JP2014224983A - Image stabilizer - Google Patents

Image stabilizer Download PDF

Info

Publication number
JP2014224983A
JP2014224983A JP2014037629A JP2014037629A JP2014224983A JP 2014224983 A JP2014224983 A JP 2014224983A JP 2014037629 A JP2014037629 A JP 2014037629A JP 2014037629 A JP2014037629 A JP 2014037629A JP 2014224983 A JP2014224983 A JP 2014224983A
Authority
JP
Japan
Prior art keywords
voice coil
yoke portion
inner frame
image stabilization
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014037629A
Other languages
Japanese (ja)
Other versions
JP6278742B2 (en
Inventor
安藤 邦郎
Kunio Ando
邦郎 安藤
加藤 正志
Masashi Kato
正志 加藤
春雄 伊藤
Haruo Ito
春雄 伊藤
和也 宮地
Kazuya Miyaji
和也 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kamakura Koki Co Ltd
Original Assignee
Kamakura Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kamakura Koki Co Ltd filed Critical Kamakura Koki Co Ltd
Priority to JP2014037629A priority Critical patent/JP6278742B2/en
Priority to US14/258,807 priority patent/US9395551B2/en
Priority to EP14001464.8A priority patent/EP2801856B1/en
Publication of JP2014224983A publication Critical patent/JP2014224983A/en
Application granted granted Critical
Publication of JP6278742B2 publication Critical patent/JP6278742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a telescope image stabilizer that compensates deterioration of an observation image to be generated by receiving oscillation and the like in a telescope such as a monocular or a binoculars, and has a structure enabling reduction in costs and downsizing to be attained.SOLUTION: As means for anchoring an outer frame of a gimbal suspension device composed of an inner frame having the erect prism mounted, a middle frame and an outer frame to a housing of a telescope composed of an objective lens, an erect prism, and an eyepiece lens, and for rotating the middle frame rotatably mounted to the outer frame, and the inner frame rotatably mounted to the middle frame, an image stabilizer includes two voice coil motors. A first yoke part having a coil member of two voice coil motors is mounted on a drive circuit substrate of the voice coil motor mounted to the middle frame, and a second yoke part having a permanent magnet is arranged at the inner frame and the outer frame, respectively so as to face the first yoke part on the drive substrate. The image stabilizer causes the gimbal suspension device to be rotated by the voice coil motor allowing the first yoke and the second yoke part to relatively move.

Description

この発明は、単眼鏡や双眼鏡等の望遠鏡が手振れ等の振動によって、望遠鏡の光軸に対する観察物体から射出される光束の射出角度が変動することで生じる観察像の劣化を補償する望遠鏡の像安定化装置に関する。   This invention stabilizes the image of a telescope that compensates for the deterioration of the observed image caused by fluctuations in the emission angle of the light beam emitted from the observation object with respect to the optical axis of the telescope due to vibrations such as camera shake of a monoscope or binoculars. The present invention relates to a conversion device.

単眼鏡及び双眼鏡等で代表される望遠鏡を手で保持しつつ観察対象を観察するために前記望遠鏡を操作する場合、特に航空機及び車両等に持ち込んでこれを使用する場合に、航空機及び車両等による振動等が筐体に加わり、それが原因で手振れとなるが、手振れにより光軸に対する観察対象からの光束の出射角度が変動し、その結果として観察対象の観察像(光学像)がぶれたり、解像度が悪くなる等、観察像が劣化してしまうことがある。望遠鏡に加わる振動は、その振幅がたとえ小さくても、単眼鏡及び双眼鏡等の望遠鏡においては、視界が狭く、接眼レンズによって対物レンズの像が拡大されて観察されるので、観察される像の劣化を無視することができなくなる。 When operating the telescope to observe the observation object while holding a telescope represented by monoculars and binoculars by hand, especially when bringing it into an aircraft or vehicle, etc. Vibration or the like is added to the housing, which causes camera shake, but due to camera shake, the emission angle of the light beam from the observation target with respect to the optical axis fluctuates, and as a result, the observation image (optical image) of the observation target is blurred, The observed image may be deteriorated, for example, the resolution is deteriorated. Even if the amplitude of the vibration applied to the telescope is small, in the telescopes such as monoculars and binoculars, the field of view is narrow and the image of the objective lens is enlarged by the eyepiece, so that the observed image is deteriorated. Can not be ignored.

これまでに、望遠鏡で観察される観察像の手振れによる劣化を補償する像安定化装置が種々提案されている。   So far, various image stabilization devices have been proposed that compensate for deterioration due to camera shake of an observation image observed with a telescope.

従来の手振れ補償機能付き双眼鏡として、例えば特許文献1に開示された像安定光学装置は、左右一対の対物レンズと、左右一対の接眼レンズと、左右一対の対物レンズ及び左右一対の接眼レンズの間に配置された左右一対の正立プリズムからなる光学系を持ち、この左右一対の正立プリズムを保持する一つのプリズム保持枠と、対物レンズと接眼レンズとの中間において、光軸に対して垂直な平面内で互いに直交する2個の回動軸を中心として回動可能にプリズム保持枠を支持するジンバル懸架装置と、ジンバル懸架装置に取り付けられているジャイロモータとを備えている。   As conventional binoculars with a camera shake compensation function, for example, an image stabilizing optical device disclosed in Patent Document 1 includes a pair of left and right objective lenses, a pair of left and right eyepieces, a pair of left and right objective lenses, and a pair of left and right eyepieces. The optical system is composed of a pair of left and right erect prisms arranged in the vertical direction with respect to the optical axis in the middle of one prism holding frame that holds the pair of left and right erect prisms, and the objective lens and the eyepiece lens. A gimbal suspension device that supports the prism holding frame so as to be rotatable about two rotation axes that are orthogonal to each other in a plane, and a gyro motor that is attached to the gimbal suspension device.

特許文献1に開示された像安定光学装置は、左右一対の正立プリズムを一つのプリズム保持枠で保持し、このプリズム保持枠を持つジンバル懸架装置を一つのジャイロモータで駆動しているので、駆動機構を簡略化することができる。   The image stabilizing optical device disclosed in Patent Document 1 holds a pair of left and right erect prisms with one prism holding frame, and drives a gimbal suspension having this prism holding frame with one gyro motor. The drive mechanism can be simplified.

しかしながら、この像安定光学装置が光学装置の横方向の振動に対応するときには、左右の正立プリズムの中心、つまり特許文献1における第1図及び第4図に示される交点Oで垂直方向の軸回りにプリズム保持枠を回転させると、例えば左光学系の正立プリズムが対物レンズ側に移動し、右光学系の正立プリズムが接眼レンズ側に移動するので、左光学系の対物レンズと正立プリズムとの間の距離と、右光学系の対物レンズと正立プリズムとの間の距離とが相違することになり、結果として右光学系を通じての見え方と左光学系を通じての見え方とが異なることになる。言い換えると、この特許文献1に記載された像安定光学装置は、左右方向の振動を処理するときには、右光学系を構成する複数の光学部品相互の位置関係と左光学系を構成する複数の光学部品相互の位置関係との同一性がなくなり、右光学系での見え方と左光学系での見え方とが相違するという問題点を有している。   However, when this image stabilizing optical device responds to the vibration in the lateral direction of the optical device, the vertical axis at the center of the left and right erecting prisms, that is, the intersection point O shown in FIGS. When the prism holding frame is rotated around, for example, the erecting prism of the left optical system moves to the objective lens side, and the erecting prism of the right optical system moves to the eyepiece lens side. The distance between the vertical prism and the distance between the objective lens of the right optical system and the erecting prism will be different. As a result, the view through the right optical system is different from the view through the left optical system. Will be different. In other words, the image stabilizing optical device described in Patent Document 1 is configured to process the vibration in the left-right direction, and the positional relationship between the plurality of optical components constituting the right optical system and the plurality of opticals constituting the left optical system. There is a problem in that the same positional relationship between the components is lost, and the way the right optical system looks and the left optical system looks different.

特許文献2に開示される像安定化装置は、光学系については前記特許文献1に記載された像安定光学装置と同じであり、左右一対の対物レンズと、左右一対の接眼レンズと、左右一対の対物レンズ及び左右一対の接眼レンズの間に配置された左右一対の正立プリズムと、この左右一対の正立プリズムを保持するプリズム保持枠と、対物レンズと接眼レンズとの中間において、光軸に対して垂直な平面内で互いに直交する二軸を中心として回転可能にプリズム保持枠を支持するジンバル懸架手段とを備え、このプリズム保持枠に配置された角速度情報検出手段により望遠鏡に加わる振動によって発生するところの、このジンバル懸架手段の慣性空間に対する回転角度情報を検出し、この検出値に基づき、振動による像ブレを補正するように前記ジンバル懸架手段を所定の位置にまで戻すように回動させるサーボ制御を行なっている。   The image stabilization apparatus disclosed in Patent Document 2 is the same as the image stabilization optical apparatus described in Patent Document 1 with respect to the optical system, and includes a pair of left and right objective lenses, a pair of left and right eyepieces, and a pair of left and right eyes. A pair of left and right erecting prisms disposed between the objective lens and the pair of left and right eyepieces, a prism holding frame that holds the pair of left and right erecting prisms, and an optical axis between the objective lens and the eyepiece. And a gimbal suspension means for supporting the prism holding frame so as to be rotatable around two axes orthogonal to each other in a plane perpendicular to the plane, and by means of vibration applied to the telescope by the angular velocity information detecting means arranged on the prism holding frame The generated rotation angle information with respect to the inertial space of the gimbal suspension means is detected, and based on this detected value, the image blur due to vibration is corrected. The Nbaru suspension means is performed a servo control to rotate to return to a predetermined position.

この特許文献2に記載された像安定化装置では、ジンバル懸架装置の駆動機構として、ジャイロモータの代わりにジンバル回動軸を回転する回転型モータとポテンションメーター等の位置検出手段を用いた駆動機構を採用しているので、特許文献1に記載された像安定化装置に比べ、軽量化、小型化を達成し、また消費電力も小さくて済むとしている。   In the image stabilization device described in Patent Document 2, as a drive mechanism of a gimbal suspension device, a drive using a rotary type motor that rotates a gimbal rotation shaft instead of a gyro motor and position detection means such as a potentiometer. Since the mechanism is adopted, it is said that the light weight and the small size can be achieved and the power consumption can be reduced as compared with the image stabilization apparatus described in Patent Document 1.

しかし、特許文献2に記載された像安定化装置は2個の正立プリズムを持った双眼鏡光学系に対しては小型化に効果があるが、正立プリズムを1個持った単眼鏡光学系に対しては、ジンバル軸を回転する回転型モータとポテンションメーター等の位置検出手段が相対的に大きなスペースを必要とするので装置の小型化には適していない。   However, the image stabilization apparatus described in Patent Document 2 is effective in reducing the size of a binocular optical system having two erecting prisms. However, a monocular optical system having one erecting prism is used. On the other hand, since the rotary type motor that rotates the gimbal shaft and the position detection means such as a potentiometer require a relatively large space, it is not suitable for downsizing the apparatus.

特許文献3に記載された観察用光学機器(双眼鏡)は、左右一対の対物レンズと、左右一対の接眼レンズと、左右一対の対物レンズ及び左右一対の接眼レンズの間に配置された左右一対の可変頂角プリズムと、機器本体の振れを検出するセンサーと、左右一対の可変頂角プリズムをそれぞれ駆動する複数のアクチュエータと、センサーで検出された振れに応じて各アクチュエータの駆動量を定める制御回路とを備えている。   An observation optical device (binoculars) described in Patent Document 3 includes a pair of left and right objective lenses, a pair of left and right eyepieces, a pair of left and right objective lenses, and a pair of left and right eyepieces. A variable apex prism, a sensor for detecting the shake of the device main body, a plurality of actuators for driving the pair of left and right variable apex angle prisms, and a control circuit for determining the drive amount of each actuator according to the shake detected by the sensor And.

特許文献4に記載された手振れ補正機構付き双眼鏡は、左右一対の対物レンズと、左右一対の接眼レンズと、左右一対の対物レンズ及び左右一対の接眼レンズの間に配置された左右一対の補正レンズと、機器本体の振れを検出するセンサーと、左右一対の補正レンズを同時に駆動する駆動機構と、センサーで検出された振れに応じて駆動機構の駆動量を定める制御回路とを備えている。   The binoculars with a camera shake correction mechanism described in Patent Literature 4 includes a pair of left and right objective lenses, a pair of left and right eyepieces, and a pair of left and right objective lenses and a pair of left and right eyepieces. And a sensor for detecting the shake of the device main body, a drive mechanism for simultaneously driving the pair of right and left correction lenses, and a control circuit for determining the drive amount of the drive mechanism in accordance with the shake detected by the sensor.

前記特許文献1及び特許文献2の方式は実用的に利用される範囲が広いという利点があるものの、像安定化装置の小型軽量化には限界があるという問題がある。
前記特許文献3及び特許文献4に記載された像安定化の手段は機構が小型になるとの利点があるものの、特許文献1,2の例に比べて補正可能なブレ量は小さく、実用的に利用される範囲が狭いという問題点がある。
Although the methods of Patent Document 1 and Patent Document 2 have the advantage that the range of practical use is wide, there is a problem that there is a limit to reducing the size and weight of the image stabilization device.
Although the image stabilization means described in Patent Document 3 and Patent Document 4 have the advantage that the mechanism is small, the amount of blurring that can be corrected is small compared to the examples of Patent Documents 1 and 2, and is practical. There is a problem that the range to be used is narrow.

特公昭57−37852号公報Japanese Patent Publication No.57-37852 特開平6−250100号公報JP-A-6-250100 特開平7−43645号公報Japanese Unexamined Patent Publication No. 7-43645 特開平10−20213号公報Japanese Patent Laid-Open No. 10-20213

この発明の課題は、正立プリズムを対物レンズと接眼レンズとの間に配置した単眼鏡又は双眼鏡で代表される望遠鏡光学系の、前記正立プリズムを望遠鏡光学系の光軸に直交し、且つ互いに直交する2個の回動軸の回りに回動させることで、手振れ等の振動によって生じる観察像の劣化を補償する像安定化装置に於いて、像安定化装置を構成する主要要素のジンバル懸架装置の駆動を、小型、軽量化、低コストで構成する手段を提供することにある。 An object of the present invention is to provide a telescopic optical system represented by monoculars or binoculars in which an erecting prism is disposed between an objective lens and an eyepiece, and the erecting prism is orthogonal to the optical axis of the telescopic optical system, and In an image stabilization device that compensates for deterioration of an observed image caused by vibration such as camera shake by rotating around two rotation axes that are orthogonal to each other, the gimbal of the main element constituting the image stabilization device An object of the present invention is to provide means for configuring the drive of the suspension device in a small size, light weight and low cost.

前記課題を解決するための手段は、
(1)正立プリズムを対物レンズと接眼レンズの間に配置した望遠鏡光学系の正立プリズムを、望遠鏡光学系の光軸に直交し、且つ互いに直交する第1の回動軸と第2の回動軸との回りに回動させることで、手振れ等の振動によって生じる観察像の劣化を補償する像安定化装置であって、
対物レンズと接眼レンズを固定的に保持する筺体と、
該筐体に対して固定された外枠と、
該外枠に対して回動自在に装着した第1の回動軸を持つ中枠及び、
該中枠に対して回動自在に装着した第2の回動軸を持つ内枠を有するジンバル懸架装置を有し、
前記ジンバル懸架装置は、中枠及び内枠をそれぞれ駆動する2基のボイスコイルモータを備え、
前記ボイスコイルモータは、コイルの中空部に位置検出素子を配置したコイル部材を備えた第1のヨーク部と、永久磁石とを備えた第2のヨーク部とを有し、
前記中枠には2基のボイスコイルモータを駆動する駆動回路基板を設け、
駆動回路基板の外枠側の面には、中枠を駆動するボイスコイルモータの第1のヨーク部を構成するコイル部材を配置し、第2のヨーク部の永久磁石をこの第1のヨーク部のコイル部材と所定間隔のギャップを以って相対向するように、第2のヨーク部を外枠に装着し、
駆動回路基板の内枠側の面には、内枠を駆動するボイスコイルモータの第1のヨーク部を構成するコイル部材を配置し、第2のヨーク部の永久磁石をこの第1のヨーク部のコイル部材と所定間隔のギャップを以って相対向するように、第2のヨーク部を内枠に装着し、
前記内枠には前記正立プリズムを設けたことを特徴とする像安定化装置であり、
(2)前記ジンバル懸架装置の内枠に角速度センサーを設け、角速度信号を得ることを特徴とする(1)記載の像安定化装置であり、
(3)前記第1のヨーク部のコイル中空部に配置した位置検出素子の出力信号を微分して、位置検出素子から位置信号と角速度信号を得ることを特徴とする(1)記載の像安定化装置であり、
(4)前記駆動回路基板は、位置信号及び角速度信号に基づき、前記正立プリズムの初期位置を保持するようボイスコイルモータを駆動し、ジンバル懸架装置の回動を制御する回路より構成されることを特徴とする(2)または(3)記載の像安定化装置であり、
(5)望遠鏡光学系が単眼鏡であることを特徴とする(1)〜(4)のいずれかに記載の像安定化装置であり、
(6)望遠鏡光学系が双眼鏡であることを特徴とする(1)〜(4)のいずれかに記載の像安定化装置である。
Means for solving the problems are as follows:
(1) The erecting prism of the telescope optical system in which the erecting prism is disposed between the objective lens and the eyepiece lens is configured so that the first rotation axis and the second orthogonal to the optical axis of the telescope optical system and to each other An image stabilization device that compensates for deterioration of an observed image caused by vibration such as camera shake by rotating around a rotation axis,
A housing that holds the objective lens and the eyepiece lens fixedly;
An outer frame fixed to the housing;
A middle frame having a first pivot shaft rotatably mounted on the outer frame;
A gimbal suspension device having an inner frame having a second rotation shaft that is rotatably mounted on the middle frame;
The gimbal suspension includes two voice coil motors for driving the middle frame and the inner frame,
The voice coil motor includes a first yoke portion including a coil member having a position detection element disposed in a hollow portion of the coil, and a second yoke portion including a permanent magnet.
The middle frame is provided with a drive circuit board for driving two voice coil motors,
A coil member constituting the first yoke portion of the voice coil motor that drives the inner frame is disposed on the outer frame side surface of the drive circuit board, and the permanent magnet of the second yoke portion is used as the first yoke portion. The second yoke portion is attached to the outer frame so as to face the coil member with a gap of a predetermined interval,
A coil member constituting the first yoke portion of the voice coil motor that drives the inner frame is disposed on the inner frame side surface of the drive circuit board, and the permanent magnet of the second yoke portion is used as the first yoke portion. The second yoke portion is attached to the inner frame so as to face the coil member with a gap of a predetermined interval,
The inner frame is an image stabilization device provided with the erecting prism,
(2) The image stabilizing device according to (1), wherein an angular velocity sensor is provided in an inner frame of the gimbal suspension device to obtain an angular velocity signal,
(3) The image stabilization according to (1), wherein an output signal of a position detection element disposed in a hollow coil portion of the first yoke portion is differentiated to obtain a position signal and an angular velocity signal from the position detection element. Device,
(4) The drive circuit board is configured by a circuit that controls the rotation of the gimbal suspension device by driving the voice coil motor to hold the initial position of the erecting prism based on the position signal and the angular velocity signal. (2) or (3), wherein the image stabilizing device is characterized in that
(5) The image stabilization apparatus according to any one of (1) to (4), wherein the telescope optical system is a monocular.
(6) The image stabilization apparatus according to any one of (1) to (4), wherein the telescope optical system is binoculars.

本発明による像安定化装置は、単眼鏡や双眼鏡等の望遠鏡に加わる手振れ等の振動によって生じる観察像の劣化を補償することが出来、しかも像安定化装置の設計自由度の制約が少なく、ジンバル駆動機構が簡単でコストの削減及び小型化を図ることが出来るので、望遠鏡単眼鏡や双眼鏡のほかにレーザー測距装置などの広い分野での利用が可能で、特に単眼鏡に適用した場合に、小型化とコスト低減に大きな効果がある。 The image stabilization apparatus according to the present invention can compensate for deterioration of an observed image caused by vibration such as camera shake applied to a telescope such as a monocular or a binocular, and has few restrictions on design freedom of the image stabilization apparatus, and the gimbal. Since the drive mechanism is simple and can reduce cost and size, it can be used in a wide range of fields such as telescope monoculars and binoculars as well as laser rangefinders, especially when applied to monoculars. Great effect in miniaturization and cost reduction.

図1(a)は、この発明に係る像安定化装置が単眼鏡である場合の像安定化装置を示す概略説明図であり、図1(b)は像安定化装置の基本的な原理を説明する概略説明図である。FIG. 1A is a schematic explanatory view showing an image stabilization apparatus when the image stabilization apparatus according to the present invention is a monocular, and FIG. 1B shows the basic principle of the image stabilization apparatus. It is a schematic explanatory drawing to explain. 図2は、この発明に係る像安定化装置が双眼鏡である場合の像安定化装置を示す概略説明図である。FIG. 2 is a schematic explanatory view showing an image stabilization apparatus when the image stabilization apparatus according to the present invention is a binocular. 図3は、ボイスコイルモータの基本構造を示す概略説明図であり、図3(a)はボイスコイルモータの正面図である。図3(b)は図3(a)のA−A’断面図で、図3(c)はボイスコイルモータに組み込まれる永久磁石の正面図で、図3(d)は前記永久磁石の断面図である。FIG. 3 is a schematic explanatory view showing the basic structure of the voice coil motor, and FIG. 3A is a front view of the voice coil motor. 3B is a cross-sectional view taken along the line AA ′ of FIG. 3A, FIG. 3C is a front view of the permanent magnet incorporated in the voice coil motor, and FIG. 3D is a cross-sectional view of the permanent magnet. FIG. 図4は、この発明に係る像安定化装置に組み込むのに好適なヨーク分離型のボイスコイルモータの構造を示す概略説明図であり、図4(a)はボイスコイルモータを示す断面図であり、図4(b)はボイスコイルモータにおけるコイル部材が永久磁石に対して相対的に移動した状態を示す断面図である。FIG. 4 is a schematic explanatory view showing the structure of a yoke-separated voice coil motor suitable for incorporation in the image stabilization apparatus according to the present invention, and FIG. 4 (a) is a sectional view showing the voice coil motor. FIG. 4B is a cross-sectional view showing a state in which the coil member in the voice coil motor has moved relative to the permanent magnet. 図5は、この発明に係る像安定化装置の一例である図1のジンバル懸架装置10の構造を示す説明図で、図5(a)は概略斜視図であり、図5(b)は図5(a)の断面図である。FIG. 5 is an explanatory view showing the structure of the gimbal suspension apparatus 10 of FIG. 1, which is an example of the image stabilization apparatus according to the present invention. FIG. 5 (a) is a schematic perspective view, and FIG. It is sectional drawing of 5 (a). 図6は、駆動回路基板の周辺部を中心とした斜視図である。FIG. 6 is a perspective view centering around the periphery of the drive circuit board. 図7は、ジンバル懸架装置の中枠の駆動状態を示す説明図である。FIG. 7 is an explanatory view showing a driving state of the middle frame of the gimbal suspension apparatus. 図8は、ジンバル懸架装置の内枠の駆動状態を示す説明図である。FIG. 8 is an explanatory view showing a driving state of the inner frame of the gimbal suspension. 図9はボイスコイルモータを駆動する駆動回路の一例を示すブロック図である。FIG. 9 is a block diagram showing an example of a drive circuit for driving the voice coil motor. 図10(a)、図10(b)はボイスコイルモータを駆動する駆動回路の他の例を示すブロック図である。FIGS. 10A and 10B are block diagrams showing another example of a drive circuit for driving the voice coil motor.

図1は、この発明に係る単眼鏡としての像安定化装置の例を示し、図2は、この発明に係る双眼鏡としての像安定化装置の例を示す。   FIG. 1 shows an example of an image stabilization apparatus as monoculars according to the present invention, and FIG. 2 shows an example of an image stabilization apparatus as binoculars according to the present invention.

本発明に係る像安定化装置は、例えば図1に示すように、筐体8に固設された対物レンズ2と接眼レンズ3の光軸6上に、後述の図5に示すジンバル懸架装置10の内枠53に装着された正立プリズム1を配置し、単眼鏡光学系4を構成している。図1(b)に示すように、筐体8に手振れが加わった場合でも、正立プリズム1は手振れが加わる前の初期位置を維持するような構造を持っている。   For example, as shown in FIG. 1, the image stabilization device according to the present invention has a gimbal suspension device 10 shown in FIG. 5, which will be described later, on the optical axis 6 of the objective lens 2 and the eyepiece 3 fixed to the housing 8. The upright prism 1 mounted on the inner frame 53 is disposed to constitute the monocular optical system 4. As shown in FIG. 1B, the erecting prism 1 has a structure that maintains the initial position before the hand shake is applied even when the case 8 is shaken.

この発明に係る像安定化装置が双眼鏡に適用される場合には、例えば図2に示されるように、図1で示した一対の単眼鏡の像安定化装置4、4’をそれぞれの光軸6、6’が平行になるよう連結部材Rで連結して双眼鏡5を構成する。 When the image stabilization apparatus according to the present invention is applied to binoculars, for example, as shown in FIG. 2, the pair of monocular image stabilization apparatuses 4 and 4 ′ shown in FIG. The binoculars 5 are configured by connecting the connecting members R so that 6 and 6 'are parallel to each other.

なお、この発明に係る像安定化装置は、単眼鏡及び双眼鏡等に適用されるが、図1で示されるように、単眼鏡に適用された像安定化装置における光学系と、図2で示されるように、双眼鏡に適用された像安定化装置における光学系とは同一であるから、以下における像安定化装置の詳細な説明は、単眼鏡を例として行う。   The image stabilization apparatus according to the present invention is applied to monoculars, binoculars, and the like. As shown in FIG. 1, the optical system in the image stabilization apparatus applied to monoculars, and FIG. As described above, since the optical system in the image stabilization apparatus applied to the binoculars is the same, the detailed description of the image stabilization apparatus below will be made using a monocular as an example.

本発明に係る像安定化装置は、筐体に与えられた振動又は搖動により生じる観察像の劣化を補償すべく正立プリズムを装着したジンバル懸架装置を回動させる駆動手段としての2基のボイスコイルモータを備え、前記ボイスコイルモータは後述のように、分離して対向配置される第1のヨーク部と第2のヨーク部を持ち、第1のヨーク部にはコイルの中空部に位置検出用の位置検出素子、例えばホール素子のような磁気感応素子を配置したコイル部材を装着し、第2のヨーク部には図3で説明する構造の永久磁石を装着し、第1のヨーク部と第2のヨーク部を所定間隔のギャップを持つよう対向配置し、第1のヨーク部と第2のヨーク部とが相対的に可動可能な構造を特徴としている。なお本発明ではコイルの中空部に位置検出用の位置検出素子を備えた部材をコイル部材と呼ぶことにする。   The image stabilization apparatus according to the present invention includes two voices as drive means for rotating a gimbal suspension apparatus equipped with an upright prism so as to compensate for deterioration of an observation image caused by vibration or swing applied to a casing. As described later, the voice coil motor has a first yoke portion and a second yoke portion that are separately arranged to face each other, and the first yoke portion detects a position in a hollow portion of the coil. For example, a coil member on which a magnetic sensing element such as a Hall element is disposed is mounted, and a permanent magnet having the structure described in FIG. 3 is mounted on the second yoke portion. The second yoke portion is disposed so as to face the gap having a predetermined interval, and the first yoke portion and the second yoke portion are relatively movable. In the present invention, a member provided with a position detection element for position detection in the hollow portion of the coil is referred to as a coil member.

前記正立プリズム1としては、シュミット(Schmidt)の正立プリズム、アッベ(Abbe)の正立プリズム等を挙げることができる。図1においてはシュミットの正立プリズムが示されている。シュミットの正立プリズム1は、プリズム1aとプリズム1bとを有し、プリズム1bにダハ面が形成されており、入射光軸と出射光軸とが同一直線上にとることが出来る。以下の説明は、シュミットの正立プリズムを用いた場合に関する。   Examples of the erecting prism 1 include a Schmidt erecting prism and an Abbe erecting prism. In FIG. 1, a Schmidt erecting prism is shown. The Schmidt erecting prism 1 includes a prism 1a and a prism 1b, and a prism surface is formed on the prism 1b. The incident optical axis and the outgoing optical axis can be on the same straight line. The following description relates to the case of using a Schmidt erecting prism.

図1(a)に示すジンバル懸架装置10は、図5に示すように光軸6に直交する左右方向に延びる回動軸54と、上下方向に延びる回動軸55を持つが、
前記2つの回動軸と光軸6との交点pは、対物レンズ2と正立プリズム1の入射面までの光学距離Lと、正立プリズム1の入射面と出射面との機械的距離Mと、前記正立プリズム1の出射面から接眼レンズ3までの光学距離Nの和S(S=L+M+N)の中点に位置するように設定される。実際には、対物レンズ系及び接眼レンズ系のいずれも肉厚を有する複数枚のレンズによって構成されているので、前記ジンバル懸架装置の回動軸55,54の位置は厳密には、対物レンズ系の後側主点と前記正立プリズムの入射面までの光学距離と、前記正立プリズムの入射面から出射面までの間の機械的距離と、前記正立プリズムの射出面から接眼レンズ系の前側主点までの光学距離の和の中点にあることになる。以下は、対物レンズと接眼レンズは薄肉レンズ系として説明する。
The gimbal suspension device 10 shown in FIG. 1A has a rotation shaft 54 extending in the left-right direction orthogonal to the optical axis 6 and a rotation shaft 55 extending in the up-down direction as shown in FIG.
The intersection p between the two rotation axes and the optical axis 6 is an optical distance L between the objective lens 2 and the entrance surface of the erecting prism 1 and a mechanical distance M between the entrance surface and the exit surface of the erecting prism 1. And the center of the sum S (S = L + M + N) of the optical distance N from the exit surface of the erecting prism 1 to the eyepiece 3 is set. Actually, since both the objective lens system and the eyepiece lens system are constituted by a plurality of lenses having a thickness, the position of the rotation shafts 55 and 54 of the gimbal suspension is strictly the objective lens system. The optical distance from the rear principal point to the entrance surface of the erecting prism, the mechanical distance from the entrance surface to the exit surface of the erecting prism, and the eyepiece lens system from the exit surface of the erecting prism. It is at the midpoint of the sum of the optical distances to the front principal point. Hereinafter, the objective lens and the eyepiece lens will be described as a thin lens system.

図1(b)に本発明による像安定化装置の基本的な原理を示す。図1(a)に示す望遠鏡4に手振れ等による振動が加わって、図1(b)に示すように筐体8が角度θ傾いた状態8’では、対物レンズ2と接眼レンズ3は筐体に固定して取り付けられているので、対物レンズは2’の位置に、接眼レンズは3’の位置に移動し、光軸6も光軸7に移動する。この時ジンバル懸架装置10に装着した正立プリズム1が図1(a)における初期状態と同じ向きにあるように制御すると、傾いた対物レンズ2’の中心q’を通り、角度θ傾く前の光軸6に平行な光線mは対物レンズ2の光軸6よりhだけずれて正立プリズム1に入射する。前記光線mは、入射光軸と出射光軸を同一線上にとることの出来る正立プリズムの性質によって、光軸6よりh’=hだけずれて光線m’として正立プリズム1より射出し、移動後の接眼レンズ3’の中心r’より射出する。従って移動後の接眼レンズの中心r’より射出する光線m’は振動が加わる前の光軸6と平行になるので、望遠鏡に振動が加わった場合でも安定した鮮鋭な像を観察できる。   FIG. 1B shows the basic principle of the image stabilization apparatus according to the present invention. When the telescope 4 shown in FIG. 1 (a) is subjected to vibration due to camera shake or the like, and the casing 8 is tilted at an angle θ as shown in FIG. 1 (b), the objective lens 2 and the eyepiece 3 are in the casing. Accordingly, the objective lens is moved to the 2 ′ position, the eyepiece lens is moved to the 3 ′ position, and the optical axis 6 is also moved to the optical axis 7. At this time, if the erecting prism 1 mounted on the gimbal suspension device 10 is controlled so as to be in the same direction as the initial state in FIG. 1A, it passes through the center q ′ of the tilted objective lens 2 ′ and before the angle θ is tilted. A light beam m parallel to the optical axis 6 is shifted from the optical axis 6 of the objective lens 2 by h and enters the upright prism 1. The light beam m is emitted from the erecting prism 1 as a light beam m ′ shifted by h ′ = h from the optical axis 6 due to the property of the erecting prism capable of taking the incident optical axis and the outgoing optical axis on the same line. The light is emitted from the center r ′ of the moved eyepiece 3 ′. Therefore, since the light beam m 'emitted from the center r' of the eyepiece after movement is parallel to the optical axis 6 before the vibration is applied, a stable and sharp image can be observed even when the telescope is vibrated.

図1(b)では、ジンバル懸架装置の回動軸を正立プリズムの中心に設定した場合で説明したが、ジンバル懸架装置の回動軸の光軸との交点Pの位置が前記条件を満足すれば、正立プリズムの位置はジンバル懸架装置の回動軸よりずれた位置に配置されても上記条件は満足する。   In FIG. 1B, the case where the rotation axis of the gimbal suspension is set at the center of the erecting prism has been described. However, the position of the intersection point P with the optical axis of the rotation axis of the gimbal suspension satisfies the above condition. In this case, the above condition is satisfied even when the erecting prism is disposed at a position shifted from the rotational axis of the gimbal suspension.

従来の技術では、ジンバル懸架装置を駆動する手段としては、引用文献2で示されているようにジンバル懸架装置を懸架する回動軸を駆動する回転型のモータと、ポテンショメータのような位置検出手段を用いているが、回動軸を駆動する回転型モータとしてはジンバル懸架装置を構成する枠に比べて比較的大きな形状のものが必要であり、取付位置やモータの直径、厚み等の形状の制約もあり、像安定化装置の小型軽量化には限界があった。   In the prior art, as the means for driving the gimbal suspension apparatus, as shown in the cited document 2, a rotary motor for driving a rotation shaft for suspending the gimbal suspension apparatus and a position detection means such as a potentiometer. However, the rotary motor that drives the rotating shaft must have a relatively large shape compared to the frame that constitutes the gimbal suspension, and the shape of the mounting position, motor diameter, thickness, etc. Due to limitations, there has been a limit to reducing the size and weight of the image stabilization device.

本発明では、ジンバル懸架装置を駆動する手段として、図4に示すような比較的薄い一対の板状のヨーク部で構成され、位置検出手段も位置検出素子をコイルの中空部に組み込んだ構造を持つボイスコイルモータを用いることで、ボイスコイルモータの装着位置を自由に選べるので設計上の自由度が増え、小型軽量化を可能にしている。 In the present invention, as a means for driving the gimbal suspension, a relatively thin pair of plate-shaped yoke parts as shown in FIG. 4 is used, and the position detection means has a structure in which the position detection element is incorporated in the hollow part of the coil. By using a voice coil motor, the mounting position of the voice coil motor can be freely selected, so that the degree of freedom in design is increased and the size and weight can be reduced.

図3は一般的なボイスコイルモータの一例を示すもので、図3(a)はボイスコイルモータの正面図、図3(b)は図3(a)のA−A’面での断面図、図3(c)はボイスコイルモータに使用される永久磁石の構成を示す正面図、図3(d)はその断面図を示す。   FIG. 3 shows an example of a general voice coil motor. FIG. 3 (a) is a front view of the voice coil motor, and FIG. 3 (b) is a cross-sectional view taken along the plane AA 'of FIG. 3 (a). FIG. 3C is a front view showing the configuration of the permanent magnet used in the voice coil motor, and FIG. 3D is a cross-sectional view thereof.

図3に示されるように、一般的なボイスコイルモータは、U字型の鉄心からなる固定ヨーク31と、固定ヨークの内側の対向する1面に装着された永久磁石32と固定ヨークの内側の他の1面で構成されるギャップ34内で移動可能なコイル33と、コイル33の中空部に設置した位置検出素子36で構成される。なお35はコイル33と位置検出素子36とを支持するプリント基板等の支持板を示す。   As shown in FIG. 3, a general voice coil motor has a fixed yoke 31 made of a U-shaped iron core, a permanent magnet 32 mounted on one opposing surface inside the fixed yoke, and an inner side of the fixed yoke. The coil 33 is movable in a gap 34 constituted by another surface, and a position detection element 36 installed in the hollow portion of the coil 33. Reference numeral 35 denotes a support plate such as a printed circuit board that supports the coil 33 and the position detection element 36.

永久磁石32は図3(c),(d)に示されるように板状の強力な永久磁石で構成される。永久磁石は、厚み方向に着磁され、着磁の方向は板状領域の中央部を境としてN、Sで示すように逆方向に着磁されている。 As shown in FIGS. 3C and 3D, the permanent magnet 32 is composed of a strong plate-like permanent magnet. The permanent magnet is magnetized in the thickness direction, and the direction of magnetization is magnetized in the reverse direction as indicated by N and S with the central portion of the plate-like region as a boundary.

図面の理解を容易にするため、図中S極側は斜線を付けて示す。また以下に出てくる永久磁石は図3(c)、図3(d)で説明した構造を持ったものとする。 In order to facilitate understanding of the drawing, the S pole side is shown by hatching in the drawing. Further, the permanent magnets to be described below are assumed to have the structure described with reference to FIGS. 3 (c) and 3 (d).

このような永久磁石32を固定ヨークの内側の一面に図3(a)に示されるように配置することにより固定ヨーク内の磁界は、コイル33の移動工程の中央部分を境として互いに逆方向に、かつ固定ヨークのギャップを持った対向面に垂直な方向に生成される。   By arranging such permanent magnets 32 on the inner surface of the fixed yoke as shown in FIG. 3A, the magnetic field in the fixed yoke is opposite to each other with the central portion of the moving process of the coil 33 as a boundary. And is generated in a direction perpendicular to the facing surface having the gap of the fixed yoke.

したがって、このような磁界を有する固定ヨーク31内に、コイル33を図3に示す如く配置し、このコイル33に電流を流すと、コイル33は電流の方向に応じて図3(a)の矢印38で示す方向に移動することが出来る。   Therefore, when the coil 33 is arranged in the fixed yoke 31 having such a magnetic field as shown in FIG. 3 and a current is passed through the coil 33, the coil 33 is changed to an arrow in FIG. It can move in the direction indicated by 38.

したがって、前記コイル33の支持板35に、図示されていない被移動部材を連結することで被移動部材をリニア駆動することが出来る。   Therefore, the movable member can be linearly driven by connecting the movable member (not shown) to the support plate 35 of the coil 33.

また、前記コイル33の中空部37に位置検出素子36としてホール素子や磁気抵抗素子のような磁気感応素子を配置することで、可動するコイルの位置を検出する位置検出信号を出力することが出来る。特にボイスコイルモータの初期基準状態では、位置検出素子36を永久磁石S、N、の境界部に位置するよう配置すると、ホール素子の出力が0になるのでボイスコイルモータの初期基準位置を決めるのに好都合である。   Further, by disposing a magnetic sensitive element such as a Hall element or a magnetoresistive element as the position detecting element 36 in the hollow portion 37 of the coil 33, a position detection signal for detecting the position of the movable coil can be output. . In particular, in the initial reference state of the voice coil motor, if the position detection element 36 is arranged so as to be positioned at the boundary between the permanent magnets S and N, the output of the Hall element becomes 0, so the initial reference position of the voice coil motor is determined. Convenient to.

本発明に適用する好適なボイスコイルモータは、図4(a)で示されるように、前記U字型の固定ヨーク31に代わって、板状の形状を持つ2つに分離して対向配置される分離型の第1のヨーク部41と第2のヨーク部42を持ち、第1のヨーク部41は、コイル33の中空部に位置検出用の位置検出素子36、例えばホール素子のような磁気感応素子を配置したコイル33と支持板43およびヨーク板46で構成し、第2のヨーク部42は前述の磁石32とヨーク板47で構成し、第1のヨーク部と第2のヨーク部を所定間隔のギャップ44を持つよう対向配置し、第1のヨーク部41と第2のヨーク部42とが相対的に可動可能な構造を特徴としている。   As shown in FIG. 4A, a preferred voice coil motor to be applied to the present invention is separated from the U-shaped fixed yoke 31 and separated into two having a plate shape. The first yoke portion 41 has a position detecting element 36 for position detection, for example, a magnetic element such as a Hall element, in the hollow portion of the coil 33. The coil 33 including the sensitive elements, the support plate 43, and the yoke plate 46 are configured. The second yoke portion 42 is configured by the magnet 32 and the yoke plate 47, and the first yoke portion and the second yoke portion are formed. It is characterized by a structure in which the first yoke part 41 and the second yoke part 42 are relatively movable so as to face each other with a gap 44 of a predetermined interval.

第1のヨーク部41のコイル33に電流を流すと電流の方向によって、第2のヨーク部42を固定子とすれば、第1のヨーク部41はコイル33と一体となって移動子となり、例えば図4(b)の矢印45方向に移動する。 If a current is passed through the coil 33 of the first yoke portion 41, the first yoke portion 41 is integrated with the coil 33 to become a mover if the second yoke portion 42 is a stator depending on the direction of the current. For example, it moves in the direction of arrow 45 in FIG.

また、前述の第1のヨーク部41を固定子とすれば、相対的に第2のヨーク部42が移動子として永久磁石と共に移動する。   If the first yoke portion 41 is a stator, the second yoke portion 42 relatively moves with the permanent magnet as a mover.

図5に本発明の主要要素となるジンバル懸架装置10の構成を示す。図5(a)はジンバル懸架装置の斜視図、図5(b)は図5(a)に示された回動軸54,55を含む平面で見た断面図である。 FIG. 5 shows the configuration of the gimbal suspension 10 which is a main element of the present invention. FIG. 5A is a perspective view of the gimbal suspension, and FIG. 5B is a cross-sectional view of the gimbal suspension device as seen in a plane including the rotating shafts 54 and 55 shown in FIG.

ジンバル懸架装置10は、内枠53と中枠52及び外枠51で構成されており、図1で示した対物レンズと接眼レンズを固定的に保持する筐体8にジンバル懸架装置10の外枠51が固定的に取付けられる。   The gimbal suspension apparatus 10 includes an inner frame 53, an intermediate frame 52, and an outer frame 51. The outer frame of the gimbal suspension apparatus 10 is mounted on the housing 8 that holds the objective lens and the eyepiece lens fixedly as shown in FIG. 51 is fixedly attached.

図5(a)、図5(b)に示すように、ジンバル懸架装置10は、中枠52の左右の側壁に設けた軸62a、62bが左右方向に延びた第1の回動軸54を形成し、外枠51に設けた軸受け63a、63bで支持され、中枠52は外枠51に対して回動自在に装着される。   As shown in FIGS. 5A and 5B, the gimbal suspension apparatus 10 includes a first rotating shaft 54 in which shafts 62a and 62b provided on the left and right side walls of the middle frame 52 extend in the left-right direction. It is formed and supported by bearings 63 a and 63 b provided on the outer frame 51, and the middle frame 52 is rotatably attached to the outer frame 51.

また、内枠53は上下の側壁に設けた軸64a、64bが上下に延びた第2の回動軸55を形成し、中枠52に設けた軸受け65a、65bで支持され、内枠53は中枠52に対して回動自在に装着されており、内枠53には正立プリズム1を装着する。   The inner frame 53 forms a second rotating shaft 55 in which shafts 64a and 64b provided on the upper and lower side walls extend vertically, and is supported by bearings 65a and 65b provided on the inner frame 52. The erecting prism 1 is attached to the inner frame 53.

前記ジンバル懸架装置10は、中枠52を回動する第1のボイスコイルモータ56bと、内枠53を回動する第2のボイスコイルモータ56aの2基のボイスコイルモータを備える。前記第1のボイスコイルモータ56bは、コイル58bの中空部に位置検出素子57bを配置したコイル部材とヨーク板59bで構成される第1のヨーク部と、ヨーク板61bと永久磁石60bを持った第2のヨーク部とで構成され、第1のヨーク部と第2のヨーク部は所定の間隔を以って対向して配置される。
また、前記第2のボイスコイルモータ56aは、コイル58aの中空部に位置検出素子57aを配置したコイル部材とヨーク板59aで構成される第1のヨーク部と、ヨーク板61aと永久磁石60aを持った第2のヨーク部とで構成され、第1のヨーク部と第2のヨーク部は所定の間隔を以って対向して配置される。
The gimbal suspension apparatus 10 includes two voice coil motors, a first voice coil motor 56 b that rotates the middle frame 52 and a second voice coil motor 56 a that rotates the inner frame 53. The first voice coil motor 56b has a first yoke portion composed of a coil member in which a position detecting element 57b is disposed in a hollow portion of the coil 58b, a yoke plate 59b, a yoke plate 61b, and a permanent magnet 60b. The first yoke portion and the second yoke portion are arranged to face each other with a predetermined interval.
The second voice coil motor 56a includes a first yoke portion composed of a coil member having a position detecting element 57a disposed in a hollow portion of the coil 58a, a yoke plate 59a, a yoke plate 61a, and a permanent magnet 60a. The first yoke portion and the second yoke portion are arranged to face each other with a predetermined interval.

第2のボイスコイルモータ56aを構成する第1のヨーク部はボイスコイルモータの駆動回路基板66に配置固定されており、ボイスコイルモータ56aのコイル58aは駆動回路基板66の内枠側の面に、第1のヨーク部を構成するヨーク板59aは駆動回路基板66の外枠側の面に配置固定される。第2のボイスコイルモータ56aを構成する第2のヨーク部は永久磁石60aとヨーク61aで構成されており、コイル58aに対面して内枠53に配置固定される。ボイスコイルモータ56aでは、第1のヨーク部が固定子となり、第2のヨーク部が移動子となる。   The first yoke portion constituting the second voice coil motor 56a is disposed and fixed on the drive circuit board 66 of the voice coil motor, and the coil 58a of the voice coil motor 56a is disposed on the inner frame side surface of the drive circuit board 66. The yoke plate 59a constituting the first yoke portion is disposed and fixed on the outer frame side surface of the drive circuit board 66. The second yoke portion constituting the second voice coil motor 56a is composed of a permanent magnet 60a and a yoke 61a, and is arranged and fixed to the inner frame 53 so as to face the coil 58a. In the voice coil motor 56a, the first yoke portion serves as a stator and the second yoke portion serves as a mover.

第1のボイスコイルモータ56bを構成する第1のヨーク部はボイスコイルモータの駆動回路基板66に配置固定されており、ボイスコイルモータ56bのコイル58bは駆動回路基板66の外枠側の面に、第1のヨーク部を構成するヨーク板59bは駆動回路基板66の内枠側の面に配置固定される。第1のボイスコイルモータ56bを構成する第2のヨーク部は永久磁石60bとヨーク61bで構成されており、コイル部材58bに対面して外枠51に配置固定されている。ボイスコイルモータ56bでは、第1のヨーク部が移動子となり、第2のヨーク部が固定子となる。   The first yoke part constituting the first voice coil motor 56b is disposed and fixed to the drive circuit board 66 of the voice coil motor, and the coil 58b of the voice coil motor 56b is placed on the outer frame side surface of the drive circuit board 66. The yoke plate 59b constituting the first yoke portion is disposed and fixed on the surface of the drive circuit board 66 on the inner frame side. The second yoke part constituting the first voice coil motor 56b is composed of a permanent magnet 60b and a yoke 61b, and is arranged and fixed to the outer frame 51 so as to face the coil member 58b. In the voice coil motor 56b, the first yoke portion serves as a mover and the second yoke portion serves as a stator.

このように駆動回路基板66上に、2基のボイスコイルモータの第1のヨーク部を装着することで、位置検出素子(ホール素子)を含めたコイル部材も駆動回路基板作成時に、他の回路部品例えばマイクロコンピュータ92、ボイスコイルモータ駆動ドライバー93と同様に装着可能となり、組立が容易になる。   By mounting the first yoke portions of the two voice coil motors on the drive circuit board 66 in this way, the coil member including the position detection element (Hall element) can be replaced with another circuit when the drive circuit board is created. It can be mounted in the same manner as the parts such as the microcomputer 92 and the voice coil motor driving driver 93, and assembly is facilitated.

図6、図7(a)、(b)、図8(a)、(b)は、本発明の主要要素となる2基のボイスコイルモータの動作を説明する説明図である。なお構成品の符号は極力図5と同じ表記で表している。   FIGS. 6, 7 (a), 7 (b), 8 (a), and 8 (b) are explanatory diagrams for explaining the operation of the two voice coil motors as the main elements of the present invention. In addition, the code | symbol of a component is represented by the same description as FIG.

図6はボイスコイルモータの駆動回路基板66の周辺部を中心としたボイスコイルモータの動作を説明する説明用の斜視図で、説明を容易にするため第1のヨーク部に対応する第2のヨーク部の間隙を広げて示している。   FIG. 6 is a perspective view for explaining the operation of the voice coil motor centering on the periphery of the drive circuit board 66 of the voice coil motor. For ease of explanation, FIG. 6 shows a second yoke corresponding to the first yoke portion. The gap of the yoke part is shown widened.

図7(a)は図6の駆動回路基板66を中枠52(右側)の方から見た説明図で、第1のヨーク部と第2のヨーク部をA−B断面で示してある。駆動回路基板66は左右方向に延びた回動軸54を中心に回動する。図7(a)は単眼鏡に手振れ等による振動が加わる前の初期基準位置を示している。図7(b)は単眼鏡に手振れ等による上下方向の振動が加わって駆動回路基板66が角度θ傾いた状態を示しており、駆動回路基板66に固定された中枠52も角度θ傾く方向に動くが、角度が小さいのでリニア駆動のボイスコイルモータの動作には問題を生じない。 FIG. 7A is an explanatory view of the drive circuit board 66 of FIG. 6 as viewed from the middle frame 52 (right side), and shows a first yoke portion and a second yoke portion in an A-B cross section. The drive circuit board 66 rotates around a rotation shaft 54 extending in the left-right direction. FIG. 7A shows an initial reference position before vibration due to camera shake or the like is applied to the monocular. FIG. 7B shows a state in which the driving circuit board 66 is inclined by an angle θ due to vertical vibration caused by camera shake or the like on the monocular, and the middle frame 52 fixed to the driving circuit board 66 is also inclined by the angle θ. However, since the angle is small, there is no problem in the operation of the linear drive voice coil motor.

本発明による像安定化装置は手振れ等による振動を補償する範囲が角度(θ)で±5°程度としているので、コイル58bに位置検出素子からの位置信号を用いた位置サーボ等の制御信号を加えることで容易に図7(a)の初期位置に戻すことが可能である。 In the image stabilization apparatus according to the present invention, the range for compensating for vibration due to camera shake or the like is about ± 5 ° in angle (θ). Therefore, a control signal such as a position servo using a position signal from the position detection element is applied to the coil 58b. By adding, it is possible to easily return to the initial position of FIG.

図8(a)は図5の駆動回路基盤66を上方から見た平面説明図で、内枠53は駆動回路基板66に対して上下方向に延びた回動軸55を中心に回動する。図8(a)は望遠鏡に手振れ等による振動が加わる前の内枠53の初期基準位置を示している。図8(b)は望遠鏡に手振れ等による左右方向の振動が加わって中枠が左右方向に角θ傾いた状態を示しており、内枠53は駆動回路基板66及び駆動回路基板66が固定されている中枠に対して角度θ傾いた状態を示している。中枠に固定された駆動回路基板66に対して内枠53は角度θ傾く方向に動くが、角度が小さいのでリニア駆動のボイスコイルモータの動作には問題を生じない。 FIG. 8A is an explanatory plan view of the drive circuit board 66 shown in FIG. 5 as viewed from above. The inner frame 53 rotates about a rotation shaft 55 extending in the vertical direction with respect to the drive circuit board 66. FIG. 8A shows the initial reference position of the inner frame 53 before vibration due to hand shake or the like is applied to the telescope. FIG. 8B shows a state in which the telescope is subjected to left-right vibration due to camera shake or the like, and the inner frame is tilted by an angle θ in the left-right direction. The inner frame 53 has the drive circuit board 66 and the drive circuit board 66 fixed thereto. A state in which the angle θ is inclined with respect to the middle frame is shown. Although the inner frame 53 moves in the direction inclined by the angle θ with respect to the drive circuit board 66 fixed to the middle frame, there is no problem in the operation of the linear drive voice coil motor because the angle is small.

内枠53を駆動するボイスコイルモータ56aは、コイル部材を装着した第1のヨーク部が固定子、永久磁石を装着した第2のヨーク部が移動子となるので、第2のヨーク部が固定された内枠53は手振れ等による振動が加わった場合には、上下方向に延びた回動軸55を中心に図8(a)、(b)に示すように回動する。   In the voice coil motor 56a that drives the inner frame 53, the first yoke portion on which the coil member is mounted is the stator, and the second yoke portion on which the permanent magnet is mounted is the mover, so the second yoke portion is fixed. When the vibration caused by hand shake or the like is applied, the inner frame 53 is rotated as shown in FIGS. 8A and 8B around the rotation shaft 55 extending in the vertical direction.

この場合、手振れ等による左右方向の振動を補償する範囲を角度で±5°程度としているので、コイル58aに位置サーボ等の制御信号を加えることで容易に図8(a)に示す初期位置に戻すことが可能である。 In this case, the range for compensating the vibration in the left-right direction due to camera shake or the like is set to about ± 5 ° in angle. Therefore, by adding a control signal such as a position servo to the coil 58a, the initial position shown in FIG. It is possible to return.

位置検出素子としてのホール素子から得られる位置情報から、動きを打ち消す目標位置をマイクロコンピュータで演算し、演算結果を制御信号としてボイスコイルモータのコイル駆動電流にフィードバックすれば、簡単にジンバル懸架装置の内枠、中枠を必要量移動させる位置サーボ系を構成できる。 From the position information obtained from the Hall element as the position detection element, the target position for canceling the motion is calculated by a microcomputer, and the calculation result is fed back to the coil drive current of the voice coil motor as a control signal. A position servo system for moving the inner frame and the middle frame by the required amount can be configured.

図9に位置サーボ系を構成するボイスモーター駆動回路のブロック図を示す。前述のボイスコイルモータ56aと56bは基本的には同じものなので以下の説明ではボイスコイルモータ56aの場合で説明する。 FIG. 9 shows a block diagram of a voice motor driving circuit constituting the position servo system. Since the above-described voice coil motors 56a and 56b are basically the same, the following description will be made in the case of the voice coil motor 56a.

ボイスコイルモータ56aに取り付けられた位置検出素子57aからの位置信号は位置信号増幅回路91を介してマイクロコンピュータ92に取り込まれ、位相補償フィルター演算や増幅率を調整し、動きを打ち消す目標位置を設定した後、位置サーボを掛けるためのフィードバック駆動するボイスコイルモータ制御信号を演算し、この演算に基づき制御信号を増幅しボイスコイルモータ56aを駆動する増幅回路93を備えている。 The position signal from the position detection element 57a attached to the voice coil motor 56a is taken into the microcomputer 92 via the position signal amplification circuit 91, and the target position for canceling the movement is set by adjusting the phase compensation filter calculation and the amplification factor. Then, a voice coil motor control signal for feedback driving for applying the position servo is calculated, and an amplification circuit 93 for amplifying the control signal based on this calculation and driving the voice coil motor 56a is provided.

図10(a)は正立プリズムを装着するジンバル懸架装置の内枠53に角速度センサー94を装着し、手振れ等の振動で生じる正立プリズム1の角度変位を検出し、正立プリズムの動きを打ち消す目標を与えることにより、位置サーボと、角速度サーボの2重帰還ループを構成している。図中95は角速度センサーからの信号を増幅する増幅回路で、マイクロコンピュータ92に加えられ、ボイスコイルモータの制御信号を演算し、この演算に基づく制御信号を増幅しボイスコイルモータ56aを駆動する増幅回路93を備えている。 In FIG. 10A, an angular velocity sensor 94 is mounted on the inner frame 53 of the gimbal suspension for mounting the erecting prism, the angular displacement of the erecting prism 1 caused by vibrations such as camera shake is detected, and the movement of the erecting prism is detected. By giving a target to cancel, a double feedback loop of position servo and angular velocity servo is formed. In the figure, reference numeral 95 denotes an amplification circuit for amplifying a signal from the angular velocity sensor, which is added to the microcomputer 92, calculates a control signal for the voice coil motor, amplifies the control signal based on this calculation, and drives the voice coil motor 56a. A circuit 93 is provided.

前記角速度センサー94は、振動の上下方向成分と左右方向成分を検出する2軸角速度センサーでボイスコイルモータ56a、56bの制御信号の演算に使用されるが、単軸角速度センサーを2個用いても良い。 The angular velocity sensor 94 is a biaxial angular velocity sensor that detects the vertical and horizontal components of vibration and is used to calculate the control signals of the voice coil motors 56a and 56b. good.

図10(b)は前記角速度センサーの代わりにボイスコイルモータ56aに取り付けられた位置検出素子57aからの信号を微分回路96で微分し、位置信号と同時に角速度信号を取り出し、マイクロコンピュータ92でボイスコイルモータの制御信号を演算するようにしたボイスコイルモータ駆動回路のブロック図を示している。この場合、微分回路96はマイクロコンピュータ内部で処理することも可能で、高価な角速度センサーを必要としないのでコスト削減の効果が大きい。 FIG. 10B shows a differential circuit 96 that differentiates a signal from a position detection element 57a attached to the voice coil motor 56a instead of the angular velocity sensor, extracts an angular velocity signal simultaneously with the position signal, and a microcomputer 92 FIG. 2 is a block diagram of a voice coil motor drive circuit configured to calculate a motor control signal. In this case, the differentiation circuit 96 can be processed inside the microcomputer, and an expensive angular velocity sensor is not required, so that the effect of cost reduction is great.

1 正立プリズム
1a、1b プリズム
2、2’ 対物レンズ
3、3’ 接眼レンズ
4、4’ 単眼鏡
5 双眼鏡
6、6’、7 光軸
8、8’ 筐体
R 連結部材
10 ジンバル懸架装置
31 固定ヨーク
32、60a、60b 永久磁石
33、58a、58b コイル
36、57a、57b 位置検出素子
35、43 支持板
59a、59b 第1のヨーク板
61a、61b 第2のヨーク板
51 外枠
52 中枠
53 内枠
54 第1の回動軸
55 第2の回動軸
56a、56b ボイスコイルモータ
66 駆動回路基板
92 マイクロコンピュータ
93 ボイスコイルモータ駆動ドライバー
94 角速度センサー
DESCRIPTION OF SYMBOLS 1 Erect prism 1a, 1b Prism 2, 2 'Objective lens 3, 3' Eyepiece 4, 4 'Monocular 5 Binoculars 6, 6', 7 Optical axis 8, 8 'Case R Connecting member 10 Gimbal suspension 31 Fixed yoke 32, 60a, 60b Permanent magnet 33, 58a, 58b Coil 36, 57a, 57b Position detection element 35, 43 Support plate 59a, 59b First yoke plate 61a, 61b Second yoke plate 51 Outer frame 52 Middle frame 53 Inner frame 54 First rotation shaft 55 Second rotation shafts 56a and 56b Voice coil motor 66 Driving circuit board 92 Microcomputer 93 Voice coil motor driving driver 94 Angular velocity sensor

Claims (6)

正立プリズムを対物レンズと接眼レンズの間に配置した望遠鏡光学系の正立プリズムを、望遠鏡光学系の光軸に直交し、且つ互いに直交する第1の回動軸と第2の回動軸との回りに回動させることで、手振れ等の振動によって生じる観察像の劣化を補償する像安定化装置であって、
対物レンズと接眼レンズを固定的に保持する筺体と、
該筐体に対して固定された外枠と、
該外枠に対して回動自在に装着した第1の回動軸を持つ中枠及び、
該中枠に対して回動自在に装着した第2の回動軸を持つ内枠を有するジンバル懸架装置を有し、
前記ジンバル懸架装置は、中枠及び内枠をそれぞれ駆動する2基のボイスコイルモータを備え、
前記ボイスコイルモータは、コイルの中空部に位置検出素子を配置したコイル部材を備えた第1のヨーク部と、永久磁石を備えた第2のヨーク部とを有し、
前記中枠には2基のボイスコイルモータを駆動する駆動回路基板を設け、
駆動回路基板の外枠側の面には、中枠を駆動するボイスコイルモータの第1のヨーク部を構成するコイル部材を配置し、第2のヨーク部の永久磁石をこの第1のヨーク部のコイル部材と所定間隔のギャップを以って相対向するように、第2のヨーク部を外枠に装着し、
駆動回路基板の内枠側の面には、内枠を駆動するボイスコイルモータの第1のヨーク部を構成するコイル部材を配置し、第2のヨーク部の永久磁石をこの第1のヨーク部のコイル部材と所定間隔のギャップを以って相対向するように、第2のヨーク部を内枠に装着し、
前記内枠には前記正立プリズムを設けたことを特徴とする像安定化装置。
The erecting prism of the telescope optical system in which the erecting prism is disposed between the objective lens and the eyepiece lens is arranged so that the first rotating shaft and the second rotating shaft are orthogonal to the optical axis of the telescope optical system and orthogonal to each other. An image stabilization device that compensates for deterioration of an observed image caused by vibrations such as camera shake,
A housing that holds the objective lens and the eyepiece lens fixedly;
An outer frame fixed to the housing;
A middle frame having a first pivot shaft rotatably mounted on the outer frame;
A gimbal suspension device having an inner frame having a second rotation shaft that is rotatably mounted on the middle frame;
The gimbal suspension includes two voice coil motors for driving the middle frame and the inner frame,
The voice coil motor includes a first yoke portion including a coil member in which a position detection element is disposed in a hollow portion of the coil, and a second yoke portion including a permanent magnet.
The middle frame is provided with a drive circuit board for driving two voice coil motors,
A coil member constituting the first yoke portion of the voice coil motor that drives the inner frame is disposed on the outer frame side surface of the drive circuit board, and the permanent magnet of the second yoke portion is used as the first yoke portion. The second yoke portion is attached to the outer frame so as to face the coil member with a gap of a predetermined interval,
A coil member constituting the first yoke portion of the voice coil motor that drives the inner frame is disposed on the inner frame side surface of the drive circuit board, and the permanent magnet of the second yoke portion is used as the first yoke portion. The second yoke portion is attached to the inner frame so as to face the coil member with a gap of a predetermined interval,
An image stabilization apparatus, wherein the erecting prism is provided in the inner frame.
前記ジンバル懸架装置の内枠に角速度センサーを設け、角速度信号を得ることを特徴とする請求項1記載の像安定化装置。   2. The image stabilization apparatus according to claim 1, wherein an angular velocity sensor is provided in an inner frame of the gimbal suspension device to obtain an angular velocity signal. 前記第1のヨーク部のコイル中空部に配置した位置検出素子の出力信号を微分して、位置検出素子から位置信号と角速度信号を得ることを特徴とする請求項1記載の像安定化装置。   2. The image stabilization apparatus according to claim 1, wherein an output signal of a position detection element disposed in a coil hollow portion of the first yoke portion is differentiated to obtain a position signal and an angular velocity signal from the position detection element. 前記駆動回路基板は、位置信号及び角速度信号に基づき、前記正立プリズムの初期位置を保持するようボイスコイルモータを駆動し、ジンバル懸架装置の回動を制御する回路より構成されることを特徴とする請求項2または3記載の像安定化装置。   The drive circuit board is configured by a circuit that controls a rotation of the gimbal suspension device by driving a voice coil motor so as to hold an initial position of the erecting prism based on a position signal and an angular velocity signal. The image stabilization apparatus according to claim 2 or 3. 望遠鏡光学系が単眼鏡であることを特徴とする請求項1〜4のいずれかに記載の像安定化装置。   5. The image stabilization apparatus according to claim 1, wherein the telescope optical system is a monocular. 望遠鏡光学系が双眼鏡であることを特徴とする請求項1〜4のいずれかに記載の像安定化装置。 5. The image stabilization apparatus according to claim 1, wherein the telescope optical system is binoculars.
JP2014037629A 2013-04-24 2014-02-28 Image stabilization device Active JP6278742B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014037629A JP6278742B2 (en) 2013-04-24 2014-02-28 Image stabilization device
US14/258,807 US9395551B2 (en) 2013-04-24 2014-04-22 Optical image stabilizer
EP14001464.8A EP2801856B1 (en) 2013-04-24 2014-04-24 Optical image stabilizer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013091233 2013-04-24
JP2013091233 2013-04-24
JP2014037629A JP6278742B2 (en) 2013-04-24 2014-02-28 Image stabilization device

Publications (2)

Publication Number Publication Date
JP2014224983A true JP2014224983A (en) 2014-12-04
JP6278742B2 JP6278742B2 (en) 2018-02-14

Family

ID=52123681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037629A Active JP6278742B2 (en) 2013-04-24 2014-02-28 Image stabilization device

Country Status (1)

Country Link
JP (1) JP6278742B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108253841A (en) * 2018-01-17 2018-07-06 江苏北方湖光光电有限公司 Image intensifier mounting structure and lll sight
WO2021075798A1 (en) * 2019-10-15 2021-04-22 엘지이노텍 주식회사 Prism drive device
CN108253841B (en) * 2018-01-17 2024-05-03 江苏北方湖光光电有限公司 Image intensifier mounting structure and low-light sighting telescope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104682A (en) * 1996-09-30 1998-04-24 Fuji Photo Optical Co Ltd Image stabilizing device
JP2009288612A (en) * 2008-05-30 2009-12-10 Canon Inc Binocular device
JP2010054573A (en) * 2008-08-26 2010-03-11 Canon Inc Observation device
US20130194666A1 (en) * 2012-01-13 2013-08-01 Carl Zeiss Sports Optics Gmbh Probability-based determination of a mode of actuation for an image stabilization device
US20130293956A1 (en) * 2012-04-16 2013-11-07 Carl Zeiss Sports Optics Gmbh Optical system for image of an object
JP2014167603A (en) * 2012-10-01 2014-09-11 Kamakura Koki Kk Image stabilizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104682A (en) * 1996-09-30 1998-04-24 Fuji Photo Optical Co Ltd Image stabilizing device
JP2009288612A (en) * 2008-05-30 2009-12-10 Canon Inc Binocular device
JP2010054573A (en) * 2008-08-26 2010-03-11 Canon Inc Observation device
US20130194666A1 (en) * 2012-01-13 2013-08-01 Carl Zeiss Sports Optics Gmbh Probability-based determination of a mode of actuation for an image stabilization device
US20130293956A1 (en) * 2012-04-16 2013-11-07 Carl Zeiss Sports Optics Gmbh Optical system for image of an object
JP2014167603A (en) * 2012-10-01 2014-09-11 Kamakura Koki Kk Image stabilizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108253841A (en) * 2018-01-17 2018-07-06 江苏北方湖光光电有限公司 Image intensifier mounting structure and lll sight
CN108253841B (en) * 2018-01-17 2024-05-03 江苏北方湖光光电有限公司 Image intensifier mounting structure and low-light sighting telescope
WO2021075798A1 (en) * 2019-10-15 2021-04-22 엘지이노텍 주식회사 Prism drive device

Also Published As

Publication number Publication date
JP6278742B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6278721B2 (en) Image stabilization device
JP6187933B2 (en) Image stabilization device
JP5109450B2 (en) Blur correction device and optical apparatus
EP2801856B1 (en) Optical image stabilizer
JP4844177B2 (en) Blur correction device and camera
JP5463583B2 (en) Anti-vibration actuator, lens unit and camera equipped with the same
KR100803602B1 (en) Apparatus for shake correction and method thereof
JPH03188430A (en) Image blurring restraining device for camera
JP3417446B2 (en) Image stabilizer
JP2011145526A (en) Vibration-proof actuator and lens unit including the same, and camera
JP5884242B2 (en) Actuator, lens unit, and camera
US10928644B2 (en) Anti-vibration device and binocle
JP6151622B2 (en) Image stabilization device
JP2018072657A (en) Optical unit
JP6278742B2 (en) Image stabilization device
JP2000199920A (en) Vibration proofing device for camera
JPH11167071A (en) Binocular instrument and monocular instrument having ocular shake correcting mechanism
JP5540444B2 (en) Anti-vibration actuator, lens unit and camera equipped with the same
JP2016157031A (en) Lens driving device
JP2013186298A (en) Image blur correction device, optical instrument and imaging apparatus
JP3394666B2 (en) Image stabilizer
JP5332176B2 (en) Image blur correction device
JPH10104674A (en) Image stabilizer
JPH10104682A (en) Image stabilizing device
JP2000056351A (en) Optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180116

R150 Certificate of patent or registration of utility model

Ref document number: 6278742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250