JP2014222190A - Specimen solution mass spectrometry, and device for the same - Google Patents

Specimen solution mass spectrometry, and device for the same Download PDF

Info

Publication number
JP2014222190A
JP2014222190A JP2013101840A JP2013101840A JP2014222190A JP 2014222190 A JP2014222190 A JP 2014222190A JP 2013101840 A JP2013101840 A JP 2013101840A JP 2013101840 A JP2013101840 A JP 2013101840A JP 2014222190 A JP2014222190 A JP 2014222190A
Authority
JP
Japan
Prior art keywords
solution
sample solution
sample
vacuum chamber
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013101840A
Other languages
Japanese (ja)
Other versions
JP6103764B2 (en
Inventor
智博 内村
Tomohiro Uchimura
智博 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui NUC
Original Assignee
University of Fukui NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui NUC filed Critical University of Fukui NUC
Priority to JP2013101840A priority Critical patent/JP6103764B2/en
Publication of JP2014222190A publication Critical patent/JP2014222190A/en
Application granted granted Critical
Publication of JP6103764B2 publication Critical patent/JP6103764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a specimen solution mass spectrometry that enables an analysis in real time as performing a consecutive injection of a specimen solution to a vacuum chamber, without requiring a frit.SOLUTION: An analysis method of irradiating a specimen introduced inside a vacuum chamber with laser beam, ionizing the specimen, and thereby performing mass spectrometry is configured to: prepare a solution introduction pipe that supplies a specimen solution from a storage part of the specimen solution including a specimen to the vacuum chamber, and pulse injection means that performs a pulse injection of the specimen from a tip end of the solution introduction pipe to the vacuum chamber; and inject the specimen solution from the tip end of the solution introduction pipe to the vacuum chamber by the pulse injection means in a pulse-like state, irradiate the specimen solution introduced to the vacuum chamber in the pulse-like state with the laser beam, and generate a specimen ion.

Description

本発明は、真空チャンバに導入した試料にレーザー光を照射して試料イオンを発生させる質量分析法及びその装置に関し、特に試料を含んだ水溶液等の試料溶液を簡単な方法で質量分析することが可能な方法及び装置に関する。 The present invention relates to a mass spectrometry method and apparatus for generating sample ions by irradiating a sample introduced into a vacuum chamber with laser light, and in particular, a sample solution such as an aqueous solution containing a sample can be subjected to mass analysis by a simple method. It relates to a possible method and apparatus.

この種の質量分析方法としては、試料イオンの電荷量と質量との関係から試料イオンを大きさごとに分離して検出,測定等を行うレーザーイオン化飛行時間型質量分析法(以下、LI/TOFMS法という)がよく知られている。この分析法は、紫外レーザーを光源として芳香族化合物のリアルタイム・高選択的分析が可能であることから、環境分析や分光分析などに広く利用されている。
しかし、LI/TOFMS法の測定対象は気体試料が一般的であり、固体試料や液体試料は加熱やレーザー光などを用いて気化する必要があった。
例えば、2,4-キシレノールおよびその異性体については、これらが溶解した水試料に対して固相抽出を行い、アセトニトリルで溶出させた後、無水硫酸ナトリウムにより脱水して測定試料を得た後、この溶液をガスクロマトグラフに注入し、気化させた試料をレーザーイオン化飛行時間型質量分析計に導入して分析を行っている。
このように、固体や液体の試料分析をLI/TOFMS法で行うには、煩雑で長時間を要する前処理が必要であった。
This type of mass spectrometry is based on laser ionization time-of-flight mass spectrometry (LI / TOFMS), which detects and measures sample ions by size based on the relationship between charge and mass of sample ions. Is well known). This analysis method is widely used for environmental analysis and spectroscopic analysis because it enables real-time and highly selective analysis of aromatic compounds using an ultraviolet laser as a light source.
However, the measurement target of the LI / TOFMS method is generally a gas sample, and a solid sample or a liquid sample has to be vaporized using heating or laser light.
For example, for 2,4-xylenol and its isomers, solid phase extraction was performed on water samples in which they were dissolved, and after elution with acetonitrile, dehydrated with anhydrous sodium sulfate to obtain a measurement sample, This solution is injected into a gas chromatograph, and the vaporized sample is introduced into a laser ionization time-of-flight mass spectrometer for analysis.
As described above, in order to perform solid or liquid sample analysis by the LI / TOFMS method, a complicated and time-consuming pretreatment is required.

そこで、フリットを用いて試料溶液から溶媒を蒸発させ、残った固体試料にレーザー光を照射して気化させることが行われている(例えば特許文献1参照)。   Therefore, the solvent is evaporated from the sample solution using a frit, and the remaining solid sample is vaporized by irradiating it with laser light (see, for example, Patent Document 1).

特開2003−35699号公報JP 2003-35699 A

しかし、分析しようとする試料の種類ごとに最適なフリットを設計・製作することは困難である。その一方で、試料溶液のリアルタイムな分析が求められている。
本発明は上記の課題に鑑みてなされたもので、フリットを必要とせず、真空チャンバに試料溶液を連続投入しながらリアルタイムで分析が可能な試料溶液の質量分析方法及びその装置の提供を目的とする。
However, it is difficult to design and manufacture an optimum frit for each type of sample to be analyzed. On the other hand, real-time analysis of sample solutions is required.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a mass analysis method and apparatus for a sample solution that does not require a frit and can be analyzed in real time while continuously introducing the sample solution into a vacuum chamber. To do.

