JP2014222208A - Cleaning method - Google Patents

Cleaning method Download PDF

Info

Publication number
JP2014222208A
JP2014222208A JP2013102299A JP2013102299A JP2014222208A JP 2014222208 A JP2014222208 A JP 2014222208A JP 2013102299 A JP2013102299 A JP 2013102299A JP 2013102299 A JP2013102299 A JP 2013102299A JP 2014222208 A JP2014222208 A JP 2014222208A
Authority
JP
Japan
Prior art keywords
water
zeolite
absorbing polymer
cleaned
zeolite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013102299A
Other languages
Japanese (ja)
Inventor
佐々木 學
Manabu Sasaki
學 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGRISUPPLY KK
ION COMMERCE CO Ltd
Original Assignee
AGRISUPPLY KK
ION COMMERCE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGRISUPPLY KK, ION COMMERCE CO Ltd filed Critical AGRISUPPLY KK
Priority to JP2013102299A priority Critical patent/JP2014222208A/en
Publication of JP2014222208A publication Critical patent/JP2014222208A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cleaning method for effectively removing radiation contaminants.SOLUTION: In calcined zeolite powder 4, Na and the like are removed from a pore, and as a whole, the zeolite powder 4 is charged negatively. As the result, contaminants 2 such as cesium 137 charged positively are electrostatically attracted to enter the pore of the zeolite powder 4, are adsorbed and held as they are, and do not exist in water. Then, the zeolite powder 4 having adsorbed the contaminants is held in a gel of a three-dimensional network structure in which a water-absorbing polymer is swelled.

Description

本発明は、ゼオライトを用いた洗浄方法に関する。   The present invention relates to a cleaning method using zeolite.

ゼオライト(沸石)はケイ素(Si)とアルミニウム(Al)と酸素(O)からなる網目構
造をしており、ケイ素(Si)とアルミニウム(Al)の比率の違いで、A型、Y型、クリノ
プティロライト、モルデナイトなどの種類が存在し、いずれも骨格間に微細な孔が形成され、例えばクリノプティロライトの場合は3.9〜5.4Å、モルデナイトの場合は6.7〜7.0Åの細孔が形成される。
Zeolite (zeolite) has a network structure consisting of silicon (Si), aluminum (Al), and oxygen (O). Depending on the ratio of silicon (Si) and aluminum (Al), A-type, Y-type, and clino There are types such as ptyrrolite and mordenite, all of which form fine pores between the skeletons. For example, 3.9 to 5.4 mm in the case of clinoptilolite, and 6.7 to 7 in the case of mordenite. 0Å pores are formed.

ゼオライトは上記したように、種類ごとに略一定の微細孔を有しており、その大きさが分子レベルであるため、分子篩として従来から知られている。また最近では放射線汚染物質の吸着能があることが着目されている。   As described above, zeolite has a substantially constant fine pore for each type, and its size is on a molecular level, so that it has been conventionally known as a molecular sieve. Recently, attention has been focused on the ability to adsorb radiation pollutants.

特許文献1には、磁性複合粒子を磁石で吸着するようにした放射性物質の除染システムが提案されている。前記磁性複合粒子の構造は、コア部に磁性ナノ粒子を配置し、その表面を被覆層で覆い、更に被覆層の外側にゼオライト等の捕捉性化合物の層を形成したものである。   Patent Document 1 proposes a radioactive substance decontamination system in which magnetic composite particles are adsorbed by a magnet. The magnetic composite particles have a structure in which magnetic nanoparticles are arranged in the core portion, the surface thereof is covered with a coating layer, and a layer of a capturing compound such as zeolite is formed outside the coating layer.

また非特許文献1には、表面に微細な穴の多い「天然ゼオライト」10グラムを、放射性セシウムを溶かした海水100ミリ・リットルに入れて混ぜると、5時間で約9割のセシウムが吸着されることを確認したと報告されている。   In Non-Patent Document 1, about 10% of cesium is adsorbed in 5 hours when 10 grams of “natural zeolite” with many fine holes on the surface are mixed in 100 milliliters of seawater containing radioactive cesium. It is reported that it was confirmed.

また非特許文献2には、人口ゼオライトに鉄化合物を混ぜて磁気を帯びさせることで放射性セシウムを吸着させ、磁石を使って放射線汚染された土壌からセシウムを吸着したゼオライトを分離することが報告されている。   In Non-Patent Document 2, it is reported that radioactive cesium is adsorbed by mixing an iron compound with artificial zeolite and magnetizing it, and separating the zeolite adsorbing cesium from radiation-contaminated soil using a magnet. ing.

特許第4932054号公報Japanese Patent No. 4932004

2011年7月21日 読売新聞July 21, 2011 Yomiuri Shimbun 2012年7月13日 毎日新聞July 13, 2012 Mainichi Newspaper

特許文献1に提案される除染方法の除染の対象は、海水、河川水、湖水、池の水、雨水などの汚染物質を含む水であり、汚染物質が付着した家屋、駐車場、橋や道路等の建造物、自動車、船舶、航空機等の固体表面に付着した放射線物質の除去には適用できない。
また従来のゼオライトを用いた汚染物質の洗浄方法は、ゼオライトを分子篩として用い、この分子篩の一方の側に汚染物質を含んだ水を送り込み、圧力を加えてゼオライト層を透過させ、この透過の際に汚染物質をゼオライトの細孔内に取り込んで吸着しているが、実際の洗浄にあたって、汚染物質を吸着したゼオライトを拡散させることなく確実に集める方法の提案がなされていない。
The object of decontamination of the decontamination method proposed in Patent Document 1 is water containing pollutants such as seawater, river water, lake water, pond water, rainwater, etc. It cannot be applied to the removal of radioactive materials adhering to solid surfaces such as buildings such as roads, automobiles, ships and aircraft.
Also, the conventional pollutant washing method using zeolite uses zeolite as a molecular sieve, feeds water containing the pollutant to one side of this molecular sieve, applies pressure to permeate the zeolite layer, and performs this permeation. In the actual cleaning, no method has been proposed for reliably collecting the adsorbed zeolite without diffusing it.

非特許文献2や特許文献1ではセシウム等を吸着する捕捉性化合物(ゼオライト等)の内部に磁性ナノ粒子を含ませることで、磁石を用いて捕捉性化合物を回収しているが、捕捉性化合物の内部に磁性ナノ粒子を含ませる技術が確立しておらず、この技術が普及するに至っていない。   In Non-Patent Document 2 and Patent Document 1, the capturing compound is recovered using a magnet by including magnetic nanoparticles inside the capturing compound (zeolite or the like) that adsorbs cesium or the like. No technology has been established for incorporating magnetic nanoparticles in the interior, and this technology has not yet become widespread.

また、磁性物質を利用して回収する方法は、汚染物質が吸着されていないが磁性を有する物質まで捕捉してしまい、その選別が困難となる。   In addition, the method of collecting using a magnetic substance traps even a substance having magnetism although no contaminant is adsorbed, making it difficult to select.

上記課題を解決するため第1発明に係る洗浄方法は以下の工程からなる。
洗浄対象物の表面を水で濡らす工程。
水で濡れた洗浄対象物の表面にゼオライト粉末と吸水性ポリマーとの混合物を供給する工程。
洗浄対象物の表面に付着した放射線汚染物質を前記ゼオライト粉末に吸着させるとともに吸水性ポリマーの架橋構造内にゼオライト粒子を含んだ水を抱持する工程。
膨潤した吸水性ポリマーを回収する工程。
In order to solve the above problems, the cleaning method according to the first invention comprises the following steps.
The process of wetting the surface of the object to be cleaned with water.
Supplying a mixture of zeolite powder and water-absorbing polymer to the surface of the object to be cleaned wet with water;
A step of adsorbing radiation contaminants adhering to the surface of the object to be cleaned to the zeolite powder and embracing water containing zeolite particles in the crosslinked structure of the water-absorbing polymer.
Recovering the swollen water-absorbing polymer;

また第2発明に係る洗浄方法は以下の工程からなる。
洗浄対象物の表面を水で濡らす工程。
水で濡れた洗浄対象物の表面にゼオライト粉末を供給する工程。
洗浄対象物の表面にゼオライト粉末を含む水膜を形成して静置し、洗浄対象物の表面に付着した放射線汚染物質をゼオライトに吸着させる工程。
前記水膜に吸水性ポリマーを供給し吸水性ポリマーの架橋構造内にゼオライト粒子を含んだ水を抱持する工程。
膨潤した吸水性ポリマーを回収する工程。
The cleaning method according to the second invention includes the following steps.
The process of wetting the surface of the object to be cleaned with water.
Supplying zeolite powder to the surface of the object to be cleaned wet with water.
A step of forming a water film containing zeolite powder on the surface of the object to be cleaned and allowing it to stand, and adsorbing radiation contaminants adhering to the surface of the object to be cleaned to the zeolite.
Supplying a water-absorbing polymer to the water film and embracing water containing zeolite particles in the crosslinked structure of the water-absorbing polymer.
Recovering the swollen water-absorbing polymer;

前記ゼオライトの粒径は平均20μm以下、好ましくは10μm以下とする。粒径を細かくすることで、洗浄対象物の表面と接触するゼオライトの割合が大きくなり洗浄効果が高くなる。   The average particle size of the zeolite is 20 μm or less, preferably 10 μm or less. By reducing the particle size, the proportion of zeolite in contact with the surface of the object to be cleaned is increased, and the cleaning effect is enhanced.

洗浄対象物の表面に付着している汚染物質は水に溶解しゼオライトの細孔内に吸着される。セシウム137などの汚染物質はゼオライトの細孔内に一旦入り込むとその径がゼオライトの細孔から出にくい大きさなので、強固に吸着される。   Contaminants adhering to the surface of the object to be cleaned are dissolved in water and adsorbed in the pores of the zeolite. Contaminants such as cesium 137 are strongly adsorbed because they have a size that makes it difficult for them to come out of the zeolite pores once they enter the zeolite pores.

ゼオライトの細孔内にセシウム137などの汚染物質を吸着させるにはある程度静置する必要がある。ゼオライト粉末と吸水性ポリマーを混合して供給する場合には、静置時間は問題にならないが、吸水性ポリマーを後から供給する場合には、吸水性ポリマーの供給時に水分が十分に残っていないと汚染物質を吸着したゼオライト粉末を吸水性ポリマーの架橋構造内に取り込むことができないので、静置時間は吸水性ポリマーの架橋反応が十分に進行できる量の水分が残る時間になる。   In order to adsorb contaminants such as cesium 137 into the pores of the zeolite, it is necessary to leave them to some extent. When the zeolite powder and the water-absorbing polymer are mixed and supplied, the standing time does not matter, but when the water-absorbing polymer is supplied later, sufficient water does not remain at the time of supplying the water-absorbing polymer. Since the zeolite powder adsorbing the contaminants cannot be taken into the cross-linked structure of the water-absorbing polymer, the standing time is a time in which a sufficient amount of moisture remains so that the cross-linking reaction of the water-absorbing polymer can proceed sufficiently.

本発明に係る洗浄方法によれば、単なる水洗浄では除去できなかったセシウム137などの汚染物質を簡単な作業で確実に除去できる。特に、放射線物質を吸着したゼオライトを拡散させることなく集めることができるので、その後の保管・管理が容易且つ安全に行える。   According to the cleaning method of the present invention, contaminants such as cesium 137 that could not be removed by simple water cleaning can be reliably removed by a simple operation. In particular, since the zeolite adsorbed with the radiation material can be collected without diffusing, the subsequent storage and management can be performed easily and safely.

洗浄前の洗浄対象物の表面を示す拡大図Enlarged view showing the surface of the object to be cleaned before cleaning 洗浄対象物の表面に水をかけた後の拡大図Enlarged view after applying water to the surface of the object to be cleaned 水をかけた後の洗浄対象物の表面にゼオライト粉末と吸水性ポリマー粉末との混合物を供給した状態の拡大図Enlarged view of a state where a mixture of zeolite powder and water-absorbing polymer powder is supplied to the surface of the object to be cleaned after water is applied. 吸水性ポリマー粉末が洗浄対象物の表面に水を吸収して膨潤した状態を示す図The figure which shows the state which the water-absorbing polymer powder absorbed and swollen the surface of the washing | cleaning target object 膨潤した吸水性ポリマーの三次元構造内の拡大図Enlarged view of the three-dimensional structure of a swollen water-absorbing polymer ゼオライト粉末の細孔内に汚染物質が吸着された状態を示す拡大図Enlarged view showing the state of contaminants adsorbed in the pores of the zeolite powder

以下に本発明の実施例を添付図面を参照しつつ説明する。
図1は洗浄前の洗浄対象物の表面を示す拡大図であり、洗浄対象物1の表面にはセシウム137などの汚染物質2が付着している。この洗浄対象物1の表面に散水機などを用いて水をかける。その結果、図2に示すように洗浄対象物1の表面に水膜3が形成される。
尚、水で洗浄しただけでは、洗浄対象物1の表面に付着している汚染物質2は除去されない。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is an enlarged view showing the surface of an object to be cleaned before cleaning, and a contaminant 2 such as cesium 137 is attached to the surface of the object 1 to be cleaned. Water is applied to the surface of the object 1 to be cleaned using a sprinkler or the like. As a result, a water film 3 is formed on the surface of the cleaning object 1 as shown in FIG.
In addition, the contaminant 2 adhering to the surface of the cleaning object 1 is not removed only by washing with water.

ここで、洗浄対象物1としては、家屋、ビル、塀、駐車場、標識、橋、街路灯や道路などの建造物、自動車や電車などの車両、船舶、航空機、或いは樹木が挙げられる。   Here, examples of the cleaning object 1 include a house, a building, a fence, a parking lot, a sign, a bridge, a structure such as a street light and a road, a vehicle such as an automobile and a train, a ship, an aircraft, or a tree.

次いで、水膜3が形成されている洗浄対象物1の表面にゼオライト粉末4と吸水性ポリマー粉末5の混合物を噴射装置を用いて吹き付ける。噴射装置としてはコンプレッサからの圧縮空気を用いて別々のタンク内に貯留したゼオライト粉末4と吸水性ポリマー粉末5とを混合して噴射するものが考えられる。   Next, a mixture of the zeolite powder 4 and the water-absorbing polymer powder 5 is sprayed onto the surface of the cleaning object 1 on which the water film 3 is formed, using an injection device. As an injection apparatus, what mixes and injects the zeolite powder 4 and the water-absorbing polymer powder 5 which were stored in the separate tank using the compressed air from a compressor can be considered.

噴射するゼオライト粉末4は天然ゼオライトを焼成したのちに、グラインダーにより微細化したもので、出来るだけ小さな径が好ましいが、最低でも20μm以下とすることが洗浄効果を高める上で好ましい。
また、散布空間をビニールシートなどによって囲むことが、ゼオライト粉末4と吸水性ポリマー粉末5の混合物を無駄に飛散させず、付着効率を上げることが
できる。
The zeolite powder 4 to be sprayed is obtained by calcining natural zeolite and then refined by a grinder. A diameter as small as possible is preferable, but a minimum of 20 μm or less is preferable for enhancing the cleaning effect.
Moreover, surrounding the spraying space with a vinyl sheet or the like can increase the adhesion efficiency without wastefully scattering the mixture of the zeolite powder 4 and the water-absorbing polymer powder 5.

前記吸水性ポリマー粉末5としては、例えばアクリル酸ナトリウム系を用いる。アクリル酸ナトリウム系の吸水性ポリマーは、アクリル酸、アクリル酸塩及び架橋性モノマーを共重合することで得られる。この吸水性ポリマーは経度に架橋した3次元網目構造で、ところどころに結合しているカルボキシル基が水を含むとゲル中にナトリウムイオンを解離する。   As the water-absorbing polymer powder 5, for example, sodium acrylate is used. The sodium acrylate-based water-absorbing polymer can be obtained by copolymerizing acrylic acid, acrylate and a crosslinkable monomer. This water-absorbing polymer has a three-dimensional network structure that is cross-linked in the longitude, and dissociates sodium ions in the gel when the carboxyl groups bonded to the water contain water.

前記吸水性ポリマー粉末5の粒径としてはゼオライト粉末4と同程度とする。また、吸水性ポリマー粉末5の配合割合(容量%)は混合粉末100に対し3〜30%程度とすることが適当である。   The particle size of the water-absorbing polymer powder 5 is approximately the same as that of the zeolite powder 4. Further, the mixing ratio (volume%) of the water-absorbing polymer powder 5 is suitably about 3 to 30% with respect to the mixed powder 100.

上記のようにゼオライト粉末4と吸水性ポリマー粉末5との混合粉末を水膜3に供給すると、吸水性ポリマー粉末5は図4に示すように水を吸収して3次元網目構造が膨潤してゲル状になり、この3次元網目構造内に図5に示すように、ゼオライト粉末4が保持される。   When the mixed powder of the zeolite powder 4 and the water-absorbing polymer powder 5 is supplied to the water film 3 as described above, the water-absorbing polymer powder 5 absorbs water and the three-dimensional network structure swells as shown in FIG. As shown in FIG. 5, the zeolite powder 4 is held in this three-dimensional network structure.

ここで、焼成前のゼオライト粉末4の細孔にはNaなどが吸着されており、これらの持つ正電荷によりゼオライト粉末4は正に帯電しているが、焼成後のゼオライト粉末4は細孔内からNaなどが除かれ、全体として負に帯電している。その結果、図6に示すように、正に帯電しているセシウム137などの汚染物質2は静電的に吸引されて水中を移動してゼオライト粉末4の細孔6内に侵入し、そのまま吸着保持される。また一旦吸着された汚染物質2は水中内に出てこない。   Here, Na or the like is adsorbed in the pores of the zeolite powder 4 before calcination, and the zeolite powder 4 is positively charged due to the positive charge, but the zeolite powder 4 after calcination is in the pores. Na and the like are removed from the surface, and the whole is negatively charged. As a result, as shown in FIG. 6, the positively charged pollutant 2 such as cesium 137 is electrostatically attracted and moves in water to enter into the pores 6 of the zeolite powder 4 and adsorb as it is. Retained. Moreover, the pollutant 2 once adsorbed does not come out in water.

上記の吸着を行わせるため、本発明方法では静置を行う。この静置時間は気温や天候によって左右されるが凡その目安として、30分〜24時間である。
この後、ゲル状の膨潤したポリマーを洗浄対象物1の表面から剥離し、容器等に収納して保管・管理を行う。
In order to cause the above adsorption, the method of the present invention is left stationary. This standing time depends on the temperature and weather, but as a rough guide, it is 30 minutes to 24 hours.
Thereafter, the gel-like swollen polymer is peeled off from the surface of the object to be cleaned 1 and stored in a container or the like for storage and management.

上述した実施例では、ゼオライト粉末4と吸水性ポリマー粉末5とを同時に水膜3に供給するようにしたが、先にゼオライト粉末4を供給し、静置して汚染物質をゼオライトに吸着させた後に、吸水性ポリマー粉末5を供給するようにしてもよい。   In the above-described embodiment, the zeolite powder 4 and the water-absorbing polymer powder 5 are supplied to the water film 3 at the same time. However, the zeolite powder 4 is first supplied and allowed to stand to adsorb contaminants onto the zeolite. Later, the water-absorbing polymer powder 5 may be supplied.

本発明に係る洗浄方法は、セシウム137以外の放射性物質によって汚染された物を除去する場合にも適用できる。   The cleaning method according to the present invention can also be applied to the case where an object contaminated by a radioactive substance other than cesium 137 is removed.

1…洗浄対象物、2…汚染物質、3…水膜、4…ゼオライト粉末、5…吸水性ポリマー粉末、6…細孔。   DESCRIPTION OF SYMBOLS 1 ... Cleaning object, 2 ... Pollutant, 3 ... Water film, 4 ... Zeolite powder, 5 ... Water-absorbing polymer powder, 6 ... Fine pore.

Claims (2)

以下の第1〜第4工程からなる洗浄方法。
洗浄対象物の表面を水で濡らす第1工程。
水で濡れた洗浄対象物の表面にゼオライト粉末と吸水性ポリマーとの混合物を供給する第2工程。
洗浄対象物の表面に付着した放射線汚染物質を前記ゼオライト粉末に吸着させるとともに吸水性ポリマーの架橋構造内にゼオライト粒子を含んだ水を抱持する第3工程。
膨潤した吸水性ポリマーを回収する第4工程。
A cleaning method comprising the following first to fourth steps.
A first step of wetting the surface of the object to be cleaned with water.
A second step of supplying a mixture of zeolite powder and water-absorbing polymer to the surface of the object to be cleaned wet with water.
A third step of adsorbing radiation contaminants adhering to the surface of the object to be cleaned to the zeolite powder and embracing water containing zeolite particles in the crosslinked structure of the water-absorbing polymer;
A fourth step of collecting the swollen water-absorbing polymer.
以下の第1〜第5工程からなる洗浄方法。
洗浄対象物の表面を水で濡らす第1工程。
水で濡れた洗浄対象物の表面にゼオライト粉末を供給する第2工程。
洗浄対象物の表面にゼオライト粉末を含む水膜を形成して静置し、洗浄対象物の表面に付着した放射線汚染物質をゼオライトに吸着させる第3工程。
前記水膜に吸水性ポリマーを供給し吸水性ポリマーの架橋構造内にゼオライト粒子を含んだ水を保持する第4工程。
膨潤した吸水性ポリマーを回収する第5工程。
A cleaning method comprising the following first to fifth steps.
A first step of wetting the surface of the object to be cleaned with water.
Second step of supplying zeolite powder to the surface of the object to be cleaned wet with water.
A third step of forming a water film containing zeolite powder on the surface of the object to be cleaned and allowing it to stand, and adsorbing radiation contaminants adhering to the surface of the object to be cleaned to the zeolite.
A fourth step of supplying a water-absorbing polymer to the water film and retaining water containing zeolite particles in the crosslinked structure of the water-absorbing polymer;
A fifth step of collecting the swollen water-absorbing polymer.
JP2013102299A 2013-05-14 2013-05-14 Cleaning method Pending JP2014222208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102299A JP2014222208A (en) 2013-05-14 2013-05-14 Cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102299A JP2014222208A (en) 2013-05-14 2013-05-14 Cleaning method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017196524A Division JP6491721B2 (en) 2017-10-10 2017-10-10 Cleaning method

Publications (1)

Publication Number Publication Date
JP2014222208A true JP2014222208A (en) 2014-11-27

Family

ID=52121792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102299A Pending JP2014222208A (en) 2013-05-14 2013-05-14 Cleaning method

Country Status (1)

Country Link
JP (1) JP2014222208A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104296A (en) * 1983-11-11 1985-06-08 石川島播磨重工業株式会社 Decontamination method
JPS62135799A (en) * 1985-12-09 1987-06-18 株式会社日立製作所 Method of processing radioactive waste liquor
JP2012507000A (en) * 2008-10-27 2012-03-22 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Method for decontamination of liquid effluent containing one or more radioactive chemical elements by treatment in a fluidized bed
JP2013033019A (en) * 2011-07-05 2013-02-14 Hokkaido Univ Method and apparatus for removing radioactive matter in radiation-contaminated water
JP2013066876A (en) * 2011-09-26 2013-04-18 Kohei Kato Wastewater treating method
JP2013181846A (en) * 2012-03-02 2013-09-12 Ibaraki Univ Radioactive material decontamination solution from structure using water soluble or water-dispersible polymer and radioactive material decontamination method using radioactive material decontamination solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104296A (en) * 1983-11-11 1985-06-08 石川島播磨重工業株式会社 Decontamination method
JPS62135799A (en) * 1985-12-09 1987-06-18 株式会社日立製作所 Method of processing radioactive waste liquor
JP2012507000A (en) * 2008-10-27 2012-03-22 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Method for decontamination of liquid effluent containing one or more radioactive chemical elements by treatment in a fluidized bed
JP2013033019A (en) * 2011-07-05 2013-02-14 Hokkaido Univ Method and apparatus for removing radioactive matter in radiation-contaminated water
JP2013066876A (en) * 2011-09-26 2013-04-18 Kohei Kato Wastewater treating method
JP2013181846A (en) * 2012-03-02 2013-09-12 Ibaraki Univ Radioactive material decontamination solution from structure using water soluble or water-dispersible polymer and radioactive material decontamination method using radioactive material decontamination solution

Similar Documents

Publication Publication Date Title
Cho et al. Synthesis of hydrous zirconium oxide-impregnated chitosan beads and their application for removal of fluoride and lead
Silva et al. Adsorption of pharmaceuticals from biologically treated municipal wastewater using paper mill sludge-based activated carbon
CN103446899A (en) Organic and inorganic surface chemically-crosslinked alginate-based hybrid hydrogel filter membrane, and preparation method thereof
US20110206588A1 (en) Method and apparatus for removing ammonia from a gas stream
Zhao et al. Microfluidics-generated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water
CN113019141B (en) Preparation method of monovalent selective cation exchange membrane with charge Janus structure
CN103752286B (en) Composite adsorbing material of a kind of heavy-metal ion removal and its preparation method and application
Mruthunjayappa et al. Engineering a biopolymer-based ultrafast permeable aerogel membrane decorated with task-specific Fe–Al nanocomposites for robust water purification
CN106700121A (en) Efficient oil-water separated chitosan sponge and preparation method thereof
Liu et al. A hierarchical adsorption material by incorporating mesoporous carbon into macroporous chitosan membranes
KR101830078B1 (en) Composite electrode for recovering copper ion and composite electrode module, composite electrode module system and method for thereof, copper ion recovering method using the same
CN103263859A (en) Biomimetic mineralization preparation method of polyelectrolyte/calcium carbonate composite nanofiltration membrane
JP6491721B2 (en) Cleaning method
Suzuki et al. Immobilization of fluoride in artificially contaminated kaolinite by the addition of commercial-grade magnesium oxide
Krupadam et al. Removal of endocrine disrupting chemicals from contaminated industrial groundwater using chitin as a biosorbent
JP2014134425A (en) Radioactive cesium decontamination agent, concrete member, building member, paint for building, and resin product using the same, submerged scattering device of the same, and decontamination method of radioactive cesium
JP2014222208A (en) Cleaning method
KR101173213B1 (en) Method for manufacturing functional materials for adsorption of polluant and functional materials manufactured by the same
CN104148004B (en) A kind of magnetic fluorine ion absorber and preparation method thereof
CN107545940A (en) The Absorptive complex wave processing method of radioactive wastewater
JP5208299B1 (en) Cleaning method
JP5962072B2 (en) Radioactive material decontamination system and radioactive material decontamination method
KR102058740B1 (en) Three-dimensional Filter for Removal of Particulate Matter and Method for Manufacturing Same
US11938460B2 (en) Composites for atmospheric condensable gas recovery
CN106178985A (en) A kind of isolating membrane and its preparation method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180530