JP2014222077A - Hydrogen occlusion device - Google Patents

Hydrogen occlusion device Download PDF

Info

Publication number
JP2014222077A
JP2014222077A JP2013101108A JP2013101108A JP2014222077A JP 2014222077 A JP2014222077 A JP 2014222077A JP 2013101108 A JP2013101108 A JP 2013101108A JP 2013101108 A JP2013101108 A JP 2013101108A JP 2014222077 A JP2014222077 A JP 2014222077A
Authority
JP
Japan
Prior art keywords
hydrogen
cathode
hydrogen storage
thin film
conductive cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013101108A
Other languages
Japanese (ja)
Other versions
JP6024588B2 (en
JP2014222077A5 (en
Inventor
深田 善樹
Yoshiki Fukada
善樹 深田
伊藤 直樹
Naoki Ito
直樹 伊藤
松本 信一
Shinichi Matsumoto
信一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013101108A priority Critical patent/JP6024588B2/en
Publication of JP2014222077A publication Critical patent/JP2014222077A/en
Publication of JP2014222077A5 publication Critical patent/JP2014222077A5/ja
Application granted granted Critical
Publication of JP6024588B2 publication Critical patent/JP6024588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that high pressure occlusion of hydrogen is difficult.SOLUTION: A thin film anode 150 separates a hydrogen molecule into hydrogen atoms. Protons of the separated hydrogen atoms are incorporated into a proton conductor membrane 160. As a hydrogen occlusion cathode 120 has a low potential relative to the thin film anode 150 by the operation of a power supply 40, the incorporated protons move toward the hydrogen occlusion cathode 120 and are incorporated and stored by the hydrogen occlusion cathode 120. This occlusion is maintained at the intensity according to potential difference.

Description

本発明は、水素の吸蔵に関する。   The present invention relates to hydrogen storage.

水素分子を一旦、プロトンに変えて、その後、プロトンを水素原子に戻して吸蔵する方法が知られている(例えば特許文献1)。   A method is known in which a hydrogen molecule is changed to a proton once, and then the proton is returned to a hydrogen atom and occluded (for example, Patent Document 1).

特開2003−336798号公報JP 2003-336798 A

上記先行技術が有する課題は、高圧による水素の吸蔵が難しいことである。水素と金属との反応については、学問的に未知の領域が多く、産業上の利用についても多くの可能性を持っている。しかし、特許文献1に限らず、水素を容器の中に導く場合、容器の機械的耐圧を超える水素分圧(例えば1000気圧(≒0.1GPa))で吸蔵することは難しい。   The problem of the prior art is that it is difficult to store hydrogen under high pressure. There are many academically unknown areas of reaction between hydrogen and metals, and there are many possibilities for industrial use. However, not limited to Patent Document 1, when hydrogen is introduced into a container, it is difficult to occlude at a hydrogen partial pressure exceeding the mechanical pressure resistance of the container (for example, 1000 atmospheres (≈0.1 GPa)).

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現できる。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms.

(1)本発明の一形態によれば、水素吸蔵装置が提供される。この水素吸蔵装置は、水素分子を取り込む薄膜と;前記薄膜と積層し、前記薄膜に取り込まれた水素分子をプロトンとして通過させるプロトン伝導体と;前記プロトン伝導体と積層し、前記プロトン伝導体を通過してきたプロトンを吸蔵する吸蔵体と;前記薄膜と共に前記吸蔵体を挟み込むように配置された導電陰極と;前記薄膜が前記導電陰極よりも電位が高くなるような電界を発生させる電界発生部とを備える。この形態によれば、電界に応じた強さでプロトンを吸蔵できる。 (1) According to one aspect of the present invention, a hydrogen storage device is provided. The hydrogen storage device includes a thin film that takes in hydrogen molecules; a proton conductor that is laminated with the thin film and that allows the hydrogen molecules taken into the thin film to pass as protons; and a proton conductor that is laminated with the proton conductor; An occlusion body that occludes the protons that have passed through; a conductive cathode disposed so as to sandwich the occlusion body together with the thin film; and an electric field generator that generates an electric field such that the electric potential of the thin film is higher than that of the conductive cathode. Is provided. According to this embodiment, protons can be occluded with a strength corresponding to the electric field.

(2)上記形態において、前記電界発生部は、前記薄膜と前記導電陰極とに電位差を発生させる電源を含む。この形態によれば、吸蔵陰極を取り囲むように電界が生じるので、より良好にプロトンを吸蔵陰極に吸蔵できる。 (2) In the above aspect, the electric field generation unit includes a power source that generates a potential difference between the thin film and the conductive cathode. According to this embodiment, since an electric field is generated so as to surround the storage cathode, protons can be stored in the storage cathode better.

(3)上記形態において、前記吸蔵体は、前記導電陰極の表面に積層し;前記プロトン伝導体は、前記吸蔵体を前記導電陰極と共に挟み込むように積層すると共に、前記導電陰極の裏面に積層し;前記導電陰極の裏面に積層したプロトン伝導体を前記導電陰極と共に挟み込むように配置され、前記導電陰極よりも高い電位になるように前記電源によって電圧が印加される陽極を備える。この形態によれば、電界が導電陰極の裏面にも作用するので、裏面からプロトンが出ていくことが抑制できる。 (3) In the above embodiment, the occlusion body is laminated on the surface of the conductive cathode; the proton conductor is laminated so as to sandwich the occlusion body with the conductive cathode, and is laminated on the back surface of the conductive cathode. A proton conductor laminated on the back surface of the conductive cathode is disposed so as to be sandwiched with the conductive cathode, and an anode to which a voltage is applied by the power source so as to have a higher potential than the conductive cathode is provided. According to this embodiment, since the electric field also acts on the back surface of the conductive cathode, it is possible to suppress protons from coming out from the back surface.

(4)上記形態において、前記導電陰極と前記薄膜とが前記吸蔵体を介さずに対向する部位において、前記薄膜に積層する水素ブロック層を備える。この形態によれば、導電陰極とプロトンとの間にプロトンが移動することが抑制されるので、導電陰極とプロトン伝導体との剥離が抑制できる。 (4) The said form WHEREIN: The site | part which the said conductive cathode and the said thin film oppose without interposing the said occlusion body is provided with the hydrogen block layer laminated | stacked on the said thin film. According to this embodiment, since the proton is suppressed from moving between the conductive cathode and the proton, peeling between the conductive cathode and the proton conductor can be suppressed.

本発明は、上記以外の種々の形態でも実現できる。例えば、水素の吸蔵方法等の形態で実現できる。   The present invention can be realized in various forms other than the above. For example, it can be realized in the form of a hydrogen storage method or the like.

水素吸蔵装置の構成図。The block diagram of a hydrogen storage apparatus. 水素吸蔵構造体の断面図。Sectional drawing of a hydrogen storage structure. 水素吸蔵構造体の上面図。The top view of a hydrogen storage structure. 導電陰極の上面図。The top view of a conductive cathode. 水素吸蔵陰極の上面図。The top view of a hydrogen storage cathode. プロトン伝導体膜の上面図。The top view of a proton conductor membrane. 薄膜陽極の上面図。The top view of a thin film anode. 水素ブロック層の上面図。The top view of a hydrogen block layer. 水素バリア陰極の上面図。The top view of a hydrogen barrier cathode. 陽極の上面図。The top view of an anode. 起電力と経過時間との関係を示すグラフ。The graph which shows the relationship between an electromotive force and elapsed time. 水素吸蔵装置の構成図(実施形態2)。The block diagram of a hydrogen storage apparatus (embodiment 2). 水素吸蔵構造体の断面図(実施形態3)。Sectional drawing of hydrogen storage structure (Embodiment 3). 水素吸蔵構造体の断面図(実施形態4)。Sectional drawing of hydrogen storage structure (Embodiment 4). 水素吸蔵構造体の上面図(実施形態5)。The top view of a hydrogen storage structure (fifth embodiment). 水素吸蔵構造体の断面図(実施形態6)。Sectional drawing of hydrogen storage structure (Embodiment 6).

実施形態1を説明する。図1は、水素吸蔵装置20の構成を示す。水素吸蔵装置20は、ガス容器30と、電源40と、陽極リード線51と、陰極リード線52と、基板60と、ヒータ70と、ヒータ制御ユニット75と、水素吸蔵構造体100とを備える。   Embodiment 1 will be described. FIG. 1 shows the configuration of the hydrogen storage device 20. The hydrogen storage device 20 includes a gas container 30, a power source 40, an anode lead wire 51, a cathode lead wire 52, a substrate 60, a heater 70, a heater control unit 75, and a hydrogen storage structure 100.

水素吸蔵構造体100は、水素を吸蔵するためのものであり、図2以降で詳しく説明する。ガス容器30は、水素を封入するためのものである。電源40、陽極リード線51及び陰極リード線52は、水素吸蔵構造体100に電圧を印加するためのものである。基板60は、石英ガラスやダイヤモンド等によって形成され、水素吸蔵構造体100を支持する。石英ガラスは、耐熱性があり緻密で、電気絶縁性を有する。ヒータ70は、基板60を介して水素吸蔵構造体100を加熱する。この加熱は、後述するように、水素吸蔵構造体100による水素吸蔵を制御するために実行される。ヒータ制御ユニット75は、ヒータ70を制御する。   The hydrogen storage structure 100 is for storing hydrogen and will be described in detail with reference to FIG. The gas container 30 is for enclosing hydrogen. The power supply 40, the anode lead wire 51, and the cathode lead wire 52 are for applying a voltage to the hydrogen storage structure 100. The substrate 60 is made of quartz glass, diamond, or the like, and supports the hydrogen storage structure 100. Quartz glass is heat resistant, dense, and electrically insulating. The heater 70 heats the hydrogen storage structure 100 through the substrate 60. This heating is performed to control hydrogen storage by the hydrogen storage structure 100, as will be described later. The heater control unit 75 controls the heater 70.

図2は、水素吸蔵構造体100の断面を示す。図3は、水素吸蔵構造体100の上面図を示す。水素吸蔵構造体100は、導電陰極110と、水素吸蔵陰極120と、水素バリア陰極130と、陽極140と、薄膜陽極150と、プロトン伝導体膜160と、水素ブロック層170とを備える。   FIG. 2 shows a cross section of the hydrogen storage structure 100. FIG. 3 shows a top view of the hydrogen storage structure 100. The hydrogen storage structure 100 includes a conductive cathode 110, a hydrogen storage cathode 120, a hydrogen barrier cathode 130, an anode 140, a thin film anode 150, a proton conductor film 160, and a hydrogen block layer 170.

導電陰極110は、水素を余り通さない導電体(例えば金やニッケル)によって、基板60上に形成される。水素吸蔵陰極120は、水素を吸蔵する金属(鉛や水素吸蔵合金など)によって、導電陰極110上に形成される。プロトン伝導体膜160は、プロトンを伝導する性質の組成によって、水素吸蔵陰極120上に形成される。   The conductive cathode 110 is formed on the substrate 60 by a conductor (for example, gold or nickel) that does not allow much hydrogen to pass through. The hydrogen storage cathode 120 is formed on the conductive cathode 110 by a metal (such as lead or a hydrogen storage alloy) that stores hydrogen. The proton conductor film 160 is formed on the hydrogen storage cathode 120 by a composition having a property of conducting protons.

水素バリア陰極130、陽極140及び薄膜陽極150は、基板60上やプロトン伝導体膜160上に製膜によって形成される。薄膜陽極150は、水素を吸蔵する性質を持つ導電材料(鉛などの金属)で形成される。水素バリア陰極130及び陽極140は、導電体材料(金やニッケルなどの金属)で形成される。水素バリア陰極130と陽極140とが同じ材料であれば、水素バリア陰極130及び陽極140を同時に製膜してもよい。   The hydrogen barrier cathode 130, the anode 140, and the thin film anode 150 are formed on the substrate 60 and the proton conductor film 160 by film formation. The thin film anode 150 is formed of a conductive material (metal such as lead) having a property of occluding hydrogen. The hydrogen barrier cathode 130 and the anode 140 are made of a conductive material (metal such as gold or nickel). If the hydrogen barrier cathode 130 and the anode 140 are the same material, the hydrogen barrier cathode 130 and the anode 140 may be formed simultaneously.

水素バリア陰極130、陽極140及び薄膜陽極150の製膜の方法は、蒸着やスパッタが好ましい。各層の平面形状を図4から図10に示す。製膜において、一点破線を一致させて積層させる。図4は導電陰極110を、図5は水素吸蔵陰極120を、図6はプロトン伝導体膜160を、を、図8は水素ブロック層170を、図9は水素バリア陰極130を、図10は陽極140を示す。   As a method for forming the hydrogen barrier cathode 130, the anode 140, and the thin film anode 150, vapor deposition or sputtering is preferable. The planar shape of each layer is shown in FIGS. In the film formation, the one-dot broken lines are matched and laminated. 4 shows the conductive cathode 110, FIG. 5 shows the hydrogen storage cathode 120, FIG. 6 shows the proton conductor membrane 160, FIG. 8 shows the hydrogen blocking layer 170, FIG. 9 shows the hydrogen barrier cathode 130, and FIG. An anode 140 is shown.

水素ブロック層170は、水素をほとんど透過させない材料(金属でも絶縁体でもよい)で形成される。水素ブロック層170は、水素が通過することが好ましくない領域(以下「不適領域」という)においては水素の透過をブロックする一方、水素が通過することが好ましい領域(以下「好適領域」という)においては水素通過窓を形成する。これらの領域については後述する。   The hydrogen block layer 170 is formed of a material (metal or insulator) that hardly transmits hydrogen. The hydrogen blocking layer 170 blocks permeation of hydrogen in a region where hydrogen does not preferably pass (hereinafter referred to as “unsuitable region”), while in a region where hydrogen preferably passes (hereinafter referred to as “preferred region”). Forms a hydrogen passage window. These areas will be described later.

図1,図2を参照して、水素吸蔵装置20の使用方法を説明する。ガス容器30に、水素同位体分子を含むガスを封入する。ガス中の水素同位体分子(図2のA)は、水素通過窓において薄膜陽極150に吸収されると共に分解し、水素同位体原子(図2のB)になる。プロトン伝導体膜160中の水素同位体原子(図2のB)は、拡散によって、プロトン伝導体膜160に接触し、プラスの電荷を帯びた水素同位体イオンになる。   A method of using the hydrogen storage device 20 will be described with reference to FIGS. A gas containing hydrogen isotope molecules is sealed in the gas container 30. Hydrogen isotope molecules (A in FIG. 2) in the gas are absorbed by the thin film anode 150 in the hydrogen passage window and decomposed to become hydrogen isotope atoms (B in FIG. 2). Hydrogen isotope atoms (B in FIG. 2) in the proton conductor film 160 are brought into contact with the proton conductor film 160 by diffusion and become positively charged hydrogen isotope ions.

ガスの封入後、電源40によって数ボルトの電圧を印加する。電圧が印加されると、薄膜陽極150が導電陰極110よりも電位が高くなる。プロトン伝導体膜160には電界が作用するため、プラスの電荷を帯びた水素同位体イオンは、マイナスの電位を持つ水素吸蔵陰極120に向かって移動し、水素吸蔵陰極120に吸収される(図2のC)。   After filling the gas, a voltage of several volts is applied by the power source 40. When a voltage is applied, the thin film anode 150 becomes higher in potential than the conductive cathode 110. Since an electric field acts on the proton conductor film 160, positively charged hydrogen isotope ions move toward the hydrogen storage cathode 120 having a negative potential and are absorbed by the hydrogen storage cathode 120 (FIG. 2 C).

このように、ガス中の水素同位体は、印加された電圧値に応じて、水素吸蔵陰極120に押し込まれ、吸蔵される。この押し込みの強さは、ネルンストの式によって圧力として示される。
H=P0exp(zFV/RT)…(1)
H:水素同位体イオンに作用する圧力、P0:水素同位体ガスの分圧、V:印加電圧、z:水素同位体イオンの価数、F:ファラデー定数、R:気体定数、T:温度(ケルビン)
Thus, the hydrogen isotope in the gas is pushed into the hydrogen storage cathode 120 and stored according to the applied voltage value. This indentation strength is indicated as pressure by the Nernst equation.
P H = P 0 exp (zFV / RT) (1)
P H : pressure acting on hydrogen isotope ions, P 0 : partial pressure of hydrogen isotope gas, V: applied voltage, z: valence of hydrogen isotope ions, F: Faraday constant, R: gas constant, T: Temperature (Kelvin)

水素吸蔵陰極120に吸蔵された水素同位体イオンは、プロトン伝導体膜160を通過し、水素吸蔵構造体100の外に出て、ガスに戻ろうとする。しかし、プロトン伝導体膜160中に放出され拡散した水素同位体原子は、再びイオン化するため、電界によって水素吸蔵陰極120に引き戻される。   The hydrogen isotope ions occluded in the hydrogen occlusion cathode 120 pass through the proton conductor membrane 160, exit the hydrogen occlusion structure 100, and return to the gas. However, the hydrogen isotope atoms released and diffused into the proton conductor film 160 are ionized again, and are drawn back to the hydrogen storage cathode 120 by the electric field.

さらに、水素吸蔵陰極120が導電陰極110とプロトン伝導体膜160とに挟まれているので、水素吸蔵陰極120を取り囲むように電界が発生する。これによって、水素吸蔵陰極120と導電陰極110との境界において、水素が出ていくことができないので、高い圧力による吸蔵が実現される。   Furthermore, since the hydrogen storage cathode 120 is sandwiched between the conductive cathode 110 and the proton conductor film 160, an electric field is generated so as to surround the hydrogen storage cathode 120. As a result, hydrogen cannot come out at the boundary between the hydrogen storage cathode 120 and the conductive cathode 110, and storage by high pressure is realized.

図11は、起電力と経過時間との関係を示すグラフである。この関係は、水素吸蔵装置20を用いた実験によって取得された。実験の条件は、水素吸蔵陰極120の厚さは0.2μm、水素吸蔵陰極120の面積(水素通過窓の面積)は58mm2、プロトン伝導体膜160の厚さは1μm、プロトン伝導体膜160の組成はBaZr0.8Y0.2O3、水素吸蔵構造体100の目標温度は260℃(533K)、印加電圧は1〜10V、電流は0.1〜1mAとなるように設定した。起電力の測定は、各測定対象時間において電気回路を切断した後に実行した。 FIG. 11 is a graph showing the relationship between electromotive force and elapsed time. This relationship was acquired by an experiment using the hydrogen storage device 20. The experimental conditions were as follows: the thickness of the hydrogen storage cathode 120 was 0.2 μm, the area of the hydrogen storage cathode 120 (area of the hydrogen passage window) was 58 mm 2 , the thickness of the proton conductor film 160 was 1 μm, and the proton conductor film 160. The composition was set to BaZr 0.8 Y 0.2 O 3 , the target temperature of the hydrogen storage structure 100 was 260 ° C. (533 K), the applied voltage was 1 to 10 V, and the current was 0.1 to 1 mA. The electromotive force was measured after the electric circuit was disconnected at each measurement target time.

図11に示されるように、起電力は、時間と共に増大し、最高で約0.5Vに達した。この電圧値、水素同位体イオンの価数z=1及びP0=0.2気圧を(1)式に代入すると、PH≒1GPaとなる。通常の圧力容器は、このような超高圧に耐えることができない。これに対して、水素吸蔵装置20は、耐圧構造を有さずに、このような超高圧による吸蔵を実現する。このような吸蔵が実現されるのは、全体的に隙間のない積層構造であること、及び水素吸蔵陰極120の寸法効果に起因すると考えられる。 As shown in FIG. 11, the electromotive force increased with time, reaching a maximum of about 0.5V. Substituting this voltage value, valence z = 1 of hydrogen isotope ions, and P 0 = 0.2 atm into equation (1) results in P H ≈1 GPa. Ordinary pressure vessels cannot withstand such ultra high pressures. In contrast, the hydrogen storage device 20 does not have a pressure-resistant structure, and realizes storage by such an ultrahigh pressure. Such occlusion is realized due to the overall laminated structure without gaps and the dimensional effect of the hydrogen storage cathode 120.

水素吸蔵陰極120は、薄膜として形成されているので、製造過程において内部欠陥が生じにくい。このため、破壊力学に基づくサイズ効果によって強度が高くなる。サイズ効果は、一般にミクロンオーダよりも小さい場合に顕著になるので、水素吸蔵陰極120の強度向上に大きな効果をもたらす。   Since the hydrogen storage cathode 120 is formed as a thin film, internal defects are unlikely to occur during the manufacturing process. For this reason, strength is increased by the size effect based on fracture mechanics. Since the size effect is generally remarkable when the size is smaller than the micron order, the size effect is greatly improved in the strength of the hydrogen storage cathode 120.

水素ブロック層170は、先述したように、不適領域においては水素同位体分子の透過をブロックする一方、好適領域においては水素通過窓を形成して、水素同位体分子を通過させる。好適領域とは、水素吸蔵陰極120と薄膜陽極150とプロトン伝導体膜160との3つが重なる領域である。これに対して不適領域とは、導電陰極110と薄膜陽極150とが重なる一方、水素吸蔵陰極120が重ならない領域である。   As described above, the hydrogen blocking layer 170 blocks the transmission of hydrogen isotope molecules in the inappropriate region, while forming a hydrogen passage window in the suitable region to allow the hydrogen isotope molecules to pass through. The preferred region is a region where the hydrogen storage cathode 120, the thin film anode 150, and the proton conductor film 160 overlap. In contrast, the unsuitable region is a region where the conductive cathode 110 and the thin film anode 150 overlap while the hydrogen storage cathode 120 does not overlap.

不適領域において、仮に水素体同位体分子が薄膜陽極150に取り込まれた場合、水素同位体イオンが導電陰極110に向かって移動する。導電陰極110は、材料の性質上、水素同位体イオンを多量に吸蔵することはできない。吸蔵されない水素同位体イオンは、導電陰極110とプロトン伝導体膜160との境界において、高圧を発生させる。この高圧によって、導電陰極110とプロトン伝導体膜160とが剥離してしまう場合がある。水素ブロック層170は、水素体同位体分子が薄膜陽極150に取り込まれることを防止することによって、このような剥離を抑制するために設けられている。   If hydrogen isotope molecules are taken into the thin film anode 150 in the inappropriate region, the hydrogen isotope ions move toward the conductive cathode 110. The conductive cathode 110 cannot occlude a large amount of hydrogen isotope ions due to the nature of the material. The hydrogen isotope ions that are not occluded generate a high pressure at the boundary between the conductive cathode 110 and the proton conductor film 160. The high voltage may cause the conductive cathode 110 and the proton conductor film 160 to peel off. The hydrogen blocking layer 170 is provided to suppress such peeling by preventing the hydrogen isotope molecules from being taken into the thin film anode 150.

以上に説明したように水素吸蔵装置20によれば、超高圧による水素の吸蔵が実現される。さらに、水素吸蔵装置20は、水素の吸蔵に関する種々の実験に用いることができる。   As described above, according to the hydrogen storage device 20, storage of hydrogen by ultra high pressure is realized. Furthermore, the hydrogen storage device 20 can be used for various experiments relating to storage of hydrogen.

実施形態2を説明する。図12は、水素吸蔵装置220の構成を示す。但し、ガス用器、ヒータ及びヒータ制御ユニットの図示を省略する。水素吸蔵装置220は、複数の水素吸蔵ユニット102と、電源240と、複数の陽極配線251と、複数の陰極配線252とを備える。   A second embodiment will be described. FIG. 12 shows the configuration of the hydrogen storage device 220. However, illustration of the gas device, the heater, and the heater control unit is omitted. The hydrogen storage device 220 includes a plurality of hydrogen storage units 102, a power source 240, a plurality of anode wirings 251, and a plurality of cathode wirings 252.

複数の水素吸蔵ユニット200それぞれは、実施形態1の水素吸蔵構造体100と基板60との積層体に相当する。電源240、陽極配線251及び陰極配線252は、水素吸蔵ユニット200それぞれに電圧を印加するためのものである。   Each of the plurality of hydrogen storage units 200 corresponds to a stacked body of the hydrogen storage structure 100 and the substrate 60 of the first embodiment. The power supply 240, the anode wiring 251 and the cathode wiring 252 are for applying a voltage to each of the hydrogen storage units 200.

実施形態2のように水素吸蔵構造体を集積させることによって、水素吸蔵陰極が薄くても(例えばミクロンオーダ以下)、発熱反応を利用するような応用において充分な発熱量を得たり、物性測定実験の応用において充分な信号量を得たりできるようになる。   By integrating the hydrogen storage structure as in the second embodiment, even if the hydrogen storage cathode is thin (for example, less than a micron order), a sufficient calorific value can be obtained in an application using an exothermic reaction, or a physical property measurement experiment. In this application, a sufficient signal amount can be obtained.

例えば、金属の水素吸蔵に伴う変化や反応を観察する実験装置として使う場合には、温度測定用熱電対やX線解析用のX線窓や各種計測機器を付属させることによって必要な機能を実現させることができる。水素を吸蔵した金属の発熱反応を利用する場合は、熱交換機器を内蔵させることによって所望の機能を実現できる。   For example, when used as an experimental device to observe changes and reactions associated with hydrogen storage of metals, the necessary functions are realized by attaching a thermocouple for temperature measurement, an X-ray window for X-ray analysis, and various measuring instruments. Can be made. When utilizing an exothermic reaction of a metal storing hydrogen, a desired function can be realized by incorporating a heat exchange device.

実施形態2おける基板は、フィルム状のガラスなどで構成するのが好ましい。これによって、充分に高い密度で水素吸蔵構造体を集積できる。水素吸蔵構造体の間に、熱や生成物を吸収する構造物を挟み込んでもよいし、水素吸蔵構造体同士の間に適当な絶縁体を介して密着させてもよい。   The substrate in Embodiment 2 is preferably composed of film-like glass or the like. Thereby, the hydrogen storage structure can be accumulated at a sufficiently high density. A structure that absorbs heat or a product may be sandwiched between the hydrogen storage structures, or the hydrogen storage structures may be in close contact with each other via an appropriate insulator.

他の実施形態3を説明する。図13は、実施形態3における水素吸蔵構造体300を示す。水素吸蔵構造体300は、水素吸蔵構造体100と異なり、導電陰極110と水素吸蔵陰極120とを備えない代わりに、水素吸蔵陰極320を備える。   Another embodiment 3 will be described. FIG. 13 shows a hydrogen storage structure 300 according to the third embodiment. Unlike the hydrogen storage structure 100, the hydrogen storage structure 300 includes a hydrogen storage cathode 320 instead of including the conductive cathode 110 and the hydrogen storage cathode 120.

水素吸蔵陰極320は、実施形態1における導電陰極110と水素吸蔵陰極120との両方の機能を有する。つまり、水素吸蔵陰極320は、プロトン伝導体膜160に対する電界の生成と、プロトンの吸蔵とを実現する。さらに、実施形態3においては、水素ブロック層は不要なので省かれている。実施形態3によれば、コスト低減が図れる。   The hydrogen storage cathode 320 has both functions of the conductive cathode 110 and the hydrogen storage cathode 120 in the first embodiment. That is, the hydrogen storage cathode 320 realizes generation of an electric field for the proton conductor film 160 and storage of protons. Further, in the third embodiment, the hydrogen block layer is unnecessary and omitted. According to the third embodiment, the cost can be reduced.

なお、水素吸蔵陰極320に吸蔵された水素同位体イオンは、基板60や水素バリア陰極130を通過しようとする。しかし、これらの材料は水素を通しにくい素材で作られているため、ほとんど通過できない。このようにして、水素吸蔵陰極320に高い圧力で水素同位体を吸蔵させることができる。   The hydrogen isotope ions stored in the hydrogen storage cathode 320 tend to pass through the substrate 60 and the hydrogen barrier cathode 130. However, since these materials are made of materials that do not easily allow hydrogen to pass through, these materials hardly pass. In this way, the hydrogen storage cathode 320 can store the hydrogen isotope at a high pressure.

実施形態4を説明する。図14は、水素吸蔵構造体400の断面図である。水素吸蔵構造体400は、図14に示されるように、実施形態1の水素吸蔵構造体100に対して、第2プロトン伝導体膜460と電界陽極480とを新たに備え、水素バリア陰極130の代わりに水素バリア陰極430を、陽極140の代わりに陽極440を備える。   A fourth embodiment will be described. FIG. 14 is a cross-sectional view of the hydrogen storage structure 400. As shown in FIG. 14, the hydrogen storage structure 400 includes a second proton conductor film 460 and a field anode 480 in addition to the hydrogen storage structure 100 of the first embodiment. Instead, a hydrogen barrier cathode 430 and an anode 440 instead of the anode 140 are provided.

電界陽極480は、基板60上に設けられる。第2プロトン伝導体膜460は、電界陽極480と導電陰極110との間に設けられる。陽極440は、薄膜陽極150と電界陽極480とに導通する。この構成によって、電界が導電陰極110の裏面にも作用するので、裏面からプロトンが出ていくことが抑制され、基板60と導電陰極110とが高圧水素によって剥離するという不具合が抑制される。   The electric field anode 480 is provided on the substrate 60. The second proton conductor film 460 is provided between the electric field anode 480 and the conductive cathode 110. The anode 440 is electrically connected to the thin film anode 150 and the electric field anode 480. With this configuration, the electric field also acts on the back surface of the conductive cathode 110, so that protons are prevented from coming out of the back surface, and the problem that the substrate 60 and the conductive cathode 110 are separated by high-pressure hydrogen is suppressed.

実施形態5を説明する。図15は、水素吸蔵構造体500の上面図である。水素吸蔵構造体500は、水素バリア陰極531,532と、陽極541,542とを備える。水素バリア陰極532及び陽極542は、水素吸蔵陰極や薄膜陽極の電気抵抗測定用や、断線時の予備用として機能する。水素吸蔵構造体500によれば、測定における利便性が向上する。   A fifth embodiment will be described. FIG. 15 is a top view of the hydrogen storage structure 500. The hydrogen storage structure 500 includes hydrogen barrier cathodes 531 and 532 and anodes 541 and 542. The hydrogen barrier cathode 532 and the anode 542 function as an electrical resistance measurement for a hydrogen storage cathode or a thin film anode or as a spare for disconnection. According to the hydrogen storage structure 500, convenience in measurement is improved.

実施形態6を説明する。図16は、水素吸蔵構造体600の断面図である。水素吸蔵構造体600は、図16に示されるように、実施形態4の水素吸蔵構造体400を基にして説明すると、導電陰極110と水素吸蔵陰極120との代わりに、実施形態3の水素吸蔵陰極320を備える構造を有する。   A sixth embodiment will be described. FIG. 16 is a cross-sectional view of the hydrogen storage structure 600. As shown in FIG. 16, the hydrogen storage structure 600 will be described based on the hydrogen storage structure 400 of the fourth embodiment. Instead of the conductive cathode 110 and the hydrogen storage cathode 120, the hydrogen storage structure of the third embodiment is used. It has a structure including a cathode 320.

本発明は、本明細書の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現できる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、先述の課題の一部又は全部を解決するために、あるいは、先述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことができる。その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除できる。例えば、水素ブロック層を備える形態として説明したものから、水素ブロック層を除外してもよい。   The present invention is not limited to the embodiments, examples, and modifications of the present specification, and can be implemented with various configurations without departing from the spirit of the present invention. For example, the technical features in the embodiments, examples, and modifications corresponding to the technical features in the embodiments described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the effects described above, replacement or combination can be performed as appropriate. If the technical feature is not described as essential in this specification, it can be deleted as appropriate. For example, you may exclude a hydrogen block layer from what was demonstrated as a form provided with a hydrogen block layer.

20…水素吸蔵装置
30…ガス容器
40…電源
51…陽極リード線
52…陰極リード線
60…基板
70…ヒータ
75…ヒータ制御ユニット
100…水素吸蔵構造体
102…水素吸蔵ユニット
110…導電陰極
120…水素吸蔵陰極
130…水素バリア陰極
140…陽極
150…薄膜陽極
160…プロトン伝導体膜
170…水素ブロック層
200…水素吸蔵ユニット
220…水素吸蔵装置
240…電源
251…陽極配線
252…陰極配線
300…水素吸蔵構造体
320…水素吸蔵陰極
400…水素吸蔵構造体
430…水素バリア陰極
440…陽極
460…第2プロトン伝導体膜
480…電界陽極
500…水素吸蔵構造体
531…水素バリア陰極
532…水素バリア陰極
541…陽極
542…陽極
DESCRIPTION OF SYMBOLS 20 ... Hydrogen storage apparatus 30 ... Gas container 40 ... Power supply 51 ... Anode lead wire 52 ... Cathode lead wire 60 ... Substrate 70 ... Heater 75 ... Heater control unit 100 ... Hydrogen storage structure 102 ... Hydrogen storage unit 110 ... Conductive cathode 120 ... Hydrogen storage cathode 130 ... Hydrogen barrier cathode 140 ... Anode 150 ... Thin film anode 160 ... Proton conductor film 170 ... Hydrogen block layer 200 ... Hydrogen storage unit 220 ... Hydrogen storage device 240 ... Power supply 251 ... Anode wiring 252 ... Cathode wiring 300 ... Hydrogen Storage structure 320 ... Hydrogen storage cathode 400 ... Hydrogen storage structure 430 ... Hydrogen barrier cathode 440 ... Anode 460 ... Second proton conductor film 480 ... Electric field anode 500 ... Hydrogen storage structure 531 ... Hydrogen barrier cathode 532 ... Hydrogen barrier cathode 541 ... Anode 542 ... Anode

Claims (4)

水素分子を取り込む薄膜と、
前記薄膜と積層し、前記薄膜に取り込まれた水素分子をプロトンとして通過させるプロトン伝導体と、
前記プロトン伝導体と積層し、前記プロトン伝導体を通過してきたプロトンを吸蔵する吸蔵体と、
前記薄膜と共に前記吸蔵体を挟み込むように配置された導電陰極と、
前記薄膜が前記導電陰極よりも電位が高くなるような電界を発生させる電界発生部と
を備える水素吸蔵装置。
A thin film that takes in hydrogen molecules;
A proton conductor laminated with the thin film and passing hydrogen molecules taken into the thin film as protons;
An occlusion body that is laminated with the proton conductor and occludes protons that have passed through the proton conductor;
A conductive cathode disposed so as to sandwich the occlusion body together with the thin film;
A hydrogen storage device comprising: an electric field generating unit that generates an electric field such that the thin film has an electric potential higher than that of the conductive cathode.
前記電界発生部は、前記薄膜と前記導電陰極とに電位差を発生させる電源を含む
請求項1に記載の水素吸蔵装置。
The hydrogen storage device according to claim 1, wherein the electric field generation unit includes a power source that generates a potential difference between the thin film and the conductive cathode.
前記吸蔵体は、前記導電陰極の表面に積層し、
前記プロトン伝導体は、前記吸蔵体を前記導電陰極と共に挟み込むように積層すると共に、前記導電陰極の裏面に積層し、
前記導電陰極の裏面に積層したプロトン伝導体を前記導電陰極と共に挟み込むように配置され、前記導電陰極よりも高い電位になるように前記電源によって電圧が印加される陽極を備える
請求項1又は請求項2に記載の水素吸蔵装置。
The occlusion body is laminated on the surface of the conductive cathode,
The proton conductor is laminated so as to sandwich the occlusion body together with the conductive cathode, and is laminated on the back surface of the conductive cathode,
The proton conductor laminated | stacked on the back surface of the said conductive cathode is arrange | positioned so that it may pinch | interpose with the said conductive cathode, The anode to which a voltage is applied by the said power supply so that it may become a higher electric potential than the said conductive cathode is provided. 2. The hydrogen storage device according to 2.
前記導電陰極と前記薄膜とが前記吸蔵体を介さずに対向する部位において、前記薄膜に積層する水素ブロック層を備える
請求項1から請求項3までの何れか一項に記載の水素吸蔵装置。
The hydrogen storage device according to any one of claims 1 to 3, further comprising a hydrogen block layer that is stacked on the thin film at a portion where the conductive cathode and the thin film face each other without the storage member interposed therebetween.
JP2013101108A 2013-05-13 2013-05-13 Hydrogen storage device Active JP6024588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101108A JP6024588B2 (en) 2013-05-13 2013-05-13 Hydrogen storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101108A JP6024588B2 (en) 2013-05-13 2013-05-13 Hydrogen storage device

Publications (3)

Publication Number Publication Date
JP2014222077A true JP2014222077A (en) 2014-11-27
JP2014222077A5 JP2014222077A5 (en) 2015-08-27
JP6024588B2 JP6024588B2 (en) 2016-11-16

Family

ID=52121688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101108A Active JP6024588B2 (en) 2013-05-13 2013-05-13 Hydrogen storage device

Country Status (1)

Country Link
JP (1) JP6024588B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991012199A1 (en) * 1990-02-15 1991-08-22 Dignam, Michael, J. Electrical device for loading of hydrogen and its isotopes to high activities in hydrogen permeable media
JP2003336798A (en) * 2002-05-17 2003-11-28 Toyota Motor Corp Hydrogen absorbing device and hydrogen absorbing method
JP2004526659A (en) * 2001-05-23 2004-09-02 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for reversibly storing hydrogen and hydrogen storage device
JP2008502568A (en) * 2004-06-15 2008-01-31 ナッサール,タレク A system for cation-electron intrusion and collisions in non-conductive materials.
US20090325038A1 (en) * 2007-10-10 2009-12-31 Micronas Gmbh Fuel cell and proces for manufacturing a fuel cell
JP2010520145A (en) * 2007-03-06 2010-06-10 セラム ハイド Method and unit for storing hydrogen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991012199A1 (en) * 1990-02-15 1991-08-22 Dignam, Michael, J. Electrical device for loading of hydrogen and its isotopes to high activities in hydrogen permeable media
JP2004526659A (en) * 2001-05-23 2004-09-02 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for reversibly storing hydrogen and hydrogen storage device
JP2003336798A (en) * 2002-05-17 2003-11-28 Toyota Motor Corp Hydrogen absorbing device and hydrogen absorbing method
JP2008502568A (en) * 2004-06-15 2008-01-31 ナッサール,タレク A system for cation-electron intrusion and collisions in non-conductive materials.
JP2010520145A (en) * 2007-03-06 2010-06-10 セラム ハイド Method and unit for storing hydrogen
US20090325038A1 (en) * 2007-10-10 2009-12-31 Micronas Gmbh Fuel cell and proces for manufacturing a fuel cell

Also Published As

Publication number Publication date
JP6024588B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5812700B2 (en) X-ray emission target, X-ray generator tube and X-ray generator
Wang et al. Vanadium diboride (VB2) synthesized at high pressure: elastic, mechanical, electronic, and magnetic properties and thermal stability
Wallauer et al. Intervalley scattering in MoS2 imaged by two-photon photoemission with a high-harmonic probe
JP6207246B2 (en) Transmission type target, radiation generating tube including the transmission type target, radiation generation apparatus, and radiation imaging apparatus
US4201921A (en) Electron beam-capillary plasma flash x-ray device
WO2018230447A1 (en) Heat generating device and method for generating heat
Ismail et al. Enhancement of resistive switching performance by introducing a thin non-stoichiometric CeO2-x switching layer in TiO2-based resistive random access memory
Belko et al. Self-healing in segmented metallized film capacitors: Experimental and theoretical investigations for engineering design
CN106783487A (en) Transmission-type x-ray target and the radioactive ray including the transmission-type x-ray target produce pipe
JP2008153194A (en) Heating device
JP2008166265A (en) Electron emission source
Matsushita et al. Redox reactions by thermally excited charge carriers: towards sensitized thermal cells
JP2016136485A (en) Electron emission element and electron emission apparatus
Stauss et al. Review of electric discharge microplasmas generated in highly fluctuating fluids: characteristics and application to nanomaterials synthesis
Saito et al. Generation of solution plasma over a large electrode surface area
JP6024588B2 (en) Hydrogen storage device
US8841539B2 (en) High efficiency thermoelectric device
US3337309A (en) Thermoelectric unit comprising intimate layers of gallium-indium alloy and alumina
GB1044362A (en) Improvements in or relating to solid state electronic devices, method and apparatus
Terashima et al. Development of a mesoscale/nanoscale plasma generator
Brodie A new model for the mechanism of operation of scandate and refractory oxide cathodes
JP3207324U (en) Graphite articles
US9396901B2 (en) Field emission devices and methods of manufacturing emitters thereof
JP5401741B2 (en) Multilayer heat transfer plate and manufacturing method thereof
JP2016080435A (en) Inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R151 Written notification of patent or utility model registration

Ref document number: 6024588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151