上記の課題を解決するために、本発明の発明者は溶液導入管(カラム)の先端からフリットを取り外して実験を行った。フリットを取り外すと、試料溶液が溶液導入管から真空チャンバに連続投入され、真空チャンバの真空度が低下するが、溶液導入管の内径を調整することで、真空チャンバの真空度を分析に支障のないレベルに保つことができる。
揮発性の高い試料溶液の場合は、フリットが無くても試料溶液が真空チャンバ内に飛び出し、レーザー光を照射することで試料をイオン化させることが可能ではあるが、その効率が非常に悪い。また、揮発性の低い試料溶液の場合は、溶液導入管の先端で試料溶液が凝固して真空チャンバ内に導入することが困難になることがわかった。
そこで、本願発明の発明者が鋭意研究を行った結果、溶液導入管の先端で試料溶液をパルス状に加熱することで、気化した試料溶液がパルス状に真空チャンバに導入され、揮発性の高い試料溶液の場合は分析効率が高くなり、揮発性の低い試料溶液の場合は凝固することなく真空チャンバに射出できることが判明した。
In order to solve the above problems, the inventors of the present invention conducted experiments by removing the frit from the tip of the solution introduction tube (column). When the frit is removed, the sample solution is continuously introduced from the solution introduction tube into the vacuum chamber, and the vacuum degree of the vacuum chamber decreases.However, adjusting the inner diameter of the solution introduction tube may hinder the analysis of the vacuum degree of the vacuum chamber. Can be kept at no level.
In the case of a highly volatile sample solution, it is possible to ionize the sample by irradiating a laser beam with the sample solution jumping out into the vacuum chamber without frit, but the efficiency is very poor. Further, it was found that in the case of a sample solution with low volatility, the sample solution is solidified at the tip of the solution introduction tube and is difficult to introduce into the vacuum chamber.
Therefore, as a result of intensive studies by the inventors of the present invention, by heating the sample solution in a pulse form at the tip of the solution introduction tube, the vaporized sample solution is introduced into the vacuum chamber in a pulse form and has high volatility. In the case of the sample solution, it was found that the analysis efficiency is high, and in the case of the sample solution with low volatility, the sample solution can be injected into the vacuum chamber without solidifying.

具体的に本願発明は、真空チャンバ内に導入した試料にレーザー光を照射してイオン化させることで質量分析を行う分析方法において、試料を含む試料溶液の貯留部から前記真空チャンバまで試料溶液を供給する溶液導入管と、この溶液導入管の先端から前記真空チャンバに前記試料溶液をパルス射出する試料溶液のパルス射出手段とを準備し、前記パルス射出手段により、前記溶液導入管の先端から前記真空チャンバに試料溶液をパルス状に射出し、前記真空チャンバにパルス状に導入された前記試料溶液にレーザー光を照射して試料イオンを生成させる方法である。
前記パルス射出手段としては、例えば前記溶液導入管の先端の前記試料溶液を断続的に加熱するヒータやパルスレーザー照射装置を用いることができる。
なお、前記溶液導入管の外側にガス導入管を設け、前記ガス導入管から導入したガスにより、前記溶液導入管の先端における前記試料溶液の凝固を抑制するようにしてもよい。
この場合、前記溶液導入管の先端は、3mmより小さい寸法で前記外管の先端よりも内側又は外側に位置させるとよい。
Specifically, the present invention relates to an analysis method in which mass analysis is performed by irradiating a sample introduced into a vacuum chamber with a laser beam and ionizing the sample solution, and the sample solution is supplied from the storage portion of the sample solution containing the sample to the vacuum chamber. And a sample solution pulse injection means for pulse-injecting the sample solution from the tip of the solution introduction tube to the vacuum chamber, and the vacuum injection from the tip of the solution introduction tube by the pulse injection means In this method, the sample solution is ejected into the chamber in a pulsed manner, and the sample solution introduced in a pulsed manner into the vacuum chamber is irradiated with laser light to generate sample ions.
As the pulse injection means, for example, a heater or a pulse laser irradiation device that intermittently heats the sample solution at the tip of the solution introduction tube can be used.
A gas introduction tube may be provided outside the solution introduction tube, and the gas introduced from the gas introduction tube may suppress the solidification of the sample solution at the tip of the solution introduction tube.
In this case, the tip of the solution introduction tube may be positioned inside or outside the tip of the outer tube with a size smaller than 3 mm.

本発明の方法及び装置によれば、試料溶液から溶媒を蒸発させて試料分子を真空チャンバに導入するためのフリットが不要になり、かつ、試料溶液を真空チャンバに連続導入しながらレーザーを照射して分析を行うことができるので、簡便かつリアルタイムで試料溶液の分析を行うことが可能になる。   According to the method and apparatus of the present invention, a frit for evaporating the solvent from the sample solution and introducing the sample molecules into the vacuum chamber becomes unnecessary, and laser irradiation is performed while continuously introducing the sample solution into the vacuum chamber. Therefore, the sample solution can be analyzed easily and in real time.

以下、本発明の好適な実施形態を、図面を参照しながら詳細に説明する。
図1は本発明の分析装置の一実施形態にかかり、その構成を説明する概略図、図2は本発明の分析装置の他の実施形態にかかり、その構成を説明する概略図である。
図1の実施形態の分析装置1は、真空ポンプPにより真空状態に保たれた真空チャンバ11と、この真空チャンバ11に試料溶液を導入する溶液導入管12と、溶液導入管12から真空チャンバ11に導入された前記試料溶液にイオン化レーザー光16を照射してイオン化させるイオン化レーザー照射部14と、溶液導入管12の先端の試料溶液に射出用パルスレーザー光18を照射し、前記試料溶液をパルス状に真空チャンバ11に射出するための射出用パルスレーザー照射部17と、射出用パルスレーザー照射部17から照射された射出用パルスレーザー光18を真空チャンバ11に導入する導入窓28と、生成したイオンの分析を行う飛行時間型の質量分析器15とを備えている。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram for explaining the configuration of an analyzer according to an embodiment of the present invention, and FIG. 2 is a schematic diagram for explaining the configuration of another embodiment of the analyzer of the present invention.
The analyzer 1 of the embodiment of FIG. 1 includes a vacuum chamber 11 that is kept in a vacuum state by a vacuum pump P, a solution introduction pipe 12 that introduces a sample solution into the vacuum chamber 11, and a vacuum chamber 11 that extends from the solution introduction pipe 12. The sample solution introduced into the ion beam is irradiated with an ionization laser beam 16 to be ionized, and the sample solution at the tip of the solution introduction tube 12 is irradiated with an injection pulse laser beam 18 to pulse the sample solution. An injection pulse laser irradiation unit 17 for injecting into the vacuum chamber 11 in a shape, an introduction window 28 for introducing the injection pulse laser beam 18 irradiated from the injection pulse laser irradiation unit 17 into the vacuum chamber 11 were generated. And a time-of-flight mass analyzer 15 for analyzing ions.

飛行時間型の質量分析器15は、マイクロチャンネルプレート検出器等の検出器20とこの検出器20からの信号を処理するオシロスコープ21とを備える。図1において符号22〜24は電極、25はミラーで、符号27は真空チャンバ11にイオン化レーザー光16を導入する導入窓である。   The time-of-flight mass analyzer 15 includes a detector 20 such as a microchannel plate detector and an oscilloscope 21 that processes a signal from the detector 20. In FIG. 1, reference numerals 22 to 24 are electrodes, 25 is a mirror, and 27 is an introduction window for introducing the ionized laser light 16 into the vacuum chamber 11.

この分析装置1では、溶液導入管12の先端で試料溶液に射出用パルスレーザー光18を照射して溶媒を蒸発させ、試料分子を溶液導入管12の先端から真空チャンバ11に導入する。そして、導入した試料分子にイオン化レーザー光16を照射するために、図示しない遅延器を使って射出用パルスレーザー光18の照射タイミングとイオン化レーザー光16の照射タイミングとをずらしている。   In the analyzer 1, the sample solution is irradiated with the pulse laser beam 18 for injection at the tip of the solution introduction tube 12 to evaporate the solvent, and the sample molecules are introduced into the vacuum chamber 11 from the tip of the solution introduction tube 12. In order to irradiate the introduced sample molecules with the ionized laser light 16, the irradiation timing of the emission pulse laser light 18 and the irradiation timing of the ionized laser light 16 are shifted using a delay device (not shown).

図2は、本発明の分析装置の他の実施形態にかかり、溶液導入管12の先端部分の拡大図である。
この実施形態では、溶液導入管12の外側に外管13が設けられていて、溶液導入管12と外管13との間の隙間に外気が導入されるようになっている。溶液導入管12の先端は外管13の先端よりも僅かに内側又は外側に位置するようにしてある。外管13の先端と溶液導入管12の先端との距離Sは、外管13の先端を基準(S=0)として、−3mm<S<3mm程度とするのがよく、−1mm≦S≦1mm程度とするのが好ましい。
試料溶液は、溶液導入管12の先端から真空チャンバ11に導入される際に、気化熱によって急速に冷却され、溶液導入管12の先端で凝固しやすくなるが、このようにすることで試料溶液の凝固を抑制することができる。特に、このような二重管構造は、エマルジョンのように揮発性が低く凝固しやすい試料溶液の分析に有効である。
FIG. 2 is an enlarged view of the distal end portion of the solution introduction tube 12 according to another embodiment of the analyzer of the present invention.
In this embodiment, an outer tube 13 is provided outside the solution introduction tube 12, and outside air is introduced into a gap between the solution introduction tube 12 and the outer tube 13. The tip of the solution introduction tube 12 is positioned slightly inside or outside the tip of the outer tube 13. The distance S between the distal end of the outer tube 13 and the distal end of the solution introduction tube 12 is preferably about −3 mm <S <3 mm with the distal end of the outer tube 13 as a reference (S = 0), and −1 mm ≦ S ≦ It is preferably about 1 mm.
When the sample solution is introduced into the vacuum chamber 11 from the tip of the solution introduction tube 12, it is rapidly cooled by the heat of vaporization and is easily solidified at the tip of the solution introduction tube 12. Can be prevented from coagulating. In particular, such a double tube structure is effective for analysis of a sample solution having low volatility and easily coagulating like an emulsion.

図3は、射出用パルスレーザー光18とイオン化レーザー光16の照射タイミングを説明するグラフである。このグラフでは、射出用パルスレーザー光18の照射タイミングに対するイオン化レーザー光16の照射タイミングの遅延時間を横軸にとっている。また、試料である2,4-キシレノールの分子イオンピーク面積を縦軸にとっている。射出用パルスレーザー照射部17のエネルギーは1mJとした。
図3のグラフから、射出用パルスレーザー光18の照射により試料分子がパルス状に真空チャンバ11に導入されているのがわかる。
また、図3のグラフは遅延時間が8μsecのときがピークであることから、両レーザーの遅延時間は8μsecとすればよいことがわかる。
なお、溶液導入管12の先端とイオン化レーザー光16との距離が2mmである場合は、遅延時間が8μsecから、試料分子の速度を約250m/sと求めることができる。
FIG. 3 is a graph for explaining the irradiation timing of the ejection pulse laser beam 18 and the ionized laser beam 16. In this graph, the horizontal axis represents the delay time of the irradiation timing of the ionized laser beam 16 with respect to the irradiation timing of the emission pulse laser beam 18. The vertical axis represents the molecular ion peak area of 2,4-xylenol, which is a sample. The energy of the injection pulse laser irradiation unit 17 was 1 mJ.
From the graph of FIG. 3, it can be seen that the sample molecules are introduced into the vacuum chamber 11 in a pulsed manner by the irradiation of the pulsed laser beam 18 for injection.
In addition, the graph of FIG. 3 has a peak when the delay time is 8 μsec, so that it can be seen that the delay time of both lasers may be 8 μsec.
If the distance between the tip of the solution introduction tube 12 and the ionized laser beam 16 is 2 mm, the sample molecule speed can be determined to be about 250 m / s from the delay time of 8 μsec.

溶液導入管12としては、試料溶液の貯留部Sから試料溶液を真空チャンバ11内に供給できるものであればよく、特に限定されないが、石英等の非誘電体で形成され有機分子の付着が生じにくいキャピラリであるのが好ましい。
本発明の分析装置1では、射出用パルスレーザー光18の照射によって溶液導入管12の先端を加熱することが、真空チャンバ11の真空度を低下させる要因になる。
The solution introduction tube 12 is not particularly limited as long as it can supply the sample solution from the sample solution storage section S into the vacuum chamber 11. However, the solution introduction tube 12 is formed of a non-dielectric material such as quartz and causes adhesion of organic molecules. A difficult capillary is preferred.
In the analyzer 1 of the present invention, heating the tip of the solution introduction tube 12 by irradiation with the pulsed laser beam 18 for injection causes a reduction in the vacuum degree of the vacuum chamber 11.

そこで、溶液導入管12の内径を種々に変化させ、試料溶液の代わりに水を連続的に真空チャンバ11に導入しながら圧力を測定した。ポンプPによる真空チャンバ11の到達真空度は1.0×10−3Paであった。内径50μmの溶液導入管12を用いて100℃でその先端部分を加熱すると、真空度は1.0×10−2Paまで低下し、分析を行うには支障があった。しかし、内径を20μmとすると、加熱温度100℃でも真空度が3.4×10−3Paに保たれて、分析には支障がないレベルであった。
以上から、溶液導入管12の内径によって真空チャンバ11の真空度を調整できることがわかる。また、溶媒の種類によっても異なるが、水を主体とする試料溶液においては、溶液導入管12の内径として20μmが一つの目安になる。
Therefore, the inner diameter of the solution introduction tube 12 was changed in various ways, and the pressure was measured while continuously introducing water into the vacuum chamber 11 instead of the sample solution. The ultimate vacuum of the vacuum chamber 11 by the pump P was 1.0 × 10 −3 Pa. When the tip portion of the solution introduction tube 12 having an inner diameter of 50 μm was heated at 100 ° C., the degree of vacuum decreased to 1.0 × 10 −2 Pa, which hindered the analysis. However, when the inner diameter was 20 μm, the degree of vacuum was maintained at 3.4 × 10 −3 Pa even at a heating temperature of 100 ° C., which was a level that did not hinder the analysis.
From the above, it can be seen that the vacuum degree of the vacuum chamber 11 can be adjusted by the inner diameter of the solution introduction tube 12. Further, although different depending on the type of solvent, in the sample solution mainly composed of water, 20 μm is one guide for the inner diameter of the solution introduction tube 12.

次に、分析装置1における射出用パルスレーザー光18のエネルギーと真空度との関係について、図4を参照しつつ説明する。
図4に示すように、射出用パルスレーザー光18のエネルギーが増加するにしたがってピーク面積が増加しており、より多くの溶液が気化しているのがわかる。一方、射出用パルスレーザー光18のエネルギーが一定の値(図4の例は内径100μmの溶液導入管12を用いた場合で1mJ)を超えると、真空チャンバ11内の真空度が変化する。図示の例では、1.5mJを超えると急激に真空度が低下した。このことから、真空度の変動は溶液導入管12の内径と射出用パルスレーザー光18のエネルギーに密接に関連することがわかる。そして、射出用パルスレーザー光18を用いる場合は、そのエネルギーとして1mJが一つの目安になる。
Next, the relationship between the energy of the emission pulse laser beam 18 and the degree of vacuum in the analyzer 1 will be described with reference to FIG.
As shown in FIG. 4, the peak area increases as the energy of the pulse laser beam 18 for emission increases, and it can be seen that more solution is vaporized. On the other hand, when the energy of the pulse laser beam 18 for injection exceeds a certain value (in the example of FIG. 4, 1 mJ when the solution introduction tube 12 having an inner diameter of 100 μm is used), the degree of vacuum in the vacuum chamber 11 changes. In the illustrated example, the degree of vacuum suddenly decreased when it exceeded 1.5 mJ. From this, it can be seen that the variation in the degree of vacuum is closely related to the inner diameter of the solution introduction tube 12 and the energy of the pulse laser beam 18 for injection. And when using the pulsed laser beam 18 for injection, 1 mJ becomes one standard as the energy.

