JP2014222158A - Method for measuring flow of fluid - Google Patents

Method for measuring flow of fluid Download PDF

Info

Publication number
JP2014222158A
JP2014222158A JP2013101105A JP2013101105A JP2014222158A JP 2014222158 A JP2014222158 A JP 2014222158A JP 2013101105 A JP2013101105 A JP 2013101105A JP 2013101105 A JP2013101105 A JP 2013101105A JP 2014222158 A JP2014222158 A JP 2014222158A
Authority
JP
Japan
Prior art keywords
fluid
tracer particles
tracer
fluid flow
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013101105A
Other languages
Japanese (ja)
Other versions
JP6143224B2 (en
Inventor
直行 武内
Naoyuki Takeuchi
直行 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAIDO DAINI MOTOR KK
Original Assignee
TAKAIDO DAINI MOTOR KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAIDO DAINI MOTOR KK filed Critical TAKAIDO DAINI MOTOR KK
Priority to JP2013101105A priority Critical patent/JP6143224B2/en
Publication of JP2014222158A publication Critical patent/JP2014222158A/en
Application granted granted Critical
Publication of JP6143224B2 publication Critical patent/JP6143224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring the flow of a fluid with high accuracy.SOLUTION: The method for irradiating a fluid supplying tracer particles with excitation light and measuring the flow of the fluid by observing fluorescence from the tracer particles comprises: supplying two or more kinds of tracer particles emitting fluorescence having different wavelengths to the fluid in a state mixed to be uniformly distributed; irradiating the fluid with the excitation light to emit fluorescence in the two or more kinds of tracer particles; and photographing the image of the fluid so as to identify the wavelength of the fluorescence emitted by the two or more kinds of tracer particles to measure the flow of the fluid.

Description

本発明は、流体の流れを計測する方法に関する。   The present invention relates to a method for measuring fluid flow.

なお、ここでいう「流体の流れの計測」とは、流体の速度(流速)及び/又は流体の流れ方(流体の挙動)の可視化をいう。   Here, “measurement of fluid flow” means visualization of fluid velocity (flow velocity) and / or fluid flow (fluid behavior).

流体速度を計測する場合、あるいは内部流を可視化して流れ状態を観測する場合にあっては、従来よりPIV法(Particle Image Velocimetry法、)やPTV法(Particle Tracking Velocimetry)が採られている(例えば特許文献1を参照)。   In the case of measuring the fluid velocity or in the case of observing the flow state by visualizing the internal flow, the PIV method (Particle Image Velocimetry method) and the PTV method (Particle Tracking Velocimetry) have been conventionally employed ( For example, see Patent Document 1).

PIV法は、トレーサ粒子が供給された流体に連続発振レーザーあるいはパルスレーザーをシート状に照射し、2時刻の瞬間的な粒子画像を記録し、連続する2時刻の画像上のトレーサ粒子像からその画像上の粒子の移動量ΔXを求め、2時刻の時間差Δt及び画像を用いて速度Vを求める。PIV法においては、個々の粒子を識別することなく、1時刻目の画像における微小な領域(検査領域)内の粒子の分布と2時刻目の画像における領域(探査領域)内の粒子の分布との相互相関を求める等の手法により、粒子群の平均的な移動として流体の流れを推定するのが一般的である。   The PIV method irradiates a fluid supplied with tracer particles with a continuous wave laser or a pulsed laser in a sheet form, records instantaneous particle images at two times, and extracts the tracer particle images from the continuous two time images. The movement amount ΔX of the particles on the image is obtained, and the velocity V is obtained using the time difference Δt between the two times and the image. In the PIV method, without identifying individual particles, the distribution of particles in a minute area (inspection area) in the image at the first time and the distribution of particles in the area (exploration area) in the image at the second time In general, the flow of fluid is estimated as an average movement of a particle group by a method such as obtaining a cross-correlation of particles.

PTV法は、個々の粒子の運動を追跡する手法であり、例えば、トレーサ粒子が供給された流体に連続的に光を照射しつつ流体の動画を記録し、個々の粒子の移動を可視化して流体の速度計測あるいは流体分布を計測する方法である。   The PTV method is a method of tracking the movement of individual particles. For example, a moving image of a fluid is recorded while continuously irradiating light to the fluid supplied with tracer particles, and the movement of each particle is visualized. This is a method for measuring fluid velocity or measuring fluid distribution.

これらの流体を可視化して流れ状態を観測する手法において、流体に混入させるトレーサ粒子の量が比較的少量のときにはトレーサ粒子を増加させるに伴い計測の精度や分解能は向上する。   In the method of observing the flow state by visualizing these fluids, when the amount of tracer particles mixed into the fluid is relatively small, the accuracy and resolution of measurement are improved as the number of tracer particles is increased.

特開2012−220409号公報JP 2012-220409 A

しかし、画像を撮影する際に、混入されたトレーサ粒子が頻繁に重複するほどトレーサ粒子の密度が高まった場合には、PIV法では連続する2時刻の画像における相互相関が得られにくくなり、PTV法では個々の粒子の識別が困難になる。その結果、トレーサ粒子の単なる増量によって計測の精度を高めることには限界がある。   However, when taking an image, if the density of the tracer particles increases so that the mixed tracer particles are frequently overlapped, the PIV method makes it difficult to obtain cross-correlation in two consecutive images. The method makes it difficult to identify individual particles. As a result, there is a limit to increasing measurement accuracy by simply increasing the tracer particles.

そこで、本発明は上記の課題を解決することのできる流体の流れの計測方法を提供することを目的とする。この目的は特許請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。   Then, an object of this invention is to provide the measuring method of the flow of the fluid which can solve said subject. This object is achieved by a combination of features described in the independent claims. The dependent claims define further advantageous specific examples of the present invention.

上記目的を達成するために、本発明に係る流体の流れの計測方法は、トレーサ粒子を供給した流体に対して励起光を照射し、トレーサ粒子からの蛍光を観測することによって該流体の流れを計測する方法であって、互いに異なる波長の蛍光を発光する複数種類のトレーサ粒子を均一に分布するように混合した状態で流体に供給し、流体に対し励起光を照射して複数種類のトレーサ粒子に蛍光を発光させ、流体の画像を複数種類のトレーサ粒子の発する蛍光の波長を識別可能に撮影して流体の流れを計測する。上記の構成により、精度の高い流体計測を実現できる。   In order to achieve the above object, a fluid flow measurement method according to the present invention irradiates a fluid supplied with tracer particles with excitation light, and observes fluorescence from the tracer particles. A method of measurement, in which a plurality of types of tracer particles that emit fluorescence of different wavelengths are supplied to a fluid in a mixed state so as to be uniformly distributed, and a plurality of types of tracer particles are irradiated by irradiating the fluid with excitation light. Fluorescent light is emitted, and an image of the fluid is photographed so that the wavelengths of the fluorescence emitted by a plurality of types of tracer particles can be identified, and the flow of the fluid is measured. With the above configuration, highly accurate fluid measurement can be realized.

上記の流体の流れの計測方法において、1種類のみのトレーサ粒子を供給する場合における当該1種類のトレーサ粒子の濃度の増加に応じて粒子の誤認識が増加し始める濃度よりも高い濃度で、複数種類のトレーサ粒子を混合して供給するとよい。1種類のみのトレーサ粒子では誤認識が増加し始めるよりも高濃度でトレーサ粒子を供給して高精度の流体計測を行うことが可能となる。   In the above fluid flow measurement method, when only one type of tracer particles is supplied, a plurality of concentrations at a concentration higher than the concentration at which erroneous recognition of particles starts to increase with an increase in the concentration of the one type of tracer particles. It is advisable to supply mixed tracer particles. With only one type of tracer particles, it is possible to supply tracer particles at a higher concentration and perform highly accurate fluid measurement than when misrecognition starts to increase.

上記の流体の流れの計測方法において、励起光の光源を青色発光ダイオードとするとよい。このような構成により、励起光として高出力のレーザを使用する場合と比べ、取扱いを容易とすることができる。   In the above fluid flow measurement method, the light source of the excitation light may be a blue light emitting diode. With such a configuration, handling can be facilitated as compared with the case where a high-power laser is used as excitation light.

励起光の光源は同期して駆動される複数の青色発光ダイオードとするとよい。このような構成により、広い流れ場に励起光を照射することができる。   The light source of the excitation light may be a plurality of blue light emitting diodes that are driven in synchronization. With such a configuration, excitation light can be applied to a wide flow field.

上記の流体の流れの計測方法において、カラーカメラで第1時刻と第2時刻において流体の画像を連続して撮影し、第1時刻の画像と第2時刻の画像をパターンマッチングし、第1時刻の画像と第2時刻の画像の間での個々のトレーサ粒子の位置の変化に基づき、流体の流速及び/または流体の流れ方を計測するとよい。カラーカメラで撮影した2種類のトレーサ粒子を識別可能な画像のパターンマッチングによって、2つの画像の間でトレーサ粒子を正確に対応付けることができ、計測の精度を向上できる。   In the fluid flow measurement method described above, a fluid image is continuously captured by the color camera at the first time and the second time, the first time image and the second time image are pattern-matched, and the first time The fluid flow velocity and / or the fluid flow may be measured based on the change in the position of the individual tracer particles between the current image and the second time image. By pattern matching of images that can identify two types of tracer particles photographed by a color camera, the tracer particles can be accurately associated between the two images, and the measurement accuracy can be improved.

上記の流体の流れの計測方法において、複数のカラーカメラで流体の画像を互いに異なる方向から同時刻に撮影し、各カメラが同時刻に撮影した画像をパターンマッチングすることにより、各カメラが撮影した画像内の複数種類のトレーサ粒子を対応付け、個々のトレーサ粒子の流体中での3次元位置を特定するとよい。このような構成により、流体の流速や流れ方を3次元で高い精度で計測することができる。   In the fluid flow measurement method described above, images of fluids were taken from different directions at the same time with a plurality of color cameras, and each camera took a picture by pattern matching the images taken at the same time. It is preferable to associate a plurality of types of tracer particles in the image and specify the three-dimensional position of each tracer particle in the fluid. With such a configuration, it is possible to measure the flow velocity and flow of the fluid in three dimensions with high accuracy.

上記の流体の流れの計測方法において、2台のカラーカメラで流体の画像を互いに異なる方向から撮影し、2台のカメラの撮影方向のいずれにも直交する方向を向いたベクトルである法線ベクトルの方向における位置により、各画像に写る複数種類のトレーサ粒子を1次元の軸上に整列させ、当該1次元の軸上に整列させたときの2種類のトレーサ粒子の配列パターンに応じて各カメラが撮影した画像内の複数種類のトレーサ粒子を対応付けるとよい。パターンマッチングの計算量を減少させることができ、処理の負荷低減や高速化を実現することができる。   In the above-described fluid flow measurement method, a normal vector that is a vector in which fluid images are taken from different directions by two color cameras and oriented in a direction orthogonal to any of the photographing directions of the two cameras. A plurality of types of tracer particles appearing in each image are aligned on a one-dimensional axis according to the position in the direction of the image, and each camera is arranged according to the arrangement pattern of the two types of tracer particles when aligned on the one-dimensional axis. It is preferable to associate a plurality of types of tracer particles in the image taken by. The amount of calculation for pattern matching can be reduced, and the processing load can be reduced and the processing speed can be increased.

なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションも又発明となりうる。   The above summary of the invention does not enumerate all necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

図1は、本発明の流体の流れを計測する方法が適用される流体解析装置10の構成を示す。FIG. 1 shows a configuration of a fluid analysis apparatus 10 to which a method for measuring a fluid flow of the present invention is applied. 図2(a)および(b)は、本発明の実施形態に係る流体解析装置10により所定の時間間隔を空けて連続して撮影された2枚の撮影画像の例を模式的に示す。FIGS. 2A and 2B schematically show examples of two captured images continuously captured at a predetermined time interval by the fluid analyzing apparatus 10 according to the embodiment of the present invention. 図3(a)および(b)は、撮像部12を構成する2台のカメラにより異なる角度から流体14の共通の領域を撮影した2枚の撮影画像の例を模式的に示す。FIGS. 3A and 3B schematically show examples of two captured images obtained by capturing a common region of the fluid 14 from different angles by two cameras constituting the imaging unit 12. 図4(a)および(b)は、解析部13が2枚の撮影画像に写るトレーサ粒子を対応付ける際に行う1次元化処理を示す模式図である。FIGS. 4A and 4B are schematic diagrams showing a one-dimensionalization process performed when the analysis unit 13 associates tracer particles appearing in two photographed images.

図1は、本発明の流体の流れを計測する方法が適用される流体解析装置10の構成を示す。流体解析装置10は、励起光照射部11、撮像部12、および解析部13を備える。   FIG. 1 shows a configuration of a fluid analysis apparatus 10 to which a method for measuring a fluid flow of the present invention is applied. The fluid analysis device 10 includes an excitation light irradiation unit 11, an imaging unit 12, and an analysis unit 13.

励起光照射部11は、励起光を出射する光源と、出射された励起光を流体14の流れ場内に薄幅のシート状のシート光30として投入させるシート生成光学系(例えば、スリット、レンズ等)とを有する。   The excitation light irradiation unit 11 includes a light source that emits excitation light, and a sheet generation optical system (for example, a slit, a lens, and the like) that inputs the emitted excitation light as a thin sheet-like sheet light 30 in the flow field of the fluid 14. ).

流体14には、トレーサ粒子(20、21)と呼ばれる微細な粒子が混入される。トレーサ粒子の種類等は本発明で特に限定するものではないが、流体14の種類等に応じて適宜選択される。たとえば、流体14が液体の場合には、ポリスチレン等の樹脂系固形球形粒子等が用いられることが多い。また、流体14が気体の場合には、水やオリーブ油等を噴霧化した微細な液滴、プラスチック製中空粒子、煙等が用いられる。本発明では、励起光が照射されると赤色の蛍光を発するトレーサ粒子20と、励起光が照射されると緑色の蛍光を発するトレーサ粒子21が均一に分布するように混合され他状態で用いられる。なお、便宜上、図中においてはトレーサ粒子20を白塗りの円、トレーサ粒子21を黒塗りの円として描いている。   The fluid 14 is mixed with fine particles called tracer particles (20, 21). The type of the tracer particles is not particularly limited in the present invention, but is appropriately selected according to the type of the fluid 14 and the like. For example, when the fluid 14 is a liquid, resin-based solid spherical particles such as polystyrene are often used. When the fluid 14 is a gas, fine droplets obtained by atomizing water, olive oil, or the like, plastic hollow particles, smoke, or the like is used. In the present invention, the tracer particles 20 that emit red fluorescence when irradiated with excitation light and the tracer particles 21 that emit green fluorescence when irradiated with excitation light are mixed and used in another state so as to be evenly distributed. . For convenience, in the figure, the tracer particles 20 are drawn as white circles and the tracer particles 21 are drawn as black circles.

励起光照射部11を構成する光源は、青色発光ダイオードを用いる。青色発光ダイオードは、波長420nm前後で、実用上単一波長とみなせる発光をする。青色発光ダイオードの発する光は、トレーサ粒子20、21の発する蛍光の色(赤及び緑)と容易に分離ができるので、光源からの光が直接または間接的に撮像部12に入力されたとしても、計測結果への影響を排除することができる。また、PIV法では光源を精密にパルス駆動する必要があるが、発光ダイオードは駆動電流を供給してから数百ナノ秒で発光し、レーザと同等の応答性が得られるのでのPIV法に用いる光源として十分な応答性を備える。   A blue light-emitting diode is used as a light source constituting the excitation light irradiation unit 11. The blue light emitting diode emits light having a wavelength of about 420 nm and can be regarded as a single wavelength in practice. The light emitted from the blue light-emitting diode can be easily separated from the fluorescent colors (red and green) emitted from the tracer particles 20 and 21, so that even if the light from the light source is directly or indirectly input to the imaging unit 12. The influence on the measurement result can be eliminated. The PIV method requires precise pulse driving of the light source, but the light emitting diode emits light within a few hundred nanoseconds after supplying a driving current, and can be used for the PIV method because the same responsiveness as a laser can be obtained. Sufficient response as a light source.

原理的には光源としてCWレーザ、パルスレーザ等のレーザを用いることもできるが、広範囲を励起するには強力なレーザを用いる必要があるため、目の保護等、取り扱いに注意が必要である。これに対し、発光ダイオードでは、レーザ程の危険はなく取り扱いが容易である。   In principle, a laser such as a CW laser or a pulse laser can be used as a light source. However, in order to excite a wide range, it is necessary to use a powerful laser. On the other hand, the light emitting diode is not as dangerous as a laser and is easy to handle.

なお、PIV法で測定する場合には、励起光照射部11の発光と撮像部12の撮像タイミングとの間で同期を取る必要がある。同期を取るためには、励起光照射部11または撮像部12の一方の同期信号を他方に供給してもよいし、シンクロナイザなどの同期装置を用いてもよい。   In addition, when measuring by the PIV method, it is necessary to synchronize between the light emission of the excitation light irradiation unit 11 and the imaging timing of the imaging unit 12. In order to synchronize, one synchronization signal of the excitation light irradiation unit 11 or the imaging unit 12 may be supplied to the other, or a synchronization device such as a synchronizer may be used.

撮像部12は、撮像用レンズ、およびカラーカメラを有する。カラーカメラは、例えばCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の撮像素子および三原色を色分解するカラーフィルタなどにより構成され、トレーサ粒子20、21に励起光が照射されることによって得られる蛍光を取り込んでカラーの映像信号を生成して解析部13に与える。以下の説明では、撮像部12から取得した映像信号にもとづく画像を「撮影画像」という。   The imaging unit 12 includes an imaging lens and a color camera. The color camera is composed of an image sensor such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor and a color filter that separates the three primary colors, and the tracer particles 20 and 21 are irradiated with excitation light. In this way, the fluorescent light obtained is taken in, and a color video signal is generated and supplied to the analysis unit 13. In the following description, an image based on the video signal acquired from the imaging unit 12 is referred to as a “captured image”.

撮像部12が生成する映像信号には撮影画像の画素値の情報が含まれる。解析部13は、この映像信号から撮影画像を構成する各画素の画素座標の情報および画素値の情報(少なくとも明度(または輝度、濃度)の情報)を得ることができる。   The video signal generated by the imaging unit 12 includes pixel value information of the captured image. The analysis unit 13 can obtain pixel coordinate information and pixel value information (at least lightness (or luminance, density) information) of each pixel constituting the captured image from the video signal.

解析部13は、撮像部12から受けた撮影画像に基づいて流体14の流速、流れの方向等の解析を行う。なお、解析部13のハードウエア形態は、本発明で特に限定するものではなく、例えば汎用のコンピュータで構成される。   The analysis unit 13 analyzes the flow velocity, the flow direction, and the like of the fluid 14 based on the captured image received from the imaging unit 12. The hardware configuration of the analysis unit 13 is not particularly limited in the present invention, and is configured by, for example, a general-purpose computer.

例えばPIV法による解析を行う場合、解析部13は撮像部12から連続した2時刻の撮影画像を受け取り、2つの撮影画像中のトレーサ粒子の変位に基づいて流速や流れの方向を求める。2つの撮影画像に写るトレーサ粒子の数が少ない場合には、個々の粒子を識別して2つの画像間で同じ粒子を対応付けることは比較的容易であるが、粒子の数が少ない場合には、撮影画像中で流れの解析ができる箇所が少なくなる。一方、画像に写るトレーサ粒子の数が多くなると、撮影画像中で多くの箇所の解析を行うことができるものの、トレーサ粒子の対応付けが困難となり、誤った対応付けをした場合には誤った解析結果が得られることとなる。従来の1種類のトレーサ粒子を用いた手法では、一種類の蛍光の位置や配置パターンから対応付けを行うに過ぎなかったため、比較的少量のトレーサ粒子供給量においても誤認識が発生し、供給量の増加とともに誤認識も増加していた。これに対して、本例では2種類のトレーサ粒子20、21を混合して供給するため、一種類の蛍光の位置や配置パターンだけでなく、2色の蛍光の配列・配置パターンで2つの撮影画像に写るトレーサ粒子の対応付けができるので、1種類のトレーサ粒子の濃度の増加に応じて粒子の誤認識が増加し始める濃度よりも高い濃度でトレーサ粒子を供給することができ、解析の精度を高めることができる。   For example, when performing analysis by the PIV method, the analysis unit 13 receives continuous two-time captured images from the image capturing unit 12 and determines the flow velocity and the flow direction based on the displacement of the tracer particles in the two captured images. When the number of tracer particles appearing in two captured images is small, it is relatively easy to identify individual particles and associate the same particles between the two images, but when the number of particles is small, There are fewer places in the captured image where flow analysis is possible. On the other hand, if the number of tracer particles appearing in the image increases, it is possible to analyze many locations in the captured image, but it becomes difficult to associate the tracer particles. A result will be obtained. In the conventional method using one type of tracer particle, since the association is merely performed from the position and arrangement pattern of one type of fluorescence, erroneous recognition occurs even with a relatively small amount of tracer particle supply, and the supply amount As the number of people increased, misrecognition also increased. On the other hand, in this example, since two types of tracer particles 20 and 21 are mixed and supplied, not only one type of fluorescence position and arrangement pattern but also two types of fluorescence arrangement and arrangement patterns are used for photographing. Since the tracer particles appearing in the image can be associated, the tracer particles can be supplied at a concentration higher than the concentration at which the erroneous recognition of the particles starts to increase as the concentration of one type of tracer particle increases. Can be increased.

図2(a)および(b)は、本発明の実施形態に係る流体解析装置10により所定の時間間隔を空けて連続して撮影された2枚の撮影画像の例を模式的に示している。これら2枚の撮影画像中のトレーサ粒子が仮に1色だとすると、撮影間隔の間にどのトレーサ粒子がどこまで移動したのか判別することは困難である。しかし、本例においては、波長の異なる蛍光を発する2種類のトレーサ粒子20、21が混じっているため、図2(a)および(b)に示されたような配置でトレーサ粒子が並んだとしても、2枚の画像間で、個々のトレーサ粒子を対応付け、撮影間隔の間の移動量および移動方向を求めることができ、これらの情報から流体の流速や流体の流れ方(流体の挙動)を可視化して測定することができる。なお、図2では、本発明の利点を理解し易くすべく、現実の流体中では起こる可能性が低い幾何学的な配置でトレーサ粒子が並んでいる例を用いて単純化して説明したが、現実の流体を形跡する場合においても本例で説明した利点が得られることは言うまでもない。   2 (a) and 2 (b) schematically show examples of two photographed images continuously photographed at a predetermined time interval by the fluid analyzing apparatus 10 according to the embodiment of the present invention. . If the tracer particles in these two photographed images are one color, it is difficult to determine which tracer particles have moved to during the photographing interval. However, in this example, since two types of tracer particles 20 and 21 emitting fluorescence having different wavelengths are mixed, it is assumed that the tracer particles are arranged in an arrangement as shown in FIGS. 2 (a) and (b). In addition, individual tracer particles can be associated between two images, and the amount and direction of movement during the imaging interval can be determined. From this information, fluid flow velocity and fluid flow (fluid behavior) Can be visualized and measured. In FIG. 2, in order to make it easier to understand the advantages of the present invention, the description is simplified by using an example in which tracer particles are arranged in a geometrical arrangement that is unlikely to occur in an actual fluid. It goes without saying that the advantages described in this example can be obtained even in the case of recording the actual fluid.

上記の実施形態では、1台のカメラで流体14を撮影したが、複数のカメラで流体を撮影してもよい。そして、撮像部12として複数のカメラを用いて流体を撮影し、各カメラで撮影して得られた撮影画像を利用して流体14の流れを解析する。複数のカメラによる撮影画像を用いることでトレーサ粒子20、21の位置を3次元で特定することができ、流体14の流れの解析を3次元で行うことができる。   In the above embodiment, the fluid 14 is photographed by one camera, but the fluid may be photographed by a plurality of cameras. And the fluid is image | photographed using several cameras as the imaging part 12, and the flow of the fluid 14 is analyzed using the picked-up image obtained by image | photographing with each camera. By using images taken by a plurality of cameras, the positions of the tracer particles 20 and 21 can be specified in three dimensions, and the flow of the fluid 14 can be analyzed in three dimensions.

このような3次元での流れ解析を行う場合、流体に照射する励起光照射部11は、シート光ではなく、奥行きのある流れ場全体に励起光を照射する。広範囲に強い光を照射すべく、励起光照射部11として複数の青色発光ダイオードを用いることが好適であり、当該複数の青色発光ダイオードを同期して発行させることが好ましい。平面上に青色発光ダイオードを所定の間隔で配置し、計測城全体に一様に励起光を照射するようにするとよい。高出力のレーザを励起光照射部として用いる場合と比べ、青色発光ダイオードを用いる場合は、出力光を直接または間接的に見ることによる眼へのダメージ等が生じにくく、複数を同期動作させた場合にも光源の取り扱いが容易である点で優れている。   When performing such three-dimensional flow analysis, the excitation light irradiation unit 11 that irradiates the fluid irradiates the entire flow field with depth, not the sheet light. In order to irradiate strong light over a wide range, it is preferable to use a plurality of blue light emitting diodes as the excitation light irradiating unit 11, and it is preferable to emit the plurality of blue light emitting diodes synchronously. Blue light emitting diodes may be arranged on the plane at a predetermined interval so that the entire measurement castle is irradiated with excitation light uniformly. Compared to using a high-power laser as the excitation light irradiation unit, when using a blue light-emitting diode, it is less likely to cause damage to the eyes due to direct or indirect viewing of the output light, and multiple units are operated synchronously In addition, the light source is easy to handle.

このように複数のカメラを用いて流体14の撮影を行う場合、励起光照射部11の発光と撮像部12の撮像タイミングとの間で同期を取る必要があり、複数のカメラ間の撮影タイミングが一致するよう同期を取る必要もある。同期を取るためには、励起光照射部11または撮像部12を構成する複数のカメラのいずれかが出力する同期信号を他に供給してもよいし、シンクロナイザなどの同期装置を用いてもよい。   When photographing the fluid 14 using a plurality of cameras in this way, it is necessary to synchronize between the light emission of the excitation light irradiation unit 11 and the imaging timing of the imaging unit 12, and the imaging timing between the plurality of cameras is the same. It is also necessary to synchronize to match. In order to achieve synchronization, a synchronization signal output from any of the plurality of cameras constituting the excitation light irradiation unit 11 or the imaging unit 12 may be supplied to another, or a synchronization device such as a synchronizer may be used. .

図3(a)および(b)は、撮像部12を構成する2台のカメラにより異なる角度から流体14の共通の領域を撮影した2枚の撮影画像の例を模式的に示している。各図において枠外に描かれた矢印は、2台のカメラの撮影方向のいずれにも直交する方向を向いたベクトルである法線ベクトルの方向を示す。図4(a)および(b)は、解析部13が2枚の撮影画像に写るトレーサ粒子を対応付ける際に行う1次元化処理を示す模式図である。解析部13は、各撮影画像について、図4(a)および(b)における一点鎖線の枠内に整列させたように、法線ベクトルの方向における位置によりトレーサ粒子(言い換えると、写っている蛍光の波長、つまり色)を1次元の軸上に整列させる。そして整列させた1次元の列における2種類のトレーサ粒子(20、21)の配列パターンによりマッチングを行う。同時刻における法線ベクトル方向についてのトレーサ粒子の並び順は2枚の画像で共通となるので、容易かつ正確にトレーサ粒子の対応付けを行うことができる。2次元でのマッチングと較べて計算量が少なく有利である。   FIGS. 3A and 3B schematically show examples of two captured images obtained by capturing a common region of the fluid 14 from different angles by two cameras constituting the imaging unit 12. In each figure, an arrow drawn outside the frame indicates the direction of a normal vector that is a vector oriented in a direction orthogonal to any of the shooting directions of the two cameras. FIGS. 4A and 4B are schematic diagrams showing a one-dimensionalization process performed when the analysis unit 13 associates tracer particles appearing in two photographed images. The analysis unit 13 uses the tracer particles (in other words, the reflected fluorescence in accordance with the position in the direction of the normal vector, as shown in FIG. 4A and FIG. Are aligned on a one-dimensional axis. Then, matching is performed using an array pattern of two types of tracer particles (20, 21) in the aligned one-dimensional row. Since the arrangement order of the tracer particles in the normal vector direction at the same time is common to the two images, the tracer particles can be easily and accurately associated. Compared with two-dimensional matching, the amount of calculation is small and advantageous.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることができることが当業者に明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment.

例えば上記の実施形態では用いるトレーサ粒子の蛍光色を2種類としたが、3種類以上の蛍光色のトレーサ粒子を用いても構わない。このとき、複数色の蛍光は互いに識別可能であり、かつ、励起光とも識別可能であるよう選択するとよい。色を利用することにより撮影画像のマッチングの精度を高めることができ、その結果、流体の流れの測定の精度を高めることができる。   For example, in the above embodiment, the tracer particles used have two types of fluorescent colors, but three or more types of fluorescent color tracer particles may be used. At this time, it is preferable to select such that the fluorescence of the plurality of colors can be distinguished from each other and also from the excitation light. By using the color, it is possible to increase the accuracy of matching of the captured image, and as a result, it is possible to increase the accuracy of measurement of the fluid flow.

この様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

10 流体解析装置
11 励起光照射部
12 撮像部
13 解析部
14 流体
20 トレーサ粒子
30 シート光
DESCRIPTION OF SYMBOLS 10 Fluid analyzer 11 Excitation light irradiation part 12 Imaging part 13 Analysis part 14 Fluid 20 Tracer particle 30 Sheet light

Claims (7)

トレーサ粒子を供給した流体に対して励起光を照射し、前記トレーサ粒子からの蛍光を観測することによって該流体の流れを計測する方法であって、
互いに異なる波長の蛍光を発光する複数種類のトレーサ粒子を均一に分布するように混合した状態で前記流体に供給し、
前記流体に対し励起光を照射して前記複数種類のトレーサ粒子に蛍光を発光させ、
前記流体の画像を複数種類のトレーサ粒子の発する蛍光の波長を識別可能に撮影して前記流体の流れを計測することを特徴とする流体の流れの計測方法。
A method of measuring the flow of the fluid by irradiating the fluid supplied with tracer particles with excitation light and observing fluorescence from the tracer particles,
A plurality of types of tracer particles that emit fluorescence of different wavelengths are supplied to the fluid in a mixed state so as to be uniformly distributed,
Irradiating excitation light to the fluid to cause the plurality of types of tracer particles to emit fluorescence,
A method for measuring a fluid flow, wherein the fluid flow is imaged so that the wavelengths of fluorescence emitted by a plurality of types of tracer particles can be identified, and the fluid flow is measured.
1種類のみのトレーサ粒子を供給する場合における当該1種類のトレーサ粒子の濃度の増加に応じて粒子の誤認識が増加し始める濃度よりも高い濃度で、前記複数種類のトレーサ粒子を混合して供給することを特徴とする請求項1に記載の流体の流れの計測方法。   When supplying only one type of tracer particles, the plurality of types of tracer particles are mixed and supplied at a concentration higher than the concentration at which erroneous recognition of particles starts to increase as the concentration of the one type of tracer particles increases. The fluid flow measurement method according to claim 1, wherein: 励起光の光源は青色発光ダイオードである請求項1または2に記載の流体の流れの計測方法。   The fluid flow measurement method according to claim 1, wherein the excitation light source is a blue light emitting diode. 励起光の光源は同期して駆動される複数の青色発光ダイオードである請求項3に記載の流体の流れの計測方法。   4. The fluid flow measuring method according to claim 3, wherein the light source of the excitation light is a plurality of blue light emitting diodes driven in synchronization. カラーカメラで第1時刻と第2時刻において前記流体の画像を連続して撮影し、前記第1時刻の画像と前記第2時刻の画像をパターンマッチングし、前記第1時刻の画像と前記第2時刻の画像の間での個々のトレーサ粒子の位置の変化に基づき、流体の流速及び/または流体の流れ方を計測することを特徴とする請求項1から4のいずれか1項に記載の流体の流れの計測方法。   The fluid camera continuously captures images of the fluid at a first time and a second time, pattern-matches the first time image and the second time image, and the first time image and the second time. The fluid according to any one of claims 1 to 4, wherein a fluid flow velocity and / or a fluid flow is measured based on a change in position of each tracer particle between images of time. Flow measurement method. 複数のカラーカメラで前記流体の画像を互いに異なる方向から同時刻に撮影し、各カメラが同時刻に撮影した画像をパターンマッチングすることにより、各カメラが撮影した画像内の前記複数種類のトレーサ粒子を対応付け、撮影をした時刻における個々のトレーサ粒子の前記流体中での3次元位置を特定することを特徴とする請求項1から5のいずれか1項に記載の流体の流れの計測方法。   The plurality of types of tracer particles in the images captured by the respective cameras are obtained by capturing images of the fluid from different directions at the same time using a plurality of color cameras, and pattern matching the images captured by the respective cameras at the same time. The fluid flow measurement method according to any one of claims 1 to 5, wherein the three-dimensional position of each tracer particle in the fluid at the time of shooting is specified. 2台のカラーカメラで前記流体の画像を互いに異なる方向から撮影し、2台のカメラの撮影方向のいずれにも直交する方向を向いたベクトルである法線ベクトルの方向における位置により、各画像に写る前記複数種類のトレーサ粒子を1次元の軸上に整列させ、当該1次元の軸上に整列させたときの2種類のトレーサ粒子の配列パターンに応じて各カメラが撮影した画像内の前記複数種類のトレーサ粒子を対応付けることを特徴とする請求項6に記載の流体の流れの計測方法。   Images of the fluid are taken from different directions by two color cameras, and each image is determined according to the position in the direction of a normal vector that is a vector oriented in a direction orthogonal to any of the photographing directions of the two cameras. The plurality of types of tracer particles to be photographed are aligned on a one-dimensional axis, and the plurality of images in the image captured by each camera according to the arrangement pattern of the two types of tracer particles when aligned on the one-dimensional axis. The fluid flow measurement method according to claim 6, wherein the type of tracer particles is associated.
JP2013101105A 2013-05-13 2013-05-13 Fluid flow measurement method Active JP6143224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101105A JP6143224B2 (en) 2013-05-13 2013-05-13 Fluid flow measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101105A JP6143224B2 (en) 2013-05-13 2013-05-13 Fluid flow measurement method

Publications (2)

Publication Number Publication Date
JP2014222158A true JP2014222158A (en) 2014-11-27
JP6143224B2 JP6143224B2 (en) 2017-06-07

Family

ID=52121752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101105A Active JP6143224B2 (en) 2013-05-13 2013-05-13 Fluid flow measurement method

Country Status (1)

Country Link
JP (1) JP6143224B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242066A (en) * 2015-09-30 2016-01-13 东南大学 Synchronous measuring apparatus and method for wall jet gas-solid two-phase velocity fields
CN107101618A (en) * 2017-05-04 2017-08-29 中国水利水电科学研究院 A kind of domatic hydraulics model test velocity field observation system and method
DE102018203833A1 (en) * 2018-03-14 2019-09-19 Bayerische Motoren Werke Aktiengesellschaft Method and device for inspecting a component for a motor vehicle
CN111721652A (en) * 2020-06-08 2020-09-29 重庆交通大学 Hydraulic erosion mesoscopic mechanism observation device and test method based on PIV and PTV technology
CN114660325A (en) * 2022-03-21 2022-06-24 云南师范大学 Flow velocity detection pipeline based on carbon quantum dots

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297014A (en) * 1992-04-17 1993-11-12 Osaka Gas Co Ltd Measuring method of fluid flow
JP2002514308A (en) * 1997-06-11 2002-05-14 ネルコ ケミカル カンパニー Semiconductor fluorimeter and method of using the same
JP2004177312A (en) * 2002-11-28 2004-06-24 Japan Science & Technology Agency Three dimensional temperature/velocity simultaneous measuring method of fluid
JP2006258553A (en) * 2005-03-16 2006-09-28 Ricoh Co Ltd Flow evaluation method, flow evaluation device, and flow evaluation program of medium having flow behavior

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297014A (en) * 1992-04-17 1993-11-12 Osaka Gas Co Ltd Measuring method of fluid flow
JP3196087B2 (en) * 1992-04-17 2001-08-06 大阪瓦斯株式会社 How to measure fluid flow
JP2002514308A (en) * 1997-06-11 2002-05-14 ネルコ ケミカル カンパニー Semiconductor fluorimeter and method of using the same
JP2004177312A (en) * 2002-11-28 2004-06-24 Japan Science & Technology Agency Three dimensional temperature/velocity simultaneous measuring method of fluid
JP2006258553A (en) * 2005-03-16 2006-09-28 Ricoh Co Ltd Flow evaluation method, flow evaluation device, and flow evaluation program of medium having flow behavior

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242066A (en) * 2015-09-30 2016-01-13 东南大学 Synchronous measuring apparatus and method for wall jet gas-solid two-phase velocity fields
CN105242066B (en) * 2015-09-30 2018-07-20 东南大学 A kind of synchronous measuring apparatus and method of wall-jets gas-particle two-phase velocity field
CN107101618A (en) * 2017-05-04 2017-08-29 中国水利水电科学研究院 A kind of domatic hydraulics model test velocity field observation system and method
CN107101618B (en) * 2017-05-04 2023-12-08 中国水利水电科学研究院 Slope hydrologic test flow velocity field observation system and method
DE102018203833A1 (en) * 2018-03-14 2019-09-19 Bayerische Motoren Werke Aktiengesellschaft Method and device for inspecting a component for a motor vehicle
CN111721652A (en) * 2020-06-08 2020-09-29 重庆交通大学 Hydraulic erosion mesoscopic mechanism observation device and test method based on PIV and PTV technology
CN111721652B (en) * 2020-06-08 2023-07-07 重庆交通大学 Hydraulic erosion mesoscopic mechanism observation device and test method based on PIV and PTV technologies
CN114660325A (en) * 2022-03-21 2022-06-24 云南师范大学 Flow velocity detection pipeline based on carbon quantum dots
CN114660325B (en) * 2022-03-21 2023-08-11 云南师范大学 Flow velocity detection pipeline based on carbon quantum dots

Also Published As

Publication number Publication date
JP6143224B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6143224B2 (en) Fluid flow measurement method
US9766261B2 (en) Low cost optical high speed discrete measurement system
JP6040930B2 (en) Surface defect detection method and surface defect detection apparatus
US20060175561A1 (en) Particle shadow velocimetry
JP2011180028A (en) Device and method for analysis of fluid
GB2510862A (en) Image velocimetry
Chen et al. Three-dimensional three-component air flow visualization in a steady-state engine flow bench using a plenoptic camera
JP6726687B2 (en) Particle analyzer and particle analysis method
CN107810403A (en) Multiple beam and the beam imaging of convergence light irradiation cross light
JP2016099195A (en) Method and apparatus for measuring flow rate of particle image
Menser et al. Multi-pulse shadowgraphic RGB illumination and detection for flow tracking
JP2007033306A (en) System and method for measuring fluid flow
JP5224756B2 (en) Droplet particle imaging analysis system and analysis method
Chen et al. In-line imaging measurements of particle size, velocity and concentration in a particulate two-phase flow
TW201506406A (en) Analysis method for fluid and analysis system for fluid
JP4596372B2 (en) Fluid flow measurement system, fluid flow measurement method, and computer program
JPWO2008156022A1 (en) Method and apparatus for measuring an object
JPWO2007135804A1 (en) Fluid measuring apparatus and fluid measuring method using laser-induced fluorescence method
US20180045646A1 (en) System and method for three-dimensional micro particle tracking
JP6149990B2 (en) Surface defect detection method and surface defect detection apparatus
KR101802894B1 (en) 3D image obtaining system
JP2014224686A (en) Fine particle detection device and fine particle detection method
US10890521B2 (en) Method of tracking a plurality of point-shaped objects in a three-dimensional space
WO2018193704A1 (en) Signal processing system, signal processing device, and signal processing method
JP2011247690A (en) Connector pin inspection device and its inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170428

R150 Certificate of patent or registration of utility model

Ref document number: 6143224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150