatake Corporation Temperature sensor probe
JP2013506482A (en) * 2009-09-30 2013-02-28 キンバリー クラーク ワールドワイド インコーポレイテッド Self-cooling substrate for temperature difference imaging

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652143A (en) * 1984-11-29 1987-03-24 Luxtron Corporation Optical temperature measurement techniques
JPS62501448A (en) * 1984-11-29 1987-06-11 ラックストロン・コ−ポレ−ション optical temperature measurement technology
JPH02193027A (en) * 1989-01-20 1990-07-30 Hitachi Ltd Photometry method and apparatus
JPH02293635A (en) * 1989-04-12 1990-12-04 Luxtron Corp Optical fiber sensor capable of measuring three parameters and system therefor
JPH03120446A (en) * 1989-10-03 1991-05-22 Olympus Optical Co Ltd Fluorescence measuring instrument
JPH11258159A (en) * 1998-01-07 1999-09-24 Univ Rockefeller Method for measuring temperature of single cell in cell specimen or tissue biopsy
JP2001124768A (en) * 1999-05-27 2001-05-11 Univ Rockefeller Fluorescent bead for obtaining cell temperature and its use method
US20090135881A1 (en) * 2007-11-22 2009-05-28 Yamatake Corporation Temperature sensor probe
JP2013506482A (en) * 2009-09-30 2013-02-28 キンバリー クラーク ワールドワイド インコーポレイテッド Self-cooling substrate for temperature difference imaging

Also Published As

Publication number Publication date
JP6336713B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
Wang et al. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence
Xia et al. Core–shell NaYF4: Yb3+, Tm3+@ FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node
Del Rosal et al. Strategies to overcome autofluorescence in nanoprobe‐driven in vivo fluorescence imaging
US8361437B2 (en) Multimodal nanoparticles for non-invasive bio-imaging
JP2018128470A (en) System, method, and luminescent marker for improved diffuse luminescent imaging or tomography in scattering medium
Hu et al. Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy
CN105527265B (en) Laser pumping time resolution up-conversion luminescence living body imaging system
CN103845741B (en) Based on the double mode fluorescence/magnetic resonance imaging contrast of mesoporous silicon oxide and preparation
CN107955606A (en) A kind of double rear-earth-doped carbon dots magnetic resonance/CT/ fluorescence multi-modality imaging probes and preparation method thereof
CN104483296B (en) Breast cancer molecular probe and its manufacturing method
CN103430014B (en) For detecting the optical imaging probe containing Polyurethane-epoxy resin and optical imagery dye composition of sentinel lymph node
CN103275722B (en) A kind of magneto-optic bimodal image probe rare earth nanoparticle and preparation method thereof and purposes
JP6336713B2 (en) Method of operating apparatus equipped with optical fiber for visualizing biological tissue information
Santelli et al. Custom NIR imaging of new up‐conversion multimodal gadolinium oxysulfide nanoparticles
EP3130357B1 (en) Multipurpose medical image indicator and method for manufacturing same
CN104031635B (en) The preparation method of the up/down conversion luminescence mesoporous nano material of rare earth compounding functionalization and bio-imaging application thereof
CN104288793A (en) Nanometer ultrasonic/fluorescent bimodal contrast agent as well as preparation method and application thereof
RU2544094C2 (en) Method of intraoperative visualisation of pathological foci
CN105327368A (en) Method for preparing fluorescent silicon dioxide coated and folic acid marked gold nanoparticles
JP2010037169A (en) Nanoparticle for dual modal imaging by fluorescence and magnetic resonance and method for producing the same
Chen et al. In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel
CN108827877A (en) A kind of Ratio-type nanometer photo-acoustic detection probe and the preparation method and application thereof
Lun et al. Development of a focused-X-ray luminescence tomography (FXLT) system
CN104623697A (en) Method for preparing polymeric micelle type magnetic resonance contrast agent based on human physiological temperature response
US11872092B2 (en) Methods for surgical guidance in breast cancer surgery and lymph node dissection using two or more implantation devices comprising a capsule and a population of ultrasound-switchable fluorophores incorporated in the capsule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6336713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250