溶液導入管12の先端とイオン化レーザー光16とは、イオン化効率を高くするために可能な限り近接させるのが好ましい。
イオン化レーザー照射部14としては、試料の種類に応じて適切なものを選択する。例えば、紫外領域の光子を吸収する性質を有する試料に対しては紫外パルスレーザーを用いればよい。
射出用パルスレーザー照射部17は、溶液導入管12の先端の試料溶液に射出用パルスレーザー光18を照射することで試料溶液を真空チャンバ11に射出できるものであればその種類は問わない。イオン化レーザー照射部14と同じものを用いることもできるが、射出用に用いるための波長等を調整する必要がある。
It is preferable that the tip of the solution introduction tube 12 and the ionized laser beam 16 be as close as possible to increase ionization efficiency.
As the ionization laser irradiation unit 14, an appropriate one is selected according to the type of the sample. For example, an ultraviolet pulse laser may be used for a sample having a property of absorbing photons in the ultraviolet region.
The injection pulse laser irradiation unit 17 may be of any type as long as it can inject the sample solution into the vacuum chamber 11 by irradiating the sample solution at the tip of the solution introducing tube 12 with the injection pulse laser beam 18. Although the same thing as the ionization laser irradiation part 14 can also be used, it is necessary to adjust the wavelength etc. for using for injection | emission.

上記構成の分析装置1の作用を説明する。
図1の分析装置1においては、まず、分析を行う試料溶液を採取し、濾紙等を使って夾雑物を濾過する。必要に応じて濾過を複数回繰り返すか、固相抽出カートリッジを用いることで不要な夾雑物を除去することができる。このようして得られた試料溶液を、分析に必要な分量だけシリンダS等に保持させる。
このシリンダSに溶液導入管12を差し込み、真空チャンバ11との圧力差によって真空チャンバ11に供給する。このとき、溶液導入管12の先端の試料溶液に射出用パルスレーザー光18を照射して溶媒を蒸発させ、試料分子を溶液導入管12の先端から真空チャンバ11に導入する。
真空チャンバ11では、溶液導入管12から導入された試料溶液にイオン化レーザー光16を照射してイオン化する。電極23,24によって加速された試料イオンは、質量分析器15に導入され、検出器20に衝突する。オシロスコープ21は、試料イオンが検出器20に到達する時間の差を分析結果として出力する。
The operation of the analyzer 1 having the above configuration will be described.
In the analyzer 1 of FIG. 1, first, a sample solution to be analyzed is collected, and impurities are filtered using a filter paper or the like. Unnecessary impurities can be removed by repeating the filtration a plurality of times as necessary or using a solid phase extraction cartridge. The sample solution thus obtained is held in the cylinder S or the like by an amount necessary for analysis.
The solution introduction tube 12 is inserted into the cylinder S and supplied to the vacuum chamber 11 due to a pressure difference with the vacuum chamber 11. At this time, the sample solution at the tip of the solution introduction tube 12 is irradiated with the pulsed laser light 18 for injection to evaporate the solvent, and the sample molecules are introduced into the vacuum chamber 11 from the tip of the solution introduction tube 12.
In the vacuum chamber 11, the sample solution introduced from the solution introduction tube 12 is ionized by irradiating the ionized laser beam 16. The sample ions accelerated by the electrodes 23 and 24 are introduced into the mass analyzer 15 and collide with the detector 20. The oscilloscope 21 outputs the difference in time for the sample ions to reach the detector 20 as an analysis result.

[実施例]
以下、上記構成の分析装置を利用した具体的な実施例について説明する。
[実施例1]
キャピラリーカラム: GL Sciences製 長さ40cm 内径20μm
イオン化レーザー照射部:Rayture Systems製, GAIA
IIのNd:YAGレーザー(波長266 nm, パルス幅5 ns,周波数10 Hz)
射出用パルスレーザー照射部:Continuum製,Minilite IIのNd:YAGレーザー(波長532 nm, パルス幅5 ns, 周波数10 Hz)
溶液導入管12の先端とイオン化レーザー光16との距離:2mm
二つのレーザー光の照射タイミング調整:Stanford Research Systems製, DG 535ディレイ/パルスジェネレーター
真空チャンバの真空到達度:1.0×10−3Pa
試料溶液:2,4-キシレノール水溶液(1ng/μl)
この実施例1では、二つのレーザー光の照射タイミングの時間差を0とすることで、実質的に射出用パルスレーザー光18を照射しない状態で分析を行った。その結果を図5(a)のグラフに示す。
図5(a)の質量スペクトルから、2,4-キシレノールの分子イオンピークといくつかのフラグメントイオンピークとが観測できる。これは、2,4-キシレノールは揮発性が高いため、溶液導入管12の先端まで導入された2,4-キシレノールが気化しイオン化したものと思われる。すなわち、2,4-キシレノールのように揮発性の高い試料は、射出用パルスレーザー光18を照射しなくても真空チャンバ11に試料溶液を導入できることがわかる。
[Example]
Hereinafter, specific examples using the analyzing apparatus having the above configuration will be described.
[Example 1]
Capillary column: GL Sciences, length 40 cm, inner diameter 20 μm
Ionized laser irradiation unit: manufactured by Rayture Systems, GAIA
II Nd: YAG laser (wavelength 266 nm, pulse width 5 ns, frequency 10 Hz)
Pulse laser irradiation unit for injection: Continuum, Minilite II Nd: YAG laser (wavelength 532 nm, pulse width 5 ns, frequency 10 Hz)
Distance between the tip of the solution introduction tube 12 and the ionized laser beam 16: 2 mm
Adjustment of irradiation timing of two laser beams: Stanford Research Systems, DG 535 delay / pulse generator Vacuum reach of vacuum chamber: 1.0 × 10 −3 Pa
Sample solution: 2,4-xylenol aqueous solution (1 ng / μl)
In Example 1, the time difference between the irradiation timings of the two laser beams was set to 0, so that the analysis was performed without substantially irradiating the emission pulse laser beam 18. The result is shown in the graph of FIG.
From the mass spectrum of FIG. 5 (a), a molecular ion peak of 2,4-xylenol and several fragment ion peaks can be observed. This is considered to be because 2,4-xylenol was vaporized and ionized because 2,4-xylenol was highly volatile. That is, it can be seen that a sample having high volatility such as 2,4-xylenol can introduce the sample solution into the vacuum chamber 11 without irradiation with the pulse laser beam 18 for injection.

[実施例2]
二つのレーザー光の照射タイミングの時間差を8μsecとした以外は、実施例1と同じである。その結果を図5(b)のグラフに示す。この実施例2では、溶液導入管12の先端に射出用パルスレーザーを照射することで溶媒の水が蒸発し、2,4-キシレノール分子が真空チャンバ11内にパルス状に導入される。
図5(b)のグラフから、実施例1の図5(a)の分子イオンピークに対し1.5倍程度信号強度が増加していることがわかる。このように、射出用パルスレーザー光18を照射することで感度の向上が期待でき、微量分析に適していると言える。
また、この増倍率は各種実験条件の最適化に加え、揮発性が低い分子の方がより大きな値を示すものと考えられる。すなわち、揮発性の低い試料溶液は溶液導入管12の先端で凝固しやすく、そのままでは真空チャンバ11に試料溶液を導入することは困難であるが、射出用パルスレーザー光18を照射することで試料溶液をパルス状に真空チャンバ11に射出することが可能になる。
[Example 2]
Example 2 is the same as Example 1 except that the time difference between the irradiation timings of the two laser beams is 8 μsec. The result is shown in the graph of FIG. In Example 2, the tip of the solution introduction tube 12 is irradiated with an injection pulse laser, whereby the solvent water evaporates and 2,4-xylenol molecules are introduced into the vacuum chamber 11 in a pulsed manner.
From the graph of FIG. 5B, it can be seen that the signal intensity is increased by about 1.5 times the molecular ion peak of FIG. Thus, it can be said that the improvement in sensitivity can be expected by irradiating the pulsed laser beam 18 for injection, and it can be said that it is suitable for microanalysis.
In addition to optimization of various experimental conditions, this multiplication factor is considered to be larger for molecules with lower volatility. That is, a sample solution with low volatility is easily solidified at the tip of the solution introduction tube 12, and it is difficult to introduce the sample solution into the vacuum chamber 11 as it is, but the sample is irradiated by irradiating the pulsed laser beam 18 for injection. It becomes possible to inject the solution into the vacuum chamber 11 in a pulse shape.

本発明の好適な実施形態について説明したが、本発明は上記の説明に限定されるものではない。
例えば、上記の説明ではパルスレーザー照射光18を照射することで溶液導入管12の先端から試料溶液を射出するようにしているが、パルス状に試料溶液を射出できるものであれば、断続的に溶液導入管12の先端を加熱できるようにしたヒーターであってもよい。また、図2に示した他の実施形態において溶液導入管12と外管13との間の隙間に通すガスは外気に限らず、分析に支障を与えないものであれば他のガス(窒素やその他の不活性ガス等)を用いることができる。
Although a preferred embodiment of the present invention has been described, the present invention is not limited to the above description.
For example, in the above description, the sample solution is ejected from the tip of the solution introduction tube 12 by irradiating the pulsed laser irradiation light 18, but if the sample solution can be ejected in a pulsed manner, it is intermittent. A heater that can heat the tip of the solution introduction tube 12 may be used. Further, in another embodiment shown in FIG. 2, the gas passed through the gap between the solution introduction tube 12 and the outer tube 13 is not limited to the outside air, and other gases (nitrogen and nitrogen) can be used as long as they do not hinder the analysis. Other inert gases etc. can be used.

本発明の方法及び装置は、試料溶液をリアルタイムで直接分析するのに好適で、河川や湖沼等の水質の分析の他、工場排水や土壌の汚染状況の分析など、広範に適用が可能である。   The method and apparatus of the present invention are suitable for directly analyzing a sample solution in real time, and can be widely applied to analysis of water quality of rivers, lakes and the like, as well as analysis of factory drainage and soil contamination. .

本発明の分析装置の一実施形態にかかり、その構成を説明する概略図である。It is the schematic concerning one Embodiment of the analyzer of this invention, and explaining the structure. 本発明の分析装置の他の実施形態にかかり、その構成を説明する概略図である。It is the schematic which concerns on other embodiment of the analyzer of this invention, and demonstrates the structure. 射出用パルスレーザー光とイオン化レーザー光の照射タイミングを説明するグラフである。It is a graph explaining the irradiation timing of the pulsed laser beam for injection and the ionized laser beam. 射出用パルスレーザー光のエネルギーと信号出力との関係を示すグラフである。It is a graph which shows the relationship between the energy of the pulse laser beam for injection | emission, and a signal output. 本発明の実施例にかかり(a)は射出用パルスレーザー光を照射しない場合の質量スペクトル、(b)は射出用パルスレーザー光を照射した場合の質量スペクトルである。According to the embodiment of the present invention, (a) is a mass spectrum when irradiation with pulsed laser light for injection is not performed, and (b) is a mass spectrum when irradiated with pulsed laser light for injection.

1 分析装置
11 真空チャンバ
12 溶液導入管
13 外管
14 イオン化レーザー照射部
15 質量分析器
16 イオン化レーザー光
17 射出用パルスレーザー照射部
18 射出用パルスレーザー光
20 光検出器
21 オシロスコープ
22,23,24 電極
25 ミラー
27,28 導入窓
DESCRIPTION OF SYMBOLS 1 Analyzer 11 Vacuum chamber 12 Solution introduction tube 13 Outer tube 14 Ionization laser irradiation part 15 Mass analyzer 16 Ionization laser light 17 Ejection pulse laser irradiation part 18 Ejection pulse laser light 20 Photodetector 21 Oscilloscope 22, 23, 24 Electrode 25 Mirror 27, 28 Introduction window

Claims (9)

真空チャンバ内に導入した試料にレーザー光を照射してイオン化させることで質量分析を行う分析方法において、
試料を含む試料溶液の貯留部から前記真空チャンバまで試料溶液を供給する溶液導入管と、この溶液導入管の先端から前記真空チャンバに前記試料溶液をパルス射出する試料溶液のパルス射出手段とを準備し、
前記パルス射出手段により、前記溶液導入管の先端から前記真空チャンバに試料溶液をパルス状に射出し、
前記真空チャンバにパルス状に導入された前記試料溶液にレーザー光を照射して試料イオンを生成させること、
を特徴とする試料溶液の質量分析方法。
In an analysis method that performs mass spectrometry by irradiating a sample introduced into a vacuum chamber with laser light and ionizing it,
A solution introduction tube for supplying a sample solution from a storage portion of a sample solution containing a sample to the vacuum chamber and a sample solution pulse injection means for pulse-injecting the sample solution from the tip of the solution introduction tube to the vacuum chamber are prepared. And
By the pulse ejection means, the sample solution is ejected in a pulse form from the tip of the solution introduction tube to the vacuum chamber,
Irradiating the sample solution pulsed into the vacuum chamber with laser light to generate sample ions;
A method for mass spectrometry of a sample solution characterized by the above.
前記パルス射出手段が前記溶液導入管の先端の前記試料溶液を断続的に加熱するヒータで、このヒータによる断続加熱で前記真空チャンバに試料溶液をパルス状に射出することを特徴とする請求項1に記載の試料溶液の質量分析方法。 2. The pulse injection means is a heater that intermittently heats the sample solution at the tip of the solution introduction tube, and the sample solution is injected into the vacuum chamber in pulses by intermittent heating by the heater. A method for mass spectrometry of the sample solution according to 1. 前記パルス射出手段がパルスレーザー照射装置で、前記溶液導入管の先端の前記試料溶液にパルスレーザー光を照射することで、前記試料溶液をパルス状に前記真空チャンバに導入することを特徴とする請求項1に記載の試料溶液の質量分析方法。 The pulse injection means is a pulse laser irradiation apparatus, and the sample solution is introduced into the vacuum chamber in a pulse shape by irradiating the sample solution at the tip of the solution introduction tube with pulse laser light. Item 2. A method for mass spectrometry of a sample solution according to Item 1. 前記溶液導入管の外側にガス導入管を設け、前記ガス導入管から導入したガスにより、前記溶液導入管の先端における前記試料溶液の凝固を抑制することを特徴とする請求項1〜3のいずれかに記載の試料溶液の質量分析方法。 The gas introduction pipe is provided outside the solution introduction pipe, and solidification of the sample solution at the tip of the solution introduction pipe is suppressed by the gas introduced from the gas introduction pipe. A method for mass spectrometry of the sample solution according to claim 1. 真空チャンバ内に導入した試料にレーザー光を照射してイオン化させることで質量分析を行う分析装置において、
試料を含む試料溶液の貯留部から前記真空チャンバまで溶液を供給する溶液導入管と、
この溶液導入管の先端から前記真空チャンバに前記試料溶液をパルス射出する試料溶液のパルス射出手段と、
前記真空チャンバにパルス状に導入された前記試料溶液にレーザー光を照射して試料イオンを生成させるレーザー照射手段と、
を有することを特徴とする試料溶液の質量分析装置。
In an analyzer that performs mass spectrometry by ionizing a sample introduced into a vacuum chamber by irradiating it with laser light,
A solution introduction tube for supplying a solution from a reservoir of a sample solution containing a sample to the vacuum chamber;
A sample solution pulse injection means for pulse-injecting the sample solution from the tip of the solution introduction tube to the vacuum chamber;
Laser irradiation means for generating sample ions by irradiating the sample solution pulsed into the vacuum chamber with laser light;
An apparatus for mass analysis of a sample solution, comprising:
前記パルス射出手段が前記溶液導入管の先端の前記試料溶液を断続的に加熱するヒータであることを特徴とする請求項5に記載の試料溶液の質量分析装置。 6. The sample solution mass spectrometer according to claim 5, wherein the pulse injection means is a heater that intermittently heats the sample solution at the tip of the solution introduction tube. 前記パルス射出手段がパルスレーザー照射装置であることを特徴とする請求項5に記載の試料溶液の質量分析装置。 6. The sample solution mass spectrometer according to claim 5, wherein the pulse injection means is a pulse laser irradiation device. 前記溶液導入管の外側にガス導入管を設けたことを特徴とする請求項5〜7のいずれかに記載の試料溶液の質量分析装置。 The sample solution mass spectrometer according to any one of claims 5 to 7, wherein a gas introduction tube is provided outside the solution introduction tube. 前記溶液導入管の先端を3mmより小さい寸法で前記外管の先端よりも内側又は外側に位置させたことを特徴とする請求項8に記載の試料溶液の質量分析装置。
9. The mass spectrometer of sample solution according to claim 8, wherein the tip of the solution introduction tube has a dimension smaller than 3 mm and is located inside or outside of the tip of the outer tube.
JP2013101840A 2013-05-14 2013-05-14 Mass analysis method and apparatus for sample solution Expired - Fee Related JP6103764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101840A JP6103764B2 (en) 2013-05-14 2013-05-14 Mass analysis method and apparatus for sample solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101840A JP6103764B2 (en) 2013-05-14 2013-05-14 Mass analysis method and apparatus for sample solution

Publications (2)

Publication Number Publication Date
JP2014222190A true JP2014222190A (en) 2014-11-27
JP6103764B2 JP6103764B2 (en) 2017-03-29

Family

ID=52121777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101840A Expired - Fee Related JP6103764B2 (en) 2013-05-14 2013-05-14 Mass analysis method and apparatus for sample solution

Country Status (1)

Country Link
JP (1) JP6103764B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420482A (en) * 2020-11-12 2021-02-26 清华大学深圳国际研究生院 Pulse sample introduction device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176459A (en) * 1988-12-27 1990-07-09 Shimadzu Corp Liquid chromatograph mass spectroscope
JP2000106127A (en) * 1998-09-30 2000-04-11 Jeol Ltd Atmospheric pressure ion source
US6147347A (en) * 1994-03-15 2000-11-14 Hitachi, Ltd. Ion source and mass spectrometer instrument using the same
JP2001041930A (en) * 1994-03-15 2001-02-16 Hitachi Ltd Ionizing method of sample solution
JP2003035699A (en) * 2001-07-19 2003-02-07 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Supersonic molecular jet spectroscopic analysis method and apparatus
JP2004303497A (en) * 2003-03-31 2004-10-28 National Institute Of Advanced Industrial & Technology Particle ionization method and device
US20130077943A1 (en) * 2010-04-29 2013-03-28 Bayer Intellectual Property Gmbh Liquid evaporator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176459A (en) * 1988-12-27 1990-07-09 Shimadzu Corp Liquid chromatograph mass spectroscope
US6147347A (en) * 1994-03-15 2000-11-14 Hitachi, Ltd. Ion source and mass spectrometer instrument using the same
JP2001041930A (en) * 1994-03-15 2001-02-16 Hitachi Ltd Ionizing method of sample solution
JP2000106127A (en) * 1998-09-30 2000-04-11 Jeol Ltd Atmospheric pressure ion source
JP2003035699A (en) * 2001-07-19 2003-02-07 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Supersonic molecular jet spectroscopic analysis method and apparatus
JP2004303497A (en) * 2003-03-31 2004-10-28 National Institute Of Advanced Industrial & Technology Particle ionization method and device
US20130077943A1 (en) * 2010-04-29 2013-03-28 Bayer Intellectual Property Gmbh Liquid evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420482A (en) * 2020-11-12 2021-02-26 清华大学深圳国际研究生院 Pulse sample introduction device and method
CN112420482B (en) * 2020-11-12 2022-05-17 清华大学深圳国际研究生院 Pulse sample introduction device and method

Also Published As

Publication number Publication date
JP6103764B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
Dilecce et al. Laser diagnostics of high-pressure discharges: laser induced fluorescence detection of OH in He/Ar–H2O dielectric barrier discharges
US9412574B2 (en) Parallel elemental and molecular mass spectrometry analysis with laser ablation sampling
EP1297554B1 (en) Atmospheric pressure photoionizer for mass spectrometry
US20150187558A1 (en) Pulse-burst assisted electrospray ionization mass spectrometer
US20070164206A1 (en) Supercritical fluid jet method and supercritical fluid jet mass analysis method and device
Lindner et al. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry
Delgado et al. Laser-induced plasma spectroscopy of organic compounds. Understanding fragmentation processes using ion–photon coincidence measurements
JP2007057432A (en) Extraction method of ions and extractor of ions
JP6103764B2 (en) Mass analysis method and apparatus for sample solution
Alves et al. Direct detection of particles formed by laser ablation of matrices during matrix‐assisted laser desorption/ionization
US10466214B2 (en) Ionization device
Elshakre Dissociative ionization of methanol in medium intense femtosecond laser field using time-of-flight mass spectrometry
Yamada et al. A molecular-beam apparatus with a spray-jet technique for studying neutral non-volatile molecules
Asami et al. Conformation of protonated guanine nucleotides via infrared multiphoton dissociation spectroscopy: Observation of rotamers in the anti-conformation
Rossi et al. Quantitative aspects of benzene photoionization at 248 nm
McEnnis et al. Femtosecond laser-induced fragmentation and cluster formation studies of solid phase trinitrotoluene using time-of-flight mass spectrometry
JP4906403B2 (en) Jet-REMPI system for gas analysis
Saquilayan et al. Beam production of a laser ion source with a rotating hollow cylinder target for low energy positive and negative ions
Karatodorov et al. Spectroscopic characteristics of hollow cathode discharge with sample introduction by laser ablation
Kohno et al. Gas phase ion formation from a liquid beam of arginine in aqueous solution by IR multiphoton excitation
Huang et al. Matrix-assisted laser desorption ionization of infrared laser ablated particles
Merrigan et al. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides
Mashni et al. Mass spectrometric detection of molecular ions formed by irradiation of condensed methanol with a CO 2 laser
He Molecular beam study of non-thermal plasma treatment of volatile organic compounds
JP2004212215A (en) Laser ablation polymer analyzing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6103764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees