JP2014223751A - Microstructure molding method - Google Patents

Microstructure molding method Download PDF

Info

Publication number
JP2014223751A
JP2014223751A JP2013103887A JP2013103887A JP2014223751A JP 2014223751 A JP2014223751 A JP 2014223751A JP 2013103887 A JP2013103887 A JP 2013103887A JP 2013103887 A JP2013103887 A JP 2013103887A JP 2014223751 A JP2014223751 A JP 2014223751A
Authority
JP
Japan
Prior art keywords
mold
temperature
microstructure
coating film
lower mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013103887A
Other languages
Japanese (ja)
Other versions
JP5754749B2 (en
Inventor
章弘 内藤
Akihiro Naito
章弘 内藤
昭太 越智
Shota Ochi
昭太 越智
伊東 宏
Hiroshi Ito
伊東  宏
賢一 古木
Kenichi Furuki
賢一 古木
政樹 原
Masaki Hara
政樹 原
焼本 数利
Kazutoshi Yakimoto
数利 焼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2013103887A priority Critical patent/JP5754749B2/en
Publication of JP2014223751A publication Critical patent/JP2014223751A/en
Application granted granted Critical
Publication of JP5754749B2 publication Critical patent/JP5754749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microstructure molding method that can mold a thin and planar microstructure by one molding in which there is not a burr, and a microstructure is included in a plane part and an edge end part.SOLUTION: A microstructure molding method is that a coated film that is formed by that a molten resin applied to a lower mold is pressed by the lower mold and an upper mold, performed by isovolume temperature change, a microstructure is performed by transfer molding to a plane part and an edge end part of the coated film, and the same is performed by cooling solidification, and a planar microstructure that has the microstructure in the plane part and the edge end part and in which there is not a burr in the edge end part is molded, and includes: a step in which a planar coated film is formed to the lower mold; a step in which heating of the upper mold and the lower mold is begun and mold closing is performed, temperature rising is performed to a prescribed mold temperature and transfer molding of the microstructure is performed; and a step in which cooling of the upper mold and the lower mold is begun, the mold temperature becomes a prescribed temperature, then mold opening is performed, and a molded microstructure is taken out.

Description

本発明は、微細構造を有する金型に型締めされた溶融樹脂を押圧し等容温度変化をさせ、その微細構造が平面部及び縁端部に転写成形された平板状の微細構造体を成形する方法に関する。   The present invention presses a molten resin clamped to a mold having a fine structure to change the isovolumetric temperature, and molds a flat-plate-like fine structure in which the fine structure is transferred and formed on a flat part and an edge part. On how to do.

射出成形法や押出成形法により微細構造を有する金型に熱可塑性樹脂の溶融体を押圧し、これを冷却・固化することによって、微細構造を有する薄い平板状のマイクロレンズアレイや導光板などの板状体が成形されている。これらの板状体は、その表面及び裏面に種々の微細構造を有するものが求められている。   By pressing a thermoplastic resin melt into a mold having a fine structure by injection molding or extrusion molding, and cooling and solidifying it, a thin flat microlens array having a fine structure, a light guide plate, etc. A plate-like body is formed. These plate-like bodies are required to have various fine structures on the front and back surfaces.

例えば、特許文献1に、射出成形によって得られる最大厚みが1.5mm以下の導光板であって、導光板の少なくとも1面にJIS B0601に基づく10点平均粗さが200μm未満の微細な凹凸もしくはレンズ形状が賦形されている導光板が開示されている。そして、メタクリル樹脂を射出成形して得られた導光板のファンゲートをカッターでカットし、このゲートのある面を旭メガロ性プラビューティーで1面研磨してこの面を入光面とする導光板の実施例が開示されている。このとき使用された金型は、10inch(4:3)1mm厚、長辺側中央に半分の幅、厚み1mmのファンゲートを設け、コア面に流動方向に平行に頂角100°、ピッチ150μmのリニアプリズムを設け、キャビ面は微細な不定形梨地模様を設け、残りの面を鏡面とした金型であった。   For example, Patent Document 1 discloses a light guide plate having a maximum thickness of 1.5 mm or less obtained by injection molding, and a fine unevenness or lens having a 10-point average roughness of less than 200 μm based on JIS B0601 on at least one surface of the light guide plate. A light guide plate having a shape is disclosed. Then, the fan gate of the light guide plate obtained by injection molding of methacrylic resin is cut with a cutter, and one surface of this gate is polished with Asahi Megaro Plasticity to make this surface the light incident surface. Examples are disclosed. The mold used at this time is 10inch (4: 3) 1mm thick, with a half-width, 1mm thick fan gate at the center of the long side, apex angle 100 ° parallel to the flow direction on the core surface, pitch 150μm The linear prism was provided, the mold surface was provided with a fine irregular shaped satin pattern, and the remaining surface was a mirror surface.

このような射出成形法により平板状の微細構造体を成形する場合は、金型合せ面にバリを生じやすいという問題がある。この問題に対し、例えば、特許文献2に、位置合わせピンを用いて可動側型部と移動側型部の位置合わせ精度を高めて、金型合せ面のクリアランスをバリが生じない程度に小さくする方法が開示されている。この方法によると、液晶表示素子の導光板などの成形品を、ショートショット、微細加工面の再現不良、成形品の歪み、並びにバリなどを生じることなく良好に成形することができるとされる。   In the case where a flat microstructure is formed by such an injection molding method, there is a problem that burrs are likely to occur on the die mating surface. To solve this problem, for example, in Patent Document 2, the alignment accuracy of the movable side mold part and the movable side mold part is increased by using an alignment pin, and the clearance between the mold alignment surfaces is reduced to the extent that no burr is generated. A method is disclosed. According to this method, a molded product such as a light guide plate of a liquid crystal display element can be satisfactorily molded without causing short shots, reproducibility of a finely processed surface, distortion of the molded product, and burrs.

一方、特許文献3には、押出成形法により導光板を成形する方法が開示されている。すなわち、回転する2つのロールの隙間に溶融熱可塑性樹脂を供給し、これをロールで押圧してそれぞれのロール周面に設けた畝状微細構造を転写成形する微細構造シート成形方法が開示されている。そして、この微細構造シートを所望のサイズに裁断することによって導光板が得られるとされる。   On the other hand, Patent Document 3 discloses a method of forming a light guide plate by an extrusion molding method. That is, a microstructure sheet forming method is disclosed in which a molten thermoplastic resin is supplied to a gap between two rotating rolls, and this is pressed with the rolls to transfer and mold the ridge-like microstructure provided on each roll peripheral surface. Yes. A light guide plate is obtained by cutting the microstructure sheet into a desired size.

特開2007-291230号公報JP 2007-291230 JP 特開2002-292686号公報Japanese Patent Laid-Open No. 2002-292686 特開2012-233984号公報JP 2012-233984 A

射出成形法は、金型合せ面が存在するから上述のようにバリ発生の問題がある。また、射出成形法は、金型のキャビティ内に溶融樹脂を充填するゲートから薄い平板状のキャビティの隅々に溶融樹脂が流動する過程で樹脂の温度が低下して粘度が増大または固化するため、キャビティの隅々まで充填するのが難しいという問題がある。さらに、射出成形法は、キャビティ縁端部に加工された微細構造を溶融樹脂に転写することが困難であるため、縁端部に微細構造を有する薄い平板状の微細構造体を成形するのが容易でない。このため、特許文献1に示すように、射出成形された導光板素材は、入光面となる導光板の光源を設ける縁端面の研磨が必要になるという問題がある。   The injection molding method has a problem of occurrence of burrs as described above because of the presence of the mold mating surface. In the injection molding method, the temperature of the resin decreases and the viscosity increases or solidifies during the process of flowing the molten resin from the gate filling the molten resin into the mold cavity to every corner of the thin flat cavity. There is a problem that it is difficult to fill every corner of the cavity. Furthermore, since it is difficult for the injection molding method to transfer the microstructure processed at the edge of the cavity to the molten resin, it is necessary to form a thin flat plate-like microstructure having a microstructure at the edge. Not easy. For this reason, as shown in Patent Document 1, the injection-molded light guide plate material has a problem that it is necessary to polish the edge surface where the light source of the light guide plate serving as the light entrance surface is provided.

また、押出成形法は、特許文献3に示すように、溶融熱可塑性樹脂を回転する2つのロールの隙間に供給しつつ押圧して微細構造体を成形する方法であるから、成形可能な微細構造の形態が限定され、また、シート状の溶融熱可塑性樹脂の側縁部の成形加工が容易でないという問題がある。このため、押出成形法により成形した微細構造シートから導光板を成形するためには、微細構造シートの所要部位の切断及び切断面の研磨が必要になる。   In addition, as shown in Patent Document 3, the extrusion molding method is a method in which a molten thermoplastic resin is pressed into a gap between two rotating rolls and pressed to form a microstructure. In addition, there is a problem that the shape of the side edge portion of the sheet-like molten thermoplastic resin is not easy. For this reason, in order to shape | mold a light-guide plate from the microstructure sheet | seat shape | molded by the extrusion molding method, the cutting | disconnection of the required part of a microstructure sheet | seat and grinding | polishing of a cut surface are needed.

一方、マイクロレンズアレイや導光板などの微細構造体は、ますます薄く、複雑な形態、多様な形態の微細構造を有するものが求められており、追加工を要しない一成形加工で導光板を成形する方法が求められている。さらに、板状体の表裏面ばかりでなく縁端部に種々の微細構造を有する微細構造体が求められており、そのような微細構造体を成形することが可能な成形方法は、さらに用途の拡大、新規な機能を有する微細構造体の成形を促進する可能性がある。   On the other hand, micro structures such as microlens arrays and light guide plates are becoming increasingly thin and have complex forms and various forms of fine structures, and light guide plates can be formed by a single molding process that requires no additional processing. There is a need for a method of molding. Furthermore, there is a demand for microstructures having various microstructures at the edges as well as the front and back surfaces of the plate-like body, and a molding method capable of molding such microstructures is further used for applications. There is a possibility of promoting the formation of a fine structure having an enlarged and novel function.

本発明は、このような従来の問題点及び要請に鑑み、プレス成形法により特別な構造の金型を用いないで、バリがなく、平面部及び縁端部に微細構造を有する薄い平板状の微細構造体を一成形加工により成形することができる微細構造体成形方法を提供することを目的とする。   In view of such conventional problems and requirements, the present invention does not use a die having a special structure by a press molding method, has no burrs, and has a thin flat plate shape having a fine structure on a flat portion and an edge portion. It is an object of the present invention to provide a fine structure forming method capable of forming a fine structure by one forming process.

本発明に係る微細構造体成形方法は、下金型に溶融樹脂を塗布して形成した塗膜を、前記下金型と上金型とにより押圧し等容温度変化をさせ、前記塗膜の平面部と縁端部に微細構造を転写成形してこれを冷却固化し、前記平面部と縁端部に前記微細構造を有するとともに、前記縁端部にバリのない平板状の微細構造体を成形する方法であって、前記下金型に、平板状の塗膜を形成する段階と、前記上金型と下金型の加熱を開始するとともに型締めを行い、所定の型温度まで昇温して微細構造の転写成形を行う段階と、前記上金型と下金型の冷却を開始し型温度が所定温度になった後、型開きを行って成形された微細構造体を取り出す段階と、を有してなる。   In the microstructure forming method according to the present invention, a coating film formed by applying a molten resin to a lower mold is pressed between the lower mold and the upper mold to change the isothermal temperature, A fine structure is transferred and molded on the flat portion and the edge portion, and this is cooled and solidified. The flat structure having the fine structure on the flat portion and the edge portion and having no burr on the edge portion is formed. A method of forming, wherein a step of forming a flat coating film on the lower mold, heating of the upper mold and the lower mold is started and clamping is performed, and the temperature is raised to a predetermined mold temperature. Performing the transfer molding of the microstructure, and starting the cooling of the upper mold and the lower mold, and after the mold temperature reaches a predetermined temperature, opening the mold and taking out the molded microstructure , Has.

上記発明において、昇温する所定の型温度tdは、溶融樹脂の塗布を行う型温度tに対し、t<td<t+50(℃)であるのがよい。また、昇温する所定の型温度tdは、溶融樹脂のガラス転移温度tgに対し、tg<td<tg+100(℃)であるのがよい。 In the above invention, the predetermined mold temperature t d to be raised is preferably t <t d <t + 50 (° C.) with respect to the mold temperature t at which the molten resin is applied. Further, the predetermined mold temperature t d for raising the temperature is preferably t g <t d <t g +100 (° C.) with respect to the glass transition temperature t g of the molten resin.

また、塗膜は、その縁端部に対向する下金型又は上金型の型前面からの隙間δが0mmを越え5mm以下になるように形成するのがよい。   The coating film is preferably formed such that the gap δ from the front surface of the lower mold or the upper mold facing the edge is more than 0 mm and 5 mm or less.

また、塗膜は、下金型と上金型との型締めにより押圧されて流動する厚み部分が、微細構造体の厚みの0%を越え20%以下にするのがよい。   In addition, the thickness of the coating film that is pressed and fluidized by clamping the lower mold and the upper mold is preferably greater than 0% and less than or equal to 20% of the thickness of the microstructure.

また、本発明に係る微細構造体成形方法は、下金型に溶融樹脂を塗布して形成した塗膜を上金型を閉じて等容温度変化させることにより、その塗膜の平面部と縁端部に微細構造の転写成形を行うバリのない平板状の微細構造体を成形することにより実施される。   Further, the microstructure forming method according to the present invention includes a coating film formed by applying a molten resin to a lower mold and changing the isothermal temperature of the coating film by closing the upper mold so that the flat portion and the edge of the coating film are formed. It is carried out by forming a flat microstructure without burrs that performs transfer molding of the microstructure at the end.

この微細構造体成形方法の発明において、塗膜は、下金型と上金型とにより形成されるキャビティの体積に対し、以下の式を満たすように形成されるのがよい。すなわち、塗膜は、塗膜の体積+熱膨張による体積の増加量>キャビティの体積>塗膜の体積 を満たすように形成されるのがよい。   In the invention of the microstructure forming method, the coating film is preferably formed so as to satisfy the following expression with respect to the volume of the cavity formed by the lower mold and the upper mold. That is, the coating film is preferably formed so as to satisfy the following relationship: coating film volume + volume increase due to thermal expansion> cavity volume> coating film volume.

本発明によれば、特別な構造の金型を用いないで、バリのない、微細構造が平面部及び縁端部に転写成形された薄い平板状の微細構造体を一成形により成形することができる。   According to the present invention, without using a specially structured mold, a thin flat microstructure having no burrs and having a microstructure transferred and formed on a flat portion and an edge portion can be formed by one molding. it can.

本発明に係る微細構造体成形方法の説明図である。It is explanatory drawing of the microstructure manufacturing method which concerns on this invention. 溶融樹脂の熱サイクルのタイムチャートAを示す説明図である。It is explanatory drawing which shows the time chart A of the thermal cycle of molten resin. 溶融樹脂の熱サイクルのタイムチャートBを示す説明図であるIt is explanatory drawing which shows the time chart B of the thermal cycle of molten resin 溶融樹脂の熱サイクルのタイムチャートCを示す説明図であるIt is explanatory drawing which shows the time chart C of the thermal cycle of molten resin 溶融樹脂の等容温度変化の様子を示す模式図である。It is a schematic diagram which shows the mode of the isovolumetric temperature change of molten resin. 実施例の結果を示す図面である。It is drawing which shows the result of an Example.

以下、本発明を実施するための形態について図面を基に説明する。本発明に係る微細構造体成形方法は、下金型に溶融樹脂を塗布して形成した塗膜を、前記下金型と上金型とにより押圧し等容温度変化をさせ、前記塗膜の平面部と縁端部に微細構造を転写成形してこれを冷却固化し、前記平面部と縁端部に前記微細構造を有するとともに、前記縁端部にバリのない平板状の微細構造体を成形する方法である。本微細構造体成形方法は、例えば図1に示すように、下金型1の下金型本体11に保持されたスタンパ3に、平板状の塗膜5を形成する段階と(図1(a))、上金型2と下金型1の加熱を開始するとともに型締めを行い、所定の型温度まで昇温して微細構造の転写成形を行う段階(図1(b))と、上金型2と下金型1の冷却を開始し型温度が所定温度になった後、型開きを行って成形された微細構造体を取り出す段階と、を有してなる。下金型1の加熱、冷却は、温度調整手段15、16により行われる。上金型2の加熱、冷却は、温度調整手段25、26により行われる。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the microstructure forming method according to the present invention, a coating film formed by applying a molten resin to a lower mold is pressed between the lower mold and the upper mold to change the isothermal temperature, A fine structure is transferred and molded on the flat portion and the edge portion, and this is cooled and solidified. The flat structure having the fine structure on the flat portion and the edge portion and having no burr on the edge portion is formed. This is a molding method. As shown in FIG. 1, for example, this microstructure forming method includes a step of forming a flat coating film 5 on a stamper 3 held by a lower mold body 11 of a lower mold 1 (see FIG. )), Starting heating of the upper mold 2 and the lower mold 1 and performing mold clamping, raising the temperature to a predetermined mold temperature and performing transfer molding of the fine structure (FIG. 1 (b)), After the mold 2 and the lower mold 1 are cooled and the mold temperature reaches a predetermined temperature, the mold is opened to take out the molded microstructure. The lower mold 1 is heated and cooled by the temperature adjusting means 15 and 16. The upper mold 2 is heated and cooled by the temperature adjusting means 25 and 26.

そして、スタンパ3、サイド型12及び上金型2によりいわゆるキャビティが形成され、スタンパ3に設けた微細構造が塗膜5に転写成形される。また、上金型2又はサイド型12の内周面に設けられた微細構造が塗膜5に転写成形される。上金型2又はサイド型12の内周面が鏡面である場合は、その鏡面が塗膜5に転写成形される。なお、本例のサイド型12のような塗膜5の縁部周囲を囲む金型は、図1に示すように下金型1に一体に設けることができるが、上金型2に一体に設けることができ、また、構成部分毎にそれぞれ下金型1と上金型2に分けて設けることもでき、あるいは全く独立した形態の縁部型とすることもできる。   A so-called cavity is formed by the stamper 3, the side mold 12, and the upper mold 2, and the fine structure provided in the stamper 3 is transferred to the coating film 5. Further, the fine structure provided on the inner peripheral surface of the upper mold 2 or the side mold 12 is transferred and molded on the coating film 5. When the inner peripheral surface of the upper mold 2 or the side mold 12 is a mirror surface, the mirror surface is transferred and formed on the coating film 5. A mold surrounding the periphery of the coating film 5 such as the side mold 12 in this example can be provided integrally with the lower mold 1 as shown in FIG. It is also possible to provide the lower mold 1 and the upper mold 2 separately for each component part, or to form an edge mold in a completely independent form.

図1に示す金型を使用してバリのない微細構造体を得るためには、型締めをした後、サイド型12と上金型2との間に隙間がない状態で塗膜5の転写成形を行う必要がある。しかしながら、サイド型12と上金型2との間の隙間がなくなった状態においては、上金型2と下金型1の間隔が一定になり、上金型2と下金型1により塗膜5を圧縮して転写成形を行うことが困難になる。ここで、型温度を昇温し、キャビティ内の塗膜5を加熱すると、塗膜5を形成する溶融樹脂が等容温度変化をして樹脂内圧が発生する。この発生した樹脂内圧を利用して塗膜5に微細構造を転写成形する。これにより、本微細構造体成形方法によれば、バリのない、微細構造が平面部及び縁端部に転写成形された薄い平板状の微細構造体を一成形により成形することができる。   In order to obtain a fine structure without burrs using the mold shown in FIG. 1, after the mold is clamped, the coating film 5 is transferred with no gap between the side mold 12 and the upper mold 2. It is necessary to perform molding. However, when there is no gap between the side mold 12 and the upper mold 2, the distance between the upper mold 2 and the lower mold 1 is constant, and the upper mold 2 and the lower mold 1 are coated. It becomes difficult to perform transfer molding by compressing 5. Here, when the mold temperature is raised and the coating film 5 in the cavity is heated, the molten resin forming the coating film 5 undergoes an isovolumetric temperature change to generate an internal resin pressure. The fine structure is transferred and formed on the coating film 5 using the generated internal pressure of the resin. Thereby, according to the present microstructure forming method, a thin flat microstructure having no burrs and having the microstructure transferred and formed on the flat portion and the edge portion can be formed by one molding.

下金型1に形成する塗膜5は、図1に示すように、スタンパ3に熱可塑性溶融樹脂を塗布することにより形成される。熱可塑性溶融樹脂の塗布は、型温度が熱可塑性樹脂のガラス転移温度以上の温度になった下金型1において行われる。そして、型締め後、上金型2と下金型1を加熱し、所定の型温度tdに昇温させた後、この温度を保持して微細構造の転写成形を行う。昇温させる所定の型温度tdは、溶融樹脂の塗布を行う型温度tに対し、t<td<t+50(℃)であるのがよい。昇温すべき型温度tdが高いと型締め中の加熱時間が長くなって成形サイクルが長くなり、生産性が低くなるからである。また、昇温させる所定の型温度tdは、溶融樹脂のガラス転移温度tgに対し、tg<td<tg+100(℃)であるのがよい。熱可塑性溶融樹脂の特性を損なうことなく、適度の流動性を確保することができるからである。また、スタンパ3、下金型1及び上金型2は、型締め、昇温・転写成形及び冷却の各工程においてほぼ同一温度に制御するのが好ましい。それにより、平板状の成形体の表裏面での熱歪履歴が等しくなり、反りなどの歪みの発生を抑制することができる。従って、本微細構造体成形方法において、型温度とは、スタンパ3、下金型1又は上金型2の温度を意味する。なお、ここで、結晶性樹脂などで明確なガラス転移温度tgが存在しない樹脂を用いる場合は、樹脂の軟化温度、荷重たわみ温度などの中から最も高い温度のものを代替指標として参照することができる。 The coating film 5 formed on the lower mold 1 is formed by applying a thermoplastic molten resin to the stamper 3 as shown in FIG. The application of the thermoplastic molten resin is performed in the lower mold 1 whose mold temperature is equal to or higher than the glass transition temperature of the thermoplastic resin. After clamping, the upper mold 2 and lower mold 1 is heated, after being heated to a predetermined mold temperature t d, performs transfer molding of microstructures holds this temperature. The predetermined mold temperature t d for raising the temperature is preferably t <t d <t + 50 (° C.) with respect to the mold temperature t for applying the molten resin. This is because if the mold temperature t d to be raised is high, the heating time during mold clamping becomes longer, the molding cycle becomes longer, and the productivity becomes lower. The predetermined mold temperature t d to be raised is preferably t g <t d <t g +100 (° C.) with respect to the glass transition temperature t g of the molten resin. This is because appropriate fluidity can be secured without impairing the properties of the thermoplastic molten resin. The stamper 3, the lower mold 1 and the upper mold 2 are preferably controlled at substantially the same temperature in each process of mold clamping, temperature rising / transfer molding and cooling. As a result, the thermal strain history on the front and back surfaces of the flat molded body becomes equal, and the occurrence of distortion such as warpage can be suppressed. Therefore, in this microstructure forming method, the mold temperature means the temperature of the stamper 3, the lower mold 1, or the upper mold 2. Here, when using a resin that does not have a clear glass transition temperature t g, such as a crystalline resin, refer to the softest temperature, the deflection temperature under load, etc. as the alternative index. Can do.

塗膜5は、その転写成形される縁端部に対向した下金型又は上金型の型前面からの隙間δ、すなわち、図1の場合はサイド型12の内周面から隙間δを有するように形成される。隙間δは、0mmを越え5mm以下であるのがよい。また、塗膜5は、サイド型12の上端面(キャビティの高さh)から突出するように形成される。その突出量mは、微細構造体の厚みの0%を越え20%以下にするのがよい。突出量mは、隙間δや微細構造体のサイズあるいは樹脂の種類等により最適な値が選ばれる。   The coating film 5 has a gap δ from the front surface of the lower mold or the upper mold facing the edge of the transfer molding, that is, the gap δ from the inner peripheral surface of the side mold 12 in the case of FIG. Formed as follows. The gap δ is preferably more than 0 mm and not more than 5 mm. The coating film 5 is formed so as to protrude from the upper end surface (the height h of the cavity) of the side mold 12. The protrusion amount m should be more than 0% and not more than 20% of the thickness of the fine structure. As the protrusion amount m, an optimum value is selected depending on the gap δ, the size of the fine structure, the kind of resin, and the like.

また、塗膜5は、溶融熱可塑樹脂をその上面にゲージ圧で動圧0.1〜5MPaを与えるように塗布するのがよい。これにより、高精度に塗膜30の厚さを制御することができ、最終製品としての微細構造体の厚さを高精度に制御することができる。また、この塗布においては、面内の厚み分布(最も厚い部分と最も薄い部分との差)を10μm前後に抑えることができる。すなわち、被塗布面上の目標とする塗膜の厚みとほぼ同じ高さに樹脂吐出部を近接させ、必要とされる体積にほぼ等しい流量の溶融樹脂を所定の移動速度で吐出部から吐出しながら塗布する。これにより、塗膜の幅をTダイの樹脂吐出部の幅、塗膜の長さを樹脂吐出部の移動距離とほぼ等しくすることができる。そして、これらにより、塗膜の幅、長さおよび厚みは、押圧後に得られる最終的な微細構造体とほぼ等しい形状および厚みに精度良く塗布することができる。   The coating film 5 is preferably applied with a molten thermoplastic resin on its upper surface so as to give a dynamic pressure of 0.1 to 5 MPa with a gauge pressure. Thereby, the thickness of the coating film 30 can be controlled with high accuracy, and the thickness of the fine structure as the final product can be controlled with high accuracy. In this application, the in-plane thickness distribution (difference between the thickest part and the thinnest part) can be suppressed to around 10 μm. That is, the resin discharge part is brought close to the target film thickness on the coated surface, and a molten resin having a flow rate substantially equal to the required volume is discharged from the discharge part at a predetermined moving speed. Apply while. As a result, the width of the coating film can be made substantially equal to the width of the resin discharge portion of the T die and the length of the coating film can be made substantially equal to the moving distance of the resin discharge portion. And by these, the width | variety, length, and thickness of a coating film can be accurately apply | coated to the shape and thickness substantially equal to the final fine structure obtained after a press.

本微細構造体成形方法に使用される熱可塑性樹脂は、種々の熱可塑性樹脂を使用することができる。例えば、ポリカーボネート(PC)、ポリメタクリル酸メチル(PMMA)、シクロオレフィンポリマー(COP)、環状オレフィンコポリマー(COC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリスチレン(PS)、メチルメタクリレートブタジエンスチレン(MBS)などの樹脂材料を好適に使用することができる。   Various thermoplastic resins can be used as the thermoplastic resin used in the present microstructure forming method. For example, polycarbonate (PC), polymethyl methacrylate (PMMA), cycloolefin polymer (COP), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polystyrene (PS), methyl methacrylate butadiene Resin materials such as styrene (MBS) can be suitably used.

上述のように塗膜5が形成されると、上金型2と下金型1の加熱を開始するとともに型締めを行う。本微細構造体成形方法は、下金型1及び上金型2により形成されるキャビティに対し、前述の塗膜の隙間δ及び突出量mを調整することにより、キャビティを満たすか又はキャビティよりわずかに小さい容積の溶融樹脂の塗膜を形成する。そして、そのキャビティ内で加熱される溶融樹脂の等容温度変化によって発生する樹脂内圧を利用してその溶融樹脂に微細構造を転写成形することを特徴としている。従って、溶融樹脂がキャビティ内で加熱されることが重要であり、上金型2と下金型1の加熱の開始をするとともに型締めを行うとは、下金型1及び上金型2の加熱が、型締めの開始と同時、型締め前又は型締めが終了後に開始されるいずれの場合をも含む意味である。   When the coating film 5 is formed as described above, heating of the upper mold 2 and the lower mold 1 is started and clamping is performed. In this microstructure forming method, with respect to the cavity formed by the lower mold 1 and the upper mold 2, the cavity is filled or slightly adjusted by adjusting the gap δ and the protrusion amount m of the coating film described above. A small volume of molten resin film is formed. And it is characterized in that the microstructure is transferred and molded to the molten resin by utilizing the internal pressure of the resin generated by the change in the isovolumetric temperature of the molten resin heated in the cavity. Therefore, it is important that the molten resin is heated in the cavity. When the upper mold 2 and the lower mold 1 are started to be heated and clamped, the lower mold 1 and the upper mold 2 This means that the heating includes any time when the mold clamping is started, before the mold clamping or after the mold clamping is finished.

塗膜5をキャビティ内に型締めするときに、塗膜の体積>キャビティの体積 とすると、型締め完了前にキャビティから樹脂が流出してバリを生ずる恐れがある。一方、塗膜の体積<キャビティの体積 とした場合は、キャビティ内の樹脂が不足し、以下に説明する塗膜を形成する樹脂の等容温度変化により生ずる樹脂圧によって転写成形が適切に行われない恐れがある。従って、上記隙間δ及び突出量mの調整が重要であるが、バリを発生させず、キャビティ内に樹脂を適切に充填させるには、塗膜の体積+熱膨張による体積の増加量>キャビティの体積>塗膜の体積 とするのがよい。   When the coating film 5 is clamped in the cavity, if the volume of the coating film is greater than the volume of the cavity, the resin may flow out of the cavity before the mold clamping is completed, causing burrs. On the other hand, if the volume of the coating film is smaller than the volume of the cavity, the resin in the cavity is insufficient, and transfer molding is appropriately performed by the resin pressure generated by the isovolumetric temperature change of the resin forming the coating film described below. There is no fear. Therefore, adjustment of the gap δ and the protrusion amount m is important, but in order to appropriately fill the resin in the cavity without generating burrs, the volume of the coating film + the volume increase due to thermal expansion> the cavity The volume should be larger than the volume of the coating film.

本微細構造体成形方法において実施される金型の操作と金型の温度制御を行うタイムチャートA〜Cの各例を、図2〜4に示す。図2は、成形サイクルの始めに先ず金型(下金型1及び上金型2)の加熱を開始し、金型温度(型温度)が目標の金型設定温度tになるとこの温度を保持し、溶融樹脂の塗布を行い塗膜5の形成を行う。そして、塗膜5が形成された後、型締めを開始すると同時にさらに金型の加熱を行い型温度の昇温を行う。型温度がtdになるとこの温度を保持する。 Examples of time charts A to C for performing mold operations and mold temperature control performed in the present microstructure forming method are shown in FIGS. Fig. 2 shows that the mold (lower mold 1 and upper mold 2) is first heated at the beginning of the molding cycle, and this temperature is maintained when the mold temperature (mold temperature) reaches the target mold set temperature t. Then, the molten resin is applied to form the coating film 5. Then, after the coating film 5 is formed, mold clamping is started and the mold temperature is increased simultaneously with the start of mold clamping. This temperature is maintained when the mold temperature reaches t d .

図3は、成形サイクルの始めに先ず金型の加熱を開始し、型温度が目標の金型設定温度tになるとこの温度を保持し、溶融樹脂の塗布を行い塗膜5の形成を行う。そして、塗膜5が形成され型締めが完了した後に、さらに金型の加熱を行い型温度の昇温を行う。型温度がtdになるとこの温度を保持する。図4は、溶融樹脂の塗布は、型温度tになると開始するが、金型は加熱し続け、塗膜5の形成、型締めを次々に行い、型温度がtdになるとこの温度を保持する場合の例である。 In FIG. 3, heating of the mold is first started at the beginning of the molding cycle. When the mold temperature reaches the target mold setting temperature t, this temperature is maintained, and the molten resin is applied to form the coating film 5. Then, after the coating film 5 is formed and the mold clamping is completed, the mold is further heated to raise the mold temperature. This temperature is maintained when the mold temperature reaches t d . In FIG. 4, the application of the molten resin starts when the mold temperature reaches t, but the mold continues to be heated, the coating film 5 is formed and the mold is clamped one after another, and this temperature is maintained when the mold temperature reaches t d. This is an example of the case.

型温度tdが一定時間保持された後は、図2〜4に示すように、金型の冷却を始める。金型の冷却により型温度は低下し、型温度がtoに達すると型開きを行う。上記熱サイクルにおいて、塗膜5に微細構造の転写成形が行われる。この熱サイクルにおける溶融樹脂の等容温度変化の様子を図5に示す。図5は、溶融樹脂としてポリカーボネートを使用し、図4のタイプのタイムチャートCにより転写成形を行う場合の例である。図5(a)は、熱サイクルにおける型温度の時間変化を示し、図5(b)は各型温度における樹脂の比容積および溶融樹脂に生ずる樹脂内圧を示す。図5(c)は図5(b)より求めた樹脂内圧の時間変化を示す。図5(c)に示す樹脂内圧によりポリカーボネートの塗膜に微細構造の転写成形が行われる。なお、図5(a)〜図5(c)において、各点(a〜d)はそれぞれ対応した状態を示す。 After the mold temperature t d is maintained for a certain period of time, cooling of the mold is started as shown in FIGS. The mold temperature decreases due to cooling of the mold, and the mold opens when the mold temperature reaches t o . In the thermal cycle, the coating film 5 is subjected to transfer molding with a fine structure. FIG. 5 shows the change in the isovolumetric temperature of the molten resin during this thermal cycle. FIG. 5 shows an example in which polycarbonate is used as the molten resin and transfer molding is performed according to the time chart C of the type shown in FIG. FIG. 5A shows the time change of the mold temperature in the thermal cycle, and FIG. 5B shows the specific volume of the resin at each mold temperature and the internal pressure of the resin generated in the molten resin. FIG.5 (c) shows the time change of the resin internal pressure calculated | required from FIG.5 (b). Microstructure transfer molding is performed on the polycarbonate coating film by the resin internal pressure shown in FIG. In FIGS. 5A to 5C, each point (a to d) indicates a corresponding state.

図5(b)は、横軸が樹脂の温度(型温度)、縦軸が樹脂の各温度における比容積を示し、パラメータは、樹脂を等容温度変化させたときの樹脂内圧を示す。図5(b)において、溶融樹脂に生ずる樹脂内圧は以下のように求められる。すなわち、先ず、キャビティの体積(cm3)とキャビティ内に満たされた塗膜の重量(g)を求め、樹脂の比容積(cm3/g)を求める。次に、図5(b)より、当該比容積と昇温させた型温度tdとの交点の樹脂内圧を求める。この求めた樹脂内圧がキャビティ内の樹脂内圧である。 In FIG. 5B, the horizontal axis indicates the temperature of the resin (mold temperature), the vertical axis indicates the specific volume at each temperature of the resin, and the parameter indicates the internal pressure of the resin when the temperature of the resin is changed at a constant volume. In FIG.5 (b), the resin internal pressure which arises in molten resin is calculated | required as follows. That is, first, the volume (cm 3 ) of the cavity and the weight (g) of the coating film filled in the cavity are obtained, and the specific volume (cm 3 / g) of the resin is obtained. Then, from FIG. 5 (b), the seek resin pressure at the intersection of the mold temperature t d that was raised and the specific volume. The obtained resin internal pressure is the resin internal pressure in the cavity.

樹脂内圧の最大値は、tdとtとの温度差および塗布樹脂の体積とキャビティの体積との差により決定される。例えば、ポリカーボネ−ト樹脂を145℃から195℃に加熱した場合、開放空間では約3%の体積膨張が生じ、閉鎖空間では約60MPaの樹脂内圧が生じる。型内では、熱膨張した樹脂の一部はキャビティ内の開放空間に流入するため、これを除いた熱膨張力が樹脂内圧として作用することになる。例えば、塗布樹脂の体積とキャビティの体積との差が1.5%であれば、樹脂内圧は60MPa×1.5%÷3%=30MPaとなる。この時、プレスによる型締め力が小さいと樹脂内圧で型が開いてバリの要因となる。そのため、キャビティ内に樹脂が満たされた状態で、樹脂内圧(MPa)×転写面積(mm2)<型締め力(N) となるように溶融樹脂の等容温度変化を行うのがよい。これによりバリの発生を阻止することができる。上記式を満たすには、tとtdの設定値あるいは塗布樹脂の容積を変更することにより容易に調整可能である。なお、転写面積とは下金型あるいは上金型のキャビティ部分の面積のことを示す。 The maximum value of the resin internal pressure is determined by the temperature difference between t d and t and the difference between the volume of the applied resin and the volume of the cavity. For example, when a polycarbonate resin is heated from 145 ° C. to 195 ° C., a volume expansion of about 3% occurs in the open space, and an internal pressure of the resin of about 60 MPa occurs in the closed space. In the mold, a part of the thermally expanded resin flows into the open space in the cavity, so that the thermal expansion force except for this acts as an internal pressure of the resin. For example, if the difference between the volume of the coated resin and the volume of the cavity is 1.5%, the resin internal pressure is 60 MPa × 1.5% ÷ 3% = 30 MPa. At this time, if the clamping force by the press is small, the mold opens due to the internal pressure of the resin, which causes burrs. Therefore, it is preferable to change the isobaric temperature of the molten resin so that the internal pressure of the resin (MPa) × the transfer area (mm 2 ) <the clamping force (N) in a state where the resin is filled in the cavity. Thereby, generation | occurrence | production of a burr | flash can be prevented. To satisfy the above equation, it is easily adjusted by changing the volume setting or applied resin t and t d. The transfer area indicates the area of the cavity portion of the lower mold or the upper mold.

本微細構造体成形方法において、型温度tdが一定時間保持された後、下金型及び上金型は冷却され、転写成形された塗膜は冷却・固化される。転写成形された微細構造体を歪みなどのない状態でスタンパ3から取り出すことができる。また、取り出された微細構造体の寸法精度を確保することができる。転写成形され冷却された微細構造体は、それが取り出される前まで下金型の微細構造部分に粘着しており、冷却過程において収縮に逆らってその形状を保持しようとする特性を有するからである。 In this microstructure forming method, after the mold temperature t d is held for a certain time, the lower mold and the upper mold are cooled, and the transfer-formed coating film is cooled and solidified. The transferred microstructure can be taken out from the stamper 3 without any distortion. In addition, the dimensional accuracy of the extracted fine structure can be ensured. This is because the microstructure formed by transfer molding and cooled adheres to the microstructure portion of the lower mold until it is taken out, and has a characteristic of maintaining its shape against shrinkage in the cooling process. .

以上、本微細構造体成形方法について説明した。本微細構造体成形方法は、上述のように、プレス金型の型締めがされた上金型と下金型により形成される閉じられたキャビティ内において転写成形を行うので、全面にバリのない、薄い平板状の表裏面及び周囲の縁端部に種々の微細構造を有する微細構造体を形成することができる。しかしながら、平板状のいずれかの縁端部に転写成形を行う必要がないような微細構造体を成形する場合は、塗膜の当該縁端部を取り囲む部分に金型を設けない(開放部を有する)ことができる。Tダイにより塗布された塗膜は、その開放された金型部から流出するようなことがなく、平面部及び他の縁端部の転写成形を行う上で問題がないからである。   The present microstructure forming method has been described above. As described above, since this fine structure molding method performs transfer molding in a closed cavity formed by an upper mold and a lower mold that are clamped by a press mold, there is no burr on the entire surface. Further, fine structures having various fine structures can be formed on the front and back surfaces of the thin flat plate and the peripheral edges. However, when forming a microstructure that does not require transfer molding on any edge of the flat plate, a mold is not provided in the portion surrounding the edge of the coating (open portion is not provided). Can have). This is because the coating film applied by the T-die does not flow out from the opened mold part, and there is no problem in performing transfer molding of the flat part and other edge parts.

本微細構造体成形方法に使用される金型は、特に限定されない。スタンパ3を用いず、微細構造を加工した下金型1を設けてもよく、スタンパ3を下金型1ではなく上金型2に設けてもよい。また、上金型1やスタンパ3の一部に厚肉部や薄肉部を設けて転写成形された微細構造体(成形品)を偏肉形状としてもよい。下金型1、上金型2に溝を加工することにより、成形品にリブなどの構造物を形成することもできる。また、金型に突き出しピンなどによる微細構造体取出し機構を設けることができる。   The mold used for this microstructure forming method is not particularly limited. Instead of using the stamper 3, the lower mold 1 with a fine structure may be provided, and the stamper 3 may be provided not in the lower mold 1 but in the upper mold 2. Further, a fine structure (molded product) obtained by transfer molding by providing a thick part or a thin part in a part of the upper mold 1 or the stamper 3 may be formed in an uneven shape. By forming grooves in the lower mold 1 and the upper mold 2, structures such as ribs can be formed on the molded product. Further, a fine structure taking-out mechanism such as a protruding pin can be provided on the mold.

図1に示す金型と同等(サイド型が上金型に設けられた形態)の金型を使用して、微細構造体の成形試験を行った。サイド型は、塗膜の周囲が取り囲まれ開放部のないものを使用した。型温度の調整は、加熱を電気ヒータにより、冷却を水冷により行った。下金型に装着されたスタンパとサイド型および上金型により形成されるキャビティの内面はパターンのない鏡面であった。樹脂はポリカーボネート(ガラス転移温度145℃)を使用した。キャビティのサイズは、長さ126mm、幅107mm、高さh=230μmであった。成形の熱サイクルは、図2のタイプのタイムチャートAで行った。塗膜は長さ123mm(δ=1.5mm)、幅104mm(δ=1.5mm)、厚さ240μ(t=10μm)であった。285℃の溶融樹脂を鏡面スタンパ(型温度t=160℃)に塗布して塗膜を形成した後、型締めを行い、金型温度を昇温し保持した(型温度td=185℃)。加圧力は10MPa(=押圧力(N)÷キャビティの面積(mm2))とし、加圧時間は30秒とした。加圧開始から30秒後に冷却を開始し、型開までの間に加圧力を0MPaまで除々に低下させた。上金型の温度が140℃、下金型の温度が120℃まで低下したときに金型を開いて転写成形された微細構造体(成形品)を取り出した。そして、比較例1として、型締め中の昇温を行わず、型温度t=型温度td=160℃としたことを除いて、実施例1と同じ条件で成形試験を行った。また、比較例2として、型締め中の昇温を行わず、型温度t=型温度td=185℃としたことを除いて、実施例1と同じ条件で成形試験を行った。 Using a mold equivalent to the mold shown in FIG. 1 (a configuration in which the side mold is provided on the upper mold), a molding test of the microstructure was performed. The side mold used was one that was surrounded by a coating film and had no open part. The mold temperature was adjusted by heating with an electric heater and cooling with water. The inner surface of the cavity formed by the stamper, side mold, and upper mold mounted on the lower mold was a mirror surface without a pattern. The resin used was polycarbonate (glass transition temperature 145 ° C.). The size of the cavity was 126 mm in length, 107 mm in width, and h = 230 μm. The thermal cycle of the molding was performed with a time chart A of the type shown in FIG. The coating film had a length of 123 mm (δ = 1.5 mm), a width of 104 mm (δ = 1.5 mm), and a thickness of 240 μ (t = 10 μm). A molten resin of 285 ° C was applied to a mirror stamper (mold temperature t = 160 ° C) to form a coating film, then the mold was clamped and the mold temperature was raised and held (mold temperature t d = 185 ° C) . The applied pressure was 10 MPa (= pressing force (N) ÷ cavity area (mm 2 )), and the pressurizing time was 30 seconds. Cooling was started 30 seconds after the start of pressurization, and the applied pressure was gradually reduced to 0 MPa until the mold was opened. When the temperature of the upper mold was lowered to 140 ° C. and the temperature of the lower mold was lowered to 120 ° C., the mold was opened and the microstructure (molded product) transferred and molded was taken out. As Comparative Example 1, a molding test was performed under the same conditions as in Example 1 except that the temperature was not increased during mold clamping and the mold temperature t = mold temperature t d = 160 ° C. Further, as Comparative Example 2, a molding test was performed under the same conditions as in Example 1 except that the temperature was not raised during mold clamping and the mold temperature t = mold temperature t d = 185 ° C.

サイド型が塗膜の長さ方向の2つの辺のみ囲まれ、幅方向の2つの辺が開放された(開放部を有する)金型であったことを除いて、実施例1同じ構成の金型を使用し、実施例1と同じ条件で成形試験を行った。   A mold having the same configuration as that of Example 1 except that the side mold was a mold in which only two sides in the length direction of the coating film were surrounded and two sides in the width direction were opened (having an open portion). Using a mold, a molding test was performed under the same conditions as in Example 1.

実施例2と同じ構成の金型を用い、昇温後の型温度td=175℃、塗膜の長さ124.5mm(δ=0.75mm)、塗膜の厚さ235μm(t=15μm)としたことを除いて、実施例1と同じ条件で成形試験を行った。 Using a mold having the same configuration as in Example 2, the mold temperature t d after heating was 175 ° C., the coating film length was 124.5 mm (δ = 0.75 mm), and the coating film thickness was 235 μm (t = 15 μm). A molding test was conducted under the same conditions as in Example 1 except that.

本成形試験におけるキャビティおよび形成された塗膜の寸法関係を表1に示す。表1の転写状態欄において、○は成形品質が良好、×は成形品質が不良であったことを示す。   Table 1 shows the dimensional relationship between the cavity and the formed coating film in the molding test. In the transfer state column of Table 1, o indicates that the molding quality is good, and x indicates that the molding quality is poor.

Figure 2014223751
Figure 2014223751

図6は、成形品の外観を示し、図6(a)が実施例1、図6(b)が比較例1、図6(c)が比較例2の場合である。実施例1の成形品は、その表裏面及び全縁端部が滑らかな鏡面をしており転写成形は良好で、図6(a)に示すように全ての縁端部にバリがなく、その寸法はキャビティの寸法と同じであった。比較例1の成形品は、その表裏面は鏡面であったが、図6(b)に示すように全ての縁端部が樹脂未充填で、成形品質は不良であった。比較例2の成形品は、その表裏面及び全ての縁端部が鏡面になっていたが、図6(c)に示すように下金型側の鏡面部とサイド型側の鏡面部との接合部にバリが発生していた。一方、実施例2および3の成形品は、その表裏面および長さ方向の縁端部が滑らかな鏡面をしており、実施例1と同様にバリがなかった。そして、成形品のキャビティの長さ方向側の寸法はキャビティと同じ寸法であり、目標とする成形品質は確保できることが分かった。なお、幅方向の断面は比較例1(図6(b))と同様の形状をしていた。   6A and 6B show the appearance of the molded product, in which FIG. 6A shows Example 1, FIG. 6B shows Comparative Example 1, and FIG. 6C shows Comparative Example 2. FIG. The molded product of Example 1 has a smooth mirror surface on the front and back surfaces and all edge portions, and the transfer molding is good, as shown in FIG. The dimensions were the same as the cavity dimensions. In the molded product of Comparative Example 1, the front and back surfaces were mirror surfaces, but as shown in FIG. 6B, all the edge portions were not filled with resin, and the molding quality was poor. In the molded product of Comparative Example 2, the front and back surfaces and all edge portions were mirror surfaces. However, as shown in FIG. 6C, the lower mold side mirror surface portion and the side mold side mirror surface portion Burr was generated at the joint. On the other hand, in the molded products of Examples 2 and 3, the front and back surfaces and the edge portions in the length direction had a smooth mirror surface, and as in Example 1, there were no burrs. And it turned out that the dimension of the length direction side of the cavity of a molded article is the same dimension as a cavity, and the target molding quality can be ensured. The cross section in the width direction had the same shape as Comparative Example 1 (FIG. 6B).

1 下金型
2 上金型
3 スタンパ
5 塗膜
11 下金型本体
12 サイド型
15、16、25、26 温度調整手段
1 Lower mold
2 Upper mold
3 Stamper
5 Coating film
11 Lower mold body
12 side type
15, 16, 25, 26 Temperature adjustment means

Claims (7)

下金型に溶融樹脂を塗布して形成した塗膜を、前記下金型と上金型とにより押圧し等容温度変化をさせ、前記塗膜の平面部と縁端部に微細構造を転写成形してこれを冷却固化し、前記平面部と縁端部に前記微細構造を有するとともに、前記縁端部にバリのない平板状の微細構造体を成形する方法であって、
前記下金型に、平板状の塗膜を形成する段階と、
前記上金型と下金型の加熱を開始するとともに型締めを行い、所定の型温度まで昇温して微細構造の転写成形を行う段階と、
前記上金型と下金型の冷却を開始し型温度が所定温度になった後、型開きを行って成形された微細構造体を取り出す段階と、を有する微細構造体成形方法。
The coating film formed by applying molten resin to the lower mold is pressed by the lower mold and the upper mold to change the isovolumetric temperature, and the fine structure is transferred to the flat and edge portions of the coating film. It is a method of forming and cooling and solidifying this, and forming the flat microstructure having the fine structure in the flat part and the edge part and having no burr in the edge part,
Forming a flat coating film on the lower mold; and
Starting heating of the upper mold and the lower mold and performing mold clamping, raising the temperature to a predetermined mold temperature, and performing transfer molding of the fine structure;
A step of starting the cooling of the upper mold and the lower mold, and after the mold temperature reaches a predetermined temperature, performing a mold opening to take out the molded microstructure.
昇温する所定の型温度tdは、溶融樹脂の塗布を行う型温度tに対し、t<td<t+50(℃)であることを特徴とする請求項1に記載の微細構造体成形方法。 2. The microstructure forming method according to claim 1, wherein the predetermined mold temperature t d to be raised is t <t d <t + 50 (° C.) with respect to the mold temperature t for applying the molten resin. . 昇温する所定の型温度tdは、溶融樹脂のガラス転移温度tgに対し、tg<td<tg+100(℃)であることを特徴とする請求項1に記載の微細構造体成形方法。 The microstructure according to claim 1, wherein the predetermined mold temperature t d to be raised is t g <t d <t g +100 (° C.) with respect to the glass transition temperature t g of the molten resin. Molding method. 塗膜は、その縁端部に対向する下金型又は上金型の型前面からの隙間δが0mmを越え5mm以下になるように形成することを特徴とする請求項1〜3のいずれか一項に記載の微細構造体成形方法。   The coating film is formed so that a gap δ from the lower mold or the upper mold facing the edge of the upper mold is more than 0 mm and 5 mm or less. The microstructure forming method according to one item. 塗膜は、下金型と上金型との型締めにより流動する厚み部分が、微細構造体の厚みの0%を越え20%以下であることを特徴とする請求項1〜4のいずれか一項に記載の微細構造体成形方法。   5. The coating film according to claim 1, wherein a thickness portion flowing by clamping the lower mold and the upper mold is more than 0% and not more than 20% of the thickness of the fine structure. The microstructure forming method according to one item. 下金型に溶融樹脂を塗布して形成した塗膜を、上金型を閉じて等容温度変化をさせ熱膨張させることにより、その塗膜の平面部と縁端部に微細構造の転写成形を行うバリのない平板状の微細構造体を成形する微細構造体成形方法。   The coating film formed by applying molten resin to the lower mold is subjected to thermal expansion by closing the upper mold and changing the isovolumetric temperature to thermally expand the fine structure on the flat and edge portions of the coating film. A fine structure forming method for forming a flat fine structure without burrs. 塗膜は、下金型と上金型とにより形成されるキャビティの体積に対し、以下の式を満たすように形成されることを特徴とする請求項6に記載の微細構造体成形方法。
塗膜の体積+熱膨張による体積の増加量>キャビティの体積>塗膜の体積
7. The microstructure forming method according to claim 6, wherein the coating film is formed so as to satisfy the following expression with respect to the volume of the cavity formed by the lower mold and the upper mold.
Volume of coating film + volume increase by thermal expansion> volume of cavity> volume of coating film
JP2013103887A 2013-05-16 2013-05-16 Microstructure forming method Expired - Fee Related JP5754749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103887A JP5754749B2 (en) 2013-05-16 2013-05-16 Microstructure forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103887A JP5754749B2 (en) 2013-05-16 2013-05-16 Microstructure forming method

Publications (2)

Publication Number Publication Date
JP2014223751A true JP2014223751A (en) 2014-12-04
JP5754749B2 JP5754749B2 (en) 2015-07-29

Family

ID=52122840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103887A Expired - Fee Related JP5754749B2 (en) 2013-05-16 2013-05-16 Microstructure forming method

Country Status (1)

Country Link
JP (1) JP5754749B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221785A (en) * 2015-05-28 2016-12-28 株式会社日本製鋼所 Resin molding die and resin molding method using the same
JP2017103369A (en) * 2015-12-02 2017-06-08 凸版印刷株式会社 Imprint method and imprint mold
CN111212718A (en) * 2017-10-12 2020-05-29 依视路国际公司 High speed injection molding for making optical articles using heating/cooling cycles
CN112026388A (en) * 2020-08-11 2020-12-04 钟琪 Cylindrical lens grating type 3D printing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056107A (en) * 2004-08-19 2006-03-02 Japan Steel Works Ltd:The Method and apparatus for producing molding
JP2013071385A (en) * 2011-09-28 2013-04-22 Japan Steel Works Ltd:The Transfer molding die and method for manufacturing microscopic structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056107A (en) * 2004-08-19 2006-03-02 Japan Steel Works Ltd:The Method and apparatus for producing molding
JP2013071385A (en) * 2011-09-28 2013-04-22 Japan Steel Works Ltd:The Transfer molding die and method for manufacturing microscopic structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221785A (en) * 2015-05-28 2016-12-28 株式会社日本製鋼所 Resin molding die and resin molding method using the same
JP2017103369A (en) * 2015-12-02 2017-06-08 凸版印刷株式会社 Imprint method and imprint mold
CN111212718A (en) * 2017-10-12 2020-05-29 依视路国际公司 High speed injection molding for making optical articles using heating/cooling cycles
CN111212718B (en) * 2017-10-12 2022-07-26 依视路国际公司 High speed injection molding for making optical articles using heating/cooling cycles
CN112026388A (en) * 2020-08-11 2020-12-04 钟琪 Cylindrical lens grating type 3D printing method

Also Published As

Publication number Publication date
JP5754749B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
US9242418B2 (en) Ophthalmic lens containing a fresnel surface and method for manufacturing same
JP3857703B2 (en) Manufacturing method and manufacturing apparatus of molded body
JP5754749B2 (en) Microstructure forming method
JP2004202731A (en) Method for manufacturing large-sized light guide plate
KR101244033B1 (en) Method and mould for molding sheet glass
US20120171452A1 (en) Device and method for producing thick-walled moulded plastics parts having reduced shrinkage sites by injection molding or embossing
CN102416686A (en) Molding of nonuniform object having undercut structure
JP3917362B2 (en) Molding method for precision molded products
JP5576636B2 (en) Resin sheet molded product, manufacturing method thereof, mold for hot press molding
JP2012250508A (en) Injection molding method, injection-molded article, and injection mold
JP2009172794A (en) Method for producing resin sheet
JP4224048B2 (en) Molded body manufacturing apparatus and manufacturing method
CN1511692A (en) Method for producing light guide plate and mold
JP5719991B2 (en) Molding apparatus, molding method and molded product
CN100411845C (en) Method for manufacturing light board
JP2004114628A (en) Molding method and injection molding die for plastic molded item
CN113226695B (en) Resin member and method for producing same
US20210214260A1 (en) Glass product forming mold, glass product forming device, and glass product processing method
JP2014162012A (en) Microstructure molding method and microstructure molding die
JP2006142521A (en) Injection molding method, mold and molded product
JP6148290B2 (en) Resin molding die and resin molding method for molding thin plate-shaped resin molded body
TW200410807A (en) A method and mold manufacturing a light guide plate
JP6174076B2 (en) Resin molding die and resin molding method using the same
JP2010143129A (en) Method for molding resin lens
JP2002086517A (en) Method for manufacturing plastic molded product and mold therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5754749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees