JP2014222263A - Wavelength conversion element and wavelength conversion laser apparatus - Google Patents

Wavelength conversion element and wavelength conversion laser apparatus Download PDF

Info

Publication number
JP2014222263A
JP2014222263A JP2013101034A JP2013101034A JP2014222263A JP 2014222263 A JP2014222263 A JP 2014222263A JP 2013101034 A JP2013101034 A JP 2013101034A JP 2013101034 A JP2013101034 A JP 2013101034A JP 2014222263 A JP2014222263 A JP 2014222263A
Authority
JP
Japan
Prior art keywords
wavelength conversion
refractive index
conversion element
laser
optical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013101034A
Other languages
Japanese (ja)
Other versions
JP6107397B2 (en
Inventor
洋次郎 渡辺
Yojiro Watanabe
洋次郎 渡辺
恭介 蔵本
Kyosuke Kuramoto
恭介 蔵本
柳澤 隆行
Takayuki Yanagisawa
隆行 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013101034A priority Critical patent/JP6107397B2/en
Publication of JP2014222263A publication Critical patent/JP2014222263A/en
Application granted granted Critical
Publication of JP6107397B2 publication Critical patent/JP6107397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that, when a fundamental wave is oscillated in a plurality of laser oscillation modes on a waveguide, a conventional optical wavelength conversion element cannot satisfy phase matching conditions for the plurality of laser oscillation modes of the fundamental wave, and cannot efficiently convert the wavelength of the fundamental wave.SOLUTION: The wavelength of a fundamental wave in a plurality of laser oscillation modes is efficiently converted with a simple configuration by disposing between nonlinear optical materials an optical material having a lower refractive index than that of the nonlinear optical materials composing a wavelength conversion element to reduce an effective refractive index difference between laser beams of a zero-order mode and of a primary order mode.

Description

本発明はレーザ光の波長変換素子および波長変換レーザ装置に関するものである。   The present invention relates to a wavelength conversion element for laser light and a wavelength conversion laser device.

プリンターやプロジェクションテレビなどのカラー画像を表示する装置では、光源としてR(赤)、G(緑)、B(青)の3つの色の光源が必要とされる。近年、これらの光源として、それぞれ1.3μm帯、1μm帯、900nm帯のレーザ光を基本波レーザ光とし、非線形材料を用いて基本波レーザ光を半分の波長(2倍の周波数)の第2高調波(SHG(Second Harmonic Generation))に変換する波長変換レーザ装置(レーザ発振器)が開発されている。   In a device that displays a color image, such as a printer or a projection television, light sources of three colors R (red), G (green), and B (blue) are required as light sources. In recent years, as these light sources, laser light in the 1.3 μm band, 1 μm band, and 900 nm band is used as the fundamental wave laser light, and the fundamental laser light is a second light having a half wavelength (double frequency) using a nonlinear material. A wavelength conversion laser device (laser oscillator) that converts to a harmonic (SHG (Second Harmonic Generation)) has been developed.

SHGでは所望の波長を有したレーザ光を効率よく抽出するために、基本波レーザ光から第2高調波レーザ光への高い変換効率を実現することが望ましい。基本波レーザ光と第2高調波レーザ光の位相ずれを補正する位相整合条件を満たして波長変換を行なう素子としては、例えば周期構造を用いた擬似位相整合(QPM(Quasi Phase Matching))素子が知られている。このQPM波長変換素子では、非線形光学結晶である周期分極ニオブ酸リチウム(PPLN(Periodically Poled Lithium Niobate))などに光導波路を形成し、導波方向に沿って分極を周期的に反転させている。   In SHG, in order to efficiently extract laser light having a desired wavelength, it is desirable to realize high conversion efficiency from fundamental laser light to second harmonic laser light. As an element that performs wavelength conversion while satisfying the phase matching condition for correcting the phase shift between the fundamental laser beam and the second harmonic laser beam, for example, a quasi phase matching (QPM (Quasi Phase Matching)) element using a periodic structure is used. Are known. In this QPM wavelength conversion element, an optical waveguide is formed on a periodically poled lithium niobate (PPLN) which is a nonlinear optical crystal, and the polarization is periodically inverted along the waveguide direction.

また、温度に対する位相整合条件の許容度である位相整合帯域幅を広くする方法として、分極反転周期のピッチなどを徐々に変化させた構造(分極反転の周期構造をチャープ状に変化させる構造)のQPM波長変換素子が提案されている。 In addition, as a method of widening the phase matching bandwidth, which is the tolerance of the phase matching condition with respect to temperature, a structure in which the pitch of the polarization inversion period is gradually changed (a structure in which the periodic structure of the polarization inversion is changed into a chirp shape) A QPM wavelength conversion element has been proposed.

特許文献1に記載の光波長変換素子は、非線形光学結晶に形成した周期状の分極反転構造を有し、分極反転構造が単一の周期部分(単一周期部分)と、徐々に周期が変化しているチャープ周期部分と、を有している。 The optical wavelength conversion element described in Patent Document 1 has a periodic domain-inverted structure formed in a nonlinear optical crystal. The domain-inverted structure has a single periodic part (single-period part) and the period gradually changes. And a chirp period portion.

特開2000−321610号公報JP 2000-321610 A

しかしながら、上記従来の技術では、導波路における高次のレーザ発振モード(高次モード)で基本波が発振した場合に、実効屈折率が異なることから高次モードの基本波に対して位相整合条件を満たさず、高次モードの基本波を効率よく波長変換することができない。このため、複数のレーザ発振モードに対する波長変換効率が低くなるという問題があった。   However, in the above conventional technique, when the fundamental wave oscillates in the higher-order laser oscillation mode (higher-order mode) in the waveguide, the effective refractive index is different, so that the phase matching condition for the fundamental wave of the higher-order mode is different. The fundamental wave of the higher order mode cannot be wavelength-converted efficiently. Therefore, there is a problem that the wavelength conversion efficiency for a plurality of laser oscillation modes is lowered.

本発明は上記に鑑みてなされたものであって、複数のレーザ発振モードの基本波を簡易な構成で効率よく波長変換する波長変換素子および波長変換レーザ装置を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a wavelength conversion element and a wavelength conversion laser device that efficiently convert wavelengths of a plurality of fundamental waves of a laser oscillation mode with a simple configuration.

上記の目的を達成するために、本発明における波長変換素子は、非線形光学材料を備え、自素子内を伝搬するレーザ光の波長変換を行なう平面導波路型の波長変換素子であって、前記非線形光学材料は前記レーザ光の進行方向に複数の分極反転層を有し、前記波長変換素子は前記レーザ光の進行方向と概ね垂直な方向に屈折率の異なる複数の光学材料を備えたことを特徴とする。   In order to achieve the above object, a wavelength conversion element according to the present invention is a planar waveguide type wavelength conversion element that includes a nonlinear optical material and performs wavelength conversion of laser light propagating in the element. The optical material has a plurality of polarization inversion layers in the traveling direction of the laser beam, and the wavelength conversion element includes a plurality of optical materials having different refractive indexes in a direction substantially perpendicular to the traveling direction of the laser beam. And

本発明に係る波長変換素子は、複数のレーザ発振モードの基本波の波長を簡易な構成で効率よく波長変換することが可能となる。   The wavelength conversion element according to the present invention can efficiently convert the wavelengths of the fundamental waves of a plurality of laser oscillation modes with a simple configuration.

本発明の実施の形態1に係る波長変換レーザ装置の構成を示す側面図。The side view which shows the structure of the wavelength conversion laser apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る波長変換レーザ装置の構成を示す上面図。1 is a top view showing a configuration of a wavelength conversion laser device according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る波長変換素子の構成を示す斜視図。The perspective view which shows the structure of the wavelength conversion element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る波長変換素子内の0次モードのレーザ光と1次モードのレーザ光と屈折率分布を示す側面図。The side view which shows the 0th-order mode laser beam, the 1st-order mode laser beam, and refractive index distribution in the wavelength conversion element which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る波長変換素子内の0次モードのレーザ光と1次モードのレーザ光と屈折率分布を示す側面図。The side view which shows the 0th-order mode laser beam, the 1st-order mode laser beam, and refractive index distribution in the wavelength conversion element which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る波長変換素子内の0次モードのレーザ光と1次モードのレーザ光と屈折率分布を示す側面図。The side view which shows the 0th-order mode laser beam, the 1st-order mode laser beam, and refractive index distribution in the wavelength conversion element which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る波長変換素子の構成を示す斜視図。The perspective view which shows the structure of the wavelength conversion element which concerns on Embodiment 4 of this invention.

実施の形態1.
図1は本発明の実施の形態1.に係る波長変換レーザ装置の構成を示す側面図、図2は本発明の実施の形態1.に係る波長変換レーザ装置の構成を示す上面図である。図1および図2において、7はレーザ発振方向を表す光軸を示している。なお、各図において、同一符号は同一または相当部分を示す。
Embodiment 1 FIG.
FIG. 1 shows a first embodiment of the present invention. FIG. 2 is a side view showing the configuration of the wavelength conversion laser device according to the first embodiment. It is a top view which shows the structure of the wavelength conversion laser apparatus concerning. 1 and 2, reference numeral 7 denotes an optical axis representing the laser oscillation direction. In each figure, the same numerals indicate the same or corresponding parts.

図1において、100は平面導波路型の波長変換レーザ装置であり、半導体レーザ30、固体レーザ素子20、及び本発明の実施の形態1の主たる特徴である波長変換素子(導波路型波長変換素子)10を備えている。波長変換レーザ装置100は複数のレーザ発振モード、例えば、0次モードや1次モードで発振する基本波を波長変換できるよう、非線形光学材料の主面に垂直な方向の屈折率分布を変化させたレーザ発振器である。波長変換レーザ装置100は、例えば光情報処理分野などにおいて、レーザディスプレイ装置や光メモリ装置の光源に使用される。   In FIG. 1, reference numeral 100 denotes a planar waveguide type wavelength conversion laser device, which is a semiconductor laser 30, a solid-state laser element 20, and a wavelength conversion element (waveguide type wavelength conversion element) that is the main feature of the first embodiment of the present invention. ) 10. The wavelength conversion laser device 100 changes the refractive index distribution in the direction perpendicular to the principal surface of the nonlinear optical material so that the fundamental wave oscillated in a plurality of laser oscillation modes, for example, the 0th-order mode and the first-order mode can be wavelength-converted. It is a laser oscillator. The wavelength conversion laser device 100 is used as a light source of a laser display device or an optical memory device in the field of optical information processing, for example.

以下では、説明の便宜上、光軸7をz軸方向とし、波長変換レーザ装置100の上面と垂直な方向をy軸方向とし、y軸とz軸の両方に垂直な方向である波長変換素子10などの幅方向をx軸方向として説明する。 In the following, for convenience of explanation, the optical axis 7 is the z-axis direction, the direction perpendicular to the top surface of the wavelength conversion laser device 100 is the y-axis direction, and the wavelength conversion element 10 is the direction perpendicular to both the y-axis and the z-axis. Such a width direction will be described as the x-axis direction.

半導体レーザ30、レーザ媒質21、光学材料1、非線形光学材料2、3は、それぞれ概略矩形状の平板状をなしており、各平板状の上面がxz平面と平行となるように1枚の平面内に並設されている。レーザ媒質21はz軸に垂直な端面25aで半導体レーザ30に近接し、端面25aと対向するz軸に垂直な端面25bで光学材料1、非線形光学材料2、3と近接するよう半導体レーザ30と光学材料1、非線形光学材料2、3の間に配設されている。光学材料1、非線形光学材料2、3は、光軸7に垂直な端面11aおよび端面11bを有しており、端面11aはレーザ媒質21の端面25bに近接して配置されている。一方、光学材料1、非線形光学材料2、3の端面11bは、第2高調波レーザ光Lを出射する側の端面である。   The semiconductor laser 30, the laser medium 21, the optical material 1, and the nonlinear optical materials 2 and 3 each have a substantially rectangular flat plate shape, and one plane so that the upper surface of each flat plate is parallel to the xz plane. It is juxtaposed inside. The laser medium 21 is close to the semiconductor laser 30 at the end face 25a perpendicular to the z-axis, and close to the optical material 1 and the nonlinear optical materials 2 and 3 at the end face 25b perpendicular to the z-axis facing the end face 25a. It is disposed between the optical material 1 and the nonlinear optical materials 2 and 3. The optical material 1 and the nonlinear optical materials 2 and 3 have an end surface 11 a and an end surface 11 b perpendicular to the optical axis 7, and the end surface 11 a is disposed close to the end surface 25 b of the laser medium 21. On the other hand, the end surfaces 11b of the optical material 1 and the nonlinear optical materials 2 and 3 are end surfaces on the side from which the second harmonic laser beam L is emitted.

半導体レーザ30とレーザ媒質21とが近接する近接面は、半導体レーザ30とレーザ媒質21とでほぼ同じ面形状(概略矩形状)を有し、レーザ媒質21と光学材料1、非線形光学材料2、3とが近接する近接面は、レーザ媒質21と光学材料1、非線形光学材料2、3とでほぼ同じ面形状の概略矩形状を有している。   The adjacent surface where the semiconductor laser 30 and the laser medium 21 are close to each other has substantially the same surface shape (generally rectangular shape) in the semiconductor laser 30 and the laser medium 21, and the laser medium 21 and the optical material 1, the nonlinear optical material 2, 3 has a substantially rectangular shape having substantially the same surface shape in the laser medium 21, the optical material 1, and the nonlinear optical materials 2 and 3.

換言すると、波長変換レーザ装置100では、半導体レーザ30の出射面、レーザ媒質21の端面25a、25b、光学材料1及び非線形光学材料2、3の端面11a、11bが互いに平行となるよう半導体レーザ30、固体レーザ素子20、波長変換素子10が配設されている。半導体レーザ30には図示しない冷却用のヒートシンクを接合してもよい。   In other words, in the wavelength conversion laser device 100, the semiconductor laser 30 is arranged such that the emission surface of the semiconductor laser 30, the end surfaces 25a and 25b of the laser medium 21, the end surfaces 11a and 11b of the optical material 1 and the nonlinear optical materials 2 and 3 are parallel to each other. A solid-state laser element 20 and a wavelength conversion element 10 are disposed. A cooling heat sink (not shown) may be bonded to the semiconductor laser 30.

半導体レーザ30は、1〜複数の活性層から1〜複数のLD(Laser Diode)光を出力する。半導体レーザ30は複数のLD光を出力する場合には、マルチエミッタ半導体レーザなどによりLD光をアレー状に出射し、固体レーザ素子20にマルチエミッタ発振を行なわせる。半導体レーザ30はレーザ媒質21とほぼ等しいx軸方向の幅を有し、x軸方向にほぼ一様に励起光を出力する。半導体レーザ30がマルチエミッタ半導体レーザである場合、レーザ光出射面のx軸方向に活性層が並ぶよう配置される。この場合、半導体レーザ30は複数の活性層から複数のLD光を出力し、固体レーザ素子20はx軸方向に並んだ複数の活性層からLD光を得ることができる。半導体レーザ30から出力されたLD光は、端面25aからレーザ媒質21の光軸7方向に入射してレーザ媒質21に吸収される。   The semiconductor laser 30 outputs one to a plurality of LD (Laser Diode) lights from one to a plurality of active layers. When the semiconductor laser 30 outputs a plurality of LD lights, it emits the LD lights in an array by a multi-emitter semiconductor laser or the like, and causes the solid-state laser element 20 to perform multi-emitter oscillation. The semiconductor laser 30 has a width in the x-axis direction substantially equal to that of the laser medium 21 and outputs the excitation light substantially uniformly in the x-axis direction. When the semiconductor laser 30 is a multi-emitter semiconductor laser, the active layers are arranged in the x-axis direction of the laser light emission surface. In this case, the semiconductor laser 30 outputs a plurality of LD lights from a plurality of active layers, and the solid-state laser element 20 can obtain the LD lights from a plurality of active layers arranged in the x-axis direction. The LD light output from the semiconductor laser 30 is incident on the laser medium 21 in the direction of the optical axis 7 of the laser medium 21 from the end face 25a.

固体レーザ素子20は基本波レーザ光を発振させる素子であり、レーザ媒質21と低屈折率部であるクラッド22、23を有している。レーザ媒質21の端面25aは基本波レーザ光を反射する全反射膜であり、レーザ媒質21の端面25bは基本波レーザ光を透過する反射防止膜である。光学材料1、非線形光学材料2、3の端面11aは基本波レーザ光を透過させるとともに第2高調波レーザ光Lを反射する光学膜である部分反射膜であり、光学材料1、非線形光学材料2、3の端面11bは基本波レーザ光を反射するとともに第2高調波レーザ光Lを透過させる光学膜である部分反射膜である。これらの全反射膜、反射防止膜、光学膜は、例えば、誘電体薄膜を積層することによって作製される。なお、半導体レーザ30から出力される励起光を、レーザ媒質21の端面25aから入射する場合には、端面25aの全反射膜は励起光を透過し基本波レーザ光を反射する光学膜となる。 The solid-state laser element 20 is an element that oscillates fundamental laser light, and includes a laser medium 21 and clads 22 and 23 that are low refractive index portions. The end face 25a of the laser medium 21 is a total reflection film that reflects the fundamental laser light, and the end face 25b of the laser medium 21 is an antireflection film that transmits the fundamental laser light. End surfaces 11a of the optical material 1 and the nonlinear optical materials 2 and 3 are partially reflecting films that are optical films that transmit the fundamental laser beam and reflect the second harmonic laser beam L. The optical material 1 and the nonlinear optical material 2 The third end face 11b is a partial reflection film that is an optical film that reflects the fundamental laser beam and transmits the second harmonic laser beam L. These total reflection film, antireflection film, and optical film are produced, for example, by laminating dielectric thin films. When the excitation light output from the semiconductor laser 30 is incident from the end face 25a of the laser medium 21, the total reflection film on the end face 25a is an optical film that transmits the excitation light and reflects the fundamental laser light.

レーザ媒質21は、一般的な固体レーザ材料を使用することができる。レーザ媒質21は、例えば、Nd:YAG、Nd:YLF、Nd:Glass、Nd:YVO4、Nd:GdVO4、Yb:YAG、Yb:YLF、Yb:KGW、Yb:KYW、Er:Glass、Er:YAG、Tm:YAG、Tm:YLF、Ho:YAG、Ho:YLF、Tm、Ho:YAG、Tm、Ho:YLF、Ti:Sapphire、Cr:LiSAF、Pr:YAG、Pr:YLFなどである。   As the laser medium 21, a general solid-state laser material can be used. The laser medium 21 is, for example, Nd: YAG, Nd: YLF, Nd: Glass, Nd: YVO4, Nd: GdVO4, Yb: YAG, Yb: YLF, Yb: KGW, Yb: KYW, Er: Glass, Er: YAG Tm: YAG, Tm: YLF, Ho: YAG, Ho: YLF, Tm, Ho: YAG, Tm, Ho: YLF, Ti: Sapphire, Cr: LiSAF, Pr: YAG, Pr: YLF.

クラッド22、23は、レーザ媒質21よりも小さな屈折率を有しており、xz平面に平行な面、すなわち、クラッド23の上面とクラッド22の下面でそれぞれレーザ媒質21の上面と下面に接合されている。クラッド22、23は、例えば、光学材料を原料とした膜をレーザ媒質21に蒸着する方法、光学材料をオプティカルコンタクトまたは拡散接合などによってレーザ媒質21と光学的に接合する方法によって作製されている。クラッド23の下面側には、図示しない冷却用のヒートシンクを接合してもよい。 The clads 22 and 23 have a refractive index smaller than that of the laser medium 21 and are bonded to the upper surface and the lower surface of the laser medium 21 on the surfaces parallel to the xz plane, that is, the upper surface of the clad 23 and the lower surface of the clad 22, respectively. ing. The clads 22 and 23 are produced by, for example, a method of depositing a film made of an optical material as a raw material on the laser medium 21 or a method of optically bonding the optical material to the laser medium 21 by optical contact or diffusion bonding. A cooling heat sink (not shown) may be bonded to the lower surface side of the clad 23.

波長変換素子10は、発振した基本波レーザ光を第2高調波レーザ光に変換するとともに、変換した第2高調波レーザ光を出射する素子である。波長変換素子10は平面導波路型の導波路構造を有しており、低屈折率部である光学材料1、非線形光学材料2、3とクラッド4、5を有している。波長変換素子10としてQPM波長変換素子、すなわち、擬似位相整合波長変換素子を用いる。非線形光学材料2、3は、レーザ媒質21側から入射される基本波レーザ光を波長変換して、第2高調波レーザ光Lを出力する。すなわち、光学材料の非線形性を利用することにより、基本波レーザ光の波長が第2高調波レーザ光の波長に変換される。非線形光学材料2、3は、例えば周期反転分極構造を持つMgO添加LiNbO3、MgO添加LiTaO3、定比LiNbO3、定比LiTaO3、KTPなどである。 The wavelength conversion element 10 is an element that converts the oscillated fundamental laser light into second harmonic laser light and emits the converted second harmonic laser light. The wavelength conversion element 10 has a planar waveguide type waveguide structure, and has an optical material 1, a nonlinear optical material 2, 3 and a cladding 4, 5 which are low refractive index portions. As the wavelength conversion element 10, a QPM wavelength conversion element, that is, a quasi phase matching wavelength conversion element is used. The nonlinear optical materials 2 and 3 convert the wavelength of the fundamental laser beam incident from the laser medium 21 side and output the second harmonic laser beam L. That is, by utilizing the nonlinearity of the optical material, the wavelength of the fundamental laser beam is converted to the wavelength of the second harmonic laser beam. The nonlinear optical materials 2 and 3 are, for example, MgO-added LiNbO3, MgO-added LiTabO3, stoichiometric LiNbO3, stoichiometric LiTaO3, KTP, etc. having a periodic inversion polarization structure.

本実施の形態1.では、波長変換素子10は、レーザ光の進行方向と概ね垂直な方向に屈折率の異なる複数の光学材料を備える。具体的には、非線形光学材料2、3よりも小さな屈折率を有する光学材料1の上面と下面をそれぞれ非線形光学材料2の下面と非線形光学材料3の上面(それぞれ、xz平面に平行な面である)に接合する。クラッド4、5は非線形光学材料2、3よりも小さな屈折率を有しており、それぞれ非線形光学材料2の上面と非線形光学材料3の下面(それぞれ、xz平面に平行な面である)に接合する。 Embodiment 1 Then, the wavelength conversion element 10 includes a plurality of optical materials having different refractive indexes in a direction substantially perpendicular to the traveling direction of the laser light. Specifically, the upper surface and the lower surface of the optical material 1 having a refractive index smaller than those of the nonlinear optical materials 2 and 3 are respectively defined as the lower surface of the nonlinear optical material 2 and the upper surface of the nonlinear optical material 3 (each of the surfaces parallel to the xz plane). To join). The clads 4 and 5 have a refractive index smaller than that of the nonlinear optical materials 2 and 3, and are bonded to the upper surface of the nonlinear optical material 2 and the lower surface of the nonlinear optical material 3 (each of which is a plane parallel to the xz plane). To do.

光学材料1と非線形光学材料2、3との接合、及びクラッド4、5と非線形光学材料2、3との接合は、例えば、光学材料を原料とした膜を非線形光学材料2、3に蒸着する方法、光学材料をオプティカルコンタクトまたは拡散接合などによって非線形光学材料2、3と光学的に接合する方法、またはそれらを組み合わせた方法によって作製されている。 For joining the optical material 1 and the nonlinear optical materials 2 and 3 and joining the claddings 4 and 5 and the nonlinear optical materials 2 and 3, for example, a film using the optical material as a raw material is deposited on the nonlinear optical materials 2 and 3. It is manufactured by a method, a method of optically bonding an optical material to the nonlinear optical materials 2 and 3 by optical contact or diffusion bonding, or a combination thereof.

図3は波長変換素子10の構成を示す斜視図である。図3に示すように、波長変換素子10は非線形光学材料2、3を備え、波長変換素子内を伝搬するレーザ光の波長変換を行なう平面導波路型の素子である。波長変換素子10の非線形光学材料2、3はレーザ光の進行方向に複数の分極反転層6を有している。分極反転層6は、一定方向に分極した単結晶誘電体材料の分極の方向を反転させたものである。非線形光学材料2、3内では、非分極反転領域と分極反転領域である分極反転層6が交互に形成されている。これにより、非線形光学材料2、3内には周期的に分極反転層6が形成されている。各分極反転層6はおおよそ平板状をなすとともに、その平板の面がx軸方向およびy軸方向と平行となるようにクラッド4、5で挟持されている。   FIG. 3 is a perspective view showing the configuration of the wavelength conversion element 10. As shown in FIG. 3, the wavelength conversion element 10 includes nonlinear optical materials 2 and 3 and is a planar waveguide type element that performs wavelength conversion of laser light propagating in the wavelength conversion element. The nonlinear optical materials 2 and 3 of the wavelength conversion element 10 have a plurality of polarization inversion layers 6 in the traveling direction of the laser light. The polarization inversion layer 6 is obtained by inverting the polarization direction of a single crystal dielectric material polarized in a certain direction. In the nonlinear optical materials 2 and 3, non-polarization inversion regions and polarization inversion layers 6 that are polarization inversion regions are alternately formed. Thereby, the domain-inverted layers 6 are periodically formed in the nonlinear optical materials 2 and 3. Each polarization inversion layer 6 has a substantially flat plate shape and is sandwiched between clads 4 and 5 so that the surface of the flat plate is parallel to the x-axis direction and the y-axis direction.

レーザ媒質21からの基本波としての基本波レーザ光は端面11a側から非線形光学材料2、3に入射され、交互に配設された非分極反転領域内と分極反転領域内とを順番に伝搬する。入射された基本波レーザ光は非線形光学材料2、3の非線形効果によって第2高調波レーザ光に変換される。基本波レーザ光が第2高調波レーザ光に変換されるよう予め非線形光学材料2、3の結晶軸角度、温度、反転分極の周期などを最適化する。非線形光学材料2、3に入射された基本波レーザ光は、一部が第2高調波レーザ光に変換されて端面11bから外部にレーザ光として出力される。 A fundamental laser beam as a fundamental wave from the laser medium 21 is incident on the nonlinear optical materials 2 and 3 from the end face 11a side, and propagates in turn in the non-polarization inversion regions and the polarization inversion regions arranged alternately. . The incident fundamental wave laser beam is converted into the second harmonic laser beam by the nonlinear effect of the nonlinear optical materials 2 and 3. The crystal axis angle, temperature, period of inversion polarization, etc. of the nonlinear optical materials 2 and 3 are optimized in advance so that the fundamental laser beam is converted into the second harmonic laser beam. A part of the fundamental laser light incident on the nonlinear optical materials 2 and 3 is converted into second harmonic laser light and output to the outside from the end face 11b.

第2高調波レーザ光に変換されずに非線形光学材料2、3内に残留した基本波レーザ光は、端面11bで全反射されて、再度、非線形光学材料2、3内を通過し、第2高調波レーザ光に変換される。この残留した基本波レーザ光の一部が変換されて発生した第2高調波レーザ光は、端面11aで全反射して端面11bより外部にレーザ光として出力される。   The fundamental laser beam that remains in the nonlinear optical materials 2 and 3 without being converted into the second harmonic laser beam is totally reflected by the end face 11b and passes through the nonlinear optical materials 2 and 3 again. It is converted into a harmonic laser beam. The second harmonic laser beam generated by converting a part of the remaining fundamental laser beam is totally reflected by the end face 11a and output as laser light to the outside from the end face 11b.

図4は波長変換素子10内に0次モードの基本波レーザ光L0と1次モードのレーザ光L1が入射された場合のレーザ光L0とレーザ光L1の強度分布と屈折率nの分布図である。0次モードは、y軸方向の素子中央部で強度が最大となるため、光学材料1の屈折率の影響が大きい。一方、1次モードは、y軸方向の素子中央部では強度が小さいため、光学材料1の屈折率の影響が小さい。   FIG. 4 is a distribution diagram of the intensity distribution and the refractive index n of the laser light L0 and the laser light L1 when the fundamental wave laser light L0 of the 0th order mode and the laser light L1 of the first order mode are incident in the wavelength conversion element 10. is there. The zero-order mode has a maximum intensity at the center of the element in the y-axis direction, so the influence of the refractive index of the optical material 1 is large. On the other hand, the primary mode has a small intensity at the center of the element in the y-axis direction, so the influence of the refractive index of the optical material 1 is small.

本発明の本実施の形態1.では、波長変換素子10のy軸方向中央部に非線形光学材料2、3に比べて低屈折率な光学材料1を配置しており、光学材料1が無い従来技術と比べて、0次モードのレーザ光L0の実効屈折率は小さくなる。一方、光学材料1が無い従来技術と比べて、1次モードのレーザ光L1の実効屈折率は変化が小さい。その結果、非線形光学材料2、3の間に光学材料1を配置することにより、0次モードのレーザ光L0の実効屈折率と1次モードのレーザ光L1の実効屈折率の差を小さくすることができる。 Embodiment 1 of the present invention Then, the optical material 1 having a lower refractive index than the nonlinear optical materials 2 and 3 is disposed at the center of the wavelength conversion element 10 in the y-axis direction. The effective refractive index of the laser beam L0 is small. On the other hand, the change in the effective refractive index of the laser beam L1 in the first-order mode is small compared to the conventional technique without the optical material 1. As a result, by disposing the optical material 1 between the nonlinear optical materials 2 and 3, the difference between the effective refractive index of the zero-order mode laser light L0 and the effective refractive index of the first-order mode laser light L1 is reduced. Can do.

このように、本発明の本実施の形態1.では、波長変換素子10はレーザ光L0、L1の進行方向と概ね垂直な方向に屈折率の異なる複数の光学材料を備えることで波長変換素子10内の0次モードの実効屈折率と1次モードの実効屈折率の差を小さくすることが可能である。   Thus, the first embodiment of the present invention. Then, the wavelength conversion element 10 includes a plurality of optical materials having different refractive indexes in a direction substantially perpendicular to the traveling direction of the laser beams L0 and L1, so that the effective refractive index of the zero-order mode and the first-order mode in the wavelength conversion element 10 are obtained. It is possible to reduce the difference in effective refractive index.

反転分極の最適周期は波長および実効屈折率から決まる。そのため、0次モードに最適化された反転分極の周期を形成する波長変換素子10において、1次モードの実効屈折率と0次モードの実効屈折率の差が小さくなることで、1次モードの波長変換効率を高めることが可能である。 The optimum period of inversion polarization is determined from the wavelength and the effective refractive index. Therefore, in the wavelength conversion element 10 that forms the period of inversion polarization optimized for the 0th-order mode, the difference between the effective refractive index of the 1st-order mode and the effective refractive index of the 0th-order mode becomes small. It is possible to increase the wavelength conversion efficiency.

なお、本実施の形態1.では、図1や図2に示した波長変換レーザ装置100の構成について説明したが、図1や図2以外の構成であってもよい。例えば、波長変換素子10は、クラッド4、5のうち、一方のみを備える構成としてもよい。また、固体レーザ素子20は、クラッド22、23の一方のみを備える構成としてもよいし、クラッド4、5の外側やクラッド22、23に基板を配設する構成としてもよい。波長変換レーザ装置100は、内部型の波長変換方式、すなわち、共振器内部に波長変換素子を設置する構成に限らず外部型の波長変換方式、すなわち、共振器外部に波長変換素子を設置する構成であってもよい。波長変換レーザ装置100が内部型の波長変換方式の場合、固体レーザ素子20の端面25aと波長変換素子10の端面11bとの間で基本波レーザ光が発振する。一方、波長変換レーザ装置100が外部型の波長変換方式の場合、固体レーザ素子20の端面25aと固体レーザ素子20の端面25bとの間で基本波レーザ光が発振する。   The first embodiment. The configuration of the wavelength conversion laser device 100 illustrated in FIGS. 1 and 2 has been described, but configurations other than those illustrated in FIGS. 1 and 2 may be used. For example, the wavelength conversion element 10 may be configured to include only one of the clads 4 and 5. Further, the solid-state laser element 20 may be configured to include only one of the clads 22 and 23, or may be configured to dispose a substrate on the outer side of the clads 4 and 5 or on the clads 22 and 23. The wavelength conversion laser device 100 is not limited to an internal wavelength conversion method, that is, a configuration in which a wavelength conversion element is installed inside the resonator, but is an external type wavelength conversion method, that is, a configuration in which the wavelength conversion element is installed outside the resonator. It may be. When the wavelength conversion laser device 100 is an internal wavelength conversion method, the fundamental laser beam oscillates between the end face 25 a of the solid-state laser element 20 and the end face 11 b of the wavelength conversion element 10. On the other hand, when the wavelength conversion laser device 100 is an external type wavelength conversion method, the fundamental wave laser light oscillates between the end face 25 a of the solid-state laser element 20 and the end face 25 b of the solid-state laser element 20.

光学材料1と非線形光学材料2、3は、波長変換素子において0次モードと1次モードのレーザ光の位相を補正する位相整合条件を満足するように設計しても構わない。この場合には、0次モードと1次モードのレーザ光をさらに効率よく波長変換することができる。また、レーザ光は0次モードと1次モードよりも高次のモードのレーザ光であっても構わない。 The optical material 1 and the nonlinear optical materials 2 and 3 may be designed so as to satisfy a phase matching condition for correcting the phase of the laser light in the 0th order mode and the 1st order mode in the wavelength conversion element. In this case, the wavelength conversion of the 0th-order mode and the first-order mode laser light can be performed more efficiently. Further, the laser beam may be a laser beam of a higher-order mode than the zero-order mode and the first-order mode.

実施の形態2.
実施の形態1.では、波長変換素子10に、非線形光学材料2、3より屈折率の小さい光学材料1を配置させたのに対し、本実施の形態では非線形光学材料よりも屈折率の大きな光学材料を配置させた構成を開示する。
Embodiment 2. FIG.
Embodiment 1 FIG. In the present embodiment, the optical material 1 having a refractive index smaller than that of the nonlinear optical materials 2 and 3 is disposed in the wavelength conversion element 10, whereas in the present embodiment, an optical material having a refractive index larger than that of the nonlinear optical material is disposed. The configuration is disclosed.

本発明の実施の形態2では、図5に示すように、非線形光学材料12、13、14よりも大きな屈折率を有する光学材料8、9を1次モードのレーザ光L1の強度が高い位置に配置する。このような配置によって、光学材料8、9は、その位置で強度の小さい0次モードのレーザ光L0よりも1次モードのレーザ光L1に大きな影響を与える。これにより、光学材料8、9が無い場合と比較して、1次モードの実効屈折率の増大量は0次モードの実効屈折率の増大量よりも大きくなる。その結果、0次モードと実効屈折率と1次モードの実効屈折率の差を小さくすることが可能であり、1次モードの波長変換効率を高めることが可能である。 In the second embodiment of the present invention, as shown in FIG. 5, the optical materials 8 and 9 having a refractive index larger than that of the nonlinear optical materials 12, 13, and 14 are placed at positions where the intensity of the laser light L1 in the first-order mode is high. Deploy. With such an arrangement, the optical materials 8 and 9 have a greater influence on the laser beam L1 in the first-order mode than the laser beam L0 in the 0th-order mode whose intensity is small at that position. Thereby, compared with the case where there is no optical material 8 and 9, the increase amount of the effective refractive index of 1st-order mode becomes larger than the increase amount of the effective refractive index of 0th-order mode. As a result, it is possible to reduce the difference between the effective refractive index of the 0th-order mode, the effective refractive index, and the primary mode, and it is possible to increase the wavelength conversion efficiency of the primary mode.

実施の形態3.
実施の形態1.および2.では、波長変換素子10に、非線形光学材料よりも屈折率の大きいまたは小さい光学材料を配置させたのに対し、本実施の形態では非線形光学材料よりも屈折率の大きい光学材料と小さい光学材料の双方を配置させた構成を開示する。
Embodiment 3 FIG.
Embodiment 1 FIG. And 2. In the present embodiment, an optical material having a refractive index larger or smaller than that of the nonlinear optical material is disposed in the wavelength conversion element 10, whereas in this embodiment, an optical material having a refractive index larger than that of the nonlinear optical material and an optical material having a smaller refractive index than that of the nonlinear optical material are used. A configuration in which both are arranged is disclosed.

本発明の実施の形態3では、図6に示すように、非線形光学材料17に対して小さい屈折率を有する光学材料15と大きい屈折率を有する光学材料16の双方を有している。なお、光学材料15の配置は本発明の実施の形態1と同様であり、光学材料16の配置は本発明の実施の形態2と同様である。このように、非線形光学材料17の間に小さい屈折率を有する光学材料15と大きい屈折率を有する光学材料16を配置することによって、本発明の実施の形態1と2の双方の効果を利用して0次モードと1次モードの実効屈折率の差を小さくする効果を高めることが可能であり、1次モードの波長変換効率を高めることが可能である。 In the third embodiment of the present invention, as shown in FIG. 6, both the optical material 15 having a small refractive index and the optical material 16 having a large refractive index with respect to the nonlinear optical material 17 are provided. The arrangement of the optical material 15 is the same as in the first embodiment of the present invention, and the arrangement of the optical material 16 is the same as in the second embodiment of the present invention. As described above, by arranging the optical material 15 having a small refractive index and the optical material 16 having a large refractive index between the nonlinear optical materials 17, the effects of both Embodiments 1 and 2 of the present invention are utilized. Thus, the effect of reducing the difference in effective refractive index between the 0th-order mode and the 1st-order mode can be increased, and the wavelength conversion efficiency of the 1st-order mode can be increased.

実施の形態4.
実施の形態1.、2.および3.では、分極反転周期が一定のものに対し、本実施の形態では周期を徐々に変化させた構成を開示する。
Embodiment 4 FIG.
Embodiment 1 FIG. 2. And 3. In the present embodiment, a configuration in which the period is gradually changed is disclosed in contrast to the case where the polarization inversion period is constant.

本発明の実施の形態4.では、図7に示すように、波長変換素子40の非線形光学材料18、19は分極反転周期が徐々に変化させた構造の分極反転層24を有する。基本波のある特定のモードに対する実効屈折率から決まる最適な一定周期を持った構造では、実行屈折率の異なる他のモードの第2高調波への変換効率は低い。分極反転周期を徐々に変化させることで、他のモードに対する第2高調波への変換効率を高めることが可能である。すなわち、図3に示した分極反転周期が一様な時と比べて、導波路構造に対する制約を緩和できる効果を持つ。   Embodiment 4 of the present invention. Then, as shown in FIG. 7, the nonlinear optical materials 18 and 19 of the wavelength conversion element 40 have a polarization inversion layer 24 having a structure in which the polarization inversion period is gradually changed. In the structure having an optimal constant period determined from the effective refractive index for a specific mode of the fundamental wave, the conversion efficiency to the second harmonic of other modes having different effective refractive indexes is low. By gradually changing the polarization inversion period, it is possible to increase the conversion efficiency to the second harmonic for other modes. That is, compared with the case where the polarization inversion period shown in FIG. 3 is uniform, the effect on the waveguide structure can be relaxed.

実施の形態4.による波長変換素子においては、分極反転周期を徐々に変化させた構成で、かつ、実施の形態1.、2.および3のような基本波のモード間の実効屈折率を近づけるような構成にすることにより、複数のモードの変換効率をさらに高めることができる。   Embodiment 4 FIG. The wavelength conversion element according to the first embodiment has a configuration in which the polarization inversion period is gradually changed, and the first embodiment. 2. By making the effective refractive index close to each other between the fundamental wave modes such as 3 and 3, the conversion efficiency of a plurality of modes can be further increased.

1、8、9、15、16:光学材料、2、3、12、13、14、17、18、19:非線形光学材料、4、5、22、23:クラッド、6、24:分極反転層、7:光軸、10、40:波長変換素子、11a、11b、25a、25b:端面、20:固体レーザ素子、21:レーザ媒質、30:半導体レーザ、100:波長変換レーザ装置、L:第2高調波レーザ光、L0:0次モードのレーザ光、L1:1次モードのレーザ光   1, 8, 9, 15, 16: Optical material 2, 3, 12, 13, 14, 17, 18, 19: Nonlinear optical material 4, 5, 22, 23: Clad, 6, 24: Polarization inversion layer , 7: optical axis, 10, 40: wavelength conversion element, 11a, 11b, 25a, 25b: end face, 20: solid state laser element, 21: laser medium, 30: semiconductor laser, 100: wavelength conversion laser device, L: first Second harmonic laser light, L0: 0th order mode laser light, L1: 1st order mode laser light

Claims (8)

平面導波路を第1のモードで伝搬する基本波が前記第1のモードよりも低次の第2のモードの基本波に対応した周期反転分極構造を有する非線形光学材料により高調波に波長変換される波長変換素子であって、
前記第1のモードおよび前記第2のモードの基本波の実効屈折率の差を小さくするように前記平面導波路の屈折率分布を調整する屈折率調整手段を備えたことを特徴とする波長変換素子。
The fundamental wave propagating through the planar waveguide in the first mode is wavelength-converted to a harmonic by a nonlinear optical material having a periodically inverted polarization structure corresponding to the fundamental wave of the second mode lower than the first mode. A wavelength conversion element,
A wavelength conversion comprising: a refractive index adjusting means for adjusting a refractive index distribution of the planar waveguide so as to reduce a difference in effective refractive index between the fundamental wave of the first mode and the second mode. element.
前記屈折率調整手段は前記非線形光学材料よりも小さい屈折率を有する第1の光学材料を備えたことを特徴とする請求項1に記載の波長変換素子。 The wavelength conversion element according to claim 1, wherein the refractive index adjusting unit includes a first optical material having a refractive index smaller than that of the nonlinear optical material. 前記屈折率調整手段は前記非線形光学材料よりも大きい屈折率を有する第2の光学材料を備えたことを特徴とする請求項1または請求項2に記載の波長変換素子。 3. The wavelength conversion element according to claim 1, wherein the refractive index adjusting unit includes a second optical material having a refractive index larger than that of the nonlinear optical material. 前記非線形光学材料は、分極反転周期を徐々に変化させた周期反転分極構造を有することを特徴とする請求項1乃至3のいずれか1項に記載の波長変換素子。   4. The wavelength conversion element according to claim 1, wherein the nonlinear optical material has a periodic inversion polarization structure in which a polarization inversion period is gradually changed. 5. 前記第1のモードおよび前記第2のモードはそれぞれ1次および0次モードであり、前記第1の光学材料は前記0次モードの実効屈折率を小さくするように配置され、前記第2の光学材料は前記1次モードの実効屈折率を大きくするように配置されることを特徴とする請求項2または請求項3に記載の波長変換素子。 The first mode and the second mode are a first-order mode and a zero-order mode, respectively, and the first optical material is arranged to reduce the effective refractive index of the zero-order mode, and the second optical The wavelength conversion element according to claim 2 or 3, wherein the material is disposed so as to increase an effective refractive index of the first-order mode. 請求項1乃至5のいずれか1項に記載の波長変換素子と、前記基本波をレーザ発振させる共振器を有する光源と、を備えたことを特徴とする波長変換レーザ装置。 6. A wavelength conversion laser device comprising: the wavelength conversion element according to claim 1; and a light source having a resonator that oscillates the fundamental wave. 前記波長変換素子は、前記共振器の内部に配置されたことを特徴とする請求項6に記載の波長変換レーザ装置。 The wavelength conversion laser device according to claim 6, wherein the wavelength conversion element is disposed inside the resonator. 前記波長変換素子は、前記共振器の外部に配置されたことを特徴とする請求項6に記載の波長変換レーザ装置。 The wavelength conversion laser device according to claim 6, wherein the wavelength conversion element is disposed outside the resonator.
JP2013101034A 2013-05-13 2013-05-13 Wavelength conversion element and wavelength conversion laser device Expired - Fee Related JP6107397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101034A JP6107397B2 (en) 2013-05-13 2013-05-13 Wavelength conversion element and wavelength conversion laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101034A JP6107397B2 (en) 2013-05-13 2013-05-13 Wavelength conversion element and wavelength conversion laser device

Publications (2)

Publication Number Publication Date
JP2014222263A true JP2014222263A (en) 2014-11-27
JP6107397B2 JP6107397B2 (en) 2017-04-05

Family

ID=52121821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101034A Expired - Fee Related JP6107397B2 (en) 2013-05-13 2013-05-13 Wavelength conversion element and wavelength conversion laser device

Country Status (1)

Country Link
JP (1) JP6107397B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114050A (en) * 1993-08-25 1995-05-02 Hoechst Japan Ltd Waveguide type wavelength conversion element
JP2005504360A (en) * 2001-10-03 2005-02-10 キネティック リミテッド Nonlinear optical stack
WO2008114512A1 (en) * 2007-03-22 2008-09-25 Panasonic Corporation Wavelength converter and image display with wavelength converter
WO2009034625A1 (en) * 2007-09-12 2009-03-19 Mitsubishi Electric Corporation Wavelength conversion element and wavelength conversion laser device
JP2009259854A (en) * 2007-04-20 2009-11-05 Panasonic Corp Solid-state laser device, and image display using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114050A (en) * 1993-08-25 1995-05-02 Hoechst Japan Ltd Waveguide type wavelength conversion element
JP2005504360A (en) * 2001-10-03 2005-02-10 キネティック リミテッド Nonlinear optical stack
WO2008114512A1 (en) * 2007-03-22 2008-09-25 Panasonic Corporation Wavelength converter and image display with wavelength converter
JP2009259854A (en) * 2007-04-20 2009-11-05 Panasonic Corp Solid-state laser device, and image display using the same
WO2009034625A1 (en) * 2007-09-12 2009-03-19 Mitsubishi Electric Corporation Wavelength conversion element and wavelength conversion laser device

Also Published As

Publication number Publication date
JP6107397B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP4392024B2 (en) Mode-controlled waveguide laser device
US9531152B2 (en) Waveguide laser
JP2010204197A (en) Laser device, laser display apparatus, laser radiating apparatus, and nonlinear optical element
JP6141452B2 (en) Multi-wavelength laser equipment
JP5654576B2 (en) Wavelength conversion laser light source
US20150229096A1 (en) Planar waveguide laser pumping module and planar waveguide wavelength conversion laser device
JP5721812B2 (en) Wavelength conversion crystal and wavelength conversion laser device
JP5529153B2 (en) Wavelength conversion laser light source and image display device
JP5159783B2 (en) Wavelength conversion element and wavelength conversion laser device
JP5420810B1 (en) Wavelength conversion element
JP2008135689A (en) Laser light source device and image display device including the same
JP2014066747A (en) Wavelength conversion element and manufacturing method therefor
JP6107397B2 (en) Wavelength conversion element and wavelength conversion laser device
JP6364706B2 (en) Optical module
JP2015041041A (en) Diffracting grating and optical module
US20150188281A1 (en) Laser device
JP2007322695A (en) Wavelength conversion element
JP2005156635A (en) Wavelength transducer having multigrating and light generator using the same
JP2008103525A (en) Laser light source device and image display unit equipped with it
JP2008047775A (en) Shg laser
JP2012173494A (en) Harmonic generation device
JP2005326521A (en) External resonator type laser apparatus and wavelength conversion apparatus using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R151 Written notification of patent or utility model registration

Ref document number: 6107397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees