JP2014220588A - Electronic apparatus and program - Google Patents

Electronic apparatus and program Download PDF

Info

Publication number
JP2014220588A
JP2014220588A JP2013096919A JP2013096919A JP2014220588A JP 2014220588 A JP2014220588 A JP 2014220588A JP 2013096919 A JP2013096919 A JP 2013096919A JP 2013096919 A JP2013096919 A JP 2013096919A JP 2014220588 A JP2014220588 A JP 2014220588A
Authority
JP
Japan
Prior art keywords
time
acceleration
determination
collision
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013096919A
Other languages
Japanese (ja)
Other versions
JP6110204B2 (en
Inventor
昌志 多賀谷
Masashi Tagaya
昌志 多賀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2013096919A priority Critical patent/JP6110204B2/en
Publication of JP2014220588A publication Critical patent/JP2014220588A/en
Application granted granted Critical
Publication of JP6110204B2 publication Critical patent/JP6110204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers

Landscapes

  • Telephone Function (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic apparatus capable of properly acquiring a relative position to a collision object.SOLUTION: An electronic apparatus includes: an acceleration acquisition part which acquires the acceleration time-series added to the own apparatus and also acquires the acceleration time-series for determination used for collision determination based the acquired acceleration; a collision time acquisition part which acquires the collision time with a collision object based on a differential value of the acceleration; a moving direction acquisition part which acquires the moving direction of the own apparatus just before collision from the collision time based on the past acceleration for determination; and a relative position acquisition part which acquires the relative position to the collision object from the moving direction.

Description

本発明は電子機器、プログラムに関する。   The present invention relates to an electronic device and a program.

近年、Bluetooth(登録商標)やWi−Fi(登録商標)など、近距離無線通信機能を備える電子機器が増加している。Bluetooth(登録商標)やWi−Fi(登録商標)などの近距離無線通信機能は、数mから数十m程度の距離の電子機器間で、簡易な情報をやりとりするのに好適である。ユーザが近距離無線通信機能を気軽に使用できるようにするため、ユーザが直感的に近距離無線通信を実行できるようなGUI(Graphical User Interface)を実現することが望ましい。   In recent years, electronic devices having a short-range wireless communication function such as Bluetooth (registered trademark) and Wi-Fi (registered trademark) are increasing. A short-range wireless communication function such as Bluetooth (registered trademark) or Wi-Fi (registered trademark) is suitable for exchanging simple information between electronic devices at a distance of several meters to several tens of meters. In order to allow the user to easily use the short-range wireless communication function, it is desirable to realize a GUI (Graphical User Interface) that allows the user to intuitively perform short-range wireless communication.

ユーザが直感的に近距離無線通信を実行することを目的として例えば図1のような通信端末が発明されている(本願出願時に未公開の特願2012−279134号)。図1は、直感的なファイルのやりとりを可能とする通信端末8A、8Bの例である。図1に示すように、通信端末8A、8Bは互いに隣接して並べてあるものとする。図1の例では、通信端末8A、8Bの表示画面に通信端末8Aに記憶されているファイルデータ7のサムネイル画像が表示されているものとする。   For example, a communication terminal as shown in FIG. 1 has been invented for the purpose of intuitively performing near field communication by a user (Japanese Patent Application No. 2012-279134 unpublished at the time of filing this application). FIG. 1 is an example of communication terminals 8A and 8B that enable intuitive file exchange. As shown in FIG. 1, it is assumed that the communication terminals 8A and 8B are arranged adjacent to each other. In the example of FIG. 1, it is assumed that thumbnail images of the file data 7 stored in the communication terminal 8A are displayed on the display screens of the communication terminals 8A and 8B.

まず、通信端末8A、8Bは通信を確立する。通信の確立後、通信端末8Aがファイルデータ7のサムネイル画像のドラッグ操作を受け付けた場合、通信端末8A、8Bは、当該ドラッグ操作に基づいてサムネイル画像のドラッグ操作後のデータ表示領域を検出する。図1の例のように、ユーザが通信端末8Aから通信端末8Bに向かって、画面の境界を飛び越えてファイルデータ7のサムネイル画像をドラッグ操作したものとする。この場合、ユーザの操作指が画面の境界付近に位置する瞬間には、通信端末8A、8Bそれぞれの画面におけるサムネイル画像の表示結果は例えば9a、9bのようになる。   First, the communication terminals 8A and 8B establish communication. When the communication terminal 8A accepts a drag operation of the thumbnail image of the file data 7 after the communication is established, the communication terminals 8A and 8B detect a data display area after the drag operation of the thumbnail image based on the drag operation. As in the example of FIG. 1, it is assumed that the user has dragged the thumbnail image of the file data 7 over the boundary of the screen from the communication terminal 8A to the communication terminal 8B. In this case, at the moment when the user's operation finger is positioned near the boundary of the screen, the display results of the thumbnail images on the screens of the communication terminals 8A and 8B are 9a and 9b, for example.

例えば、サムネイル画像の全体が通信端末8Bの画面に表示されるまでドラッグ操作が続けられた場合には、通信端末8Aは当該サムネイル画像に対応するファイルデータ7を通信端末8Bに送信する。上述した通信端末の発明によれば、ユーザは直感的に近距離無線通信機能を用いて写真データなどのファイルデータを送受信することができる。   For example, when the drag operation is continued until the entire thumbnail image is displayed on the screen of the communication terminal 8B, the communication terminal 8A transmits the file data 7 corresponding to the thumbnail image to the communication terminal 8B. According to the above-described invention of the communication terminal, the user can intuitively transmit and receive file data such as photo data using the short-range wireless communication function.

上述の直感的なデータのやり取りを開始するために、各通信端末は自端末と他端末との相対位置を取得する必要がある。例えば通信端末8Aは、通信相手である通信端末8Bが向かって右側に存在している旨、通信端末8Bは、通信相手である通信端末8Aが向かって左側に存在している旨の情報を取得する必要がある。   In order to start the above-described intuitive data exchange, each communication terminal needs to acquire a relative position between its own terminal and another terminal. For example, the communication terminal 8A acquires information that the communication terminal 8B that is the communication partner exists on the right side, and the communication terminal 8B acquires information that the communication terminal 8A that is the communication partner exists on the left side. There is a need to.

以下、図2、図3を参照して各通信端末が自端末と他端末との相対位置を取得する方法の一つを説明する。図2は、自端末と他端末を衝突させた状態を例示する図である。図3は、衝突の前後において通信端末8Aで計測される加速度の時系列の例を示す図である。図2に示すように、端末の短手方向をx軸方向(紙面右向きを正)、端末の長手方向をy軸方向(紙面上向きを正)、端末の表示画面と直交する方向をz軸方向(端末背面から端末正面に向かう向きを正)とする。図2に示すように、通信端末8Aをx軸正方向に移動させ、通信端末8Bをx軸負方向に移動させた結果、通信端末8Aの右端部と通信端末8Bの左端部とが衝突したものとする。このとき、衝突の前後において通信端末8Aで計測されるx軸方向の加速度の時系列は、例えば図3Aのようになる。図3Aに示すように、通信端末8Aで計測される加速度は衝突時刻103の直前の一定区間において正の値を示している。これは通信端末8Aが衝突直前にx軸正方向に移動しており、衝突直前において正方向に加速度が加えられているためである。一方、通信端末8Aで計測される加速度は衝突時刻である時刻103の直後において急峻な負のピーク値をとる。これは、被衝突物(通信端末8B)との衝突によってx軸負方向に加速度が加えられるためである。衝突時刻である時刻103の直後の加速度のピーク値をa2(m/s)とすると、a2の符号を検出することで通信端末8Aが被衝突物とどのような位置関係にあるかがわかる。例えばa2の符号が図3Aのように負であれば、衝突によってx軸負方向に加速度が加えられたことが分かるため、通信端末8Aはx軸正方向(紙面右方向)に位置する被衝突物と衝突したことが分かる。従って、通信端末8Aは衝突直後において被衝突物のx軸負方向(紙面左方向)側に近接して存在することが分かる。一方、例えばa2の符号が正であれば、衝突によってx軸正方向に加速度が加えられたことが分かるため、通信端末8Aはx軸負方向(紙面左方向)に位置する被衝突物と衝突したことが分かる。従って、通信端末8Aは衝突直後において被衝突物のx軸正方向(紙面右方向)側に近接して存在することが分かる。 Hereinafter, with reference to FIG. 2 and FIG. 3, one method for each communication terminal to acquire the relative position between its own terminal and another terminal will be described. FIG. 2 is a diagram illustrating a state in which the own terminal and another terminal collide with each other. FIG. 3 is a diagram illustrating an example of a time series of accelerations measured by the communication terminal 8A before and after the collision. As shown in FIG. 2, the short side direction of the terminal is the x-axis direction (rightward on the plane of the paper is positive), the longitudinal direction of the terminal is y-axis direction (upward on the plane of the paper is positive), and the direction orthogonal to the display screen of the terminal is the z-axis direction. (Direction from the terminal back to the terminal front is positive). As shown in FIG. 2, as a result of moving the communication terminal 8A in the positive x-axis direction and the communication terminal 8B in the negative x-axis direction, the right end of the communication terminal 8A and the left end of the communication terminal 8B collide. Shall. At this time, the time series of acceleration in the x-axis direction measured by the communication terminal 8A before and after the collision is as shown in FIG. 3A, for example. As shown in FIG. 3A, the acceleration measured by the communication terminal 8A shows a positive value in a certain section immediately before the collision time 103. This is because the communication terminal 8A moves in the positive x-axis direction immediately before the collision, and acceleration is applied in the positive direction immediately before the collision. On the other hand, the acceleration measured by the communication terminal 8A takes a steep negative peak value immediately after the time 103, which is the collision time. This is because acceleration is applied in the negative x-axis direction by the collision with the colliding object (communication terminal 8B). Assuming that the acceleration peak value immediately after the time 103, which is the collision time, is a2 (m / s 2 ), the positional relationship of the communication terminal 8A with the colliding object can be determined by detecting the sign of a2. . For example, if the sign of a2 is negative as shown in FIG. 3A, it can be seen that acceleration has been applied in the negative x-axis direction due to the collision. You can see that it collided with an object. Therefore, it can be seen that the communication terminal 8A exists close to the collided object on the x-axis negative direction (left side in the drawing) immediately after the collision. On the other hand, for example, if the sign of a2 is positive, it can be seen that the acceleration is applied in the positive x-axis direction due to the collision, so the communication terminal 8A collides with the collision object located in the negative x-axis direction (left direction on the paper). I understand that. Therefore, it can be seen that the communication terminal 8A is present immediately in the vicinity of the collided object on the x-axis positive direction (right direction in the drawing) immediately after the collision.

図3Bを参照して上述の相対位置取得方法の問題点を説明する。図3Bは図3Aと同様に、通信端末8Aをx軸正方向に移動させ、x軸正方向にある通信端末8Bと衝突させる場合の通信端末8Aで計測される加速度の時系列の例を示す図である。従って、通信端末8Aは、x軸正方向にある被衝突物(通信端末8B)に対して、x軸負方向側から衝突することになる。しかしながら図3Bの例においては、衝突時刻である時刻103の直後において加速度のピーク値a2は正の値をとる。この場合のa2の符号は、理論上観測されるべき符号と反対の符号である。   The problem of the above-described relative position acquisition method will be described with reference to FIG. 3B. FIG. 3B shows an example of time series of acceleration measured by the communication terminal 8A when the communication terminal 8A is moved in the x-axis positive direction and collided with the communication terminal 8B in the x-axis positive direction, as in FIG. 3A. FIG. Therefore, the communication terminal 8A collides with the colliding object (communication terminal 8B) in the x-axis positive direction from the x-axis negative direction side. However, in the example of FIG. 3B, the acceleration peak value a2 takes a positive value immediately after the time 103, which is the collision time. The sign of a2 in this case is the sign opposite to the sign that should be observed theoretically.

通信端末同士を衝突させた場合、衝突の瞬間に通信端末に振動、衝撃が加わることにより、衝突直前の移動方向と反対方向の加速度のピーク値と、その反対向きの加速度のピーク値とが交互に計測される。これらのピーク値は、サンプリング間隔やサンプリングタイミングによって順番が前後して計測されることがある。上述したように衝突時刻である時刻103の直後におけるピーク値a2を相対位置取得に用いると、サンプリング間隔やサンプリングタイミングによってピーク値の順番が前後して計測された場合に、相対位置の誤判定が起こる。そこで本発明では、被衝突物との相対位置を正確に取得することができる電子機器を提供することを目的とする。   When communication terminals collide with each other, vibration and impact are applied to the communication terminal at the moment of collision, so that the acceleration peak value in the opposite direction to the movement direction immediately before the collision and the acceleration peak value in the opposite direction alternate. Is measured. These peak values may be measured back and forth depending on the sampling interval and sampling timing. As described above, when the peak value a2 immediately after the time 103, which is the collision time, is used for the relative position acquisition, an erroneous determination of the relative position may occur when the order of the peak values is measured before and after the sampling interval or sampling timing. Occur. Therefore, an object of the present invention is to provide an electronic device that can accurately acquire a relative position with respect to a collision object.

本発明の電子機器は、加速度取得部と、衝突時刻取得部と、移動方向取得部と、相対位置取得部とを含む。   The electronic device of the present invention includes an acceleration acquisition unit, a collision time acquisition unit, a movement direction acquisition unit, and a relative position acquisition unit.

加速度取得部は、自機に加えられた加速度の時系列を取得し、当該取得された加速度に基づいて衝突判定に用いる判定用加速度の時系列を取得する。衝突時刻取得部は、判定用加速度の微分値に基づいて被衝突物との衝突時刻を取得する。移動方向取得部は、衝突時刻から過去の判定用加速度に基づいて衝突直前の自機の移動方向を取得する。相対位置取得部は、移動方向から被衝突物との相対位置を取得する。   The acceleration acquisition unit acquires a time series of acceleration applied to the own device, and acquires a time series of determination acceleration used for collision determination based on the acquired acceleration. The collision time acquisition unit acquires the collision time with the collision object based on the differential value of the determination acceleration. The movement direction acquisition unit acquires the movement direction of the own aircraft immediately before the collision based on the past determination acceleration from the collision time. The relative position acquisition unit acquires a relative position with the colliding object from the moving direction.

本発明の電子機器によれば、被衝突物との相対位置を正確に取得することができる。   According to the electronic apparatus of the present invention, it is possible to accurately acquire the relative position with respect to the collision object.

直感的なファイルのやりとりを可能とする通信端末の例を示す図。The figure which shows the example of the communication terminal which enables the exchange of an intuitive file. 自端末と他端末を衝突させた状態を例示する図。The figure which illustrates the state which made the own terminal and the other terminal collide. 衝突の前後において通信端末で計測される加速度の時系列の例を示す図。The figure which shows the example of the time series of the acceleration measured with a communication terminal before and after a collision. 本発明の実施例1の電子機器の構成を示すブロック図。1 is a block diagram illustrating a configuration of an electronic device according to a first embodiment of the present invention. 本発明の実施例1の電子機器の動作を示すフローチャート。5 is a flowchart showing the operation of the electronic apparatus according to the first embodiment of the present invention. 本発明の実施例1の電子機器の加速度取得部の構成を示すブロック図。1 is a block diagram illustrating a configuration of an acceleration acquisition unit of an electronic device according to a first embodiment of the present invention. 本発明の実施例1の電子機器の加速度取得部の動作を示すフローチャート。6 is a flowchart showing the operation of the acceleration acquisition unit of the electronic apparatus according to the first embodiment of the present invention. 本発明の実施例1の電子機器の加速度計測部により取得される加速度の時系列の例を示す図。The figure which shows the example of the time series of the acceleration acquired by the acceleration measurement part of the electronic device of Example 1 of this invention. 電子機器が傾斜面に置かれている場合と水平面に置かれている場合の加速度の時系列の違いについて例示する図。The figure which illustrates about the time-series difference of the acceleration when the electronic device is placed on the inclined surface and when it is placed on the horizontal surface. 本発明の実施例1の電子機器の衝突時刻取得部の構成を示すブロック図。The block diagram which shows the structure of the collision time acquisition part of the electronic device of Example 1 of this invention. 本発明の実施例1の電子機器の衝突時刻取得部の動作を示すフローチャート。5 is a flowchart showing the operation of the collision time acquisition unit of the electronic device according to the first embodiment of the present invention. 判定用加速度から取得される各時刻を例示する図。The figure which illustrates each time acquired from the acceleration for determination. 衝突時刻の候補が複数存在する場合の判定用加速度から取得される各時刻を例示する図。The figure which illustrates each time acquired from the acceleration for determination in case there exist two or more candidates of collision time. 本発明の実施例1の電子機器の移動方向取得部の構成を示すブロック図。The block diagram which shows the structure of the moving direction acquisition part of the electronic device of Example 1 of this invention. 本発明の実施例1の電子機器の移動方向取得部の動作を示すフローチャート。5 is a flowchart showing the operation of the movement direction acquisition unit of the electronic device according to the first embodiment of the invention. 実施例1において衝突時間を調整せず積分範囲を決定する例を説明する図。FIG. 3 is a diagram for explaining an example in which the integration range is determined without adjusting the collision time in the first embodiment. 実施例1において衝突時間を調整して積分範囲を決定する例を説明する図。FIG. 3 is a diagram for explaining an example in which the integration range is determined by adjusting the collision time in the first embodiment. 本発明の実施例2の電子機器の構成を示すブロック図。The block diagram which shows the structure of the electronic device of Example 2 of this invention. 本発明の実施例2の電子機器の動作を示すフローチャート。9 is a flowchart showing the operation of the electronic device of the second embodiment of the present invention. 本発明の実施例2の電子機器の機器状態取得部の構成を示すブロック図。The block diagram which shows the structure of the apparatus state acquisition part of the electronic device of Example 2 of this invention. 本発明の実施例2の電子機器の機器状態取得部の動作を示すフローチャート。The flowchart which shows operation | movement of the apparatus state acquisition part of the electronic device of Example 2 of this invention. 判定用加速度の時系列と状態判定閾値との関係について例示する図。The figure which illustrates about the relationship between the time series of the acceleration for determination, and a state determination threshold value. 本発明の実施例2の電子機器の衝突時刻取得部の構成を示すブロック図。The block diagram which shows the structure of the collision time acquisition part of the electronic device of Example 2 of this invention. 本発明の実施例2の電子機器の衝突時刻取得部の動作を示すフローチャート。The flowchart which shows operation | movement of the collision time acquisition part of the electronic device of Example 2 of this invention. 本発明の実施例2の電子機器の移動方向取得部の構成を示すブロック図。The block diagram which shows the structure of the moving direction acquisition part of the electronic device of Example 2 of this invention. 本発明の実施例2の電子機器の移動方向取得部の動作を示すフローチャート。9 is a flowchart showing the operation of the movement direction acquisition unit of the electronic device according to the second embodiment of the present invention. 実施例2において積分が実行される範囲を例示する図。FIG. 6 is a diagram illustrating a range in which integration is performed in the second embodiment. 機器状態に応じて定まる閾値の具体例を示す図。The figure which shows the specific example of the threshold value defined according to an apparatus state.

<用語の説明>
[電子機器]
本発明において電子機器とは、電子工学の技術を応用した電気製品のうち、自機に加えられる加速度を計測する機能を備え、ユーザが機器同士をぶつけることができる程度のサイズ、重量であるもの全般を指し示すものとする。電子機器の具体例として、携帯端末、タブレット型情報端末、PDA、ゲーム機、ノートブック型PC、電子書籍端末、デジタルオーディオプレーヤー、デジタルカメラ、デジタルビデオカメラなどが考えられる。以下の実施例においては、電子機器の具体例として携帯端末を用いる。
<Explanation of terms>
[Electronics]
In the present invention, an electronic device has a function of measuring acceleration applied to its own device among electronic products to which electronic technology is applied, and has a size and weight that allow a user to hit each other. It shall be pointed out in general. Specific examples of the electronic device include a portable terminal, a tablet information terminal, a PDA, a game machine, a notebook PC, an electronic book terminal, a digital audio player, a digital camera, and a digital video camera. In the following embodiments, a portable terminal is used as a specific example of an electronic device.

以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail. In addition, the same number is attached | subjected to the structure part which has the same function, and duplication description is abbreviate | omitted.

以下、図4、図5を参照して実施例1の電子機器について説明する。図4は本実施例の電子機器1の構成を示すブロック図である。図5は本実施例の電子機器1の動作を示すフローチャートである。図4に示すように、本実施例の電子機器1は、加速度取得部11と、衝突時刻取得部12と、移動方向取得部13と、相対位置取得部14とを含む。   Hereinafter, the electronic apparatus according to the first embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a block diagram showing the configuration of the electronic apparatus 1 of the present embodiment. FIG. 5 is a flowchart showing the operation of the electronic apparatus 1 of this embodiment. As illustrated in FIG. 4, the electronic device 1 of the present embodiment includes an acceleration acquisition unit 11, a collision time acquisition unit 12, a movement direction acquisition unit 13, and a relative position acquisition unit 14.

加速度取得部11は、自機に加えられた加速度の時系列を取得し、当該取得された加速度に基づいて衝突判定に用いる判定用加速度の時系列を取得する(S11)。衝突時刻取得部12は、判定用加速度の微分値に基づいて被衝突物との衝突時刻を取得する(S12)。例えば、衝突時刻取得部12は、判定用加速度の微分値(絶対値)が所定値以上となる時刻を衝突時刻としても良い。これについて再度図3Aの例を参照して説明する。衝突時刻取得部12は加速度の微分値を所定の時間間隔で計測し続ける。例えば加速度の計測時間間隔、微分値の計測タイミングを何れもsとし、図3Aの例において微分値(絶対値)|a2−a3|/sが所定値以上となる場合、衝突時刻取得部12は微分値(絶対値)が所定値以上となる最初の時刻である時刻103を衝突時刻として特定する。衝突時刻取得部12は、このように単純に微分値(絶対値)が所定値以上となる場合を衝突時刻として取得してもよいし、後述する差分部121、符号部122、傾き部123などを含み、これらにより衝突時刻を取得しても良い。前述した衝突時刻取得方法では、実装が容易であることが利点であるが、後述する衝突時刻取得方法では、取得される衝突時刻が高精度となる点において好適である。なお後述する差分部121、符号部122、傾き部123はいずれも広義の意味での判定用加速度の微分値の大きさ、符号に基づいて被衝突物との衝突時刻を取得するという点では前述の衝突時刻取得方法と共通している。   The acceleration acquisition unit 11 acquires a time series of accelerations applied to the aircraft, and acquires a time series of determination accelerations used for collision determination based on the acquired accelerations (S11). The collision time acquisition unit 12 acquires the collision time with the colliding object based on the differential value of the determination acceleration (S12). For example, the collision time acquisition unit 12 may set the time at which the differential value (absolute value) of the determination acceleration is equal to or greater than a predetermined value as the collision time. This will be described again with reference to the example of FIG. 3A. The collision time acquisition unit 12 continues to measure the differential value of acceleration at a predetermined time interval. For example, when the acceleration measurement time interval and the differential value measurement timing are both s, and the differential value (absolute value) | a2-a3 | / s is equal to or greater than a predetermined value in the example of FIG. The time 103 which is the first time when the differential value (absolute value) is equal to or greater than a predetermined value is specified as the collision time. The collision time acquisition unit 12 may simply acquire a case where the differential value (absolute value) is equal to or greater than the predetermined value as the collision time, or a difference unit 121, an encoding unit 122, an inclination unit 123, which will be described later, and the like. The collision time may be acquired by these. The above-described collision time acquisition method is advantageous in that it is easy to implement, but the collision time acquisition method described later is preferable in that the acquired collision time is highly accurate. It should be noted that the difference unit 121, the sign unit 122, and the tilt unit 123, which will be described later, all acquire the time of collision with the collision object based on the magnitude and sign of the differential value of the determination acceleration in a broad sense. This is the same as the method for acquiring the collision time.

次に、移動方向取得部13は、衝突時刻から過去の判定用加速度に基づいて衝突直前の自機の移動方向を取得する(S13)。例えば、移動方向取得部13は、衝突時刻から加速度センサ起動時まで過去に遡り、衝突時刻から過去の一部、又は全部の判定用加速度に基づいて衝突直前の自機の移動方向を取得しても良い。また、移動方向取得部13は、衝突時刻から加速度計測値のログが残っている時間区間のうち最も過去の時刻まで過去に遡り、衝突時刻から当該過去の時刻までの一部、又は全部の判定用加速度に基づいて衝突直前の自機の移動方向を取得しても良い。また、移動方向取得部13は、後述する積分部131の例のように、衝突時刻から予め定めた所定時間過去に遡った一部、又は全部の判定用加速度に基づいて衝突直前の自機の移動方向を取得しても良い。相対位置取得部14は、移動方向から被衝突物との相対位置を取得する(S14)。   Next, the movement direction acquisition unit 13 acquires the movement direction of the own aircraft immediately before the collision based on the past determination acceleration from the collision time (S13). For example, the movement direction acquisition unit 13 goes back in the past from the collision time to the time when the acceleration sensor is activated, and acquires the movement direction of the aircraft immediately before the collision based on a part or all of the determination acceleration from the collision time. Also good. Further, the moving direction acquisition unit 13 goes back to the past from the collision time to the past time in the time interval in which the acceleration measurement value log remains, and determines part or all of the time from the collision time to the past time. The moving direction of the aircraft immediately before the collision may be acquired based on the acceleration for use. Further, as in the example of the integration unit 131 to be described later, the movement direction acquisition unit 13 is based on a part of or all of the determination acceleration retroactive to a predetermined time in advance from the collision time. The moving direction may be acquired. The relative position acquisition unit 14 acquires the relative position with the colliding object from the moving direction (S14).

以下、図6、図7を参照して本実施例の電子機器1の加速度取得部11の実現例について説明する。図6は本実施例の電子機器1の加速度取得部11の構成を示すブロック図である。図7は本実施例の電子機器1の加速度取得部11の動作を示すフローチャートである。図6に示すように、本実施例の電子機器1の加速度取得部11は、加速度計測部111と、基準値更新部112と、判定用加速度取得部113とを含む。   Hereinafter, an implementation example of the acceleration acquisition unit 11 of the electronic apparatus 1 according to the present embodiment will be described with reference to FIGS. 6 and 7. FIG. 6 is a block diagram illustrating a configuration of the acceleration acquisition unit 11 of the electronic apparatus 1 according to the present embodiment. FIG. 7 is a flowchart showing the operation of the acceleration acquisition unit 11 of the electronic apparatus 1 of the present embodiment. As shown in FIG. 6, the acceleration acquisition unit 11 of the electronic device 1 of the present embodiment includes an acceleration measurement unit 111, a reference value update unit 112, and a determination acceleration acquisition unit 113.

加速度計測部111は、自機に加えられた加速度を計測しその時系列を出力する(S111)。基準値更新部112は、所定時間毎に加速度の基準値を更新する(S112)。判定用加速度取得部113は、基準値と加速度の時系列に基づいて判定用加速度を取得する(S113)。   The acceleration measuring unit 111 measures the acceleration applied to the own device and outputs the time series (S111). The reference value update unit 112 updates the reference value of acceleration every predetermined time (S112). The determination acceleration acquisition unit 113 acquires the determination acceleration based on the reference value and the time series of the acceleration (S113).

<加速度計測部111が計測する加速度の例>
以下、図8を参照して加速度計測部111が計測する加速度の例について説明する。図8は本実施例の電子機器1の加速度計測部111により取得される加速度の時系列の例を示す図である。加速度計測部111は加速度センサで構成することができる。加速度計測部111は1軸の加速度センサでも構成することができるが、2軸、または3軸加速度センサで構成すれば様々な方向からの衝突を検知することができるため好適である。図8は、加速度の時系列を横軸を時間(秒)、縦軸を加速度(m/s)のグラフとして例示した図である。図8では、図2と同様に、電子機器の短手方向をx軸方向(紙面右向きを正)、電子機器の長手方向をy軸方向(紙面上向きを正)、電子機器の表示画面と直交する方向をz軸方向(電子機器背面から電子機器正面に向かう向きを正)と定義した。図8Aはx軸、図8Bはy軸、図8Cはz軸方向の加速度の時系列を表すグラフである。なお、以下に登場する加速度のグラフは、分かりやすさのためすべてx軸の加速度の時系列を表すグラフであるものとし、衝突はすべてx軸方向でのみ実行されるものとする。
<Example of acceleration measured by acceleration measuring unit 111>
Hereinafter, an example of acceleration measured by the acceleration measuring unit 111 will be described with reference to FIG. FIG. 8 is a diagram illustrating an example of a time series of accelerations acquired by the acceleration measuring unit 111 of the electronic apparatus 1 according to the present embodiment. The acceleration measuring unit 111 can be configured by an acceleration sensor. Although the acceleration measuring unit 111 can be configured with a single-axis acceleration sensor, it is preferable to configure the acceleration measuring unit 111 with a biaxial or triaxial acceleration sensor because a collision from various directions can be detected. FIG. 8 is a diagram illustrating a time series of acceleration as a graph of time (seconds) on the horizontal axis and acceleration (m / s 2 ) on the vertical axis. In FIG. 8, as in FIG. 2, the short side direction of the electronic device is the x-axis direction (the right direction on the paper is positive), the long side direction of the electronic device is the y-axis direction (the upward direction on the paper is positive), and is orthogonal to the display screen of the electronic device. The direction to perform was defined as the z-axis direction (the direction from the back of the electronic device toward the front of the electronic device was positive). FIG. 8A is an x-axis, FIG. 8B is a y-axis, and FIG. 8C is a graph showing a time series of acceleration in the z-axis direction. It should be noted that the acceleration graphs that appear below are all graphs representing the time series of x-axis acceleration for the sake of clarity, and all collisions are executed only in the x-axis direction.

<基準値、基準値更新部112、判定用加速度取得部113>
以下、図9を参照して基準値について説明する。図9は電子機器1が傾斜面に置かれている場合と水平面に置かれている場合の加速度の時系列の違いについて例示する図である。図9は、加速度の時系列(x軸方向)を横軸を時間(秒)、縦軸を加速度(m/s)のグラフとして例示した図である。図9の破線のグラフに示すように、電子機器1が傾斜面に置かれて静止している場合、加速度の時系列(x軸方向)はスタティックな値(図9の例では値a8近傍の値)をとる。一方、図9の実線のグラフに示すように、電子機器1が水平面に置かれて静止している場合、加速度の時系列(x軸方向)はゼロに近いスタティックな値(図9の例では値a9近傍の値)をとる。衝突判定においては、a8、a9のような値はノイズとなり得る。特に、a8のように電子機器1が傾斜面に置かれて静止している場合の加速度値はノイズとなり得る。そこで、電子機器1が静止状態である場合に計測されるa8、a9のようなスタティックな値を基準値として、計測された加速度の時系列から一律に差し引くこととする。詳細には、基準値更新部112は、所定時間(例えば2000msec)毎に加速度の時系列の微分値が所定の静止判定閾値未満であるか否かを判定して、微分値が静止判定閾値未満である場合には、電子機器が静止状態であると判断して基準値の更新を実行する(S112)。一方、基準値更新部112は、加速度の時系列の微分値が所定の静止判定閾値以上である場合には、電子機器が静止状態でないと判断して基準値の更新行わない。判定用加速度取得部113は、例えば、加速度の最新の計測値から更新済みの最新の基準値を差し引くことによって後述する衝突判定に用いる判定用加速度を取得する(S113)。なお、加速度計測値から基準値を差し引いて判定用加速度を導出する処理はノイズ除去の観点から好適ではあるが、これに限らず、判定用加速度取得部113は加速度計測値に何らの処理も施さずに、加速度計測値そのものを判定用加速度としてもよい。この場合、基準値更新部112は省略可能であるし、判定用加速度取得部113も実質的には何らの処理も行わないから省略可能である。また、判定用加速度取得部113は加速度計測値に他のノイズ処理を実行して、ノイズ処理実行後の加速度計測値を判定用加速度としてもよい。この場合は基準値更新部112は省略可能である。
<Reference value, reference value update unit 112, determination acceleration acquisition unit 113>
Hereinafter, the reference value will be described with reference to FIG. FIG. 9 is a diagram illustrating the difference in time series of acceleration when the electronic device 1 is placed on an inclined surface and when placed on a horizontal plane. FIG. 9 is a diagram illustrating a time series (x-axis direction) of acceleration as a graph of time (seconds) on the horizontal axis and acceleration (m / s 2 ) on the vertical axis. As shown in the broken line graph of FIG. 9, when the electronic device 1 is placed on an inclined surface and is stationary, the time series of acceleration (in the x-axis direction) is a static value (in the example of FIG. 9, near the value a8). Value). On the other hand, as shown in the solid line graph of FIG. 9, when the electronic device 1 is placed on a horizontal plane and is stationary, the acceleration time series (x-axis direction) is a static value close to zero (in the example of FIG. 9). A value in the vicinity of the value a9). In the collision determination, values such as a8 and a9 can be noise. In particular, the acceleration value when the electronic apparatus 1 is placed on an inclined surface and is stationary like a8 can be noise. Thus, static values such as a8 and a9 measured when the electronic device 1 is in a stationary state are used as reference values, and are uniformly subtracted from the measured acceleration time series. Specifically, the reference value update unit 112 determines whether the time-series differential value of acceleration is less than a predetermined stationary determination threshold value every predetermined time (for example, 2000 msec), and the differential value is less than the stationary determination threshold value. If it is, the electronic device is determined to be stationary and the reference value is updated (S112). On the other hand, when the time-series differential value of acceleration is equal to or greater than a predetermined stationary determination threshold, the reference value updating unit 112 determines that the electronic device is not stationary and does not update the reference value. The determination acceleration acquisition unit 113 acquires a determination acceleration used for collision determination described later, for example, by subtracting the updated latest reference value from the latest measurement value of acceleration (S113). The process of deriving the acceleration for determination by subtracting the reference value from the acceleration measurement value is preferable from the viewpoint of noise removal, but is not limited to this, and the acceleration acquisition unit for determination 113 performs some processing on the acceleration measurement value. Instead, the acceleration measurement value itself may be used as the determination acceleration. In this case, the reference value update unit 112 can be omitted, and the determination acceleration acquisition unit 113 can also be omitted because it does not substantially perform any processing. Further, the determination acceleration acquisition unit 113 may perform other noise processing on the acceleration measurement value, and may use the acceleration measurement value after execution of the noise processing as the determination acceleration. In this case, the reference value update unit 112 can be omitted.

次に、図10、図11を参照して本実施例の電子機器1の衝突時刻取得部12の実現例について説明する。図10は本実施例の電子機器1の衝突時刻取得部12の構成を示すブロック図である。図11は本実施例の電子機器1の衝突時刻取得部12の動作を示すフローチャートである。図10に示すように、本実施例の電子機器1の衝突時刻取得部12は、差分部121と、符号部122と、傾き部123と、衝突判定閾値記憶部124とを含む。衝突判定閾値記憶部124には、差分閾値と傾き閾値と(これらをまとめて衝突判定閾値ともいう)が記憶されており、差分部121は衝突判定閾値記憶部124から差分閾値を取得し、傾き部123は衝突判定閾値記憶部124から傾き閾値を取得することができる。差分部121は、最新時刻の判定用加速度と過去の時刻の判定用加速度との差分と、所定の差分閾値との比較結果に基づいて差分条件充足時刻を取得する(S121)。より具体的には、例えば差分部121は、最新時刻の判定用加速度と、所定時間過去の時刻の判定用加速度の差分と所定の差分閾値との比較結果に基づいて差分条件充足時刻を取得する。ここで差分部121は、最新時刻の判定用加速度と、最新時刻から所定時間過去の時刻までの各時刻の各判定用加速度との差分を計算し、当該差分の最大値を所定の差分閾値との比較対象としてもよい。符号部122は、差分条件充足時刻より過去の時刻において、判定用加速度の微分値の符号が反転する符号反転時刻を特定する(S122)。傾き部123は、符号反転時刻より過去の時刻の判定用加速度の微分値と所定の傾き閾値との比較結果に基づいて衝突時刻を特定する(S123)。   Next, an implementation example of the collision time acquisition unit 12 of the electronic apparatus 1 according to the present embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is a block diagram illustrating a configuration of the collision time acquisition unit 12 of the electronic apparatus 1 according to the present embodiment. FIG. 11 is a flowchart showing the operation of the collision time acquisition unit 12 of the electronic device 1 of this embodiment. As illustrated in FIG. 10, the collision time acquisition unit 12 of the electronic device 1 of the present embodiment includes a difference unit 121, a coding unit 122, an inclination unit 123, and a collision determination threshold value storage unit 124. The collision determination threshold value storage unit 124 stores a difference threshold value and an inclination threshold value (collectively referred to as a collision determination threshold value), and the difference unit 121 acquires the difference threshold value from the collision determination threshold value storage unit 124 to obtain the inclination. The unit 123 can acquire the tilt threshold value from the collision determination threshold value storage unit 124. The difference unit 121 acquires the difference condition satisfaction time based on the comparison result between the difference between the latest time determination acceleration and the past time determination acceleration and a predetermined difference threshold value (S121). More specifically, for example, the difference unit 121 acquires the difference condition satisfaction time based on the comparison result between the determination acceleration at the latest time, the difference between the determination acceleration at a time past a predetermined time, and a predetermined difference threshold. . Here, the difference unit 121 calculates a difference between the determination acceleration at the latest time and the determination acceleration at each time from the latest time to a time past a predetermined time, and sets the maximum value of the difference as a predetermined difference threshold value. It is good also as comparison object. The sign unit 122 specifies a sign inversion time at which the sign of the differential value of the determination acceleration is inverted at a time past the difference condition satisfaction time (S122). The inclination unit 123 specifies the collision time based on the comparison result between the differential value of the acceleration for determination of the time past the sign inversion time and the predetermined inclination threshold (S123).

<差分部121、符号部122、傾き部123>
以下、図12の例を参照して差分部121、符号部122、傾き部123の動作の具体例について補足説明する。図12は判定用加速度から取得される各時刻を例示する図である。なお、図中の時刻101、102、103、104における各判定用加速度の値を順にa1、a2、a3、a4とする。差分部121が最新時刻から遡る所定時間をTdとし、時刻104は時刻101から時間Td過去に遡った時刻であるものとする。図12の例では、時刻101における判定用加速度a1と時刻104における判定用加速度a4との差分の絶対値|a1−a4|が、差分閾値以上であるものとする。この例において、差分部121は時刻101が最新の時刻である場合に、|a1−a4|が、衝突判定閾値記憶部124に予め記憶された差分閾値以上であることに基づいて、最新の時刻101を差分条件充足時刻として取得する(S121)。なお、所定時間Td=sとすることもできる。この場合、差分部121は時刻101が最新の時刻である場合に、時刻101における判定用加速度の値a1と、直近の時刻である時刻102における判定用加速度の値a2に基づき、|a1−a2|が差分閾値以上であれば、最新の時刻101を差分条件充足時刻として取得する。なお前述したように、差分部121は、最新時刻である時刻101から所定時間Td過去の時刻である時刻104までの各時刻の判定用加速度のうち、時刻101における判定用加速度a1と最も差分の大きくなる時刻である時刻102における判定用加速度a2との差分の絶対値|a1−a2|を所定の差分閾値との比較対象としてもよい。この場合、差分部121は|a1−a2|が差分閾値以上であれば、最新の時刻101を差分条件充足時刻として取得する。
<Difference unit 121, sign unit 122, inclination unit 123>
Hereinafter, specific examples of the operations of the difference unit 121, the encoding unit 122, and the inclination unit 123 will be supplementarily described with reference to the example of FIG. 12. FIG. 12 is a diagram illustrating each time acquired from the acceleration for determination. In addition, the values of the accelerations for determination at times 101, 102, 103, and 104 in the figure are a1, a2, a3, and a4 in this order. It is assumed that the predetermined time that the difference unit 121 goes back from the latest time is Td, and the time 104 is a time that goes back from the time 101 to the time Td in the past. In the example of FIG. 12, it is assumed that the absolute value | a1-a4 | of the difference between the determination acceleration a1 at time 101 and the determination acceleration a4 at time 104 is greater than or equal to the difference threshold value. In this example, when the time 101 is the latest time, the difference unit 121 determines that the latest time is based on | a1-a4 | being equal to or greater than the difference threshold stored in advance in the collision determination threshold storage unit 124. 101 is acquired as the difference condition satisfaction time (S121). The predetermined time Td = s can also be set. In this case, when the time 101 is the latest time, the difference unit 121 | a1-a2 based on the determination acceleration value a1 at the time 101 and the determination acceleration value a2 at the most recent time 102. If | is equal to or greater than the difference threshold, the latest time 101 is acquired as the difference condition satisfaction time. Note that, as described above, the difference unit 121 has the most difference from the determination acceleration a1 at the time 101 among the determination accelerations at each time from the time 101 which is the latest time to the time 104 which is the predetermined time Td in the past. The absolute value | a1−a2 | of the difference from the determination acceleration a2 at time 102, which is the time when it becomes larger, may be compared with a predetermined difference threshold value. In this case, if | a1-a2 | is equal to or greater than the difference threshold, the difference unit 121 acquires the latest time 101 as the difference condition satisfaction time.

また、図12の例では、(a1−a2)×(a2−a3)<0を充たすため、時刻102は符号反転時刻に該当する。従って、符号部122は、差分条件充足時刻である時刻101より過去の時刻において最初に符号が反転する時刻102を符号反転時刻として特定する(S122)。   In the example of FIG. 12, since (a1-a2) × (a2-a3) <0 is satisfied, the time 102 corresponds to the sign inversion time. Therefore, the code | cord | chord part 122 specifies the time 102 when a code | symbol is reversed first in the time before the time 101 which is difference condition satisfaction time as a code | symbol inversion time (S122).

また、図12の例では、時刻103における判定用加速度の微分値(絶対値)は、単位時間をsとした場合に、|a2−a3|/sと表すことができる。ここでは、|a2−a3|/sが傾き閾値以上となるものとする。この場合、傾き部123は、符号反転時刻である時刻102より過去の時刻であって、時刻102の直近の時刻である時刻103における判定用加速度の微分値(絶対値)|a2−a3|/sが傾き閾値以上であることに基づいて時刻103を衝突時刻として特定する(S123)。なお、傾き部123は、時刻102より過去の時刻において判定用加速度の微分値(絶対値)が傾き閾値以上となる時刻が複数ある場合には、これらをすべて衝突時刻の候補として抽出し、衝突時刻の候補のうち最も過去のものを衝突時刻として特定してもよい。なお、傾き部123は、符号反転時刻である時刻102の直近の過去の時刻である時刻103において判定用加速度の微分値(絶対値)が傾き閾値未満となる場合には、この時刻をスキップして、次の直近の過去の時刻である時刻104について判定用加速度の微分値(絶対値)が傾き閾値以上となるか否かを判定してもよい。傾き部123は、このようにして判定用加速度の微分値(絶対値)が傾き閾値以上となる時刻まで過去に遡って判定を続け、最初に条件を充たす時刻を衝突時刻の候補とすることができる。この場合傾き部123は、当該最初に条件を充たす時刻よりも過去の時刻において判定用加速度の微分値(絶対値)が傾き閾値以上となる時刻が存在する場合、これらをすべて衝突時刻の候補として抽出し、衝突時刻の候補のうち最も過去のものを衝突時刻として特定してもよい。これについて以下に詳細に説明する。   In the example of FIG. 12, the differential value (absolute value) of the acceleration for determination at time 103 can be expressed as | a2-a3 | / s, where s is the unit time. Here, it is assumed that | a2-a3 | / s is equal to or greater than the inclination threshold value. In this case, the inclination unit 123 has a differential value (absolute value) | a2-a3 | / of the acceleration for determination at a time 103 that is a time before the time 102 that is the sign inversion time and that is the latest time of the time 102. Based on the fact that s is equal to or greater than the inclination threshold, the time 103 is specified as the collision time (S123). In addition, when there are a plurality of times when the differential value (absolute value) of the determination acceleration is equal to or greater than the inclination threshold at a time past the time 102, the inclination unit 123 extracts all of them as candidates for the collision time, Of the time candidates, the past one may be specified as the collision time. In addition, the inclination part 123 skips this time, when the differential value (absolute value) of the acceleration for determination becomes less than an inclination threshold value in the time 103 which is the past time immediately before the time 102 which is the sign inversion time. Thus, it may be determined whether or not the differential value (absolute value) of the acceleration for determination is equal to or greater than the inclination threshold at time 104, which is the next past time. In this way, the tilt unit 123 continues the determination retroactively until the time when the differential value (absolute value) of the determination acceleration is equal to or greater than the tilt threshold, and the first time that satisfies the condition is set as a collision time candidate. it can. In this case, if there is a time at which the differential value (absolute value) of the determination acceleration is equal to or greater than the inclination threshold at a time earlier than the time when the condition is initially satisfied, the inclination unit 123 sets all of these as collision time candidates. It is possible to extract and specify the oldest collision time candidate as the collision time. This will be described in detail below.

<衝突時刻の候補が複数ある場合>
以下、図13を参照して衝突時刻の候補が複数ある場合の傾き部123の動作例について説明する。図13は衝突時刻の候補が複数存在する場合の判定用加速度から取得される各時刻を例示する図である。図13の例では図12と同様に時刻101が差分条件充足時刻として取得され、時刻102が符号反転時刻として特定されたものとする。図13の例では、時刻103Aにおける判定用加速度の微分値(絶対値)は、|a2−a3A|/sと表すことができる。ここでは、|a2−a3A|/sが傾き閾値以上となるものとする。この場合、傾き部123は、前述と同様に、符号反転時刻である時刻102より過去の時刻であって、時刻102の直近の時刻である時刻103Aにおける判定用加速度の微分値(絶対値)|a2−a3A|/sが傾き閾値以上であることに基づいて時刻103Aを衝突時刻として特定する。しかしながら、図13から明らかなように、時刻103Aは実際の衝突時刻よりも若干後の時刻である。時刻103Aを衝突時刻として取り扱うと、後述する積分処理などにおいてノイズが含まれることになる。そこで、傾き部123は、時刻103Aが衝突時刻としての条件を充たす場合に、時刻103Aよりも一時刻過去の時刻である時刻103Bにおいても同様の比較を行う。時刻103Bにおける判定用加速度の微分値(絶対値)は、|a3A−a3B|/sと表すことができる。ここでは、|a3A−a3B|/sもまた傾き閾値以上となるものとする。従って傾き部123は、時刻103A、時刻103Bの双方を衝突時刻の候補とする。傾き部123は、時刻103Bよりも過去の時刻に対しても同様の比較を繰り返す。図13には存在しないが、時刻103Bよりも過去の時刻で、衝突時刻の候補となる時刻103C、103Dなどが存在する場合もある。傾き部123は、判定用加速度の微分値(絶対値)が傾き閾値以上とならなくなるまで、過去に遡って衝突時刻の候補を探索する。傾き部123は、例えばこれら衝突時刻の候補のうち、最も過去の時刻を衝突時刻として特定することができる。図13の例では、傾き部123は、衝突時刻の候補として探索された時刻103A、時刻103Bのうち、最も過去の時刻である時刻103Bを衝突時刻として特定することができる。
<When there are multiple collision time candidates>
Hereinafter, an example of the operation of the tilt unit 123 when there are a plurality of collision time candidates will be described with reference to FIG. 13. FIG. 13 is a diagram illustrating each time acquired from the determination acceleration when there are a plurality of collision time candidates. In the example of FIG. 13, it is assumed that time 101 is acquired as the difference condition satisfaction time and time 102 is specified as the sign inversion time, as in FIG. In the example of FIG. 13, the differential value (absolute value) of the determination acceleration at time 103A can be expressed as | a2-a3A | / s. Here, it is assumed that | a2-a3A | / s is equal to or greater than the inclination threshold. In this case, as described above, the inclination unit 123 has a differential value (absolute value) of the acceleration for determination at the time 103A that is a time that is past the time 102 that is the sign inversion time and that is the latest time of the time 102. Based on the fact that a2-a3A | / s is equal to or greater than the inclination threshold, the time 103A is specified as the collision time. However, as is clear from FIG. 13, the time 103A is slightly later than the actual collision time. When the time 103A is handled as a collision time, noise will be included in the integration processing described later. Therefore, when the time 103A satisfies the condition as the collision time, the tilting unit 123 performs the same comparison at the time 103B, which is one time earlier than the time 103A. The differential value (absolute value) of the determination acceleration at time 103B can be expressed as | a3A−a3B | / s. Here, it is assumed that | a3A-a3B | / s is also equal to or greater than the inclination threshold. Therefore, the inclination part 123 makes time 103A and time 103B both candidates for the collision time. The tilting unit 123 repeats the same comparison for a time past the time 103B. Although not shown in FIG. 13, there may be times 103C and 103D that are candidates for the collision time at a time before the time 103B. The inclination unit 123 searches for a collision time candidate retroactively until the differential value (absolute value) of the acceleration for determination does not exceed the inclination threshold value. The inclination part 123 can specify the past time as the collision time, for example, among these collision time candidates. In the example of FIG. 13, the tilting unit 123 can identify the time 103 </ b> B, which is the past time, among the times 103 </ b> A and 103 </ b> B searched for as collision time candidates as the collision time.

次に、図14、図15を参照して本実施例の電子機器1の移動方向取得部13の実現例について説明する。図14は本実施例の電子機器1の移動方向取得部13の構成を示すブロック図である。図15は本実施例の電子機器1の移動方向取得部13の動作を示すフローチャートである。図15に示すように、本実施例の電子機器1の移動方向取得部13は、積分部131と、方向判定部132と、他機器方向取得部133と、調整時間記憶部134と、積分時間記憶部135と、移動判定閾値記憶部136とを含む。調整時間記憶部134には、予め定めた調整時間が記憶されている。積分時間記憶部135には予め定めた積分時間が記憶されている。移動判定閾値記憶部136には予め定めた移動判定閾値が記憶されている。積分部131は、衝突時刻から積分時間記憶部135に記憶された積分時間過去までの判定用加速度を積分する(S131)。または、積分部131は、衝突時刻から調整時間記憶部134に記憶された調整時間過去に遡った時刻である調整済み衝突時刻から積分時間過去までの判定用加速度を積分することとしてもよい(S131)。方向判定部132は、積分結果と移動判定閾値記憶部136に記憶された移動判定閾値との比較結果に基づいて移動方向を判定する(S132)。詳細には、方向判定部132は、積分結果の絶対値が移動判定閾値以上となる場合に自機が移動中であると判定し、積分結果が正である場合に座標正方向に、積分結果が負である場合に座標負方向に自機が移動中であるものと判定する(S132)。一方、方向判定部132は、積分結果の絶対値が移動判定閾値未満となる場合に、自機が静止中であるものと判定する(S132)。他機器方向取得部133は、自機が静止中と判定された場合、近接する他の電子機器と通信を確立し、通信を確立した他の電子機器から直近の移動方向を取得する(S133)。ステップS133の実行のためには、本機器との被衝突物が通信を確立できる他の電子機器である必要があり、当該他の電子機器が本発明の電子機器と同じ機能を備えている必要があり、当該他の電子機器において、衝突直前の移動方向の取得動作が行われていることが前提となる。   Next, an implementation example of the movement direction acquisition unit 13 of the electronic apparatus 1 according to the present embodiment will be described with reference to FIGS. 14 and 15. FIG. 14 is a block diagram illustrating a configuration of the movement direction acquisition unit 13 of the electronic apparatus 1 according to the present embodiment. FIG. 15 is a flowchart illustrating the operation of the movement direction acquisition unit 13 of the electronic apparatus 1 according to the present embodiment. As illustrated in FIG. 15, the movement direction acquisition unit 13 of the electronic device 1 of the present embodiment includes an integration unit 131, a direction determination unit 132, another device direction acquisition unit 133, an adjustment time storage unit 134, and an integration time. A storage unit 135 and a movement determination threshold value storage unit 136 are included. The adjustment time storage unit 134 stores a predetermined adjustment time. The integration time storage unit 135 stores a predetermined integration time. The movement determination threshold value storage unit 136 stores a predetermined movement determination threshold value. The integration unit 131 integrates the determination acceleration from the collision time to the past integration time stored in the integration time storage unit 135 (S131). Alternatively, the integration unit 131 may integrate the determination acceleration from the adjusted collision time to the past integration time, which is a time that goes back to the past adjustment time stored in the adjustment time storage unit 134 from the collision time (S131). ). The direction determination unit 132 determines the movement direction based on the comparison result between the integration result and the movement determination threshold value stored in the movement determination threshold value storage unit 136 (S132). Specifically, the direction determination unit 132 determines that the own device is moving when the absolute value of the integration result is equal to or greater than the movement determination threshold, and the integration result in the positive coordinate direction when the integration result is positive. Is negative, it is determined that the aircraft is moving in the negative coordinate direction (S132). On the other hand, when the absolute value of the integration result is less than the movement determination threshold, the direction determination unit 132 determines that the own device is stationary (S132). When it is determined that the own device is stationary, the other device direction acquisition unit 133 establishes communication with another electronic device in the vicinity and acquires the latest movement direction from the other electronic device with which communication has been established (S133). . In order to execute step S133, the object to be collided with the device needs to be another electronic device capable of establishing communication, and the other electronic device needs to have the same function as the electronic device of the present invention. It is assumed that the movement operation immediately before the collision is performed in the other electronic device.

<積分部131、方向判定部132>
以下、図16、図17を参照して積分部131、方向判定部132の動作について補足説明する。図16は本実施例において衝突時間を調整せず積分範囲を決定する例を説明する図である。図17は本実施例において衝突時間を調整して積分範囲を決定する例を説明する図である。
<Integration unit 131, direction determination unit 132>
Hereinafter, the operations of the integration unit 131 and the direction determination unit 132 will be described supplementarily with reference to FIGS. FIG. 16 is a diagram for explaining an example in which the integration range is determined without adjusting the collision time in this embodiment. FIG. 17 is a diagram illustrating an example in which the integration range is determined by adjusting the collision time in this embodiment.

図16に示すように、衝突時刻取得部12が、時刻103Bを衝突時刻として取得したものとし、時刻105は時刻103Bから時間Ti過去に遡った時刻であるものとする。ここで、積分時間記憶部135に予め記憶しておく積分時間をTiとする。積分部131が、調整時間による調整を行わない場合、積分部131は、衝突時刻である時刻103Bから積分時間Ti過去の時刻である時刻105までの判定用加速度を積分する(S131)。積分範囲は図16中斜線でハッチングされた領域INTである。   As shown in FIG. 16, it is assumed that the collision time acquisition unit 12 has acquired the time 103B as the collision time, and the time 105 is a time that goes back in time Ti from the time 103B. Here, it is assumed that the integration time stored in advance in the integration time storage unit 135 is Ti. When the integration unit 131 does not perform adjustment based on the adjustment time, the integration unit 131 integrates the determination acceleration from the time 103B that is the collision time to the time 105 that is the past time of the integration time Ti (S131). The integration range is a region INT hatched with diagonal lines in FIG.

前述したように、積分部131は、調整時間を用いることもできる。調整時間を適切に設定することで、衝突直後の判定用加速度のピーク値を積分範囲から除外することができるため、移動方向判定の誤判定を減少させることができる。図17に示すように、時刻103Bを衝突時刻とし、時刻103Cは時刻103Bから時間Tfix過去に遡った時刻であるものとする。調整時間記憶部134に予め記憶しておく調整時間をTfixとする。図17の例では、積分部131は、調整時間Tfix過去に遡った調整済み衝突時刻である時刻103Cから積分時間Ti過去である時刻105までの判定用加速度を積分する(S131)。積分範囲は図17中斜線でハッチングされた領域INTである。方向判定部132は、積分結果の絶対値が移動判定閾値以上となる場合に自機が移動中であると判定し、INTが正であれば、移動方向を座標正方向と判定し、INTが負であれば、移動方向を座標負方向と判定する(S132)。一方、方向判定部132は、積分結果の絶対値が移動判定閾値未満となる場合に、自機が静止中であるものと判定する(S132)。他機器方向取得部133は、自機が静止中と判定された場合、近接する他の電子機器と通信を確立し、通信を確立した他の電子機器から直近の移動方向を取得する(S133)。   As described above, the integration unit 131 can also use the adjustment time. By appropriately setting the adjustment time, the peak value of the acceleration for determination immediately after the collision can be excluded from the integration range, so that erroneous determination of the moving direction determination can be reduced. As shown in FIG. 17, it is assumed that time 103B is a collision time, and time 103C is a time that goes back from time 103B to time Tfix in the past. The adjustment time stored in advance in the adjustment time storage unit 134 is Tfix. In the example of FIG. 17, the integration unit 131 integrates the acceleration for determination from the time 103C, which is the adjusted collision time retroactive to the adjustment time Tfix, to the time 105, which is the integration time Ti past (S131). The integration range is a region INT hatched with diagonal lines in FIG. The direction determination unit 132 determines that the aircraft is moving when the absolute value of the integration result is equal to or greater than the movement determination threshold. If INT is positive, the direction determination unit 132 determines that the movement direction is the coordinate positive direction, and INT is If it is negative, the movement direction is determined as the coordinate negative direction (S132). On the other hand, when the absolute value of the integration result is less than the movement determination threshold, the direction determination unit 132 determines that the own device is stationary (S132). When it is determined that the own device is stationary, the other device direction acquisition unit 133 establishes communication with another electronic device in the vicinity and acquires the latest movement direction from the other electronic device with which communication has been established (S133). .

前述したように相対位置取得部14は、移動方向取得部13が取得した移動方向から被衝突物との相対位置を取得する(S14)。相対位置取得部14は、自機の衝突直前の移動方向が正方向である場合には、相対位置を被衝突物の負方向側とし、自機の衝突直前の移動方向が負方向である場合には、相対位置を被衝突物の正方向側とし、自機が衝突直前に静止状態であって他機の衝突直前の移動方向が正方向である場合には、相対位置を被衝突物(他機)の正方向側とし、自機が衝突直前に静止状態であって他機の衝突直前の移動方向が負方向である場合には、相対位置を被衝突物(他機)の負方向側として相対位置を取得する(S14)。   As described above, the relative position acquisition unit 14 acquires the relative position with respect to the collision object from the movement direction acquired by the movement direction acquisition unit 13 (S14). When the movement direction immediately before the collision of the own aircraft is a positive direction, the relative position acquisition unit 14 sets the relative position to the negative direction side of the colliding object, and the movement direction immediately before the collision of the own aircraft is a negative direction. If the relative position is the positive direction side of the colliding object, and the aircraft is stationary immediately before the collision and the moving direction of the other aircraft immediately before the collision is the positive direction, the relative position is the collision object ( When the other aircraft is in the stationary direction just before the collision and the movement direction just before the other aircraft is negative, the relative position is the negative direction of the colliding object (other aircraft) The relative position is acquired as the side (S14).

本実施例の電子機器1によれば、衝突時刻取得部12が被衝突物との衝突時刻を取得し、移動方向取得部13が衝突直前の自機、または他機の移動方向を取得するため、被衝突物との相対位置を正確に取得することができる。   According to the electronic apparatus 1 of the present embodiment, the collision time acquisition unit 12 acquires the collision time with the object to be collided, and the movement direction acquisition unit 13 acquires the movement direction of the own aircraft immediately before the collision or the other aircraft. The relative position with respect to the colliding object can be obtained accurately.

以下、図18、図19を参照して、実施例1の電子機器1に機器状態を取得する機能を追加した実施例2の電子機器について説明する。図18は本実施例の電子機器2の構成を示すブロック図である。図19は本実施例の電子機器2の動作を示すフローチャートである。ここでいう機器状態とは、例えば機器が把持されている状態であるか、机上などに置かれている状態であるかなど、計測される加速度に定常的に影響を与える機器の状態全般を指すものとする。   Hereinafter, with reference to FIG. 18 and FIG. 19, an electronic apparatus according to the second embodiment in which a function of acquiring a device state is added to the electronic apparatus 1 according to the first embodiment will be described. FIG. 18 is a block diagram showing the configuration of the electronic device 2 of this embodiment. FIG. 19 is a flowchart showing the operation of the electronic apparatus 2 of this embodiment. The device state here refers to the overall state of the device that constantly affects the measured acceleration, for example, whether the device is being gripped or placed on a desk or the like. Shall.

図18に示すように、本実施例の電子機器2は、加速度取得部11と、衝突時刻取得部22と、移動方向取得部23と、相対位置取得部14と、機器状態取得部25とを含む。本実施例の電子機器2と実施例1の電子機器1との違いは、実施例1における衝突時刻取得部12、移動方向取得部13が、本実施例において衝突時刻取得部22、移動方向取得部23に変更されている点、機器状態取得部25が追加されている点である。以下では実施例1との相違点である衝突時刻取得部22、移動方向取得部23、機器状態取得部25について説明する。機器状態取得部25は、所定区間における判定用加速度と所定の状態判定閾値との比較結果から機器の使用状態である機器状態を取得する(S25)。衝突時刻取得部22は、機器状態に応じて定まる衝突判定閾値(差分閾値、傾き閾値)に基づいて衝突時刻を取得する(S22)。移動方向取得部23は、機器状態に応じて定まる移動判定閾値に基づいて移動方向を取得する(S23)。   As illustrated in FIG. 18, the electronic device 2 of the present embodiment includes an acceleration acquisition unit 11, a collision time acquisition unit 22, a movement direction acquisition unit 23, a relative position acquisition unit 14, and a device state acquisition unit 25. Including. The difference between the electronic device 2 of the present embodiment and the electronic device 1 of the first embodiment is that the collision time acquisition unit 12 and the movement direction acquisition unit 13 in the first embodiment are the same as the collision time acquisition unit 22 and the movement direction acquisition in the present embodiment. The point is that the unit 23 is changed, and the device state acquisition unit 25 is added. Hereinafter, the collision time acquisition unit 22, the movement direction acquisition unit 23, and the device state acquisition unit 25 that are different from the first embodiment will be described. The device state acquisition unit 25 acquires the device state that is the device use state from the comparison result between the determination acceleration in the predetermined section and the predetermined state determination threshold value (S25). The collision time acquisition unit 22 acquires the collision time based on a collision determination threshold value (difference threshold value, inclination threshold value) determined according to the device state (S22). The movement direction acquisition unit 23 acquires a movement direction based on a movement determination threshold determined according to the device state (S23).

以下、図20、図21を参照して本実施例の電子機器2の機器状態取得部25の実現例について説明する。図20は本実施例の電子機器2の機器状態取得部25の構成を示すブロック図である。図21は本実施例の電子機器2の機器状態取得部25の動作を示すフローチャートである。図20に示すように、機器状態取得部25は、状態判定部251と、状態判定時間記憶部252と、状態判定閾値記憶部253とを含む。状態判定時間記憶部252には予め定めた状態判定時間が記憶されている。状態判定閾値記憶部253には、予め定めた状態判定閾値が記憶されている。状態判定部251は、所定の時刻から状態判定時間記憶部252に記憶された状態判定時間過去までの区間における判定用加速度と、状態判定閾値記憶部253に記憶された状態判定閾値との比較結果から機器状態を判定する(S251)。   Hereinafter, an implementation example of the device state acquisition unit 25 of the electronic device 2 according to the present embodiment will be described with reference to FIGS. FIG. 20 is a block diagram illustrating a configuration of the device state acquisition unit 25 of the electronic device 2 according to the present embodiment. FIG. 21 is a flowchart showing the operation of the device state acquisition unit 25 of the electronic device 2 of this embodiment. As illustrated in FIG. 20, the device state acquisition unit 25 includes a state determination unit 251, a state determination time storage unit 252, and a state determination threshold storage unit 253. The state determination time storage unit 252 stores a predetermined state determination time. The state determination threshold storage unit 253 stores a predetermined state determination threshold. The state determination unit 251 compares the determination acceleration in the section from the predetermined time to the state determination time stored in the state determination time storage unit 252 and the state determination threshold stored in the state determination threshold storage unit 253. From this, the device state is determined (S251).

<状態判定部251>
以下、図22を参照して状態判定部251の動作例について補足説明する。図22は判定用加速度の時系列と状態判定閾値との関係について例示する図である。図22に示すように、衝突時刻取得部22は、時刻101を差分条件充足時刻、時刻102を符号反転時刻、時刻103を衝突時刻として特定、取得したものとする。前述の状態判定時間をTsとし、図22の例では、時刻106は時刻101から時間Ts過去に遡った時刻であるものとする。また、前述の状態判定閾値をVaとし、判定用加速度の絶対値が、状態判定閾値Va未満となる領域を斜線ハッチングで表した。なお、図中の時刻101、102、103、106における各判定用加速度の値を順にa1、a2、a3、a6とする。図22の例では、状態判定部251は、所定の時刻(例えば差分条件充足時刻である時刻101)から状態判定時間Ts過去までの区間における判定用加速度(絶対値)が状態判定閾値Va以上となる場合に機器状態を手持ち(把持)として取得し、それ以外の場合に、機器状態を机上として取得する(S251)。図22の例では、状態判定部251は、区間内の判定用加速度(絶対値)である|a1|、|a2|、|a3|、|a6|などが何れも状態判定閾値Va以上となるため、機器状態を手持ち(把持)と判定する。一方、状態判定部251は、区間内の判定用加速度(絶対値)が状態判定閾値Va未満となる瞬間がある場合には、機器状態を机上と判定する。
<State determination unit 251>
Hereinafter, an example of the operation of the state determination unit 251 will be supplementarily described with reference to FIG. FIG. 22 is a diagram illustrating the relationship between the determination time series and the state determination threshold. As shown in FIG. 22, the collision time acquisition unit 22 specifies and acquires time 101 as the difference condition satisfaction time, time 102 as the sign inversion time, and time 103 as the collision time. The above-described state determination time is Ts, and in the example of FIG. 22, the time 106 is assumed to be a time traced back from the time 101 to the time Ts. Further, the state determination threshold value described above is Va, and a region where the absolute value of the determination acceleration is less than the state determination threshold value Va is indicated by hatching. Note that the acceleration values for determination at times 101, 102, 103, and 106 in the figure are a1, a2, a3, and a6 in this order. In the example of FIG. 22, the state determination unit 251 determines that the determination acceleration (absolute value) in a section from a predetermined time (for example, the time 101 that is the difference condition satisfaction time) to the state determination time Ts is greater than or equal to the state determination threshold Va. In such a case, the device state is acquired as handheld (gripped), and in other cases, the device state is acquired as desktop (S251). In the example of FIG. 22, the state determination unit 251 has the determination acceleration (absolute value) | a1 |, | a2 |, | a3 |, and | a6 | Therefore, it is determined that the device state is handheld (gripped). On the other hand, the state determination unit 251 determines that the device state is desktop when there is a moment when the determination acceleration (absolute value) in the section is less than the state determination threshold Va.

これ以外にも、例えば状態判定部251は所定の時刻として、衝突時刻である時刻103から状態判定時間Ts過去までの区間における判定用加速度(絶対値)と、状態判定閾値Vaとを比較してもよい。この場合、図22の例では、状態判定部251は、区間内の判定用加速度(絶対値)である|a3|、|a6|などが何れも状態判定閾値Va以上であるため、機器状態を手持ち(把持)と判定する。   In addition to this, for example, the state determination unit 251 compares the determination acceleration (absolute value) in the section from the time 103 as the collision time to the state determination time Ts and the state determination threshold value Va as the predetermined time. Also good. In this case, in the example of FIG. 22, the state determination unit 251 determines the device state because | a3 |, | a6 |, etc., which are accelerations for determination (absolute values) in the section, are both equal to or greater than the state determination threshold value Va. Judged as hand-held (gripped).

次に、図23、図24を参照して本実施例の電子機器2の衝突時刻取得部22の実現例について説明する。図23は本実施例の電子機器2の衝突時刻取得部22の構成を示すブロック図である。図24は本実施例の電子機器2の衝突時刻取得部22の動作を示すフローチャートである。図23に示すように衝突時刻取得部22は、差分部221と、符号部122と、傾き部223と、衝突判定閾値記憶部224とを含む。符号部122の動作は実施例1と同じである。衝突判定閾値記憶部224には、前述の機器状態それぞれに対応する衝突判定閾値(差分閾値、傾き閾値)が予め記憶されている。差分部221は、機器状態に応じて定まる差分閾値を衝突判定閾値記憶部224から選択して、当該差分閾値と差分との比較結果に基づいて差分条件充足時刻を取得する(S221)。ステップS221は、機器状態に応じて差分閾値を選択する点でステップS121と異なるが、差分との比較方法などについては、ステップS121と同様である。傾き部223は、機器状態に応じて定まる傾き閾値を衝突判定閾値記憶部224から選択して、当該傾き閾値と符号反転時刻より過去の時刻の判定用加速度の微分値との比較結果に基づいて衝突時刻を特定する(S223)。ステップS223は、機器状態に応じて傾き閾値を選択する点でステップS123と異なるが、微分値との比較方法などについては、ステップS123と同様である。   Next, an implementation example of the collision time acquisition unit 22 of the electronic device 2 according to the present embodiment will be described with reference to FIGS. FIG. 23 is a block diagram illustrating a configuration of the collision time acquisition unit 22 of the electronic device 2 according to the present embodiment. FIG. 24 is a flowchart illustrating the operation of the collision time acquisition unit 22 of the electronic device 2 according to the present embodiment. As shown in FIG. 23, the collision time acquisition unit 22 includes a difference unit 221, an encoding unit 122, an inclination unit 223, and a collision determination threshold storage unit 224. The operation of the encoding unit 122 is the same as that in the first embodiment. The collision determination threshold value storage unit 224 stores in advance the collision determination threshold value (difference threshold value, inclination threshold value) corresponding to each of the aforementioned device states. The difference unit 221 selects a difference threshold value determined according to the device state from the collision determination threshold value storage unit 224, and acquires a difference condition satisfaction time based on a comparison result between the difference threshold value and the difference (S221). Step S221 is different from step S121 in that a difference threshold is selected according to the device state, but the method for comparing with the difference is the same as step S121. The inclination unit 223 selects an inclination threshold value determined according to the device state from the collision determination threshold value storage unit 224, and based on the comparison result between the inclination threshold value and the differential value of the acceleration for determination at a past time from the sign inversion time. The collision time is specified (S223). Step S223 is different from step S123 in that an inclination threshold value is selected according to the device state, but the comparison method with the differential value is the same as step S123.

次に、図25、図26を参照して本実施例の電子機器2の移動方向取得部23の実現例について説明する。図25は本実施例の電子機器2の移動方向取得部23の構成を示すブロック図である。図26は本実施例の電子機器2の移動方向取得部23の動作を示すフローチャートである。図25に示すように、移動方向取得部23は、積分部231と、方向判定部232と、他機器方向取得部133と、調整時間記憶部134と、積分時間記憶部135と、移動判定閾値記憶部236とを含む。他機器方向取得部133の動作は実施例1と同じである。調整時間記憶部134、積分時間記憶部135に記憶される情報は実施例1と同じである。移動判定閾値記憶部236には、前述の機器状態それぞれに対応する移動判定閾値が予め記憶されている。   Next, an implementation example of the movement direction acquisition unit 23 of the electronic apparatus 2 according to the present embodiment will be described with reference to FIGS. 25 and 26. FIG. 25 is a block diagram illustrating a configuration of the movement direction acquisition unit 23 of the electronic apparatus 2 according to the present embodiment. FIG. 26 is a flowchart illustrating the operation of the movement direction acquisition unit 23 of the electronic apparatus 2 according to the present embodiment. As illustrated in FIG. 25, the movement direction acquisition unit 23 includes an integration unit 231, a direction determination unit 232, another device direction acquisition unit 133, an adjustment time storage unit 134, an integration time storage unit 135, and a movement determination threshold value. A storage unit 236. The operation of the other device direction acquisition unit 133 is the same as that of the first embodiment. Information stored in the adjustment time storage unit 134 and the integration time storage unit 135 is the same as that in the first embodiment. In the movement determination threshold value storage unit 236, movement determination threshold values corresponding to the above-described device states are stored in advance.

積分部231は、衝突時刻、または調整済み衝突時刻から所定の積分時間過去までの判定用加速度を積分する(S231)。ここで、積分部231は、例えば衝突時刻における判定用加速度を基準とした判定用加速度の相対値を積分する。積分部231の動作について図27の例を参照して補足説明する。図27は本実施例において積分が実行される範囲を例示する図である。図27に示すように、衝突時刻取得部22は、時刻101を差分条件充足時刻、時刻102を符号反転時刻、時刻103を衝突時刻として特定、取得したものとする。この場合、例えば積分部231は、衝突時刻である時刻103から積分時間Ti過去の時刻である時刻105までの判定用加速度から衝突時刻である時刻103における判定用加速度a3を差し引いた相対値を積分する(S231)。例えば積分範囲は斜線ハッチングを施したINT(R)となる。次に、方向判定部232は、機器状態に応じて定まる移動判定閾値を移動判定閾値記憶部236から選択して、当該移動判定閾値と積分結果との比較結果に基づいて前記移動方向を判定する(S232)。ステップS232は、機器状態に応じて移動判定閾値を選択する点でステップS132と異なるが、積分結果との比較方法などついては、ステップS132と同様である。   The integrating unit 231 integrates the determination acceleration from the collision time or the adjusted collision time to a predetermined integration time (S231). Here, the integrating unit 231 integrates the relative value of the determination acceleration based on the determination acceleration at the collision time, for example. The operation of the integrating unit 231 will be supplementarily described with reference to the example of FIG. FIG. 27 is a diagram illustrating a range in which integration is executed in the present embodiment. As shown in FIG. 27, it is assumed that the collision time acquisition unit 22 specifies and acquires time 101 as the difference condition satisfaction time, time 102 as the sign inversion time, and time 103 as the collision time. In this case, for example, the integrating unit 231 integrates a relative value obtained by subtracting the determination acceleration a3 at the time 103 which is the collision time from the determination acceleration from the time 103 which is the collision time to the time 105 which is the past time of the integration time Ti. (S231). For example, the integration range is INT (R) with hatching. Next, the direction determination unit 232 selects a movement determination threshold determined according to the device state from the movement determination threshold storage unit 236, and determines the movement direction based on a comparison result between the movement determination threshold and the integration result. (S232). Step S232 differs from step S132 in that a movement determination threshold value is selected according to the device state, but the method for comparison with the integration result is the same as step S132.

<機器状態に基づく閾値の最適化>
以下、図28を参照して、機器状態に基づく閾値の最適化について補足説明する。図28は機器状態に応じて定まる閾値の具体例を示す図である。図28に示すように、移動判定閾値(左、右)の絶対値は、手持ち(把持)において机上と比較して小さく設定しておくのが好適である。これは、前述した積分値が絶対値から相対値に変更されることと関連し、移動判定において誤判定を減少させるための調整である。また、傾き閾値、差分閾値は、手持ち(把持)において机上と比較して若干小さく設定しておくのが好適である。前述同様、衝突判定において誤判定を減少させるための調整である。
<Optimization of threshold based on device status>
Hereinafter, with reference to FIG. 28, the optimization of the threshold value based on the device state will be supplementarily described. FIG. 28 is a diagram showing a specific example of the threshold value determined according to the device state. As shown in FIG. 28, it is preferable that the absolute value of the movement determination threshold value (left, right) is set to be smaller than that on the desk when held (gripped). This is an adjustment for reducing the erroneous determination in the movement determination in relation to the change of the integral value described above from the absolute value to the relative value. In addition, it is preferable that the inclination threshold value and the difference threshold value are set slightly smaller in hand-held (gripping) than on the desk. As described above, this is an adjustment for reducing erroneous determination in collision determination.

このように、本実施例の電子機器2によれば、実施例1の効果に加え、機器状態(例えば、電子機器が把持されている状態であるか、把持されずに机上に置かれているか)に応じて、差分閾値、傾き閾値、移動判定閾値などを最適化し、所定の時刻における判定用加速度の値を基準とした相対値を積分するため、機器状態が変化しても被衝突物との相対位置を正確に取得することができる。   As described above, according to the electronic device 2 of the present embodiment, in addition to the effects of the first embodiment, the device state (for example, whether the electronic device is gripped or placed on a desk without being gripped). ), The difference threshold value, the tilt threshold value, the movement determination threshold value, etc. are optimized, and the relative values based on the determination acceleration value at a predetermined time are integrated. The relative position of can be obtained accurately.

また、上述の各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能であることはいうまでもない。   In addition, the various processes described above are not only executed in time series according to the description, but may be executed in parallel or individually according to the processing capability of the apparatus that executes the processes or as necessary. Needless to say, other modifications are possible without departing from the spirit of the present invention.

また、上述の構成をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。   Further, when the above-described configuration is realized by a computer, processing contents of functions that each device should have are described by a program. The processing functions are realized on the computer by executing the program on the computer.

この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。   The program describing the processing contents can be recorded on a computer-readable recording medium. As the computer-readable recording medium, for example, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used.

また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。   The program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Furthermore, the program may be distributed by storing the program in a storage device of the server computer and transferring the program from the server computer to another computer via a network.

このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。   A computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. When executing the process, the computer reads a program stored in its own recording medium and executes a process according to the read program. As another execution form of the program, the computer may directly read the program from a portable recording medium and execute processing according to the program, and the program is transferred from the server computer to the computer. Each time, the processing according to the received program may be executed sequentially. Also, the program is not transferred from the server computer to the computer, and the above-described processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition. It is good.

なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。
Note that the program in this embodiment includes information that is used for processing by an electronic computer and that conforms to the program (data that is not a direct command to the computer but has a property that defines the processing of the computer). In this embodiment, the present apparatus is configured by executing a predetermined program on a computer. However, at least a part of these processing contents may be realized by hardware.

Claims (10)

自機に加えられた加速度の時系列を取得し、当該取得された加速度に基づいて衝突判定に用いる判定用加速度の時系列を取得する加速度取得部と、
前記判定用加速度の微分値に基づいて被衝突物との衝突時刻を取得する衝突時刻取得部と、
前記衝突時刻から過去の判定用加速度に基づいて衝突直前の自機の移動方向を取得する移動方向取得部と、
前記移動方向から被衝突物との相対位置を取得する相対位置取得部とを含む
電子機器。
An acceleration acquisition unit that acquires a time series of acceleration applied to the aircraft, and acquires a time series of determination acceleration used for collision determination based on the acquired acceleration;
A collision time acquisition unit for acquiring a collision time with a colliding object based on the differential value of the determination acceleration;
A moving direction acquisition unit that acquires the moving direction of the aircraft immediately before the collision based on the past determination acceleration from the collision time;
An electronic apparatus comprising: a relative position acquisition unit that acquires a relative position with respect to the colliding object from the moving direction.
請求項1に記載の電子機器であって、
前記加速度取得部が、
所定時間毎に前記加速度の基準値を更新する基準値更新部と、
前記基準値と前記加速度の時系列に基づいて前記判定用加速度を取得する判定用加速度取得部とを含む
電子機器。
The electronic device according to claim 1,
The acceleration acquisition unit
A reference value update unit that updates the reference value of the acceleration every predetermined time;
An electronic device comprising: a determination acceleration acquisition unit that acquires the determination acceleration based on the reference value and a time series of the acceleration.
請求項1または2に記載の電子機器であって、
前記衝突時刻取得部が、
最新時刻の判定用加速度と過去の時刻の判定用加速度との差分と、所定の差分閾値との比較結果に基づいて差分条件充足時刻を取得する差分部を含み、
前記衝突時刻取得部は、前記差分条件充足時刻より過去の時刻の前記判定用加速度の微分値に基づいて前記衝突時刻を取得する
電子機器。
The electronic device according to claim 1 or 2,
The collision time acquisition unit,
Including a difference unit that obtains a difference condition satisfaction time based on a comparison result between a difference between the latest time determination acceleration and a past time determination acceleration and a predetermined difference threshold;
The said collision time acquisition part is an electronic device which acquires the said collision time based on the differential value of the said acceleration for determination of the past time from the said difference condition satisfaction time.
請求項3に記載の電子機器であって、
前記衝突時刻取得部が、
前記差分条件充足時刻より過去の時刻において判定用加速度の微分値の符号が反転する符号反転時刻を特定する符号部を含み、
前記衝突時刻取得部は、前記符号反転時刻より過去の時刻の前記判定用加速度の微分値に基づいて前記衝突時刻を取得する
電子機器。
The electronic device according to claim 3,
The collision time acquisition unit,
Including a sign portion for specifying a sign inversion time at which the sign of the differential value of the acceleration for determination is reversed at a time past the difference condition satisfaction time,
The said collision time acquisition part is an electronic device which acquires the said collision time based on the differential value of the said acceleration for determination of the past time from the said code inversion time.
請求項4に記載の電子機器であって、
前記衝突時刻取得部が、
前記符号反転時刻より過去の時刻の前記判定用加速度の微分値と所定の傾き閾値との比較結果に基づいて衝突時刻を特定する傾き部を含む
電子機器。
The electronic device according to claim 4,
The collision time acquisition unit,
An electronic device including an inclination part that specifies a collision time based on a comparison result between a differential value of the determination acceleration at a time past the sign inversion time and a predetermined inclination threshold.
請求項1から5の何れかに記載の電子機器であって、
前記移動方向取得部が、
前記衝突時刻から所定の積分時間過去までの判定用加速度を積分する積分部と、
前記積分結果と所定の移動判定閾値との比較結果に基づいて前記移動方向を判定する方向判定部とを含む
電子機器。
An electronic device according to any one of claims 1 to 5,
The moving direction acquisition unit is
An integration unit for integrating acceleration for determination from the collision time to a predetermined integration time in the past;
An electronic device comprising: a direction determination unit that determines the movement direction based on a comparison result between the integration result and a predetermined movement determination threshold value.
請求項1から5の何れかに記載の電子機器であって、
前記移動方向取得部が、
前記衝突時刻から所定の調整時間過去に遡った時刻である調整済み衝突時刻から所定の積分時間過去までの判定用加速度を積分する積分部と、
前記積分結果と所定の移動判定閾値との比較結果に基づいて前記移動方向を判定する方向判定部とを含む
電子機器。
An electronic device according to any one of claims 1 to 5,
The moving direction acquisition unit is
An integration unit that integrates a determination acceleration from an adjusted collision time to a predetermined integration time in the past, which is a time that goes back from the collision time to a predetermined adjustment time; and
An electronic device comprising: a direction determination unit that determines the movement direction based on a comparison result between the integration result and a predetermined movement determination threshold value.
請求項5に記載の電子機器であって、
所定区間における判定用加速度と所定の状態判定閾値との比較結果から機器の使用状態である機器状態を取得する機器状態取得部をさらに含み、
前記差分部が、前記機器状態に応じて定まる差分閾値と前記差分との比較結果に基づいて差分条件充足時刻を取得し、
前記傾き部が、前記機器状態に応じて定まる傾き閾値と前記符号反転時刻より過去の時刻の判定用加速度の微分値との比較結果に基づいて衝突時刻を特定する
電子機器。
The electronic device according to claim 5,
It further includes a device state acquisition unit that acquires a device state that is a use state of the device from a comparison result between the determination acceleration in the predetermined section and the predetermined state determination threshold value,
The difference unit acquires a difference condition satisfaction time based on a comparison result between a difference threshold value determined according to the device state and the difference,
The electronic device in which the inclination unit specifies a collision time based on a comparison result between an inclination threshold value determined according to the device state and a differential value of a determination acceleration at a time earlier than the sign inversion time.
請求項6または7に記載の電子機器であって、
所定区間における判定用加速度と所定の状態判定閾値との比較結果から機器の使用状態である機器状態を取得する機器状態取得部をさらに含み、
前記方向判定部が、
前記機器状態に応じて定まる移動判定閾値と前記積分結果との比較結果に基づいて前記移動方向を判定する
電子機器。
The electronic device according to claim 6 or 7,
It further includes a device state acquisition unit that acquires a device state that is a use state of the device from a comparison result between the determination acceleration in the predetermined section and the predetermined state determination threshold value,
The direction determination unit is
An electronic device that determines the moving direction based on a comparison result between a movement determination threshold value determined according to the device state and the integration result.
コンピュータを請求項1から9の何れかに記載の電子機器として機能させるためのプログラム。   The program for functioning a computer as an electronic device in any one of Claim 1 to 9.
JP2013096919A 2013-05-02 2013-05-02 Electronic equipment, program Expired - Fee Related JP6110204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013096919A JP6110204B2 (en) 2013-05-02 2013-05-02 Electronic equipment, program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013096919A JP6110204B2 (en) 2013-05-02 2013-05-02 Electronic equipment, program

Publications (2)

Publication Number Publication Date
JP2014220588A true JP2014220588A (en) 2014-11-20
JP6110204B2 JP6110204B2 (en) 2017-04-05

Family

ID=51938702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013096919A Expired - Fee Related JP6110204B2 (en) 2013-05-02 2013-05-02 Electronic equipment, program

Country Status (1)

Country Link
JP (1) JP6110204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111659127A (en) * 2019-03-07 2020-09-15 北京奇虎科技有限公司 Data processing method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262563A (en) * 2009-05-11 2010-11-18 Sony Ericsson Mobilecommunications Japan Inc Mobile terminal, track information acquisition method and program
JP2012133068A (en) * 2010-12-21 2012-07-12 Yahoo Japan Corp Multi-display system, terminal, method and program
JP2012173542A (en) * 2011-02-22 2012-09-10 Nec Casio Mobile Communications Ltd Display system, display method, terminal device, and computer program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262563A (en) * 2009-05-11 2010-11-18 Sony Ericsson Mobilecommunications Japan Inc Mobile terminal, track information acquisition method and program
JP2012133068A (en) * 2010-12-21 2012-07-12 Yahoo Japan Corp Multi-display system, terminal, method and program
JP2012173542A (en) * 2011-02-22 2012-09-10 Nec Casio Mobile Communications Ltd Display system, display method, terminal device, and computer program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111659127A (en) * 2019-03-07 2020-09-15 北京奇虎科技有限公司 Data processing method and device

Also Published As

Publication number Publication date
JP6110204B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
CN102681958B (en) Use physical gesture transmission data
US11054638B2 (en) Tracking pointing direction of device
US20130033418A1 (en) Gesture detection using proximity or light sensors
US20110004436A1 (en) Identifying mobile devices
CN104423881A (en) Information processing device and method for controlling the same
US10296096B2 (en) Operation recognition device and operation recognition method
US20150053761A1 (en) Portable encoded information reading terminal configured to acquire images
WO2013091132A1 (en) Automatic adjustment of display image using face detection
US10043276B2 (en) Image processing method, image processing apparatus, robot apparatus, program, and recording medium
US20170185159A1 (en) Detection device, detection method, and computer readable storage medium
JP6110204B2 (en) Electronic equipment, program
EP2575332A1 (en) Method for transferring data between two devices
US11714493B2 (en) Electromagnetically tracked three-dimensional air mouse
CN104113910B (en) Alignment system in cordless communication network
JP6250708B2 (en) Traveling direction information output device, map matching device, traveling direction information output method, and program
CN107111354B (en) Unintended touch rejection
CN111340887B (en) Visual positioning method, visual positioning device, electronic equipment and storage medium
CN113409390A (en) Self-moving tail attitude detection method and device and storage medium
US11501459B2 (en) Information processing apparatus, method of information processing, and information processing system
US9894515B2 (en) Information processing device, computer-implemented method of estimating a waiting time, and non-transitory computer-readable storage medium
CN118379865B (en) Direction remote control method, device, equipment and storage medium
EP3757818B1 (en) Systems and methods for automatic service activation on a computing device
JP6741008B2 (en) Information processing apparatus, information processing method, and program
US20200089940A1 (en) Human behavior understanding system and method
JP2015213263A (en) Information terminal, data communication method by short-range communication, and computer program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170309

R150 Certificate of patent or registration of utility model

Ref document number: 6110204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees