JP2014225389A - Electric insulation paper, electric insulator obtained by heating the paper and electric motor or transformer having electric insulation space - Google Patents

Electric insulation paper, electric insulator obtained by heating the paper and electric motor or transformer having electric insulation space Download PDF

Info

Publication number
JP2014225389A
JP2014225389A JP2013104585A JP2013104585A JP2014225389A JP 2014225389 A JP2014225389 A JP 2014225389A JP 2013104585 A JP2013104585 A JP 2013104585A JP 2013104585 A JP2013104585 A JP 2013104585A JP 2014225389 A JP2014225389 A JP 2014225389A
Authority
JP
Japan
Prior art keywords
paper
electric
insulation
electric insulation
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013104585A
Other languages
Japanese (ja)
Other versions
JP6181969B2 (en
JP2014225389A5 (en
Inventor
土田 実
Minoru Tsuchida
実 土田
友樹 古江
Yuki Furue
友樹 古江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2013104585A priority Critical patent/JP6181969B2/en
Publication of JP2014225389A publication Critical patent/JP2014225389A/en
Publication of JP2014225389A5 publication Critical patent/JP2014225389A5/ja
Application granted granted Critical
Publication of JP6181969B2 publication Critical patent/JP6181969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paper (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide electric insulation paper which reaches details of a narrow space requiring electric insulation, allows filling of a narrow space requiring electric insulation with an insulation member, has high adhesiveness to conductive members requiring electric insulation, is excellent in electric insulation and heat resistance, shows an oil resistance and is also usable in applications of motor interphase insulation.SOLUTION: In electric insulation paper, a thermal-expansion insulation layer containing a thermally expandable functional resin fine particles is arranged on one or both sides of a paper-like substrate. The functional resin particles are thermally expandable microcapsules which are composed of an outer shell made of a thermoplastic polymer of an average particle size of 5-50 μm and a film thickness of 2-15 μm and a low-boiling-point hydrocarbon included in the outer shell, with the boiling point of the low-boiling-point hydrocarbon being equal to or lower than the softening temperature of the thermoplastic polymer. An electric insulator obtained by laminating the electric insulation paper on a member and heating and an electric motor and a transformer having an electric insulation space obtained by heating the electric insulation paper are also provided.

Description

本発明は電気・電子部品などに利用される電気絶縁紙に関し、特に電気絶縁性、耐熱性に優れるとともに狭い空間における隙間充填機能を有する電気絶縁紙であって、電気モーター及び変圧器の相間絶縁用途にも使用可能な電気絶縁紙に関する。   The present invention relates to an electrical insulating paper used for electrical and electronic parts, and more particularly to an electrical insulating paper having excellent electrical insulation and heat resistance, and having a gap filling function in a narrow space, and insulating between phases of an electric motor and a transformer. The present invention relates to electrical insulating paper that can also be used for applications.

変圧器や電気モーターにおいては、コイル間(相間)やコイル線と鉄芯等のコア材との間には電位差による放電や短絡を防止するために絶縁部材が設置され、該絶縁部材には、電気絶縁性に加えて通電に伴う発熱に対する耐熱性が要求される。   In transformers and electric motors, an insulating member is installed between the coils (between phases) and between the coil wire and the core material such as an iron core in order to prevent discharge or short circuit due to a potential difference. In addition to electrical insulation, heat resistance against heat generated by energization is required.

近年、温室ガス発生に伴う地球温暖化や化石燃料の枯渇化などに象徴される地球環境保全の全世界的な流れに従い、燃料エンジンから電気モーターへの転換が加速している。必然的に電気モーターの小型化、高出力化、高効率化の追求が進んでおり、高電圧でのインバーター制御による電気モーター駆動もそのための重要な技術である。電気モーターを設計するにあたり、電気モーター中のコイル占有率を上げることにより電気エネルギー変換効率を高めることができ、更にインバーターへの印加電圧を上げることにより高出力となることが見込める。コイル占有率を上げることは、電気絶縁のための絶縁部材の占める空間が狭く薄くなることにつながる。高電圧にすることは、絶縁部材において、インバーターから発生する高いサージ電圧の侵入を防止すること、高電圧に伴う発熱に対して耐熱性があること、及び狭い絶縁空間において確実に電気絶縁性を確保することが求められる。一般的にこのような絶縁部材としては高耐熱性の樹脂、紙、セラミックス、オイル等の電気絶縁性を有する絶縁部材が用途に応じて単独もしくは複合的に選択されて使用されている。(例えば、特許文献1、2参照)。さらに、電気モーターの内部温度が150℃を超えるような温度で使用することが可能な絶縁紙として、耐熱性のある接着剤を用いたものが検討されている(例えば、特許文献3参照)。また、低誘電材料によりサージ電圧の侵入を防止する観点で熱可塑性樹脂を含む多孔質樹脂層を予め形成した絶縁シートが提案されている(例えば、特許文献4参照)。
また、ハイブリッドカーや電気自動車には、電気モーター及び発電機として選択的に機能するモータージェネレータが搭載されているが、自動車の加速や減速の操作によって100℃以上の高温となるために、所定の性能を維持するため該モータージェネレータ内部に冷却油を循環させる方法が特開2006−081240号公報等で知られている。この種の油浸モーター用の絶縁部材においては、耐油性に優れることも必要となる。
従来、このような電気モーター用絶縁部材としては、所定の強度や絶縁破壊電圧など求められる諸特性を担保するため、異なる特性を有する複数のシート材が接着剤などにより接着されて積層された積層シートが用いられたりしている。例えば、ポリエステル系フィルムの両面に、ウレタン系やアクリル系の常温硬化型あるいは熱硬化型接着剤を介して耐熱紙を積層したものが検討されている(例えば、特許文献5参照)。
以上のように、小型化及び電気エネルギー変換の高効率化の要望等から、高温かつ狭い空間において確実に電気絶縁性能を得ることができる絶縁部材が求められている。
In recent years, the shift from fuel engines to electric motors is accelerating in accordance with the global trend of global environmental conservation symbolized by global warming and depletion of fossil fuels associated with the generation of greenhouse gases. Inevitably, the pursuit of miniaturization, high output, and high efficiency of electric motors is in progress, and electric motor drive by inverter control at high voltage is also an important technology for that purpose. In designing an electric motor, it is possible to increase the electric energy conversion efficiency by increasing the coil occupancy in the electric motor, and to increase the voltage applied to the inverter, and to increase the output. Increasing the coil occupation ratio leads to a narrow and thin space occupied by the insulating member for electrical insulation. High voltage means that the insulation member prevents intrusion of high surge voltage generated from the inverter, heat resistance against heat generated by the high voltage, and reliable electrical insulation in a narrow insulation space. It is required to secure. In general, as such an insulating member, an insulating member having an electrical insulating property such as a high heat-resistant resin, paper, ceramics, oil or the like is used alone or in combination depending on the application. (For example, refer to Patent Documents 1 and 2). Furthermore, as an insulating paper that can be used at a temperature such that the internal temperature of the electric motor exceeds 150 ° C., a paper using a heat-resistant adhesive has been studied (for example, see Patent Document 3). In addition, an insulating sheet in which a porous resin layer containing a thermoplastic resin is formed in advance from the viewpoint of preventing a surge voltage from entering with a low dielectric material has been proposed (see, for example, Patent Document 4).
In addition, a hybrid car or an electric vehicle is equipped with a motor generator that selectively functions as an electric motor and a generator. A method of circulating cooling oil inside the motor generator in order to maintain the performance is known from Japanese Patent Application Laid-Open No. 2006-081240. Insulating members for this type of oil immersion motor need to have excellent oil resistance.
Conventionally, as such an insulating member for an electric motor, in order to ensure required properties such as predetermined strength and dielectric breakdown voltage, a laminate in which a plurality of sheet materials having different properties are bonded and laminated with an adhesive or the like A sheet is used. For example, a laminate in which heat-resistant paper is laminated on both surfaces of a polyester film via a urethane-based or acrylic-based room temperature curing type or thermosetting adhesive has been studied (for example, see Patent Document 5).
As described above, there is a demand for an insulating member that can reliably obtain electrical insulation performance in a high-temperature and narrow space because of demands for miniaturization and high efficiency of electric energy conversion.

特開平9−23601号公報Japanese Patent Laid-Open No. 9-23601 特開2006−321183号公報JP 2006-321183 A 特開2008−178197号公報JP 2008-178197 A 特開2012−182116号公報JP 2012-182116 A 特開2006−262687号公報JP 2006-262687 A

変圧器、電気モーター、その他の各種電気製品、電子製品におけるコイル、コア材等の電気絶縁が必要な導電性部材の各部において、高温かつ狭い空間において確実に電気絶縁性能を得るためには、耐熱性の絶縁部材を狭い空間に確実に充填する必要がある。前記従来の各種絶縁部材を用いる場合、その絶縁部材を組み込む製造方法において、コイル、コア材等の電気絶縁が必要な導電性部材と絶縁部材とを交互に挟み込みながら組み立てていく方法と、未絶縁の部分を残したまま組み立てた導電性部材に対して後から絶縁処理を行う方法とがある。   In order to ensure electrical insulation performance at high temperature and in a narrow space in each part of a conductive member that requires electrical insulation, such as transformers, electric motors, other various electrical products, coils and core materials in electronic products, It is necessary to reliably fill the narrow space with the insulating member. In the case of using the conventional various insulating members, in the manufacturing method incorporating the insulating member, a method of assembling while alternately sandwiching conductive members and insulating members that require electrical insulation such as coils and core materials, and uninsulated There is a method in which an insulating process is performed later on the conductive member assembled while leaving the part.

前者の導電性部材と絶縁部材とを交互に挟み込みながら組み立てていく方法においては、組み立て各工程において電気絶縁性を確保する工程が必要であり、工数が多く時間がかかる。   In the former method of assembling while alternately sandwiching the conductive member and the insulating member, a process for ensuring electrical insulation is necessary in each assembly process, which requires a lot of man-hours and takes time.

後者の組み立てた導電性部材に対して後から絶縁処理を行う方法としては、耐熱性の樹脂を絶縁部材として選択して電気絶縁が必要な空間に該樹脂の原料を流し込んで固化もしくは架橋反応等により硬化させる方法、シート状の絶縁部材を選択して電気絶縁が必要な空間に挿入して固定する方法、等がある。耐熱性の樹脂を選択した場合、樹脂原料を確実に流し込んで充填する工程は困難を伴い、さらに該充填する工程に加えて固化もしくは硬化反応を行う工程を順次行うため、各工程において加熱及び冷却工程を含む放置時間を要する等、各種電気製品、電子製品の効率的な製造を阻害する要因となっていた。また、シート状の絶縁部材を選択した場合、シート状の絶縁部材が樹脂フィルムであると、可撓性が乏しいために電気絶縁が必要な狭い空間の細部にまで到達できなかったり、多層構成の複合シートであると、厚さが大きすぎて電気絶縁が必要な狭い空間に挿入できなかったり、さらに電気絶縁が必要な狭い空間を絶縁部材で充填することができなかったり電気絶縁が必要な導電性部材との密着性が不十分であったりしたために電気絶縁性が損なわれたりする等の問題があった。   As a method of performing an insulation treatment on the latter assembled conductive member later, a heat-resistant resin is selected as an insulating member, and a raw material of the resin is poured into a space where electrical insulation is required to solidify or cross-link. There are a method of curing by, a method of selecting a sheet-like insulating member, and inserting and fixing it in a space that requires electrical insulation. When a heat-resistant resin is selected, the process of reliably pouring and filling the resin raw material is difficult, and in addition to the filling process, a solidification or curing reaction process is sequentially performed. It has been a factor that hinders efficient production of various electric products and electronic products, such as requiring standing time including processes. In addition, when a sheet-like insulating member is selected, if the sheet-like insulating member is a resin film, it may not be possible to reach the details of a narrow space that requires electrical insulation due to poor flexibility, or may have a multilayer structure. If it is a composite sheet, it is too thick to be inserted into a narrow space where electrical insulation is necessary, or a narrow space where electrical insulation is necessary cannot be filled with an insulating member, or electrical conductivity that requires electrical insulation. There is a problem that the electrical insulation is impaired due to insufficient adhesion to the conductive member.

そこで本発明は、前記の問題を解決したシート状の絶縁部材として電気絶縁紙を提供することを課題とした。具体的には、各種電気製品、電子製品において、電気絶縁が必要な狭い空間の細部にまで到達し、電気絶縁が必要な狭い空間を絶縁部材で充填することができるとともに電気絶縁が必要な導電性部材との密着性が高く、さらに、電気絶縁性、耐熱性に優れ、耐油性も有し、モーター相間絶縁用途にも使用可能な電気絶縁紙を提供することを課題とした。   Accordingly, an object of the present invention is to provide an electrical insulating paper as a sheet-like insulating member that solves the above-described problems. Specifically, in various electrical products and electronic products, it can reach the details of a narrow space that requires electrical insulation, and the narrow space that requires electrical insulation can be filled with an insulating member, and the electrical conductivity that requires electrical insulation is required. Another object of the present invention is to provide an electrical insulating paper that has high adhesion to a conductive member, is excellent in electrical insulation and heat resistance, has oil resistance, and can be used for motor phase insulation.

本発明は、鋭意検討の結果、下記の技術的構成により前記課題を解決できたものである。
(1)紙状物の片面もしくは両面に熱膨張性の機能性樹脂微粒子を含む熱膨張性絶縁層を配置したことを特徴とする電気絶縁紙。
(2)前記機能性樹脂微粒子が、平均粒径5〜50μmで膜厚2〜15μmの熱可塑性高分子からなる外殻と、該外殻に内包される低沸点炭化水素とで構成され、該低沸点炭化水素の沸点が熱可塑性高分子の軟化温度以下である熱膨張性マイクロカプセルであることを特徴とする前記(1)記載の電気絶縁紙。
(3) 前記(1)または(2)のいずれかに記載の電気絶縁紙を部材に積層した後に加熱して得られた電気絶縁体。
(4)前記(1)記載の電気絶縁紙を加熱して得られた電気絶縁空間を有する電気モーターまたは変圧器。
As a result of intensive studies, the present invention has solved the above problems with the following technical configuration.
(1) An electrically insulating paper characterized in that a thermally expandable insulating layer containing thermally expandable functional resin fine particles is disposed on one side or both sides of a paper-like material.
(2) The functional resin fine particles are composed of an outer shell made of a thermoplastic polymer having an average particle diameter of 5 to 50 μm and a film thickness of 2 to 15 μm, and a low-boiling hydrocarbon encapsulated in the outer shell, The electrically insulating paper according to (1), wherein the low-boiling hydrocarbon is a thermally expandable microcapsule having a boiling point equal to or lower than a softening temperature of the thermoplastic polymer.
(3) An electrical insulator obtained by laminating the electrical insulating paper according to either (1) or (2) on a member and then heating.
(4) An electric motor or transformer having an electrically insulating space obtained by heating the electrically insulating paper described in (1).

本発明の電気絶縁紙を用いると、変圧器、電気モーター、その他の各種電気製品、電子製品におけるコイル、コア材等の電気絶縁が必要な導電性部材の各部の製造において、未絶縁の部分を残したまま組み立てた導電性部材に対して後から絶縁処理を行う方法が採用できるので、組み立て各工程において電気絶縁性を確保する工程が不要であり、工数を少なくできる。
本発明の電気絶縁紙は、可撓性のある紙状物を基材としていることから可撓性と薄葉化が可能であり、これにより各種電気製品、電子製品において、電気絶縁が必要な狭い空間の細部にまで到達させることが可能である。
本発明の電気絶縁紙は、表面に熱膨張性の機能性樹脂微粒子を配置したことにより加熱により厚さが増大し、狭い空間における隙間充填機能を有するので、電気絶縁が必要な狭い空間を絶縁部材で充填した電気絶縁空間を形成することができるとともに電気絶縁が必要な導電性部材との密着性を高くすることが可能である。さらに電気絶縁が必要な複数の導電性部材どうしをそれらの立体位置関係を変化させずに前記電気絶縁空間を形成した状態で接着固定することも可能である。
本発明の電気絶縁紙を加熱して得られた電気絶縁空間において電気絶縁性、耐熱性に優れ、耐油性を有しているので、電気モーター及び変圧器の相間絶縁用途として使用可能である。
When using the electrical insulating paper of the present invention, in the manufacture of each part of a conductive member that requires electrical insulation, such as a transformer, an electric motor, other various electrical products, coils, and core materials in electronic products, Since it is possible to employ a method of performing an insulation process on the conductive member assembled as it is left behind, a process for securing electrical insulation is not required in each assembly process, and the number of steps can be reduced.
Since the electrical insulating paper of the present invention is made of a flexible paper-like material, it can be flexible and thinned. As a result, various electrical products and electronic products require narrow electrical insulation. It is possible to reach the details of the space.
The electrically insulating paper of the present invention has a function of filling the gap in a narrow space by heat-expanding functional resin fine particles arranged on the surface, and has a gap filling function in a narrow space. It is possible to form an electrically insulating space filled with a member and to increase the adhesion to a conductive member that requires electrical insulation. Furthermore, a plurality of conductive members that require electrical insulation can be bonded and fixed in a state where the electrical insulation space is formed without changing their three-dimensional positional relationship.
Since the electrical insulation space obtained by heating the electrical insulation paper of the present invention is excellent in electrical insulation and heat resistance and has oil resistance, it can be used as an interphase insulation application for electric motors and transformers.

本発明の電気絶縁紙の一実施形態についての断面図である。It is sectional drawing about one Embodiment of the electrical insulation paper of this invention. 本発明の電気絶縁紙を用いた電気モーターのコイル線とコア材との電気絶縁加工を説明する概略図である。It is the schematic explaining the electrical insulation process of the coil wire and core material of an electric motor using the electrical insulation paper of this invention.

以下、本発明の実施の形態について説明する。
<電気絶縁紙>
本発明の電気絶縁紙について、図1を使用して説明する。本発明の電気絶縁紙は、耐熱性樹脂を含浸または内包した紙状物1の片面(a)もしくは両面(b)に熱膨張性絶縁層2を配置している。
Embodiments of the present invention will be described below.
<Electrical insulation paper>
The electrical insulating paper of the present invention will be described with reference to FIG. In the electrical insulating paper of the present invention, a thermally expandable insulating layer 2 is disposed on one side (a) or both sides (b) of a paper-like material 1 impregnated or encapsulated with a heat resistant resin.

(紙状物)
紙状物としては、各種の繊維材料を湿式法や乾式法を用いた公知の方法によりシート化した抄造紙、不織布が使用できる。紙状物の厚さは、適用すべき前記電気絶縁が必要な空間の寸法に応じて適宜設計すればよく、一般的な抄造紙、不織布が作製できる範囲において特に限定するものではない。
本発明の電気絶縁紙を構成する紙状物の繊維材料としては化学パルプ(針葉樹の晒クラフトパルプ(NBKP)または未晒クラフトパルプ(NUKB)、広葉樹の晒クラフトパルプ(LBKP)または未晒クラフトパルプ(LUKP)等)、機械パルプ(グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等)等のセルロース成分、ケナフ、麻、竹等の非木材系のパルプ、ガラス繊維、ポリエチレン、ポリエステル繊維、セラミック繊維等の化学繊維、セラミック繊維、各種のエンジニアリングプラスチック及び各種のフッ素系樹脂を単独または任意の割合で混合して使用することができる。また、必要に応じてこれらの繊維材料を粉砕して配合することも可能である。
(Paper)
As the paper-like material, papermaking paper and non-woven fabric obtained by forming various fiber materials into sheets by a known method using a wet method or a dry method can be used. The thickness of the paper-like material is not particularly limited as long as it can be appropriately designed according to the size of the space where the electrical insulation to be applied is necessary, and a general paper-making paper and non-woven fabric can be produced.
As the fiber material of the paper-like material constituting the electrical insulating paper of the present invention, chemical pulp (conifer bleached kraft pulp (NBKP) or unbleached kraft pulp (NUKB), hardwood bleached kraft pulp (LBKP) or unbleached kraft pulp (LUKP, etc.), cellulose components such as mechanical pulp (grand pulp (GP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), etc.), non-wood pulp such as kenaf, hemp, bamboo, glass Chemical fibers such as fibers, polyethylene, polyester fibers, and ceramic fibers, ceramic fibers, various engineering plastics, and various fluorine-based resins can be used alone or in admixture at any ratio. Moreover, it is also possible to grind | pulverize and mix | blend these fiber materials as needed.

前記エンジニアリングプラスチック及びフッ素系樹脂としては、例えば、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ガラス繊維強化ポリエチレンテレフタレート、超高分子量ポリエチレン、シンジオタクチックポリスチレン、非晶ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンスルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、液晶ポリマー、ポリテトラフルオロエチレン、部分フッ素化樹脂、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体、エチレン・クロロトリフルオロエチレン共重合体などが挙げられる。   Examples of the engineering plastic and fluororesin include, for example, polyacetal, polyamide, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, glass fiber reinforced polyethylene terephthalate, ultrahigh molecular weight polyethylene, syndiotactic polystyrene, amorphous polyarylate, polysulfone, polysulfone. Ether sulfone, polyphenylene sulfide, polyether ether ketone, polyimide, polyether imide, fluorine resin, liquid crystal polymer, polytetrafluoroethylene, partially fluorinated resin, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoro Alkoxy fluoropolymer, ethylene tetrafluoride / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer Combined, and an ethylene-chlorotrifluoroethylene copolymer.

紙状物を湿式の抄造により作製する場合、パルプ叩解度はカナダ標準ろ水度で400ml以上600ml以下にすることが必須である。ろ水度が600mlを超える場合には、紙層を形成するパルプ繊維間の結合強度が大幅に弱くなり、引張強度、層間強度、破裂強度が低下することにより、加工時に破壊、破断が発生しやすくなる。またカナダ標準ろ水度が400ml未満では形成加工して使用する際に、折部で紙層表面に割れが発生しやすくなり、また紙の密度が高くなるため、同じ厚さの電気絶縁紙を得るために坪量を増やす必要がありコストアップとなる。さらに柔軟性が低くなり加工性が悪化する。   When producing paper-like material by wet papermaking, it is essential that the pulp beating degree be 400 to 600 ml in Canadian standard freeness. When the freeness exceeds 600 ml, the bond strength between the pulp fibers forming the paper layer is significantly weakened, and the tensile strength, interlaminar strength, and burst strength are reduced, causing breakage and breakage during processing. It becomes easy. Also, when the Canadian standard freeness is less than 400 ml, when forming and processing, it becomes easy for cracks to occur on the surface of the paper layer at the folded part, and the density of the paper becomes high. In order to obtain it, it is necessary to increase the basis weight, which increases the cost. Furthermore, flexibility becomes low and workability deteriorates.

また、本発明では紙状物に耐熱安定化剤を含有することが好ましい。紙に耐熱安定化剤を添加することにより紙状物の酸化劣化が抑制されることにより耐熱性が向上する。耐熱安定化剤として、熱や光による紙状物の酸化劣化を防止する成分として、酸化防止剤、光酸化防止剤、紫外線吸収剤、光遮蔽剤、消光剤などを適宜添加することが好ましい。例えば、酸化防止剤としてはフェノール系、リン系、硫黄系、アミン系の酸化防止剤が使用でき、特にジシアンジアミド等のアミン系化合物が好適に用いられる。アミン添加紙とすることによりパルプの耐熱性が向上する。耐熱安定化剤の添加量は適宜の設計事項であるが、例えばパルプの乾燥質量100に対して1〜20程度の質量比である。耐熱安定化剤は抄紙用のパルプスラリーに混合したり、サイズプレスを用いたりして紙層中に含有することができる。   In the present invention, it is preferable that the paper-like material contains a heat-resistant stabilizer. By adding a heat stabilizer to the paper, the oxidative deterioration of the paper is suppressed, thereby improving the heat resistance. As a heat-resistant stabilizer, it is preferable to appropriately add an antioxidant, a photo-antioxidant, an ultraviolet absorber, a light shielding agent, a quencher, or the like as a component for preventing oxidative deterioration of the paper-like material by heat or light. For example, as the antioxidant, phenolic, phosphorus, sulfur and amine antioxidants can be used, and amine compounds such as dicyandiamide are particularly preferably used. By using an amine-added paper, the heat resistance of the pulp is improved. Although the addition amount of a heat-resistant stabilizer is a suitable design matter, it is a mass ratio of about 1-20 with respect to the dry mass 100 of a pulp, for example. The heat-resistant stabilizer can be mixed in the papermaking pulp slurry or contained in the paper layer by using a size press.

さらに本発明の電気絶縁紙には、品質に影響のない範囲で、サイズ剤、紙力増強剤、定着剤、歩留まり向上剤、染料などの内添薬品及び、炭酸カルシウム、カオリン、タルク、水酸化アルミニウムなどの内添填料を使用することが出来る。   Furthermore, the electrical insulating paper of the present invention includes sizing agents, paper strength enhancing agents, fixing agents, yield improving agents, internal additives such as dyes, calcium carbonate, kaolin, talc, hydroxylation, as long as the quality is not affected. An internal filler such as aluminum can be used.

紙状物を湿式の抄造により作製する場合、抄紙機の型式は特に限定は無く、例えば丸網式、長網式、短網式、傾斜網式などの抄紙機を用いて抄紙し、これをヤンキードライヤー、ロータリードライヤー、バンドドライヤー等で乾燥して紙状物を製造できる。プレス線圧は通常の操業範囲内で用いられる。表面処理剤は塗布しても良いし、しなくても良い。表面処理剤を塗布する場合、表面処理剤の成分には特に限定は無く、またサイズプレスの型式も限定はなく、2ロールサイズプレス、ゲートロールサイズプレス、ロッドメタリングサイズプレスのような液膜転写方式サイズプレスなどを適宜用いることができる。   When the paper-like material is produced by wet papermaking, the type of the paper machine is not particularly limited.For example, the paper machine is made using a paper machine such as a round net type, a long net type, a short net type, or an inclined net type. A paper-like product can be produced by drying with a Yankee dryer, rotary dryer, band dryer or the like. The press line pressure is used within the normal operating range. The surface treatment agent may or may not be applied. When the surface treatment agent is applied, there is no particular limitation on the components of the surface treatment agent, and the type of size press is also not limited, and a liquid film such as a two roll size press, a gate roll size press, or a rod metalling size press. A transfer size press or the like can be used as appropriate.

表面処理剤は、特に限定は無く、例えば、生澱粉や、酸化澱粉、エステル化澱粉、カチオン化澱粉、酵素変性澱粉、アルデヒド化澱粉、ヒドロキシエチル化澱粉などの変性澱粉、カルボキシメチルセルロース、ヒドロキシエチルセルロース、メチルセルロースなどのセルロース誘導体、ポリビニルアルコール、カルボキシル変性ポリビニルアルコールなどの変性アルコール、スチレンブタジエン共重合体、ポリ酢酸ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリル酸エステル、ポリアクリルアミドなどを単独又は併用できる。   The surface treatment agent is not particularly limited, for example, raw starch, oxidized starch, esterified starch, cationized starch, enzyme-modified starch, aldehyde-modified starch, modified starch such as hydroxyethylated starch, carboxymethylcellulose, hydroxyethylcellulose, Cellulose derivatives such as methylcellulose, modified alcohols such as polyvinyl alcohol and carboxyl-modified polyvinyl alcohol, styrene butadiene copolymer, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, polyacrylic acid ester, Polyacrylamide can be used alone or in combination.

紙層への塗工の有無は問わないが、塗工層を設ける場合には顔料として重質炭酸カルシウム、軽質炭酸カルシウム、カオリン、タルク、マイカ、酸化チタン、ホワイトカーボン、サチンホワイト、硫酸カルシウム、硫酸バリウム、石膏、水酸化アルミニウム、焼成カオリン、デラミネーテッドカオリン、炭酸マグネシウム、酸化亜鉛、亜硫酸カルシウム、水酸化マグネシウム、酸化マグネシウムなどの無機顔料やプラスチックピグメントなどの有機顔料等を適宜使用できる。好ましくは、軽質炭酸カルシウム、カオリン、マイカ等の無機顔料を塗工層中に含有させることで絶縁性をより向上させることができる。紙層に塗工層を設ける場合に用いる添加剤は特に限定するものではなく、バインダー、分散剤、保水剤、消泡剤等の助剤を適宜使用することができる。   It does not matter whether or not the paper layer is coated, but when providing a coating layer, heavy calcium carbonate, light calcium carbonate, kaolin, talc, mica, titanium oxide, white carbon, satin white, calcium sulfate, Inorganic pigments such as barium sulfate, gypsum, aluminum hydroxide, calcined kaolin, delaminated kaolin, magnesium carbonate, zinc oxide, calcium sulfite, magnesium hydroxide, and magnesium oxide, and organic pigments such as plastic pigments can be used as appropriate. Preferably, the insulating property can be further improved by incorporating an inorganic pigment such as light calcium carbonate, kaolin, or mica in the coating layer. The additive used when the coating layer is provided on the paper layer is not particularly limited, and auxiliary agents such as a binder, a dispersant, a water retention agent, and an antifoaming agent can be appropriately used.

紙状物に塗工層を設ける方法としては、ブレードコーター、エアナイフコーター、ロールコーター、コンマコーター、ブラッシュコーター、キスコーター、カーテンコーター、バーコーター、グラビアコーター、ダイコーター等の公知の塗工機を用いた方法の中から適宜選択することができる。   As a method of providing a coating layer on a paper-like material, a known coating machine such as a blade coater, an air knife coater, a roll coater, a comma coater, a brush coater, a kiss coater, a curtain coater, a bar coater, a gravure coater, a die coater is used The method can be selected as appropriate.

塗工後は、塗工層を乾燥させ、塗工紙を得る。乾燥方法としては例えば、蒸気加熱ヒーター、ガスヒーター、赤外線ヒーター、電気ヒーター、熱風加熱ヒーター、マイクロウェーブ、シリンダードライヤー等の通常の方法を採用することができ、乾燥後、必要に応じて、後加工であるスーパーカレンダー、ソフトカレンダー等の仕上げ工程によって平滑性を付与することが可能である。又、その他、一般的な紙加工方法をいずれも適用可能である。   After coating, the coated layer is dried to obtain coated paper. As a drying method, for example, a normal method such as a steam heater, a gas heater, an infrared heater, an electric heater, a hot air heater, a microwave, or a cylinder dryer can be adopted, and after drying, post-processing is performed as necessary. Smoothness can be imparted by a finishing process such as a super calender or soft calender. In addition, any other general paper processing method can be applied.

(含浸樹脂)
紙状物に含浸または内包する樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル等の架橋性ポリマー、ゴム成分、各種熱可塑性樹脂が使用できる。前記ゴム成としては、天然ゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、クロロプレンゴム(CR)、ニトリルゴム(NBR)、ポリイソブチレン(ブチルゴム IIR)、エチレンプロピレンゴム(EPM, EPDM)、クロロスルホン化ポリエチレン(CSM)、アクリルゴム(ACM)、フッ素ゴム(FKM)、エピクロルヒドリンゴム(CO, ECO)、ウレタンゴム(U)、シリコーンゴム(Q)などが挙げられる。ゴム成分の添加により紙状物に可撓性を付与することができる。前記熱可塑性樹脂としては特に限定されないが、耐熱性を有する熱可塑性樹脂であることが好ましく、特にガラス転移温度が150℃以上、好ましくは180℃以上の耐熱性を有するものが好適に使用される。このような熱可塑性樹脂としては、ポリアミド、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリイミド、ポリエーテルイミド、各種アクリル樹脂、液晶ポリマーなどが挙げられる。前記紙状物に含浸または内包する樹脂は単独で又は2種以上混合して使用できる。
(Impregnated resin)
As the resin impregnated or encapsulated in the paper-like material, a crosslinkable polymer such as phenol resin, epoxy resin, unsaturated polyester, rubber component, and various thermoplastic resins can be used. The rubber composition includes natural rubber, isoprene rubber (IR), butadiene rubber (BR), styrene / butadiene rubber (SBR), chloroprene rubber (CR), nitrile rubber (NBR), polyisobutylene (butyl rubber IIR), ethylene propylene. Rubber (EPM, EPDM), chlorosulfonated polyethylene (CSM), acrylic rubber (ACM), fluorine rubber (FKM), epichlorohydrin rubber (CO, ECO), urethane rubber (U), silicone rubber (Q), etc. . By adding a rubber component, flexibility can be imparted to the paper-like material. Although it does not specifically limit as said thermoplastic resin, It is preferable that it is a thermoplastic resin which has heat resistance, and the glass transition temperature is 150 degreeC or more especially, and what has heat resistance of 180 degreeC or more is used suitably. . Examples of such thermoplastic resins include polyamide, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, polyamideimide, polyimide, polyetherimide, various acrylic resins, Examples include liquid crystal polymers. The resin impregnated or included in the paper-like material can be used alone or in combination of two or more.

(熱膨張性の機能性樹脂微粒子)
熱膨張性の機能性樹脂微粒子は、外部からの加熱により不可逆的に体積膨張する性質を持つ微粒子である。熱膨張性の機能性樹脂微粒子は、熱可塑性高分子からなる外殻と、該外殻に内包される低沸点炭化水素とで構成され、該低沸点炭化水素の沸点が熱可塑性高分子の軟化温度以下である熱膨張性マイクロカプセルであることが好ましい。該熱可塑性高分子からなる外殻の平均粒径は5〜50μmが好ましく20〜45μmがより好ましく、25〜40がさらに好ましい、同外殻の膜厚は2〜15μmが好ましい。平均粒径が50μmを超えると、加熱膨張時に破裂して内包物が漏れ出す恐れがあり、そうなると耐熱性や電気絶縁特性を損ねる恐れがある。平均粒径が5μm未満では十分な膨張が得られない恐れがあり、そうなると狭い空間における隙間充填機能が不十分となるので、電気絶縁が必要な狭い空間を絶縁部材で充填することができず、電気絶縁が必要な導電性部材との密着性が不十分となり、電気絶縁特性を損ねる恐れがある。
(Thermally expandable functional resin fine particles)
Thermally expandable functional resin fine particles are fine particles having the property of irreversibly volume-expanding by external heating. The thermally expandable functional resin fine particles are composed of an outer shell made of a thermoplastic polymer and a low-boiling hydrocarbon encapsulated in the outer shell, and the boiling point of the low-boiling hydrocarbon softens the thermoplastic polymer. It is preferably a thermally expandable microcapsule having a temperature or lower. The average particle diameter of the outer shell made of the thermoplastic polymer is preferably 5 to 50 μm, more preferably 20 to 45 μm, further preferably 25 to 40, and the film thickness of the outer shell is preferably 2 to 15 μm. If the average particle size exceeds 50 μm, the encapsulated material may rupture at the time of heat expansion and the inclusions may leak out. If this happens, the heat resistance and electrical insulation properties may be impaired. If the average particle size is less than 5 μm, there is a possibility that sufficient expansion cannot be obtained, and since the gap filling function in a narrow space becomes insufficient, it is not possible to fill a narrow space that requires electrical insulation with an insulating member, Adhesion with a conductive member that requires electrical insulation may be insufficient, and electrical insulation characteristics may be impaired.

熱膨張性の機能性樹脂微粒子の外殻を構成する熱可塑性高分子は、加熱により軟化して膨張する内包物が脱出漏洩するのを防ぎながらマイクロカプセルの膨張を阻害しないことが必要であり、軟化温度が100℃以上であることが好ましく、さらに好ましくは120〜250℃、より好ましくは150℃〜200℃であることが好ましい。100℃以下ではモーターの発熱に耐えることができず電気絶縁部材として不適である。250℃以上では加熱して電気絶縁空間を得る工程においてモーター等を構成する他の部材の耐熱性が問題となるため現実的ではない。外殻の構成物質としてはこのような熱可塑性高分子であれば特に限定されるものではないが、高い熱膨張率を得るには塩化ビニリデン−アクリロニトリル、塩化ビニリデン−アクリロニトリル−アクリル酸メチル、塩化ビニリデン−アクリロニトリル、アクリル酸エチル、塩化ビニリデン−アクリロニトリル−メタクリル酸メチル、塩化ビニリデン−アクリロニトリル−酢酸ビニル、塩化ビニリデン−メタクリル酸メチル、アクリロニトリル−メタクリル酸メチル−アクリロニトリル−酢酸ビニル共重合樹脂が特に好ましい。さらに耐熱性及び電気絶縁性の観点からアクリロニトリル系の共重合体であることがさらに好ましい。   The thermoplastic polymer that constitutes the outer shell of the thermally expandable functional resin fine particles must not inhibit the expansion of the microcapsule while preventing the inclusions that are softened and expanded by heating to escape and leak, The softening temperature is preferably 100 ° C. or higher, more preferably 120 to 250 ° C., and more preferably 150 ° C. to 200 ° C. Below 100 ° C., it cannot withstand the heat generation of the motor and is not suitable as an electrical insulating member. Above 250 ° C., it is not realistic because the heat resistance of other members constituting the motor or the like becomes a problem in the process of heating to obtain an electrically insulating space. The material constituting the outer shell is not particularly limited as long as it is such a thermoplastic polymer, but in order to obtain a high coefficient of thermal expansion, vinylidene chloride-acrylonitrile, vinylidene chloride-acrylonitrile-methyl acrylate, vinylidene chloride is used. Particularly preferred are acrylonitrile, ethyl acrylate, vinylidene chloride-acrylonitrile-methyl methacrylate, vinylidene chloride-acrylonitrile-vinyl acetate, vinylidene chloride-methyl methacrylate, acrylonitrile-methyl methacrylate-acrylonitrile-vinyl acetate copolymer resins. Further, from the viewpoint of heat resistance and electrical insulation, an acrylonitrile-based copolymer is more preferable.

前記アクリロニトリル系の共重合体としては、特にモノマー成分としてニトリル系モノマーを80重量%以上使用したものが好適であり、ニトリル系モノマーとしてはアクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エトキシアクリロニトリル、フマロニトリル、これらの任意の混合物等が例示されるが、アクリロニトリル及び/またはメタクリロニトリルが特に好ましい。非ニトリル系モノマーとしてはメタクリル酸エステル、アクリル酸エステル、スチレン、酢酸ビニル、塩化ビニル、塩化ビニリデン、ブタジエン、ビニルピリジン、α−メチルスチレン、クロロプレン、ネオプレン、これらの任意の混合物等が例示されるが、メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチルが特に好ましい。   As the acrylonitrile-based copolymer, those using 80% by weight or more of a nitrile monomer as a monomer component are particularly preferable. As the nitrile monomer, acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile are used. , Fumaronitrile, any mixture thereof and the like are exemplified, and acrylonitrile and / or methacrylonitrile are particularly preferable. Examples of the non-nitrile monomer include methacrylic acid ester, acrylic acid ester, styrene, vinyl acetate, vinyl chloride, vinylidene chloride, butadiene, vinyl pyridine, α-methylstyrene, chloroprene, neoprene, and any mixture thereof. Particularly preferred are methyl methacrylate, ethyl methacrylate, and methyl acrylate.

前記アクリロニトリル系の共重合体におけるモノマー成分としての非ニトリル系モノマーの使用量は20重量%以下である。さらに架橋剤を添加してもよく、例えばジビニルベンゼン、ジメタクリル酸エチレン、グリコール、ジメタクリル酸トリエチレングリコール、トリアクリルホルマール、トリメタクリル酸トリメチロールプロパン、メタクリル酸アリル、ジメタクリル酸1,3−ブチルグリコール、トリアリルイソジアネート等が例示されるが、トリアクリルホルマールやトリメタクリル酸トリメチロール等の三感応性架橋剤を、0〜1重量%使用してもよい。   The amount of the non-nitrile monomer used as the monomer component in the acrylonitrile copolymer is 20% by weight or less. Further, a crosslinking agent may be added, for example, divinylbenzene, ethylene dimethacrylate, glycol, triethylene glycol dimethacrylate, triacryl formal, trimethylolpropane trimethacrylate, allyl methacrylate, 1,3-dimethacrylic acid 1,3- Examples thereof include butyl glycol and triallyl isocyanate, but 0 to 1% by weight of a tri-sensitive crosslinking agent such as triacryl formal or trimethylol trimethacrylate may be used.

熱膨張性の機能性樹脂微粒子の外殻に内包される低沸点炭化水素としてはその沸点が前記熱可塑性高分子の軟化温度以下であれば特に限定されるものではないが、例えばプロパン、プロピレン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、ヘプタン等の低沸点炭化水素であり、フロロトリクロロメタン、ジフロロクロロブロムメタン、テトラフロロジブロムエタン等の低沸点有機ハロゲン化合物類であり、又低沸点炭化水素と低沸点有機ハロゲン化合物を併用することもできるが、特に好ましくは熱膨張率を高くすることができ生産の容易さからイソブタン、ブタン、ヘキサンが良い。そして低沸点炭化水素に対する揮発性液体の含有量は3〜50%が好ましく高い熱膨張率を得るには、5〜30%が特に好ましい。このような熱膨張性の機能性樹脂微粒子は、例えば特公平5−15499に開示されている。   The low boiling point hydrocarbon encapsulated in the outer shell of the thermally expandable functional resin fine particles is not particularly limited as long as the boiling point is equal to or lower than the softening temperature of the thermoplastic polymer, for example, propane, propylene, Low-boiling hydrocarbons such as butane, isobutane, pentane, isopentane, hexane, heptane, low-boiling organic halogen compounds such as fluorotrichloromethane, difluorochlorobromomethane, and tetrafluorodibromoethane, and low-boiling carbonization. Hydrogen and a low-boiling organic halogen compound can be used in combination, but particularly preferred is isobutane, butane, or hexane because the coefficient of thermal expansion can be increased and production is easy. And content of the volatile liquid with respect to a low boiling point hydrocarbon is 3 to 50%, and in order to obtain a high thermal expansion coefficient, 5 to 30% is especially preferable. Such thermally expandable functional resin fine particles are disclosed in, for example, Japanese Patent Publication No. 5-15499.

(熱膨張性絶縁層)
熱膨張性絶縁層の形成は、熱膨張性絶縁層を予め形成しておき前記樹脂含浸した紙状物と熱溶融させたり耐熱性接着剤を介したりして複合化して形成することもできるし、熱膨張性の機能性樹脂微粒子を含む塗料を前記樹脂含浸した紙状物に塗工して形成することもできる。
(Thermal expansion insulating layer)
The heat-expandable insulating layer can be formed by forming a heat-expandable insulating layer in advance and combining it with the resin-impregnated paper-like material by heat melting or using a heat-resistant adhesive. Alternatively, a coating material containing thermally expandable functional resin fine particles may be applied to the resin-impregnated paper-like material.

熱膨張性絶縁層の厚さは、本発明の電気絶縁紙の熱膨張後の寸法と適用すべき前記電気絶縁が必要な空間の寸法とから適宜設計すればよく、特に限定するものではないが、少なくとも前記熱膨張性の機能性樹脂微粒子の粒子が1層以上含まれていることから、該機能性樹脂微粒子の平均粒径以上の厚さを有していればよく、5μm以上の厚さである。熱膨張性絶縁層の厚さの上限はないが、熱膨張性絶縁層が熱膨張した後の厚さと前記紙状物の厚さとのバランスを考慮して、紙状物と電気絶縁紙を加熱して得られた電気絶縁空間(後述する。)とを合わせた電気絶縁体の電気絶縁性が損なわれない範囲で設計すればよい。   The thickness of the heat-expandable insulating layer may be appropriately designed from the dimension after the thermal expansion of the electrical insulating paper of the present invention and the dimension of the space that requires the electrical insulation to be applied, and is not particularly limited. In addition, since at least one layer of the thermally expandable functional resin fine particles is included, it is sufficient that the functional resin fine particles have a thickness equal to or larger than the average particle diameter of the functional resin fine particles. It is. Although there is no upper limit for the thickness of the thermally expandable insulating layer, the paper and the electrical insulating paper are heated in consideration of the balance between the thickness after the thermally expandable insulating layer is thermally expanded and the thickness of the paper. What is necessary is just to design in the range which does not impair the electric insulation of the electric insulator which match | combined with the electric insulation space (it mentions later) obtained by doing.

熱膨張性絶縁層には、耐熱性を向上させるために熱硬化性樹脂を適宜添加することができる。熱硬化性樹脂の形状は、塗工などによる熱膨張性絶縁層の形成を妨げない形状であれば特に限定するものではなく微粒子状でも繊維状でもよくその大きさは適宜の設計事項である。熱硬化性樹脂としては、エポキシ樹脂、ノボラック系フェノール樹脂、レゾール系フェノール樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミドなどが挙げられる。   In order to improve heat resistance, a thermosetting resin can be appropriately added to the thermally expandable insulating layer. The shape of the thermosetting resin is not particularly limited as long as it does not hinder the formation of the thermally expandable insulating layer by coating or the like, and may be fine or fibrous, and the size is an appropriate design matter. Examples of the thermosetting resin include epoxy resin, novolac phenol resin, resol phenol resin, phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, thermosetting polyimide, and the like. .

本発明の電気絶縁紙における熱膨張性絶縁層を、前記樹脂含浸した紙状物に塗工により形成する場合は、該熱膨張性の機能性樹脂微粒子をエマルジョン化し、塗工することができる。塗工層を設ける場合に用いる添加剤は特に限定するものではなく、バインダー、分散剤、保水剤、消泡剤等の助剤を適宜使用することができる。   When the heat-expandable insulating layer in the electrically insulating paper of the present invention is formed on the resin-impregnated paper-like material by coating, the heat-expandable functional resin fine particles can be emulsified and applied. The additive used when providing a coating layer is not specifically limited, Auxiliaries, such as a binder, a dispersing agent, a water retention agent, and an antifoamer, can be used suitably.

熱膨張性の機能性樹脂微粒子の塗工層を設ける方法としては、ブレードコーター、エアナイフコーター、ロールコーター、コンマコーター、ブラッシュコーター、キスコーター、カーテンコーター、バーコーター、グラビアコーター、ダイコーター等の公知の塗工機を用いた方法の中から適宜選択することができる。   As a method of providing a coating layer of thermally expandable functional resin fine particles, known methods such as blade coater, air knife coater, roll coater, comma coater, brush coater, kiss coater, curtain coater, bar coater, gravure coater, die coater, etc. It can select suitably from the methods using a coating machine.

塗工後の乾燥方法としては、前記熱膨張性の機能性樹脂微粒子の外殻に内包される低沸点炭化水素の沸点より低い乾燥温度で行う必要があることに留意さえすれば、公知の方法を使用すればよく、例えば、蒸気加熱ヒーター、ガスヒーター、赤外線ヒーター、電気ヒーター、熱風加熱ヒーター、マイクロウェーブ、シリンダードライヤー等の通常の方法を採用することができ、乾燥後、必要に応じて、後加工であるスーパーカレンダー、ソフトカレンダー等の仕上げ工程によって平滑性を付与することが可能であるし、その他、一般的な紙加工方法をいずれも適用可能であるが、この場合にも前記低沸点炭化水素の沸点より低い温度で処理する必要がある。   As a drying method after coating, as long as it is necessary to carry out at a drying temperature lower than the boiling point of the low boiling hydrocarbon encapsulated in the outer shell of the thermally expandable functional resin fine particles, a known method is used. For example, a normal method such as a steam heater, a gas heater, an infrared heater, an electric heater, a hot air heater, a microwave, a cylinder dryer, etc. can be employed, and after drying, if necessary, Smoothness can be imparted by finishing processes such as super calendering and soft calendering that are post-processing, and any other common paper processing method can be applied. It is necessary to process at a temperature lower than the boiling point of the hydrocarbon.

(その他の成分)
本発明において、紙状物、含浸樹脂、熱膨張性絶縁層には、本発明の効果を損ねない範囲において、種々の添加剤を含んでいてもよい。この添加剤の種類は特に限定されず、粘着付与樹脂、難燃剤、酸化防止剤、無機フィラー、気泡核剤、結晶核剤、熱安定剤、光安定剤、紫外線吸収剤、可塑剤、滑剤、顔料、架橋剤、架橋助剤、シランカップリング剤などの一般的なプラスチック用配合剤などを挙げることができる。これらの添加剤の配合比率は、適宜の設計事項である。
(Other ingredients)
In the present invention, the paper-like material, the impregnating resin, and the thermally expandable insulating layer may contain various additives as long as the effects of the present invention are not impaired. The type of this additive is not particularly limited, and is a tackifier resin, a flame retardant, an antioxidant, an inorganic filler, a cell nucleating agent, a crystal nucleating agent, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, Common plastic compounding agents such as pigments, cross-linking agents, cross-linking aids, and silane coupling agents can be mentioned. The mixing ratio of these additives is an appropriate design matter.

<電気絶縁紙を加熱して得られた電気絶縁空間>
本発明の電気絶縁紙を加熱して得られた電気絶縁空間について、図2を使用して説明する。図2(a)は電気モーターまたは変圧器の一部分の部材の位置関係を示しており、鉄芯等からなるコア材4とコイル5とが電気絶縁が必要な狭い空間10を介して配置されている。図2(b)は前記図2(a)の電気絶縁が必要な狭い空間10に本発明の電気絶縁紙11を挿入した状態を示している。電気絶縁紙11は図1(b)で示した紙状物1の両面に熱膨張性絶縁層2を配置したものを例示している。図2(c)は、前記図2(b)の全体を加熱することにより電気絶縁紙を加熱して得られた電気絶縁空間3が形成されている状態を示している。紙状物1と電気絶縁紙を加熱して得られた電気絶縁空間3とを合わせた状態が本発明の電気絶縁体である。
<Electric insulating space obtained by heating electric insulating paper>
An electrically insulating space obtained by heating the electrically insulating paper of the present invention will be described with reference to FIG. FIG. 2A shows the positional relationship of a part of the members of the electric motor or transformer, in which the core material 4 made of an iron core or the like and the coil 5 are arranged via a narrow space 10 that requires electrical insulation. Yes. FIG. 2B shows a state in which the electrical insulating paper 11 of the present invention is inserted into the narrow space 10 that requires electrical insulation shown in FIG. The electrical insulating paper 11 is illustrated as having a thermally expandable insulating layer 2 disposed on both sides of the paper-like material 1 shown in FIG. FIG. 2C shows a state in which an electrically insulating space 3 obtained by heating the electrically insulating paper by heating the whole of FIG. 2B is formed. The state in which the paper 1 and the electrically insulating space 3 obtained by heating the electrically insulating paper are combined is the electrical insulator of the present invention.

電気絶縁紙は加熱により厚さが増大し、狭い空間における隙間充填機能を有するので、電気絶縁が必要な狭い空間10を絶縁部材で充填した電気絶縁空間3を形成することができるとともに電気絶縁が必要な導電性部材(例えばコア材4やコイル5)との密着性を高くすることが可能である。さらに電気絶縁が必要な複数の導電性部材(例えばコア材4とコイル5)どうしをそれらの立体位置関係を変化させずに前記電気絶縁空間3を形成した状態で接着固定することも可能である。本発明の電気絶縁紙を加熱して得られた電気絶縁空間において電気絶縁性、耐熱性に優れ、耐油性を有しているので、電気モーター及び変圧器の相間絶縁用途として使用可能である。   Since the electrical insulating paper increases in thickness by heating and has a gap filling function in a narrow space, an electrical insulating space 3 in which a narrow space 10 requiring electrical insulation is filled with an insulating member can be formed, and electrical insulation can be performed. It is possible to increase the adhesion with a necessary conductive member (for example, the core material 4 and the coil 5). Further, a plurality of conductive members (for example, the core material 4 and the coil 5) that need electrical insulation can be bonded and fixed in a state where the electrical insulation space 3 is formed without changing their three-dimensional positional relationship. . Since the electrical insulation space obtained by heating the electrical insulation paper of the present invention is excellent in electrical insulation and heat resistance and has oil resistance, it can be used as an interphase insulation application for electric motors and transformers.

本発明の電気絶縁紙を加熱して得られた電気絶縁空間の比誘電率は、空洞共振器接動法により、周波数1GHzにおける複素誘電率を測定し、その実数部を比誘電率とした。測定機器は、円筒空洞共振機(アジレント・テクノロジー社製「ネットワークアナライザ N5230C」、関東電子応用開発社製「空洞共振器1GHz」)によって、短冊状のサンプル(サンプルサイズ2mm×70mm長さ)を用いて測定した。   The relative dielectric constant of the electrically insulating space obtained by heating the electrical insulating paper of the present invention was measured by the complex dielectric constant at a frequency of 1 GHz by the cavity resonator contact method, and the real part was taken as the relative dielectric constant. The measuring instrument uses a strip-shaped sample (sample size 2 mm × 70 mm length) by a cylindrical cavity resonator (“Network Analyzer N5230C” manufactured by Agilent Technologies, “Cavity Resonator 1 GHz” manufactured by Kanto Electronics Application Development Co., Ltd.). Measured.

本発明の電気絶縁紙を加熱して得られた電気絶縁空間は、1GHzにおける比誘電率が2.0以下であることが好ましい。該電気絶縁空間の比誘電率が2.0以下であれば、モーター用電気絶縁性樹脂シートの1GHzにおける比誘電率を2.0以下にすることが可能となり、モーターの絶縁部材として使用した際に、耐サージ電圧による絶縁破壊を防止することができる。一方1GHzにおける比誘電率が2.0を超えると、モーター用電気絶縁性樹脂シートを構成した際に、比誘電率を2.0以下にすることが困難となる。本発明においては、多孔質樹脂層の1GHzにおける比誘電率は、1.9以下、さらに1.8以下であることが好ましい(通常1.4以上)。なお比誘電率は、電気絶縁空間固有の比誘電率に依存するが、空孔率を高くすることで低誘電化することが可能である。   The electrical insulating space obtained by heating the electrical insulating paper of the present invention preferably has a relative dielectric constant of 2.0 or less at 1 GHz. If the dielectric constant of the electrically insulating space is 2.0 or less, it becomes possible to make the dielectric constant at 1 GHz of the electrically insulating resin sheet for motors 2.0 or less, and when used as an insulating member of a motor. In addition, dielectric breakdown due to surge voltage can be prevented. On the other hand, if the relative dielectric constant at 1 GHz exceeds 2.0, it is difficult to make the relative dielectric constant 2.0 or less when an electrically insulating resin sheet for motors is configured. In the present invention, the relative dielectric constant at 1 GHz of the porous resin layer is preferably 1.9 or less, more preferably 1.8 or less (usually 1.4 or more). The relative dielectric constant depends on the specific dielectric constant specific to the electrically insulating space, but can be reduced by increasing the porosity.

本発明の電気絶縁紙を加熱して得られた電気絶縁空間の比誘電率は、空洞共振器接動法により、周波数1GHzにおける複素誘電率を測定し、その実数部を比誘電率とした。測定機器は、円筒空洞共振機(アジレント・テクノロジー社製「ネットワークアナライザ N5230C」、関東電子応用開発社製「空洞共振器1GHz」)によって、短冊状のサンプル(サンプルサイズ2mm×70mm長さ)を用いて測定した。   The relative dielectric constant of the electrically insulating space obtained by heating the electrical insulating paper of the present invention was measured by the complex dielectric constant at a frequency of 1 GHz by the cavity resonator contact method, and the real part was taken as the relative dielectric constant. The measuring instrument uses a strip-shaped sample (sample size 2 mm × 70 mm length) by a cylindrical cavity resonator (“Network Analyzer N5230C” manufactured by Agilent Technologies, “Cavity Resonator 1 GHz” manufactured by Kanto Electronics Application Development Co., Ltd.). Measured.

本発明の電気絶縁紙を加熱して得られた電気絶縁空間は厚さが10μm以上であることが好ましく、さらに好ましくは20〜500μmの範囲である。該厚さが10μm以上の範囲であれば、モーター用電気絶縁性樹脂シートにおいて、絶縁性を維持できるという利点がある。一方多孔質樹脂シートの厚さが10μm未満であると、絶縁破壊が起こりやすく、500μmを超えると電気エネルギー変換効率が低下して、モーター出力が低下するという不具合が発生する恐れがある。   The electrically insulating space obtained by heating the electrically insulating paper of the present invention preferably has a thickness of 10 μm or more, more preferably in the range of 20 to 500 μm. If the thickness is in the range of 10 μm or more, there is an advantage that the insulating property can be maintained in the electrically insulating resin sheet for motors. On the other hand, when the thickness of the porous resin sheet is less than 10 μm, dielectric breakdown is likely to occur, and when it exceeds 500 μm, there is a possibility that the electric energy conversion efficiency is lowered and the motor output is lowered.

本発明の電気絶縁紙を加熱して得られた電気絶縁空間に含まれる気泡の平均気泡径は、5.0μm以下であることが好ましく、さらに好ましくは4.5μm以下であり、特に4.0μm以下であることが好ましい(通常0.01μm以上)。多孔質樹脂層の平均気泡径が5.0μm以下であれば、絶縁性や機械強度を低下させることなく比誘電率を低くすることができるという利点があり、5.0μmを超えると絶縁性や機械強度が低下する場合がある。   The average bubble diameter of the bubbles contained in the electrically insulating space obtained by heating the electrically insulating paper of the present invention is preferably 5.0 μm or less, more preferably 4.5 μm or less, particularly 4.0 μm. The following is preferable (usually 0.01 μm or more). If the average cell diameter of the porous resin layer is 5.0 μm or less, there is an advantage that the relative dielectric constant can be lowered without lowering the insulation and mechanical strength. Mechanical strength may decrease.

本発明の電気絶縁紙を加熱して得られた電気絶縁空間に含まれる気泡の平均気泡径は、多孔質樹脂層の切断面を走査型電子顕微鏡(SEM)(日立製作所社製「S−3400N」)で観察したのち、その画像を画像処理ソフト(三谷商事社製「WinROOF」)で二値化処理し、気泡部と樹脂部とに分離して気泡の最大垂直弦長を測定した。気泡径の大きいほうから50個の気泡について平均値をとり、平均気泡径とした。   The average bubble diameter of the bubbles contained in the electrically insulating space obtained by heating the electrically insulating paper of the present invention is determined by measuring the cut surface of the porous resin layer with a scanning electron microscope (SEM) (“S-3400N manufactured by Hitachi, Ltd.). ”), The image was binarized with image processing software (“ WinROOF ”manufactured by Mitani Corporation), separated into a bubble portion and a resin portion, and the maximum vertical chord length of the bubbles was measured. The average value of 50 bubbles from the larger bubble diameter was taken as the average bubble diameter.

また本発明の電気絶縁紙を加熱して得られた電気絶縁空間の空孔率は、30%以上であることが好ましく、さらに好ましくは40%以上である。多孔質樹脂層の空孔率が30%以上であれば、多孔質樹脂層内に均等な空孔が存在する状態となり誘電特性のバラツキが低減され、低誘電率化を図れるという利点があり、30%未満であると空孔形成状態が偏より誘電特性のバラツキが発生しやすくなり、比誘電率を下げることができない場合がある。   Further, the porosity of the electrically insulating space obtained by heating the electrically insulating paper of the present invention is preferably 30% or more, and more preferably 40% or more. If the porosity of the porous resin layer is 30% or more, there is an advantage that uniform pores exist in the porous resin layer, the variation in dielectric characteristics is reduced, and a low dielectric constant can be achieved. If it is less than 30%, the vacancy formation state is more uneven and the dielectric characteristics tend to vary, and the relative dielectric constant may not be lowered.

本発明の電気絶縁紙を加熱して得られた電気絶縁空間の空孔率は、多孔化前の熱可塑性樹脂組成物、及び多孔化後の多孔質樹脂層の比重を測定し、下記式より算出した。
空孔率(%)=[1−(多孔質樹脂層の比重/多孔化前の熱可塑性樹脂組成物の比重)]×100
The porosity of the electrically insulating space obtained by heating the electrically insulating paper of the present invention is determined by measuring the specific gravity of the thermoplastic resin composition before porosity and the porous resin layer after porosity. Calculated.
Porosity (%) = [1− (specific gravity of porous resin layer / specific gravity of thermoplastic resin composition before porosity)] × 100

以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

<試料の作製>
[実施例1]
紙状物として、
耐熱絶縁紙(新巴川製紙社製、商品名:TZA)
を用い、それぞれ30cm×20cmの寸法に裁断した。
含浸樹脂として電気絶縁性ワニスである、
フェノール系ワニス(日立化成社製、商品名:HPD−200)
を用い、エチルアルコールで固形分40%となるように含浸樹脂溶液を調整した。
ステンレス製バットに前記含浸樹脂溶液を100gを流し入れ、前記裁断した紙状物をバットに投入し、1分間静置して樹脂を含浸させた。
バットから紙状物を引き出し、温度120℃に設定した温風乾燥機に5分投入することにより乾燥し、樹脂含浸量が20g/cmである紙状物を作製した。
続いて、
熱膨張性の機能性樹脂粒子(松本油脂製薬社製、商品名:F190D) 20g
をトルエン20gに溶解し、メイヤーバーを使用して、前記樹脂含浸した紙状物に塗工し、温度120℃に設定した温風乾燥機で乾燥して、塗工量50g/mの熱膨張性絶縁層を形成し、実施例1の電気絶縁紙を得た。
<Preparation of sample>
[Example 1]
As paper,
Heat-resistant insulation paper (trade name: TZA, manufactured by Shinyodogawa Paper Co., Ltd.)
Were each cut into a size of 30 cm × 20 cm.
It is an electrically insulating varnish as an impregnating resin,
Phenolic varnish (manufactured by Hitachi Chemical Co., Ltd., trade name: HPD-200)
Was used to prepare an impregnating resin solution with ethyl alcohol so that the solid content was 40%.
100 g of the impregnating resin solution was poured into a stainless steel vat, and the cut paper was put into the vat and allowed to stand for 1 minute to impregnate the resin.
The paper-like material was pulled out from the vat and dried by placing it in a hot air dryer set at a temperature of 120 ° C. for 5 minutes to produce a paper-like material having a resin impregnation amount of 20 g / cm 2 .
continue,
Thermally expandable functional resin particles (Matsumoto Yushi Seiyaku Co., Ltd., trade name: F190D) 20 g
Is dissolved in 20 g of toluene, coated on the resin-impregnated paper using a Mayer bar, and dried with a warm air dryer set at a temperature of 120 ° C. to give a heat of 50 g / m 2 . An insulative insulating layer was formed to obtain an electrical insulating paper of Example 1.

[実施例2]
紙状物を下記のアラミド紙に変更した以外は実施例1と同様にして実施例2の電気絶縁紙を得た。
アラミド紙(デュポン社製、商品名:ノーメックス)
[Example 2]
An electrically insulating paper of Example 2 was obtained in the same manner as in Example 1 except that the paper-like material was changed to the following aramid paper.
Aramid paper (DuPont, product name: Nomex)

[実施例3]
紙状物を下記の紙/フィルム積層紙に変更した以外は実施例1と同様にして実施例3の電気絶縁紙を得た。
紙/フィルム積層紙(新巴川製紙社製、商品名:半合成紙200M)
[Example 3]
An electrically insulating paper of Example 3 was obtained in the same manner as in Example 1 except that the paper-like material was changed to the following paper / film laminated paper.
Paper / film laminated paper (manufactured by Shinyodogawa Paper, trade name: semi-synthetic paper 200M)

[参考例1]
実施例1の紙状物を参考例1の電気絶縁紙とした。ただし、参考例1の電気絶縁紙は、電気絶縁が必要な狭い空間に先に電気絶縁紙を設置してから該空間にワニスを流し込んで樹脂含浸を実施することにより電気絶縁体を形成する従来の方法を再現したものである。そこで、参考例1の電気絶縁紙からなる絶縁破壊強度の低下率の測定及び固定強度の低下率の測定においては、電気絶縁が必要な狭い空間に先に電気絶縁紙を設置してから樹脂含浸を実施する必要があるため、後述する別の方法により参考例1の電気絶縁紙が形成する電気絶縁体を作製した。
耐熱絶縁紙(新巴川製紙社製、商品名:TZA)
[Reference Example 1]
The paper-like material of Example 1 was used as the electrical insulating paper of Reference Example 1. However, the electrical insulating paper of Reference Example 1 is a conventional method in which an electrical insulating material is formed by first placing an electrical insulating paper in a narrow space where electrical insulation is necessary, and then pouring varnish into the space and performing resin impregnation. This method is reproduced. Therefore, in the measurement of the rate of decrease in dielectric breakdown strength and the rate of decrease in fixed strength made of the electrical insulating paper of Reference Example 1, the electrical insulation paper is first installed in a narrow space where electrical insulation is required, and then the resin impregnation is performed. Therefore, an electrical insulator formed by the electrical insulating paper of Reference Example 1 was produced by another method described later.
Heat-resistant insulation paper (trade name: TZA, manufactured by Shinyodogawa Paper Co., Ltd.)

<測定・評価方法>
耐熱性評価として実施例及び参考例の試料に形成された電気絶縁体について、熱履歴付与前後の絶縁破壊強度の低下率と固定強度の低下率とを評価した。
なお、本発明でいう固定強度とは、複数の導電性部材どうしをそれらの立体位置関係を変化させずに前記電気絶縁空間を形成した状態で接着固定するという本発明の電気絶縁紙の作用効果を評価する指標である。以下の実施例および参考例では、固定強度を鉄板と銅箔のはく離強度に置き換えて評価した。
<Measurement and evaluation method>
As the heat resistance evaluation, the electrical insulators formed on the samples of Examples and Reference Examples were evaluated for the rate of decrease in dielectric breakdown strength and the rate of decrease in fixed strength before and after applying the thermal history.
The fixing strength referred to in the present invention is the effect of the electrical insulating paper of the present invention in which a plurality of conductive members are bonded and fixed in a state where the electrical insulating space is formed without changing their three-dimensional positional relationship. It is an index to evaluate. In the following Examples and Reference Examples, evaluation was performed by replacing the fixing strength with the peel strength between the iron plate and the copper foil.

(絶縁破壊強度の低下率)
・試験片の作製
実施例1〜3の電気絶縁紙の試験片は、幅50mm×長さ100mm×厚さ1mmの鉄板片を水平に置き、該鉄片の2つの長辺それぞれの上に幅2mm×長さ100mm×厚さ500μmのPTFE製スペーサーを設置し、さらにその上側に前記鉄板片と同寸法の銅板片を設置し、スペーサーにより形成されている隙間に幅40mm×長さ100mmの実施例の電気絶縁紙を設置した状態で、温風乾燥機中で温度180℃で1分加熱した後に常温で自然冷却して、実施例の電気絶縁紙の試験片を作製した。この際、実施例の試験片は熱膨張して鉄板片と銅板片との間隙が充填されていることを目視で確認した。
(Decrease rate of dielectric breakdown strength)
-Preparation of test piece The test piece of the electrical insulating paper of Examples 1 to 3 was placed horizontally on an iron plate piece having a width of 50 mm, a length of 100 mm, and a thickness of 1 mm, and a width of 2 mm on each of the two long sides of the iron piece. X PTFE spacer with a length of 100 mm x thickness of 500 μm, a copper plate piece with the same dimensions as the iron plate piece on the upper side, and a 40 mm width x 100 mm length gap formed by the spacer In the state where the electrical insulating paper was installed, it was heated in a warm air dryer at a temperature of 180 ° C. for 1 minute, and then naturally cooled at room temperature to prepare a test piece of the electrical insulating paper of the example. At this time, it was visually confirmed that the test piece of the example was thermally expanded and the gap between the iron plate piece and the copper plate piece was filled.

参考例1の電気絶縁紙の試験片も前記実施例の試験片に準じて作製した。幅50mm×長さ100mm×厚さ1mmの鉄板片を水平に置き、該鉄板片の2つの長辺それぞれの上に幅2mm×長さ100mm×厚さ500μmのPTFE製スペーサーを設置し、さらにその上側に前記鉄板片と同寸法の銅板片を設置し、スペーザーにより形成されている隙間に幅40mm×長さ100mmの実施例の電気絶縁紙を設置した状態で前記フェノール系ワニス(日立化成社製、商品名:HPD−200)を充填し、ワニス成分が漏出しないように鉄板片の2つの短辺をPTFEテープで封止し、温風乾燥機中で温度180℃で30分加熱した後に常温で自然冷却して、実施例の電気絶縁紙の試験片を作製した。この際、実施例の試験片は熱膨張して鉄板片と銅板片との間隙が充填されていることを目視で確認した。   A test piece of electrical insulating paper of Reference Example 1 was also produced according to the test piece of the above example. An iron plate piece of width 50 mm × length 100 mm × thickness 1 mm is horizontally placed, and a PTFE spacer of width 2 mm × length 100 mm × thickness 500 μm is installed on each of the two long sides of the iron plate piece. The phenolic varnish (manufactured by Hitachi Chemical Co., Ltd.) was installed with an electrical insulating paper of an embodiment having a width of 40 mm and a length of 100 mm installed in a gap formed by a spacer. , Trade name: HPD-200), the two short sides of the iron plate pieces are sealed with PTFE tape so that the varnish component does not leak, and heated at 180 ° C. for 30 minutes in a warm air dryer, then at room temperature. The sample was then naturally cooled to prepare a test piece of the electrical insulating paper of the example. At this time, it was visually confirmed that the test piece of the example was thermally expanded and the gap between the iron plate piece and the copper plate piece was filled.

・熱履歴付与(曝露)後の試験片の作製
前記評価用の試験片を温風乾燥機中で、温度200℃で1000時間曝露した後に常温で自然冷却して曝露後の試験片を作製した。
電気絶縁体が形成されている試験片を温風乾燥機を用いて温度200℃で1000時間曝露し、曝露前後の電気絶縁体の絶縁破壊強度(単位:kV/mm)をJIS C2300−2に準じて測定し、その低下率を以下の式により算出した。
-Preparation of test piece after heat history application (exposure) The test piece for evaluation was exposed in a hot air dryer at a temperature of 200 ° C for 1000 hours, and then naturally cooled at room temperature to prepare a test piece after exposure. .
The test piece on which the electrical insulator is formed is exposed to a temperature of 200 ° C. for 1000 hours using a hot air dryer, and the dielectric breakdown strength (unit: kV / mm) of the electrical insulator before and after the exposure is set to JIS C2300-2. According to the measurement, the reduction rate was calculated by the following formula.

(絶縁破壊強度の低下率)[%]
=(曝露前の絶縁破壊強度−曝露後の絶縁破壊強度)/(曝露前の絶縁破壊強度)×100
(Reduction rate of dielectric breakdown strength) [%]
= (Dielectric strength before exposure-Dielectric strength after exposure) / (Dielectric strength before exposure) x 100

絶縁破壊強度の低下率[%]値は0%に近いほど曝露による絶縁破壊強度の低下が小さく優秀といえるが、上記条件による曝露では概ね50%以下であれば従来の電気絶縁紙から形成した電気絶縁体程度の性能があるといえる。   The rate of decrease in dielectric breakdown strength [%] is closer to 0% and the decrease in dielectric breakdown strength due to exposure is small and can be said to be excellent. However, when the exposure under the above conditions is approximately 50% or less, it is formed from conventional electrical insulating paper. It can be said that there is performance equivalent to an electrical insulator.

(固定強度の低下率)
固定強度の評価は、電気絶縁紙からなる電気絶縁体が、スペーサーを介して一定の面間距離を保っている鉄板と銅箔の間に密着して挟まれており、銅箔の一部がつかみしろを有しており、前記電気絶縁体により鉄板と銅箔とが接着固定されている態様の試験片を使用した。以下にさらに詳しく述べる。
(Decrease rate of fixed strength)
The evaluation of the fixing strength is based on the fact that an electrical insulator made of electrical insulating paper is intimately sandwiched between an iron plate and a copper foil that maintain a certain inter-surface distance via a spacer. A test piece having a gripping margin and having an iron plate and a copper foil bonded and fixed by the electrical insulator was used. Further details are described below.

・試験片の作製
実施例1〜3の電気絶縁紙の試験片は、一辺20cmの正方形で厚さ2mmの鉄板を水平に置き、その上面に一辺20cmの正方形で厚さ500μmであって中心部に幅25mm×長さ150mmの貫通窓があるPTFE製スペーサーを設置し、該貫通窓に幅25mm×長さ150mmの実施例の電気絶縁紙をはめ込み、その上側に幅35mm×長さ200mm×厚さ38μmの銅箔を電気絶縁紙が完全に隠れかつ30mm程度のつかみしろが残るように鉄板と平行に設置した状態で、温風乾燥機中で温度180℃で1分加熱した後に常温で自然冷却して、実施例の電気絶縁紙の試験片を作製した。この際、実施例の試験片は熱膨張して鉄板と銅箔との間隙が充填されていることを目視で確認した。
-Preparation of test piece The test piece of the electrical insulating paper of Examples 1 to 3 is a square with a side of 20 cm and a steel plate with a thickness of 2 mm, and a square with a side of 20 cm and a thickness of 500 μm on the upper surface and a center part. A PTFE spacer having a through window with a width of 25 mm and a length of 150 mm is installed, and the electrical insulating paper of the embodiment with a width of 25 mm and a length of 150 mm is inserted into the through window, and the upper side is 35 mm wide × 200 mm long × thick. A 38 μm thick copper foil is placed in parallel with the iron plate so that the electrical insulating paper is completely hidden and the gripping margin of about 30 mm remains, and is heated at a temperature of 180 ° C. for 1 minute in a hot air dryer and then naturally at room temperature. It cooled and produced the test piece of the electrical insulation paper of the Example. At this time, it was visually confirmed that the test piece of the example was thermally expanded and the gap between the iron plate and the copper foil was filled.

参考例1の電気絶縁紙の試験片も前記実施例の試験片に準じて作製した。一辺20cmの正方形で厚さ2mmの鉄板を水平に置き、その上面に一辺20cmの正方形で厚さ500μmであって中心部に幅25mm×長さ150mmの貫通窓があるPTFE製スペーサーを設置し、該貫通窓の内側に幅25mm×長さ150mmの参考例の電気絶縁紙を設置したのち前記フェノール系ワニス(日立化成社製、商品名:HPD−200)を充填し、その上側に幅35mm×長さ200mm×厚さ38μmの銅箔を電気絶縁紙が完全に隠れかつ30mm程度のつかみしろが残るように鉄板と平行に設置した状態で、温風乾燥機中で温度180℃で30分加熱した後に常温で自然冷却して、参考例の電気絶縁紙の試験片を作製した。この際、参考例の試験片はワニスにより鉄板と銅箔との間隙が充填されていることを目視で確認した。   A test piece of electrical insulating paper of Reference Example 1 was also produced according to the test piece of the above example. A steel plate with a side of 20 cm square and a thickness of 2 mm is placed horizontally, and a PTFE spacer with a square with a side of 20 cm and a thickness of 500 μm and a through-hole with a width of 25 mm and a length of 150 mm at the center is installed on its upper surface, An electrical insulating paper of a reference example having a width of 25 mm × a length of 150 mm was placed inside the through window and then filled with the phenolic varnish (manufactured by Hitachi Chemical Co., Ltd., trade name: HPD-200). Heated at 180 ° C for 30 minutes in a hot air dryer with a copper foil of length 200mm x thickness 38μm placed in parallel with the iron plate so that the electrical insulating paper is completely hidden and the gripping margin of about 30mm remains. Then, the sample was naturally cooled at room temperature to prepare a test piece of the electrical insulating paper of the reference example. At this time, it was visually confirmed that the test piece of the reference example was filled with a gap between the iron plate and the copper foil with varnish.

・熱履歴付与(曝露)後の試験片の作製
前記評価用の試験片を温風乾燥機中で、温度200℃で1000時間曝露した後に常温で自然冷却して曝露後の試験片を作製した。
-Preparation of test piece after heat history application (exposure) The test piece for evaluation was exposed in a hot air dryer at a temperature of 200 ° C for 1000 hours, and then naturally cooled at room temperature to prepare a test piece after exposure. .

・固定強度の測定・評価
実施例1〜3及び参考例1の曝露前及び曝露後の試験片をそれぞれ5個ずつ準備し、万能引張試験機を用い、鉄板を水平に設置し、銅箔のつかみしろをチャックではさんで90度はく離強度(単位:N)をJIS K6854−1に準じて測定し、5個の平均値を測定値とした。前記のように、曝露前に対する曝露後のはく離強度の低下率を固定強度の低下率とみなして、以下の式により算出した。
・ Measurement / Evaluation of Fixed Strength Prepare 5 specimens before and after exposure in Examples 1 to 3 and Reference Example 1, respectively, and use a universal tensile tester to install an iron plate horizontally. The 90 ° peel strength (unit: N) was measured according to JIS K6854-1, with the gripping area held between the chucks, and the average value of the five values was taken as the measured value. As described above, the decrease rate of the peel strength after the exposure before the exposure was regarded as the decrease rate of the fixed strength, and was calculated by the following formula.

(固定強度の低下率)[%]
=(はく離強度の低下率)[%]
=(曝露前のはく離強度−曝露後のはく離強度)/(曝露前のはく離強度)×100
(Decrease rate of fixed strength) [%]
= (Decrease rate of peel strength) [%]
= (Peeling strength before exposure-Peeling strength after exposure) / (Peeling strength before exposure) x 100

固定強度の低下率[%]値は0%に近いほど曝露による絶縁破壊強度の低下が小さく優秀といえるが、上記条件による曝露では概ね50%以下であれば従来の電気絶縁紙から形成した電気絶縁体程度の性能があるといえる。   The rate of decrease in fixed strength [%] value is closer to 0% and the decrease in dielectric breakdown strength due to exposure is small and excellent. However, if the exposure under the above conditions is approximately 50% or less, the electricity formed from conventional electrical insulating paper is used. It can be said that it has the performance of an insulator.

実施例および参考例の電気絶縁紙を用いた試験片の構成を表1に、評価結果を表2に示す。   Table 1 shows the configuration of the test pieces using the electrical insulating paper of Examples and Reference Examples, and Table 2 shows the evaluation results.

Figure 2014225389
Figure 2014225389

Figure 2014225389
Figure 2014225389

表2に示した結果から、実施例1〜3に示した本発明の電気絶縁紙から形成した電気絶縁体と、参考例1に示した従来の電気絶縁紙から形成した電気絶縁体とは、絶縁破壊電圧低下率及び固定強度低下率がほぼ同等であることがわかる。すなわち、本発明の電気絶縁紙は、絶縁破壊電圧及び固定強度において従来の電気絶縁紙と同等の特性を有している。
これに加えて、本発明の電気絶縁紙は、電気絶縁が必要な狭い空間における電気絶縁体の形成方法において、従来の電気絶縁紙で必要であったワニスの流し込み工程が不要であり、さらに加熱時間も1分とごく短時間で完了できる。すなわち、本発明の電気絶縁紙は、電気絶縁が必要な狭い空間における電気絶縁体の形成において従来の電気絶縁紙より
も優れている。
このように、本発明の電気絶縁紙は、電気絶縁が必要な狭い空間を絶縁部材で充填した電気絶縁空間を形成することができるとともに電気絶縁が必要な導電性部材との密着性を高くすることが可能である。さらに電気絶縁が必要な複数の導電性部材どうしをそれらの立体位置関係を変化させずに前記電気絶縁空間を形成した状態で接着固定することも可能である。
From the results shown in Table 2, the electrical insulator formed from the electrical insulating paper of the present invention shown in Examples 1 to 3, and the electrical insulator formed from the conventional electrical insulating paper shown in Reference Example 1, It can be seen that the breakdown voltage reduction rate and the fixed strength reduction rate are substantially equal. That is, the electrical insulating paper of the present invention has the same characteristics as the conventional electrical insulating paper in terms of dielectric breakdown voltage and fixed strength.
In addition, the electrical insulating paper of the present invention does not require a varnish pouring step, which is necessary for conventional electrical insulating paper, in the method for forming an electrical insulator in a narrow space where electrical insulation is required, and further heating. It can be completed in as little as 1 minute. That is, the electrical insulating paper of the present invention is superior to conventional electrical insulating paper in forming an electrical insulator in a narrow space where electrical insulation is required.
As described above, the electrical insulating paper of the present invention can form an electrical insulating space in which a narrow space requiring electrical insulation is filled with an insulating member, and at the same time, enhances the adhesion to a conductive member requiring electrical insulation. It is possible. Furthermore, a plurality of conductive members that require electrical insulation can be bonded and fixed in a state where the electrical insulation space is formed without changing their three-dimensional positional relationship.

1 紙状物
2 熱膨張性絶縁層
3 熱膨張性絶縁層を加熱して得られた電気絶縁空間
4 コア材
5 コイル
10 電気絶縁が必要な狭い空間
11 電気絶縁紙
DESCRIPTION OF SYMBOLS 1 Paper-like material 2 Thermally expansible insulating layer 3 Electrical insulating space obtained by heating a thermally expansible insulating layer 4 Core material 5 Coil 10 Narrow space where electric insulation is required 11 Electrical insulating paper

Claims (4)

紙状物の片面もしくは両面に熱膨張性の機能性樹脂微粒子を含む熱膨張性絶縁層を配置したことを特徴とする電気絶縁紙。   An electrically insulating paper comprising a thermally expandable insulating layer containing thermally expandable functional resin fine particles disposed on one side or both sides of a paper-like material. 機能性樹脂微粒子が、平均粒径5〜50μmで膜厚2〜15μmの熱可塑性高分子からなる外殻と、該外殻に内包される低沸点炭化水素とで構成され、該低沸点炭化水素の沸点が熱可塑性高分子の軟化温度以下である熱膨張性マイクロカプセルであることを特徴とする請求項1に記載の電気絶縁紙。   The functional resin fine particles are composed of an outer shell made of a thermoplastic polymer having an average particle diameter of 5 to 50 μm and a film thickness of 2 to 15 μm, and a low boiling hydrocarbon encapsulated in the outer shell. The electrically insulating paper according to claim 1, wherein the electrically insulating paper is a thermally expandable microcapsule having a boiling point not higher than a softening temperature of the thermoplastic polymer. 前記請求項1または2のいずれかに記載の電気絶縁紙を部材に積層した後に加熱して得られた電気絶縁体。   An electrical insulator obtained by heating after laminating the electrical insulating paper according to claim 1 on a member. 前記請求項1または2のいずれかに記載の電気絶縁紙を加熱して得られた電気絶縁空間を有する電気モーター及び変圧器。   An electric motor and a transformer having an electrically insulating space obtained by heating the electrically insulating paper according to claim 1.
JP2013104585A 2013-05-16 2013-05-16 Electric insulating paper, electric insulator obtained by heating it, and electric motor or transformer having electric insulating space Active JP6181969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013104585A JP6181969B2 (en) 2013-05-16 2013-05-16 Electric insulating paper, electric insulator obtained by heating it, and electric motor or transformer having electric insulating space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013104585A JP6181969B2 (en) 2013-05-16 2013-05-16 Electric insulating paper, electric insulator obtained by heating it, and electric motor or transformer having electric insulating space

Publications (3)

Publication Number Publication Date
JP2014225389A true JP2014225389A (en) 2014-12-04
JP2014225389A5 JP2014225389A5 (en) 2016-06-23
JP6181969B2 JP6181969B2 (en) 2017-08-16

Family

ID=52123924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013104585A Active JP6181969B2 (en) 2013-05-16 2013-05-16 Electric insulating paper, electric insulator obtained by heating it, and electric motor or transformer having electric insulating space

Country Status (1)

Country Link
JP (1) JP6181969B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109735A (en) * 2013-12-04 2015-06-11 日東シンコー株式会社 Insulation sheet for motor
WO2023162068A1 (en) * 2022-02-24 2023-08-31 三菱電機株式会社 Sheet-type insulating varnish, method for manufacturing same, electric apparatus, and rotary electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187891A (en) * 2004-12-29 2006-07-20 Keiwa Inc Laminate, its manufacturing method and its application
JP2006262687A (en) * 2005-02-17 2006-09-28 Nitto Shinko Kk Insulating paper for oil immersed motor
JP2012044831A (en) * 2010-08-23 2012-03-01 Toyota Motor Corp Insulation resin sheet for coil fixing, stator for motor using insulation resin sheet for coil fixing and manufacturing method of stator for motor
JP2013004305A (en) * 2011-06-16 2013-01-07 Toyota Motor Corp Secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187891A (en) * 2004-12-29 2006-07-20 Keiwa Inc Laminate, its manufacturing method and its application
JP2006262687A (en) * 2005-02-17 2006-09-28 Nitto Shinko Kk Insulating paper for oil immersed motor
JP2012044831A (en) * 2010-08-23 2012-03-01 Toyota Motor Corp Insulation resin sheet for coil fixing, stator for motor using insulation resin sheet for coil fixing and manufacturing method of stator for motor
JP2013004305A (en) * 2011-06-16 2013-01-07 Toyota Motor Corp Secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109735A (en) * 2013-12-04 2015-06-11 日東シンコー株式会社 Insulation sheet for motor
WO2023162068A1 (en) * 2022-02-24 2023-08-31 三菱電機株式会社 Sheet-type insulating varnish, method for manufacturing same, electric apparatus, and rotary electric machine

Also Published As

Publication number Publication date
JP6181969B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
CN108978328B (en) Heat-conducting aramid nano insulating paper and preparation method thereof
EP1930915B1 (en) Glimmerband, dieses benutzende elektrische drehspule und elektrische drehvorrichtung aufweisend diese elektrische drehspule
US7973243B2 (en) Coil insulator, armature coil insulated by the coil insulator and electrical rotating machine having the armature coil
JP2732822B2 (en) Composite sheet and method for producing the same
CN109643591B (en) Heat conductive electric insulating material
BR102014013217A2 (en) system and method
CN110024503B (en) Electromagnetic wave suppressing sheet
WO2008145190A1 (en) Laminate for electrical machines
KR102517812B1 (en) Corona resistant resin affinity laminate
CN101568976A (en) An insulating structure with screens shaping an electric field
JPWO2006077789A1 (en) Polyketone fiber paper, polyketone fiber paper core for printed wiring board and printed wiring board
JP6181969B2 (en) Electric insulating paper, electric insulator obtained by heating it, and electric motor or transformer having electric insulating space
AU2013361806A1 (en) Transformer insulation
KR102046681B1 (en) Motor bobbin
JPH11288621A (en) Low dielectric constant insulating material and electric/ electronic equipment
KR101918436B1 (en) Inorganic electrical insulation material
JP2002093257A (en) Mica substrate sheet body and insulated coil
CN105226863A (en) A kind of city rail vehicle linear electric motor primary coil high heat conductive insulating structure
Jindal et al. Development of new solid insulating material with aid of alkyl phenolic resin for a liquid-immersed transformer
US2454218A (en) Composite asbestos member
CN111279433B (en) Thermally conductive electrically insulating nonwoven material, electrically insulating material, and thermally conductive insulating material
JP2019186507A (en) Electromagnetic wave absorbing sheet and manufacturing method of the same
JP6795555B2 (en) Manufacturing method of insulated wire, resin composition for forming insulating layer and insulated wire
JP2002051492A (en) Small-sized motor
JP3579950B2 (en) Voice coil bobbin

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170721

R150 Certificate of patent or registration of utility model

Ref document number: 6181969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250