JP2014220109A - Method of manufacturing nonaqueous electrolyte secondary battery - Google Patents

Method of manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014220109A
JP2014220109A JP2013098439A JP2013098439A JP2014220109A JP 2014220109 A JP2014220109 A JP 2014220109A JP 2013098439 A JP2013098439 A JP 2013098439A JP 2013098439 A JP2013098439 A JP 2013098439A JP 2014220109 A JP2014220109 A JP 2014220109A
Authority
JP
Japan
Prior art keywords
secondary battery
electrode body
electrolyte
battery case
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013098439A
Other languages
Japanese (ja)
Inventor
亮 花崎
Ryo Hanasaki
亮 花崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013098439A priority Critical patent/JP2014220109A/en
Publication of JP2014220109A publication Critical patent/JP2014220109A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a nonaqueous electrolyte secondary battery in which a coat of good quality, derived from an additive added to an electrolyte, can be formed on the surface of an electrode plate.SOLUTION: A method of manufacturing a nonaqueous electrolyte secondary battery where an electrolyte containing an additive, and a flat electrode body formed by winding positive and negative electrode plates, while sandwiching a separator, are housed in a battery case, and a coat derived from the additive is formed on at least one surface of the positive and negative electrode plates is provided. A hot press process for heating the battery case housing the electrode body, while restraining by applying a load in the thickness direction of the electrode body, is performed after housing the electrode body in the battery case and before injecting the electrolyte, added with the additive, into the battery case.

Description

本発明は,非水電解液二次電池の製造方法に関する。さらに詳細には,扁平形状の捲回型電極体を有する非水電解液二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery having a flat wound electrode body.

近年,ハイブリッド自動車や電気自動車などの車両用の電源としてのリチウムイオン二次電池の需要が増大している。リチウムイオン二次電池はその内部に,電極体と,電解液とを有している。電解液は,有機溶剤にリチウム塩を溶解させてなるものである。電極体は,正負の電極板およびセパレータよりなるものであり,リチウムイオン二次電池における充放電に寄与するものである。   In recent years, the demand for lithium ion secondary batteries as a power source for vehicles such as hybrid vehicles and electric vehicles has increased. The lithium ion secondary battery has an electrode body and an electrolytic solution therein. The electrolytic solution is obtained by dissolving a lithium salt in an organic solvent. The electrode body is composed of positive and negative electrode plates and a separator, and contributes to charge / discharge in the lithium ion secondary battery.

電極体の製造に係る従来技術として,例えば,特許文献1が知られている。特許文献1では,正負の電極板を,これらの間にはセパレータを挟み込みつつ円筒形状に捲回し,その捲回体を直径方向に熱圧縮することにより,扁平形状の電極体を製造している。また,電極体を扁平形状に加工する工程の後,電極体の冷却工程や,電池における外部端子と電極体との接続のための集電端子を電極体に溶接する工程などを行い,電極体を電池ケースに収容している。さらに,電極体を収容した電池ケース内に電解液を注入することにより,リチウムイオン二次電池を製造している。   For example, Patent Document 1 is known as a conventional technique related to the manufacture of an electrode body. In Patent Document 1, a flat electrode body is manufactured by winding a positive and negative electrode plate into a cylindrical shape with a separator interposed therebetween, and thermally compressing the wound body in the diameter direction. . In addition, after the step of processing the electrode body into a flat shape, a process of cooling the electrode body and a step of welding a current collecting terminal for connecting the external terminal and the electrode body in the battery to the electrode body are performed. Is housed in a battery case. Furthermore, a lithium ion secondary battery is manufactured by injecting an electrolyte into a battery case containing an electrode body.

特開2011−258493号公報JP 2011-258493 A

ここで,電解液として,リチウムビスオキサレートボレート(以下,LiBOB)などの添加剤を添加したものが用いられることがある。電極体における電極板の表面に添加剤由来の被膜を形成させ,電池性能の向上を図るためである。そのためには,添加剤由来の被膜が,電極板の表面に均一な厚みで形成されていることが好ましい。   Here, an electrolytic solution to which an additive such as lithium bisoxalate borate (hereinafter, LiBOB) is added may be used. This is because a film derived from an additive is formed on the surface of the electrode plate in the electrode body to improve battery performance. For that purpose, it is preferable that the film derived from the additive is formed with a uniform thickness on the surface of the electrode plate.

しかしながら,上記の従来技術では,電極体を扁平形状に成形する工程の後,電解液の注入工程までに複数の工程を行っている。このため,電解液の注入工程における電極体の電極板などには,たわみが生じていることがあった。これにより,電解液としてLiBOBを添加したものを用いる場合に,以下のような問題があった。   However, in the above prior art, a plurality of steps are performed after the step of forming the electrode body into a flat shape and before the step of injecting the electrolytic solution. For this reason, the electrode plate of the electrode body or the like in the electrolyte injection process may be bent. Thereby, when using what added LiBOB as electrolyte solution, there existed the following problems.

すなわち,電極板などにたわみが生じていない電極体の部分では,積層されている電極板やセパレータが密着している。一方,電極板などにたわみが生じている電極体の部分では,積層されている電極板やセパレータが密着せず,これらの間に隙間が形成されている。そして,隙間が大きい電極体の部分ほど,注入された電解液を多く含む状態となる。   That is, the electrode plates and separators that are stacked are in close contact with the electrode body portion where no deflection occurs in the electrode plates. On the other hand, in the portion of the electrode body in which the electrode plate or the like is bent, the stacked electrode plates and separators do not adhere to each other, and a gap is formed between them. Then, the portion of the electrode body having a larger gap is in a state containing more injected electrolyte.

また,電極体のうち,LiBOBの添加された電解液を多く含む部分と,少量だけ含む部分とでは,電極板の表面に形成されるLiBOB被膜の厚みが異なる。よって,電解液を注入する際の電極体の電極板などにたわみが生じていることにより,電極板の表面に均一な厚みのLiBOB被膜が形成されたリチウムイオン二次電池を製造することができないという問題があった。   In addition, the thickness of the LiBOB coating formed on the surface of the electrode plate is different between the portion of the electrode body that contains a large amount of the electrolyte solution to which LiBOB is added and the portion that contains a small amount. Therefore, the deflection of the electrode plate or the like of the electrode body when injecting the electrolytic solution makes it impossible to manufacture a lithium ion secondary battery in which a LiBOB film having a uniform thickness is formed on the surface of the electrode plate. There was a problem.

本発明は,前記した従来の技術が有する問題点の解決を目的としてなされたものである。すなわちその課題とするところは,電極板の表面に,電解液に添加した添加剤に起因する良質な被膜を形成することのできる非水電解液二次電池の製造方法を提供することである。   The present invention has been made for the purpose of solving the problems of the prior art described above. That is, the problem is to provide a method for producing a non-aqueous electrolyte secondary battery capable of forming a high-quality coating film due to the additive added to the electrolyte solution on the surface of the electrode plate.

この課題の解決を目的としてなされた本発明の非水電解液二次電池の製造方法は,電池ケースの内部に,添加剤を含む電解液と,正負の電極板をこれらの間にセパレータを挟み込みつつ捲回してなる扁平形状の電極体とを有し,正負の電極板の少なくとも一方の表面には,添加剤に由来する被膜が形成されている非水電解液二次電池の製造方法であって,電池ケースに電極体を収容した後,電池ケース内に添加剤を添加した電解液を注入する前に,電極体を収容した電池ケースを,電極体の厚さ方向に荷重をかけて拘束しつつ加熱する加熱プレス工程を行うことを特徴とする非水電解液二次電池の製造方法である。   In order to solve this problem, the non-aqueous electrolyte secondary battery manufacturing method of the present invention includes an electrolyte containing an additive and a positive and negative electrode plate sandwiched between a separator and a battery case. A method of manufacturing a non-aqueous electrolyte secondary battery having a flat electrode body that is wound while having a coating derived from an additive formed on at least one surface of a positive and negative electrode plate. After the electrode body is accommodated in the battery case, the battery case containing the electrode body is restrained by applying a load in the thickness direction of the electrode body before injecting the electrolyte with the additive into the battery case. A non-aqueous electrolyte secondary battery manufacturing method is characterized in that a heating press step of heating is performed.

電極板の表面に,電解液に含まれる添加剤に由来する被膜を均一な厚さで形成するためには,電解液が,電極体の内部において均一に存在していることが重要である。本発明の非水電解液二次電池の製造方法では,電解液の注入前に,電極体を収容した電池ケースの加熱プレス工程を行う。その加熱プレス工程により,電極体のうちの外形が平坦な平坦部では,加熱プレスによる荷重を受けてたわみが除去される。また,電極体のうちの外形が曲面である曲面部では,加熱によって収縮するセパレータの収縮力によって締め付けられ,たわみが除去される。そして,加熱プレス工程後に注入される電解液は,電極体にたわみがないことにより,その内部に含浸して均一に存在した状態となる。これにより,電極体を構成する電極板には,電解液に含まれる添加剤由来の被膜が,均一な厚みで形成される。   In order to form a coating having a uniform thickness on the surface of the electrode plate derived from the additive contained in the electrolytic solution, it is important that the electrolytic solution is uniformly present inside the electrode body. In the method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention, a heating press step of a battery case containing an electrode body is performed before the electrolyte is injected. By the heat pressing step, the deflection of the flat portion of the electrode body having a flat outer shape is removed by receiving a load from the heat pressing. In addition, the curved surface portion of the electrode body having a curved outer surface is tightened by the contraction force of the separator that contracts by heating, and the deflection is removed. Then, the electrolytic solution injected after the hot pressing step is impregnated in the inside of the electrode body, so that the electrode body is uniformly present. Thereby, the film derived from the additive contained in the electrolytic solution is formed with a uniform thickness on the electrode plate constituting the electrode body.

また上記に記載の非水電解液二次電池の製造方法において,加熱プレス工程では,電池ケースにかかる電極体の厚さ方向についての荷重が,圧力として0.15MPaから4.40MPaまでの範囲内となるように拘束しつつ,電極体の温度が80℃から110℃までの範囲内となるように加熱することが好ましい。加熱プレス工程における圧力,温度をそれぞれ上記の範囲内とすることにより,電極体における電極板などのたわみを適切に除去できるからである。電極体の受ける圧力が上記範囲内の下限値よりも低い場合には,その拘束力により,加熱によって収縮するセパレータの収縮力を適切に抑制することができない。つまり,電極体が大きく変形してしまうおそれがある。一方,電極体の受ける圧力が上記範囲内の上限値よりも高い場合には,多孔質部材であるセパレータの細孔が潰れてしまい,完成後の非水電解液二次電池における内部抵抗が増加してしまうおそれがある。また,電極体の温度が上記範囲内の下限値よりも低い場合には,セパレータの収縮力が弱過ぎるおそれがある。この場合,セパレータの収縮により,電極体の曲面部のたわみが十分に除去されない。一方,電極体の温度が上記範囲内の上限値よりも高い場合には,セパレータの収縮力が強過ぎてしまい,その収縮力によって電極体の曲面部のたわみを大きくしてしまうおそれがある。   In the method for producing a non-aqueous electrolyte secondary battery described above, in the heat press step, the load in the thickness direction of the electrode body applied to the battery case is within the range of 0.15 MPa to 4.40 MPa as the pressure. It is preferable to heat the electrode body so that the temperature of the electrode body is within a range from 80 ° C. to 110 ° C. This is because the deflection of the electrode plate and the like in the electrode body can be appropriately removed by setting the pressure and temperature in the heating press step within the above ranges, respectively. When the pressure received by the electrode body is lower than the lower limit value within the above range, the contracting force of the separator that contracts due to heating cannot be suppressed appropriately. That is, the electrode body may be greatly deformed. On the other hand, when the pressure received by the electrode body is higher than the upper limit within the above range, the pores of the separator, which is a porous member, are crushed, increasing the internal resistance of the non-aqueous electrolyte secondary battery after completion. There is a risk of it. Further, when the temperature of the electrode body is lower than the lower limit value within the above range, the contraction force of the separator may be too weak. In this case, the deflection of the curved surface portion of the electrode body is not sufficiently removed due to the shrinkage of the separator. On the other hand, when the temperature of the electrode body is higher than the upper limit within the above range, the contraction force of the separator is too strong, and the contraction force may increase the deflection of the curved surface portion of the electrode body.

また上記に記載の非水電解液二次電池の製造方法において,添加剤はLiBOBであり,電解液の電池ケース内への注入を,電解液の温度を20℃から30℃までの範囲内とし,電極体の温度を35℃から50℃までの範囲内とした状態で行うことが好ましい。電極体へ含浸する間の電解液の温度が低過ぎる場合には,電解液の粘度が上昇し,これを電極体へ良好に含浸させることができないおそれがある。つまり,電極体内における電解液の存在状態が不均一となり,電極板にLiBOB由来の被膜を均一な厚さで形成することができない。一方,高温下では,電極板表面に形成されるLiBOB被膜が,良質で安定したものとはなりにくい。また,電解液の温度が高過ぎる場合には,電池に不要な生成物が生成され,これがLiBOB被膜に混在,もしくは表面を被覆してしまうことにより,電池性能を低下させてしまうおそれもある。そして,電解液および乾燥電池の温度を上記の範囲内とすることにより,電極板の表面に良質なLiBOB被膜を形成することができる。   In the method for manufacturing a non-aqueous electrolyte secondary battery described above, the additive is LiBOB, and the electrolyte is injected into the battery case by setting the temperature of the electrolyte within a range from 20 ° C to 30 ° C. , It is preferable to carry out in a state where the temperature of the electrode body is in the range from 35 ° C. to 50 ° C. If the temperature of the electrolytic solution during impregnation of the electrode body is too low, the viscosity of the electrolytic solution increases, and this may not be satisfactorily impregnated into the electrode body. That is, the state of the electrolyte in the electrode body becomes non-uniform, and a LiBOB-derived film cannot be formed on the electrode plate with a uniform thickness. On the other hand, at high temperatures, the LiBOB coating formed on the surface of the electrode plate is unlikely to be high quality and stable. In addition, when the temperature of the electrolytic solution is too high, an unnecessary product is generated in the battery, and this may be mixed in the LiBOB coating or may cover the surface, thereby reducing the battery performance. Then, by setting the temperature of the electrolytic solution and the dry battery within the above range, a good LiBOB film can be formed on the surface of the electrode plate.

また上記に記載の非水電解液二次電池の製造方法において,電解液の電池ケース内への注入を,電解液の注入前の構成の電池の熱容量の,電解液の熱容量に対する熱容量比を,0.9から1.5までの範囲内とした状態で行うことが好ましい。電極体に含浸する間の電解液の温度を,好適な範囲内に保持することができるからである。   Further, in the method for manufacturing a non-aqueous electrolyte secondary battery described above, the electrolyte is injected into the battery case, and the ratio of the heat capacity of the battery before the electrolyte is injected to the heat capacity of the electrolyte is expressed as follows: It is preferable to carry out in a state in the range of 0.9 to 1.5. This is because the temperature of the electrolyte during impregnation of the electrode body can be maintained within a suitable range.

また上記に記載の非水電解液二次電池の製造方法において,加熱プレス工程は,電解液の電池ケース内への注入前に電池ケース内の水分を除去する脱水工程を兼ねるものであってもよい。一般的に,電解液の注入工程の直前には,乾燥電池内の水分を除去するため,脱水工程が行われる。しかし,加熱プレス工程により,乾燥電池内の水分は十分に除去されるからである。   Further, in the method for manufacturing a non-aqueous electrolyte secondary battery described above, the heating press step may also serve as a dehydration step for removing moisture in the battery case before pouring the electrolyte into the battery case. Good. Generally, a dehydration process is performed immediately before the electrolyte injection process in order to remove moisture in the dry battery. However, the moisture in the dry battery is sufficiently removed by the hot press process.

本発明によれば,電極板の表面に,電解液に添加した添加剤に起因する良質な被膜を形成することのできる非水電解液二次電池の製造方法が提供されている。   According to the present invention, there is provided a method for manufacturing a non-aqueous electrolyte secondary battery capable of forming a high-quality film resulting from an additive added to an electrolyte solution on the surface of an electrode plate.

本形態に係る二次電池を示す断面図である。It is sectional drawing which shows the secondary battery which concerns on this form. 本形態に係る電極体の斜視図である。It is a perspective view of the electrode body which concerns on this form. 同電極体を構成する正極板,負極板,セパレータを示す図である。It is a figure which shows the positive electrode plate, negative electrode plate, and separator which comprise the same electrode body. 加熱プレスに用いる装置を示す図である。It is a figure which shows the apparatus used for a heating press.

以下,本発明を具体化した最良の形態について,図面を参照しつつ詳細に説明する。本形態は,本発明をリチウムイオン二次電池について適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the drawings. In this embodiment, the present invention is applied to a lithium ion secondary battery.

まず,本形態のリチウムイオン二次電池の製造方法により製造される二次電池10(図1参照)について説明する。図1は,本形態に係る二次電池10の断面図である。二次電池10は,図1に断面図で示すように,電極体20および電解液30を電池ケース40の内部に収容してなるリチウムイオン二次電池である。本形態の電解液30は,有機溶剤にリチウム塩を溶解させたものにLiBOBを添加してなる非水電解液である。   First, the secondary battery 10 (refer FIG. 1) manufactured by the manufacturing method of the lithium ion secondary battery of this form is demonstrated. FIG. 1 is a cross-sectional view of a secondary battery 10 according to this embodiment. The secondary battery 10 is a lithium ion secondary battery in which an electrode body 20 and an electrolytic solution 30 are accommodated in a battery case 40 as shown in a sectional view in FIG. The electrolytic solution 30 of this embodiment is a nonaqueous electrolytic solution obtained by adding LiBOB to a solution obtained by dissolving a lithium salt in an organic solvent.

電池ケース40は,電池ケース本体41と封口板42とを備えている。封口板42は,絶縁部材43を備えている。また,封口板42には,注液口44が形成されている。注液口44は,電解液30を電池ケース40内に注入するためのものである。さらに,注液口44は,注液栓45により封止されている。   The battery case 40 includes a battery case main body 41 and a sealing plate 42. The sealing plate 42 includes an insulating member 43. In addition, a liquid injection port 44 is formed in the sealing plate 42. The liquid injection port 44 is for injecting the electrolytic solution 30 into the battery case 40. Further, the liquid injection port 44 is sealed with a liquid injection stopper 45.

図2は,電極体20の斜視図である。図2に示すように,電極体20は,扁平形状をした捲回型の電極体である。図3は,電極体20を構成する正極板50,負極板60,セパレータ70の,捲回前における断面図である。これら正極板50,負極板60,セパレータ70は,いずれも図3において紙面奥行き方向に長い帯状のものである。   FIG. 2 is a perspective view of the electrode body 20. As shown in FIG. 2, the electrode body 20 is a flat wound electrode body. FIG. 3 is a cross-sectional view of the positive electrode plate 50, the negative electrode plate 60, and the separator 70 constituting the electrode body 20 before winding. The positive electrode plate 50, the negative electrode plate 60, and the separator 70 are all in the form of strips that are long in the depth direction of the paper in FIG.

図3に示すように,正極板50は,正極集電箔であるアルミニウム箔51の両面に,正極活物質層52を形成してなるものである。負極板60は,負極集電箔である銅箔61の両面に,負極活物質層62を形成してなるものである。正極活物質層52および負極活物質層62はいずれも,リチウムイオンを吸蔵および放出することができる活物質を含んでいる。また,正極活物質層52および負極活物質層62には適宜,活物質層内における導電性を高めるための導電助材,活物質を集電箔上に固定して活物質層とするための結着剤などが含まれている。   As shown in FIG. 3, the positive electrode plate 50 is formed by forming a positive electrode active material layer 52 on both surfaces of an aluminum foil 51 that is a positive electrode current collector foil. The negative electrode plate 60 is formed by forming a negative electrode active material layer 62 on both surfaces of a copper foil 61 that is a negative electrode current collector foil. Both the positive electrode active material layer 52 and the negative electrode active material layer 62 contain an active material capable of inserting and extracting lithium ions. In addition, the positive electrode active material layer 52 and the negative electrode active material layer 62 are suitably used for forming an active material layer by fixing a conductive auxiliary material and an active material on the current collector foil for enhancing the conductivity in the active material layer. Contains binders.

セパレータ70は,正極板50と負極板60との短絡を防止しつつ,リチウムイオンを透過させることができる多孔質部材である。この多孔質部材として,ポリプロピレン(PP),ポリエチレン(PE)などからなる多孔質フィルムを単体で用いることができる。また,これらをその厚さ方向に複数積層させた複合材料として用いることも可能である。セパレータ70の幅(図3おいて左右方向の長さ)は,正極板50および負極板60の幅よりも狭いものである。   The separator 70 is a porous member that can transmit lithium ions while preventing a short circuit between the positive electrode plate 50 and the negative electrode plate 60. As this porous member, a porous film made of polypropylene (PP), polyethylene (PE) or the like can be used alone. It is also possible to use a composite material in which a plurality of these are laminated in the thickness direction. The width of the separator 70 (the length in the left-right direction in FIG. 3) is narrower than the width of the positive electrode plate 50 and the negative electrode plate 60.

ここで,図3に示すように,正極板50および負極板60における,それぞれに正極活物質層52および負極活物質層62が形成されている範囲は,セパレータ70と同幅程度の範囲である。ただし実際には,セパレータ70の幅の方がわずかに広い。正極板50と負極板60との短絡を,確実に防止するためである。   Here, as shown in FIG. 3, the range in which the positive electrode active material layer 52 and the negative electrode active material layer 62 are respectively formed in the positive electrode plate 50 and the negative electrode plate 60 is about the same width as the separator 70. . However, in practice, the width of the separator 70 is slightly wider. This is for reliably preventing a short circuit between the positive electrode plate 50 and the negative electrode plate 60.

また,図3に示すように,正極板50および負極板60には,それぞれ正極活物質層52および負極活物質層62が形成されていない部分がある。正極板50の正極活物質層52が形成されていない部分においては,アルミニウム箔51が露出している。アルミニウム箔51が露出している部分は,負極板60およびセパレータ70よりも図3中右側に突出している。一方,負極板60の負極活物質層62が形成されていない部分においては,銅箔61が露出している。銅箔61が露出している部分は,正極板50およびセパレータ70よりも図3中左側に突出している。   Also, as shown in FIG. 3, the positive electrode plate 50 and the negative electrode plate 60 have portions where the positive electrode active material layer 52 and the negative electrode active material layer 62 are not formed, respectively. The aluminum foil 51 is exposed at a portion of the positive electrode plate 50 where the positive electrode active material layer 52 is not formed. The portion where the aluminum foil 51 is exposed protrudes to the right in FIG. 3 from the negative electrode plate 60 and the separator 70. On the other hand, the copper foil 61 is exposed at a portion of the negative electrode plate 60 where the negative electrode active material layer 62 is not formed. The portion where the copper foil 61 is exposed protrudes to the left in FIG. 3 from the positive electrode plate 50 and the separator 70.

そして,電極体20は,正極板50,負極板60,セパレータ70を,図3に示すように重ね合わせつつ,図2に示すように扁平形状としたものである。扁平形状の電極体20には,図2の上下方向の両端の外周面が曲面をしている曲面部20Rと,曲面部20Rに挟まれた外周面が平坦な平坦部20Fとがある。なお,平坦部20Fにおける電極板などが積層されている方向を,電極体20の厚さ方向とする。   The electrode body 20 has a flat shape as shown in FIG. 2 while the positive electrode plate 50, the negative electrode plate 60, and the separator 70 are overlapped as shown in FIG. The flat electrode body 20 includes a curved surface portion 20R in which outer peripheral surfaces at both ends in the vertical direction in FIG. 2 are curved, and a flat portion 20F in which an outer peripheral surface sandwiched between the curved surface portions 20R is flat. The direction in which the electrode plates and the like in the flat portion 20F are laminated is the thickness direction of the electrode body 20.

また,電極体20は,図2に示すように,蓄電部21,正極端部22,負極端部23を有している。正極端部22と負極端部23とは,電極体20の幅方向(図2において左右方向)の両端部分である。蓄電部21は,正極端部22と負極端部23とで挟まれた,電極体20の幅方向の中央部分である。   Further, as shown in FIG. 2, the electrode body 20 includes a power storage unit 21, a positive electrode end 22, and a negative electrode end 23. The positive electrode end portion 22 and the negative electrode end portion 23 are both end portions of the electrode body 20 in the width direction (left-right direction in FIG. 2). The power storage unit 21 is a central portion in the width direction of the electrode body 20 sandwiched between the positive electrode end 22 and the negative electrode end 23.

蓄電部21は,図3に示す重ね合わせにおいて,幅方向の中央の正極板50,負極板60,セパレータ70が交互に重なる部分である。図2に示す電極体20の蓄電部21では,正極板50および負極板60はそれぞれ,これらの間に挟まれたセパレータ70と密着している。そして,蓄電部21は,充放電に寄与することができる部分である。一方,正極端部22は,図3において右端に突出しているアルミニウム箔51よりなる部分である。また,負極端部23は,図3において左端に突出している銅箔61よりなる部分である。   The power storage unit 21 is a portion in which the positive electrode plate 50, the negative electrode plate 60, and the separator 70 in the center in the width direction are alternately overlapped in the superposition illustrated in FIG. In the power storage unit 21 of the electrode body 20 shown in FIG. 2, the positive electrode plate 50 and the negative electrode plate 60 are in close contact with the separator 70 sandwiched therebetween. And the electrical storage part 21 is a part which can contribute to charging / discharging. On the other hand, the positive electrode end portion 22 is a portion made of an aluminum foil 51 protruding to the right end in FIG. Further, the negative electrode end portion 23 is a portion made of the copper foil 61 protruding to the left end in FIG.

また,図1に示す二次電池10においては,正極端部22には,正極端子80が接続されている。負極端部23には,負極端子90が接続されている。正極端子80および負極端子90は,それぞれ電極体20と接続されていない側の端81,91を,封口板42に設けられた絶縁部材43を介し,電池ケース40の外部に突出させている。二次電池10は,正極端子80および負極端子90を介し,電極体20の蓄電部21において,充電および放電を行うものである。   In the secondary battery 10 shown in FIG. 1, a positive electrode terminal 80 is connected to the positive electrode end 22. A negative electrode terminal 90 is connected to the negative electrode end portion 23. In the positive electrode terminal 80 and the negative electrode terminal 90, ends 81 and 91 on the side not connected to the electrode body 20 are protruded to the outside of the battery case 40 through an insulating member 43 provided on the sealing plate 42. The secondary battery 10 performs charging and discharging in the power storage unit 21 of the electrode body 20 via the positive electrode terminal 80 and the negative electrode terminal 90.

上記のような構成の二次電池10において,電極体20を構成する負極板60の表面には,電解液30に添加されたLiBOB由来の被膜(LiBOB被膜)が形成されている。LiBOB被膜は,詳細には,負極板60の負極活物質層62の表面上に形成されている。そして,負極板60にLiBOB被膜が形成されていることにより,二次電池10は電池性能の高いものである。また,その負極板60にLiBOB被膜が形成されることによる効果を良好に発揮させるため,本形態の二次電池10では,後に詳述する方法により,負極板60の表面に良質なLiBOB被膜が形成されている。   In the secondary battery 10 having the above-described configuration, a LiBOB-derived film (LiBOB film) added to the electrolytic solution 30 is formed on the surface of the negative electrode plate 60 constituting the electrode body 20. In detail, the LiBOB film is formed on the surface of the negative electrode active material layer 62 of the negative electrode plate 60. Since the LiBOB film is formed on the negative electrode plate 60, the secondary battery 10 has high battery performance. Further, in order to satisfactorily exert the effect of forming the LiBOB coating on the negative electrode plate 60, in the secondary battery 10 of this embodiment, a high-quality LiBOB coating is formed on the surface of the negative electrode plate 60 by a method described in detail later. Is formed.

次に,二次電池10の製造過程について説明する。本形態では,次の5つの工程により二次電池10を製造する。以下,各工程について順に説明する。
1.電極体20の製造
2.電極体20の電池ケース40内への収容
3.加熱プレス
4.電解液30の注入
5.活性化処理など
Next, the manufacturing process of the secondary battery 10 will be described. In this embodiment, the secondary battery 10 is manufactured by the following five processes. Hereinafter, each process is demonstrated in order.
1. 1. Production of electrode body 20 2. Storage of the electrode body 20 in the battery case 40 3. Heating press 4. Injection of electrolytic solution 30 Activation processing, etc.

(1.電極体20の製造)
本工程では,まず,電極体20を構成する正極板50および負極板60を製造する。これら正負の電極板はいずれも,電極活物質や結着剤を含むペーストを製造し,そのペーストを集電箔に塗工後,乾燥させて電極活物質層を形成することにより得られる。また,製造した正極板50,負極板60,セパレータ70を図3に示すように重ね合わせつつ,これらを円筒形状に捲回する。さらに,円筒形状の捲回体を,その直径方向に両側から挟み込みつつ押圧することにより扁平形状に成形し,電極体20を製造する。あるいは,正極板50,負極板60,セパレータ70を,扁平形状になるように捲回することにより,電極体20を製造することもできる。
(1. Production of electrode body 20)
In this step, first, the positive electrode plate 50 and the negative electrode plate 60 constituting the electrode body 20 are manufactured. Each of these positive and negative electrode plates can be obtained by manufacturing a paste containing an electrode active material and a binder, applying the paste to a current collector foil, and then drying to form an electrode active material layer. Further, while the manufactured positive electrode plate 50, negative electrode plate 60, and separator 70 are overlapped as shown in FIG. 3, they are wound into a cylindrical shape. Furthermore, the cylindrical wound body is formed into a flat shape by being pressed while being sandwiched from both sides in the diameter direction, and the electrode body 20 is manufactured. Or the electrode body 20 can also be manufactured by winding the positive electrode plate 50, the negative electrode plate 60, and the separator 70 so that it may become flat shape.

(2.電極体20の電池ケース40内への収容)
次に,製造した電極体20の正極端部22および負極端部23にそれぞれ,正極端子80および負極端子90を接続する。接続は,例えば,抵抗溶接により行うことができる。さらに,正極端子80および負極端子90を接続した電極体20を,電池ケース40に封入する。電池ケース40の電池ケース本体41と封口板42とは,例えば,溶接により接合することができる。なお,この時点における二次電池10はまだ,その電池ケース40内に電解液30が注入されていない状態である。またこのため,注液口44はまだ,注液栓45によって封止されていない。
(2. Accommodation of the electrode body 20 in the battery case 40)
Next, the positive electrode terminal 80 and the negative electrode terminal 90 are connected to the positive electrode end portion 22 and the negative electrode end portion 23 of the manufactured electrode body 20, respectively. The connection can be made, for example, by resistance welding. Further, the electrode body 20 to which the positive electrode terminal 80 and the negative electrode terminal 90 are connected is sealed in the battery case 40. The battery case body 41 and the sealing plate 42 of the battery case 40 can be joined by welding, for example. Note that the secondary battery 10 at this time is still in a state where the electrolyte solution 30 is not injected into the battery case 40. For this reason, the liquid injection port 44 is not yet sealed by the liquid injection stopper 45.

(3.加熱プレス)
続いて,電極体20の収容後の二次電池10について,加熱プレスを行う。本工程は,後に詳述するように,電極体20におけるたわみを除去することを目的として実施される。本形態では,電解液30が注入される前の状態の二次電池10を,その内部に収容した電極体20の厚さ方向(図1において紙面奥行き方向)に圧迫しつつ,加熱することにより行う。そのため,例えば,図4に示すような加熱プレス装置100を用いることができる。
(3. Heating press)
Subsequently, the secondary battery 10 after the electrode body 20 is accommodated is subjected to a heat press. This step is performed for the purpose of removing the deflection in the electrode body 20 as will be described in detail later. In this embodiment, the secondary battery 10 in a state before the electrolytic solution 30 is injected is heated while being pressed in the thickness direction (the depth direction in FIG. 1) of the electrode body 20 accommodated therein. Do. Therefore, for example, a hot press apparatus 100 as shown in FIG. 4 can be used.

加熱プレス装置100は,固定部110と可動部120とを有する。固定部110および可動部120はそれぞれ,二次電池10を圧迫するための圧迫面111,121を有する。可動部120は,固定部110に向かって図4中上下方向に動作することができる。   The hot press apparatus 100 includes a fixed part 110 and a movable part 120. The fixed part 110 and the movable part 120 have pressing surfaces 111 and 121 for pressing the secondary battery 10, respectively. The movable part 120 can move in the vertical direction in FIG. 4 toward the fixed part 110.

図4の状態では,二次電池10は,固定部110の圧迫面111上に配置されている。この状態で可動部120が下降することにより,二次電池10はその厚さ方向(図4において上下方向)に,固定部110の圧迫面111と可動部120の圧迫面121とに挟み込まれて圧迫される。ここで,二次電池10の厚さ方向とは,電極体20の厚さ方向と同じ方向である。   In the state of FIG. 4, the secondary battery 10 is disposed on the compression surface 111 of the fixing unit 110. When the movable part 120 is lowered in this state, the secondary battery 10 is sandwiched between the compression surface 111 of the fixed part 110 and the compression surface 121 of the movable part 120 in the thickness direction (vertical direction in FIG. 4). It is pressed. Here, the thickness direction of the secondary battery 10 is the same direction as the thickness direction of the electrode body 20.

さらに,固定部110と可動部120とは,二次電池10を加熱するためのヒーターを内部に有している。これにより,加熱プレス装置100は,二次電池10をその厚さ方向に圧迫して拘束状態としつつ,二次電池10の温度を上昇させる加熱処理を行うことができる。そして,加熱プレス装置100の可動部120は,二次電池10の加熱プレスを完了後,上昇する。   Furthermore, the fixed part 110 and the movable part 120 have a heater for heating the secondary battery 10 therein. Thereby, the heat press apparatus 100 can perform the heat processing which raises the temperature of the secondary battery 10, pressing the secondary battery 10 in the thickness direction and making it a restraint state. And the movable part 120 of the heating press apparatus 100 rises after completing the heating press of the secondary battery 10.

なお,一般的に,電解液30を注入する直前には,二次電池10の脱水工程が行われる。電解液30の注入前の二次電池10から水分を除去し,二次電池10が十分に乾燥した状態で電解液30の注入を行うためである。しかし,本形態では,この加熱プレスを行うことにより,二次電池10は十分に乾燥される。よって,本工程により脱水工程を兼ねることができるため,その後,電解液30を注入するまでの間に,特段の脱水工程を行う必要はない。   In general, immediately before the electrolytic solution 30 is injected, a dehydration process of the secondary battery 10 is performed. This is because moisture is removed from the secondary battery 10 before the electrolyte solution 30 is injected, and the electrolyte solution 30 is injected in a state where the secondary battery 10 is sufficiently dried. However, in this embodiment, the secondary battery 10 is sufficiently dried by performing this heating press. Therefore, since this process can also serve as a dehydration process, it is not necessary to perform a special dehydration process before the electrolyte solution 30 is injected thereafter.

(4.電解液30の注入)
そして,上記の加熱プレスの工程の後,電池ケース40内へ電解液30を注入する。注入する電解液30は,有機溶剤にリチウム塩を溶解させ,LiBOBを添加した状態のものである。電解液30は,電池ケース40の封口板42に形成されている注液口44から注入する。
(4. Injection of electrolyte 30)
Then, the electrolytic solution 30 is injected into the battery case 40 after the heating press step. The electrolyte 30 to be injected is in a state where a lithium salt is dissolved in an organic solvent and LiBOB is added. The electrolytic solution 30 is injected from a liquid injection port 44 formed in the sealing plate 42 of the battery case 40.

また,本形態では,電極体20の温度を35〜50℃の範囲内に調整した二次電池10に,20〜30℃の範囲内の温度に調整した電解液30を注入する。このため,電解液30の二次電池10への注入を行う前に予め,二次電池10および電解液30の温度が上記の範囲内となるように温度調整を行う。なお,本形態において,電極体20の温度調整は,上記の範囲内の温度環境に二次電池10を十分な時間放置することにより行っている。このため,電池ケース40およびその内部に位置する電極体20の温度はいずれも,上記の範囲内に調整される。よって,電極体20の温度が上記の範囲内に調整されたことの確認は,電池ケース40の温度を測定することにより行うことができる。あるいは,電池ケース40から電極体20への熱伝導が十分に行われる前に電解液30を注入する場合には,これらの温度関係を予め取得しておくことにより,電池ケース40の測定温度から電極体20の温度が上記の範囲内であることの確認をすることも可能である。また,前工程である加熱プレスにおいて,二次電池10は加熱されている。よって,二次電池10の温度については,一旦常温にまで戻すことなく,35〜50℃の範囲内に調整すればよい。   Moreover, in this embodiment, the electrolytic solution 30 adjusted to a temperature in the range of 20 to 30 ° C. is injected into the secondary battery 10 in which the temperature of the electrode body 20 is adjusted in the range of 35 to 50 ° C. For this reason, before performing injection | pouring of the electrolyte solution 30 to the secondary battery 10, temperature adjustment is performed beforehand so that the temperature of the secondary battery 10 and the electrolyte solution 30 may become in said range. In this embodiment, the temperature adjustment of the electrode body 20 is performed by leaving the secondary battery 10 in a temperature environment within the above range for a sufficient time. For this reason, both the temperature of the battery case 40 and the electrode body 20 located in the battery case 40 is adjusted within the above range. Therefore, confirmation that the temperature of the electrode body 20 has been adjusted within the above range can be performed by measuring the temperature of the battery case 40. Alternatively, in the case where the electrolytic solution 30 is injected before the heat conduction from the battery case 40 to the electrode body 20 is sufficiently performed, by obtaining these temperature relationships in advance, the measured temperature of the battery case 40 can be obtained. It is also possible to confirm that the temperature of the electrode body 20 is within the above range. Moreover, the secondary battery 10 is heated in the heating press which is a pre-process. Therefore, what is necessary is just to adjust the temperature of the secondary battery 10 within the range of 35-50 degreeC, without once returning to normal temperature.

ここで,電極体20を構成する負極板60の表面に均一な厚さのLiBOB被膜を形成するためには,LiBOBが添加された電解液30が,電極体20の内部に均一に存在していることが重要である。しかし,電解液30の温度が低いほど,その粘度は上昇する。また,電解液30はその粘度が高いほど,電池ケース40に注入された際の,電極体20の内部への含浸する速度が遅い。   Here, in order to form a LiBOB coating having a uniform thickness on the surface of the negative electrode plate 60 constituting the electrode body 20, the electrolyte solution 30 to which LiBOB is added is present uniformly in the electrode body 20. It is important that However, the viscosity increases as the temperature of the electrolytic solution 30 decreases. Further, the higher the viscosity of the electrolytic solution 30, the slower the impregnation rate into the electrode body 20 when injected into the battery case 40.

このため,注入された電解液30の温度が低過ぎる場合には,注入された電解液30が電極体20の内部全体に含浸するまでに長い時間を要することとなる。そしてその間,電極体20の内部における電解液30の存在比率は,不均一な状態である。よって,注入された電解液30の温度が低過ぎる場合には,負極板60の表面に形成されるLiBOB被膜の厚さにムラが生じてしまう。   For this reason, when the temperature of the injected electrolyte 30 is too low, it takes a long time for the injected electrolyte 30 to impregnate the entire interior of the electrode body 20. In the meantime, the ratio of the electrolyte solution 30 in the electrode body 20 is not uniform. Therefore, when the temperature of the injected electrolytic solution 30 is too low, unevenness occurs in the thickness of the LiBOB film formed on the surface of the negative electrode plate 60.

一方,電解液30の温度が高過ぎる場合においても,電極体20の負極板60の表面に,良質なLiBOB被膜を形成させることができない。電解液30の温度が高いほど,LiBOB被膜が形成される速度は速くなる。つまり,電解液30の温度が高過ぎることにより,負極板60の表面に形成されるLiBOB被膜の厚さにムラが生じやすくなる。また,高温下で形成されるLiBOB被膜は良質で安定したものとはなりにくい。さらに,温度が高過ぎる電解液30は,二次電池10を構成する部材の成分の溶解を促進させることもある。そして,その溶解した成分に起因して生成された生成物が,負極板60の表面に形成されるLiBOB被膜に混在,もしくは表面を被覆することにより,電池性能の低下を引き起こすおそれがある。   On the other hand, even when the temperature of the electrolytic solution 30 is too high, a good LiBOB film cannot be formed on the surface of the negative electrode plate 60 of the electrode body 20. The higher the temperature of the electrolytic solution 30, the faster the LiBOB film is formed. That is, when the temperature of the electrolytic solution 30 is too high, unevenness in the thickness of the LiBOB film formed on the surface of the negative electrode plate 60 is likely to occur. In addition, the LiBOB film formed at a high temperature is unlikely to be high quality and stable. Furthermore, the electrolytic solution 30 whose temperature is too high may promote the dissolution of the components of the members constituting the secondary battery 10. And the product produced | generated by the component which melt | dissolved may cause the fall of battery performance by mixing in the LiBOB film formed in the surface of the negative electrode plate 60, or coat | covering the surface.

そこで,二次電池10および電解液30の温度を上記の範囲内として電解液30を注入することにより,負極板60の表面に,電解液30に添加されているLiBOBに由来する良質な被膜を形成することができる。   Therefore, by injecting the electrolytic solution 30 while keeping the temperature of the secondary battery 10 and the electrolytic solution 30 within the above range, a high-quality coating derived from LiBOB added to the electrolytic solution 30 is formed on the surface of the negative electrode plate 60. Can be formed.

さらに本形態では,電解液30の二次電池10への注入時における,二次電池10の熱容量Cbの,電解液30の熱容量Ceに対する熱容量比Cb/Ceの値は,0.9〜1.5の範囲内であることが好ましい。すなわち,二次電池10の温度が注入される電解液30の温度よりも高いとき,注入された電解液30は加熱される。その際,熱容量比Cb/Ceの値が高過ぎる場合,電解液30が加熱され過ぎることがあるからである。   Furthermore, in this embodiment, the value of the heat capacity ratio Cb / Ce of the heat capacity Cb of the secondary battery 10 to the heat capacity Ce of the electrolyte 30 when the electrolyte 30 is injected into the secondary battery 10 is 0.9 to 1.. It is preferable to be within the range of 5. That is, when the temperature of the secondary battery 10 is higher than the temperature of the electrolyte 30 to be injected, the injected electrolyte 30 is heated. In this case, if the value of the heat capacity ratio Cb / Ce is too high, the electrolytic solution 30 may be heated too much.

また,二次電池10の温度が上記の範囲内において下限値に近く,熱容量比Cb/Ceの値が低過ぎる状態で電解液30を注入した場合には,注入された電解液30の温度が,電極体20の内部に含浸する間に低下することがある。このため,電解液30が電極体20内に完全に含浸する前に,電解液30の温度が低下し過ぎてしまうことがある。つまり,電解液30の粘度が,電解液30が電極体20内に十分に含浸されないほどに上昇してしまうことがあるからである。   In addition, when the electrolyte solution 30 is injected while the temperature of the secondary battery 10 is close to the lower limit within the above range and the value of the heat capacity ratio Cb / Ce is too low, the temperature of the injected electrolyte solution 30 is , It may decrease while impregnating the inside of the electrode body 20. For this reason, the temperature of the electrolytic solution 30 may be excessively lowered before the electrolytic solution 30 is completely impregnated in the electrode body 20. That is, the viscosity of the electrolytic solution 30 may increase so that the electrolytic solution 30 is not sufficiently impregnated in the electrode body 20.

よって,二次電池10および電解液30の温度を上記の範囲内とし,さらに熱容量比Cb/Ceについても0.9〜1.5の範囲内となるように調整して本工程を行うことで,より確実に,良質なLiBOB被膜を形成することができる。なお,熱容量Cbは,電解液30の注入前の構成の二次電池10について,電極体20や電池ケース40などのそれぞれの熱容量より求めることができる。   Therefore, the temperature of the secondary battery 10 and the electrolytic solution 30 is set within the above range, and the heat capacity ratio Cb / Ce is adjusted to be within the range of 0.9 to 1.5. Thus, a high-quality LiBOB film can be formed more reliably. The heat capacity Cb can be obtained from the respective heat capacities of the electrode body 20, the battery case 40, etc., for the secondary battery 10 having a configuration before injection of the electrolytic solution 30.

また,電解液30の注入後,注液口44を注液栓45により封止する。封止は,例えば,注液口44を注液栓45によって塞いだ状態で,注液口44の周囲をレーザ溶接することにより行う。   In addition, after the electrolyte solution 30 is injected, the injection port 44 is sealed with an injection plug 45. The sealing is performed, for example, by laser welding the periphery of the liquid injection port 44 in a state where the liquid injection port 44 is closed by the liquid injection stopper 45.

(5.活性化処理など)
電解液30を注入して注液口44を封止した後,コンディショニングやエージング処理を行う。コンディショニングは,二次電池10の最初の充放電を行う工程である。エージング処理は,二次電池10を所定の温度環境で放置することにより行われる。これらの工程により,二次電池10は活性化され,その電池性能を十分に発揮できる状態となる。またこの他にも,不良品の電池を製造工程において除去する電池の検査工程なども行われる。
(5. Activation processing, etc.)
After injecting the electrolytic solution 30 and sealing the injection port 44, conditioning or aging treatment is performed. Conditioning is a process of charging and discharging the secondary battery 10 for the first time. The aging process is performed by leaving the secondary battery 10 in a predetermined temperature environment. Through these steps, the secondary battery 10 is activated, and the battery performance can be sufficiently exhibited. In addition, a battery inspection process for removing defective batteries in the manufacturing process is also performed.

ここで,上記の本形態の二次電池10の製造過程では,電解液30を注入する前工程の「3.加熱プレス」において,二次電池10を拘束状態として加熱する処理を行っている。その効果について説明する。   Here, in the manufacturing process of the secondary battery 10 according to the above-described embodiment, a process of heating the secondary battery 10 in a restrained state is performed in “3. Heating press” in the previous process of injecting the electrolytic solution 30. The effect will be described.

電極体20における正極板50や負極板60,セパレータ70には,電極体20の製造後,正極端部22および負極端部23の接続や電池ケース40内への収容などを行うことによりたわみが発生することがある。たわみが生じている場合,そのたわんでいる部分では,正極板50や負極板60,セパレータ70が互いに密着していない状態となり,これらの間には隙間が形成された状態となる。一方,たわみがない部分では,正極板50や負極板60,セパレータ70が互いに密着している状態である。   The positive electrode plate 50, the negative electrode plate 60, and the separator 70 in the electrode body 20 may be bent by connecting the positive electrode end 22 and the negative electrode end 23, accommodating in the battery case 40, etc. after the electrode body 20 is manufactured. May occur. When the deflection occurs, the positive electrode plate 50, the negative electrode plate 60, and the separator 70 are not in close contact with each other in the bent portion, and a gap is formed between them. On the other hand, in a portion where there is no deflection, the positive electrode plate 50, the negative electrode plate 60, and the separator 70 are in close contact with each other.

このため,注入された電解液30は,電極体20の内部におけるたわみがない部分では,セパレータ70に含浸した分だけ存在する。これに対し,たわんでいる部分では,セパレータ70に含浸した分に加え,たわみによって形成されている隙間に入り込んだ分も存在する。つまり,電極体20の内部におけるたわみが生じている部分とそうでない部分とでは,電解液30の存在比率が異なった状態となる。また,たわみが大きいほど,形成される隙間も大きくなり,そこに存在する電解液30の量も多くなりがちである。   For this reason, the injected electrolyte solution 30 is present in an amount that is impregnated in the separator 70 in a portion where there is no deflection in the electrode body 20. On the other hand, in the bent portion, in addition to the portion impregnated in the separator 70, there is also a portion that enters the gap formed by the deflection. That is, the existence ratio of the electrolytic solution 30 is different between the portion where the deflection in the electrode body 20 occurs and the portion where the deflection does not occur. In addition, the larger the deflection, the larger the gap formed, and the greater the amount of electrolyte 30 present there.

しかし,前述したように,負極板60の表面に均一な厚さのLiBOB被膜を形成するためには,LiBOBが添加された電解液30が,電極体20の内部に均一に存在していることが重要である。よって,二次電池10に収容されている電極体20の正極板50や負極板60,セパレータ70には,電解液30が注入される段階で,たわみがない状態であることが好ましい。   However, as described above, in order to form a LiBOB film having a uniform thickness on the surface of the negative electrode plate 60, the electrolyte solution 30 to which LiBOB is added must be uniformly present in the electrode body 20. is important. Therefore, it is preferable that the positive electrode plate 50, the negative electrode plate 60, and the separator 70 of the electrode body 20 accommodated in the secondary battery 10 are in a state in which there is no deflection when the electrolytic solution 30 is injected.

そこで,本形態では,電解液30を注入する工程の前工程の加熱プレス工程にて二次電池10を拘束状態として加熱する処理を行うことにより,電極体20のたわみを除去している。すなわち,二次電池10を拘束状態とすることにより,電極体20の平坦部20Fにおけるたわみが除去される。二次電池10の拘束荷重を,内部に収容されている電極体20の平坦部20Fがその厚さ方向に受けるからである。   Therefore, in this embodiment, the deflection of the electrode body 20 is removed by performing a process of heating the secondary battery 10 in a restrained state in a heating press step that is a step before the step of injecting the electrolytic solution 30. That is, the deflection in the flat portion 20F of the electrode body 20 is removed by placing the secondary battery 10 in a restrained state. This is because the flat portion 20F of the electrode body 20 accommodated in the secondary battery 10 receives in the thickness direction thereof.

また,セパレータ70として用いられる材料は一般的に,80℃以上で収縮する性質を有する。つまり,二次電池10を加熱することにより,セパレータ70は収縮する。その収縮によって電極体20は締め付けられる。よって,二次電池10を拘束状態として適度に加熱することにより,セパレータ70の収縮によって電極体20を過度に変形させることなく締め付け,特に曲面部20Rにおけるたわみを除去することができる。   The material used as the separator 70 generally has a property of shrinking at 80 ° C. or higher. That is, the separator 70 contracts by heating the secondary battery 10. The electrode body 20 is tightened by the contraction. Therefore, by appropriately heating the secondary battery 10 in a restrained state, the electrode body 20 can be tightened without excessive deformation due to the contraction of the separator 70, and in particular, the bending at the curved surface portion 20R can be removed.

なお,二次電池10の拘束荷重が低過ぎた場合には,その拘束荷重による拘束力により,加熱によるセパレータ70の収縮力を抑制することができない。つまり,セパレータ70の収縮によって電極体20が大きく変形してしまい,電極体20のたわみを大きくしてしまうおそれがある。一方,拘束荷重が高過ぎた場合には,その拘束荷重によりセパレータ70の細孔が潰れて目詰まりを起こし,完成後の二次電池10における内部抵抗が増加してしまう。   When the restraining load of the secondary battery 10 is too low, the contracting force of the separator 70 due to heating cannot be suppressed by the restraining force due to the restraining load. That is, the electrode body 20 may be greatly deformed by the contraction of the separator 70, and the deflection of the electrode body 20 may be increased. On the other hand, when the restraint load is too high, the pores of the separator 70 are crushed by the restraint load, causing clogging, and the internal resistance in the secondary battery 10 after completion increases.

また,二次電池10を加熱する温度が低過ぎた場合には,セパレータ70の収縮による電極体20の締め付けが弱くなる。この場合,ほとんど拘束荷重のみの効果しか得られず,特に,電極体20の曲面部20Rにおけるたわみの除去について期待できない。一方,加熱温度が高過ぎた場合には,プレスによる拘束荷重がかからない電極体20の曲面部20Rの位置でのセパレータ70の収縮が大きくなり過ぎる。つまり,電極体20の曲面部20Rにおけるたわみを大きくしてしまうおそれがある。   Moreover, when the temperature which heats the secondary battery 10 is too low, the clamping | tightening of the electrode body 20 by shrinkage | contraction of the separator 70 will become weak. In this case, only the effect of only the restraint load can be obtained, and in particular, it cannot be expected to remove the deflection at the curved surface portion 20R of the electrode body 20. On the other hand, when the heating temperature is too high, the separator 70 contracts too much at the position of the curved surface portion 20R of the electrode body 20 where no restraint load is applied by the press. That is, there is a possibility that the deflection of the curved surface portion 20R of the electrode body 20 may be increased.

よって,これらのことを考慮し,「3.加熱プレス」の工程では,二次電池10がその厚さ方向に受ける荷重が,圧力として0.15〜4.40MPaの範囲内となるように二次電池10を拘束することが好ましい。さらには,二次電池10の内部の電極体20の温度が80〜110℃の範囲内となるように加熱する処理を行うことが好ましい。   Therefore, in consideration of these points, in the “3. Heating press” step, the load that the secondary battery 10 receives in the thickness direction is set to a pressure within a range of 0.15 to 4.40 MPa. It is preferable to restrain the secondary battery 10. Furthermore, it is preferable to perform a heating process so that the temperature of the electrode body 20 inside the secondary battery 10 is in the range of 80 to 110 ° C.

なお,図4に示す加熱プレス装置100は,二次電池10をその厚さ方向に均一に圧迫する構成のものである。しかし,少なくとも図4にハッチングを施してAで示す部分を圧迫するような構成であればよい。図4にAで示す部分は,電極体20の蓄電部21のうちの平坦部20Fに位置する部分を,二次電池10の厚さ方向に投影して電池ケース40の表面に表した部分である。すなわち,少なくとも電極体20の蓄電部21の平坦部20Fに拘束荷重がかかるようにすればよい。負極板60のうちの蓄電部21に位置する部分が,LiBOB被膜が形成される負極活物質層62が形成されている部分だからである。また,二次電池10を厚さ方向に圧迫した際にその拘束荷重がかかるのは,電極体20の平坦部20Fだからである。また,そのような加熱プレス装置100の構成として,例えば,固定部110の圧迫面111と可動部120の圧迫面121とを,図4にAで示す大きさのものとすることが考えられる。また,加熱については,電極体20の蓄電部21の温度が上記の範囲内となるように行えばよい。   In addition, the hot press apparatus 100 shown in FIG. 4 is a thing of the structure which presses the secondary battery 10 uniformly in the thickness direction. However, any configuration may be used as long as it hatches at least the portion indicated by A in FIG. The portion indicated by A in FIG. 4 is a portion expressed on the surface of the battery case 40 by projecting a portion located in the flat portion 20F of the power storage unit 21 of the electrode body 20 in the thickness direction of the secondary battery 10. is there. In other words, at least the restraint load may be applied to the flat portion 20F of the power storage unit 21 of the electrode body 20. This is because the portion of the negative electrode plate 60 located in the power storage unit 21 is a portion where the negative electrode active material layer 62 on which the LiBOB coating is formed is formed. In addition, the restraining load is applied when the secondary battery 10 is pressed in the thickness direction because the flat portion 20F of the electrode body 20 is applied. In addition, as a configuration of such a heating press apparatus 100, for example, it is conceivable that the pressing surface 111 of the fixed portion 110 and the pressing surface 121 of the movable portion 120 have a size indicated by A in FIG. Moreover, what is necessary is just to perform about heating so that the temperature of the electrical storage part 21 of the electrode body 20 may become in said range.

また,本発明者は,この発明の効果を以下の実験により確認した。この実験においては,複数の実施例および比較例の二次電池を,それぞれ異なる条件で作製した。その作製条件について,以下の表1に示している。   In addition, the present inventor confirmed the effect of the present invention by the following experiment. In this experiment, secondary batteries of a plurality of examples and comparative examples were manufactured under different conditions. The manufacturing conditions are shown in Table 1 below.

各実施例および比較例の二次電池はいずれも,基本的には,上記で説明した二次電池10と同じ構成のものである。しかし,製造過程における条件を異なる条件として作製した。具体的には,上記の製造過程で説明した工程のうち,「3.加熱プレス」および「4.電解液30の注入」の2工程における条件を異なるものとした。   The secondary batteries of the examples and comparative examples are basically the same in structure as the secondary battery 10 described above. However, the manufacturing process was made under different conditions. Specifically, among the steps described in the above manufacturing process, the conditions in the two steps “3. Heating press” and “4. Injection of electrolyte solution 30” are different.

これらの工程について,実施例の二次電池はいずれも,電解液としてLiBOBを添加したものを用い,上記した条件をすべて満たす方法により作製した。なお,本実験では,加熱プレスにおいて二次電池が受ける圧力は,表1の拘束荷重が0.75〜20kNの範囲内である場合に,0.15〜4.40MPaの範囲内となるようにされている。   With respect to these steps, each of the secondary batteries of the examples was prepared by a method satisfying all the above-described conditions by using an electrolyte added with LiBOB. In this experiment, the pressure received by the secondary battery in the heating press is in the range of 0.15 to 4.40 MPa when the binding load in Table 1 is in the range of 0.75 to 20 kN. Has been.

一方,比較例の二次電池については,上記の条件を少なくとも1つは満たさない方法により作製した。なお,表1では,各比較例について,上記した本形態とは異なる条件を斜体字により示している。   On the other hand, the secondary battery of the comparative example was manufactured by a method that did not satisfy at least one of the above conditions. In Table 1, the different conditions from the above-described embodiment are shown in italics for each comparative example.

Figure 2014220109
Figure 2014220109

また,表1には,各実施例および比較例の二次電池について製造後に耐久試験を行い,その耐久試験後に測定した出力の値を示している。耐久試験は,各実施例および比較例の二次電池について,いずれも同じ条件で繰り返し充放電させることにより行った。   Table 1 shows the output values measured after the endurance test for the secondary batteries of the examples and comparative examples after the manufacture. The durability test was performed by repeatedly charging and discharging the secondary batteries of the examples and comparative examples under the same conditions.

そして,表1に示すように,実施例の二次電池はすべて,耐久試験後に測定された出力が高いものであった。これは,実施例の二次電池がいずれも,上記した本形態における「3.加熱プレス」および「4.電解液30の注入」にしたがって作製されたことによるものである。すなわち,実施例に係る電極体では,電解液の注入時に電極板などにたわみがなく,さらに,注入した電解液を,たわみのない電極体に良好に含浸させることができる。これにより,負極板の表面に,良質なLiBOB被膜が形成されているからである。   As shown in Table 1, all the secondary batteries of the examples had high output measured after the durability test. This is because all of the secondary batteries of the examples were manufactured according to “3. Heating press” and “4. Injection of electrolytic solution 30” in the above-described embodiment. That is, in the electrode body according to the example, there is no deflection in the electrode plate or the like when the electrolytic solution is injected, and the injected electrolytic solution can be satisfactorily impregnated in the electrode body without the deflection. This is because a good LiBOB film is formed on the surface of the negative electrode plate.

これに対し,比較例の二次電池については,耐久試験後に測定される出力が実施例に比較して低いものであった。すなわち,表1に示すように,比較例1では,電解液の注入前の工程において二次電池を拘束状態とせずに加熱している。つまり,拘束されない状態でセパレータが収縮することによって電極体にはたわみが発生し,負極板の表面に形成されるLiBOB被膜の厚さにムラが生じてしまったと考えられる。   On the other hand, for the secondary battery of the comparative example, the output measured after the endurance test was lower than that of the example. That is, as shown in Table 1, in Comparative Example 1, the secondary battery is heated without being constrained in the step before the electrolyte injection. That is, it is considered that the electrode body is deflected by contraction of the separator in an unconstrained state, and the thickness of the LiBOB film formed on the surface of the negative electrode plate is uneven.

また,比較例2では,電解液の注入前の工程において加熱を行っていない。つまり,セパレータが収縮しないことにより電極体の曲面部におけるたわみを除去することができず,負極板の表面に形成されるLiBOB被膜の厚さにムラが生じてしまったと考えられる。比較例3については,電極体におけるたわみを除去するための工程を行っておらず,電極体にはたわみが発生したまま,電解液を注入している。よって,負極板の表面に形成されるLiBOB被膜の厚さにムラが生じてしまったと考えられる。   Moreover, in the comparative example 2, it does not heat in the process before injection | pouring of electrolyte solution. That is, it is considered that the deflection of the curved surface portion of the electrode body cannot be removed because the separator does not contract, and the thickness of the LiBOB film formed on the surface of the negative electrode plate is uneven. In Comparative Example 3, the process for removing the deflection in the electrode body is not performed, and the electrolytic solution is injected while the deflection is generated in the electrode body. Therefore, it is considered that the thickness of the LiBOB coating formed on the surface of the negative electrode plate has become uneven.

比較例4では,電解液の注入前に加熱プレスを行わず,電解液の注入後に,二次電池を拘束状態とせずに加熱している。つまり,電極体のたわみが除去されておらず,負極板の表面に形成されるLiBOB被膜の厚さにムラが生じてしまったと考えられる。比較例5については,電解液の注入前に加熱プレスを行わず,電解液の注入後に加熱プレスを行っている。このため,加熱プレス時の拘束によって電解液の電極体内への含浸が阻害され,負極板の表面に形成されるLiBOB被膜の厚さにムラが生じてしまったと考えられる。   In Comparative Example 4, the heating press is not performed before the electrolyte is injected, and the secondary battery is heated without being constrained after the electrolyte is injected. That is, it is considered that the deflection of the electrode body was not removed, and the thickness of the LiBOB film formed on the surface of the negative electrode plate was uneven. In Comparative Example 5, the heat press is not performed before the electrolyte is injected, and the heat press is performed after the electrolyte is injected. For this reason, it is considered that the impregnation of the electrolytic solution into the electrode body was hindered by the restraint during the hot pressing, and the thickness of the LiBOB film formed on the surface of the negative electrode plate was uneven.

比較例6,7ではともに,LiBOBを添加していない電解液を注入している。よって,負極板の表面にはLiBOB被膜が形成されず,その効果が生じないため,耐久試験後の出力が低下したものである。   In Comparative Examples 6 and 7, an electrolytic solution to which no LiBOB is added is injected. Therefore, the LiBOB coating is not formed on the surface of the negative electrode plate, and the effect does not occur, so the output after the durability test is reduced.

比較例8では,電解液の注入前の加熱プレスにおける温度が低い。このため,セパレータの収縮による電極体のたわみを除去する作用が小さく,負極板の表面に形成されるLiBOB被膜の厚さにムラが生じてしまったと考えられる。比較例9については,電解液の注入前の加熱プレスにおける温度が高い。このため,電極体のうちの拘束荷重を受けていない曲面部におけるたわみが大きくなり,負極板の表面に形成されるLiBOB被膜の厚さにムラが生じてしまったと考えられる。   In Comparative Example 8, the temperature in the heating press before the electrolyte injection is low. For this reason, it is thought that the effect | action which removes the deflection | deviation of the electrode body by shrinkage | contraction of a separator is small, and the nonuniformity has arisen in the thickness of the LiBOB film formed in the surface of a negative electrode plate. About the comparative example 9, the temperature in the heating press before injection | pouring of electrolyte solution is high. For this reason, it is considered that the deflection in the curved surface portion of the electrode body that is not subjected to the restraining load is increased, and the thickness of the LiBOB film formed on the surface of the negative electrode plate is uneven.

比較例10では,電解液の注入前の加熱プレスにおける拘束荷重が小さい。このため,セパレータの収縮力によって電極体が大きくたわみ,負極板の表面に形成されるLiBOB被膜の厚さにムラが生じてしまったと考えられる。比較例11については,電解液の注入前の加熱プレスにおける拘束荷重が大きい。このため,その拘束荷重によってセパレータの細孔が潰れて目詰まりを起こし,出力が低下してしまったと考えられる。   In Comparative Example 10, the restraining load in the heating press before the electrolyte injection is small. For this reason, it is considered that the electrode body is greatly deflected by the contraction force of the separator, and the thickness of the LiBOB film formed on the surface of the negative electrode plate is uneven. About the comparative example 11, the restraint load in the heating press before injection | pouring of electrolyte solution is large. For this reason, it is thought that the pores of the separator were crushed by the restraining load, causing clogging, and the output decreased.

比較例12では,電解液の注入される二次電池の温度が低過ぎる。比較例14では,注入する電解液の温度が低過ぎる。また,比較例16では,二次電池の温度は上記の好ましい範囲内における下限値であり,二次電池の熱容量Cbの,電解液の熱容量Ceに対する熱容量比Cb/Ceの値が低過ぎる。このため,比較例12,16では,注入された電解液の温度は,電極体の内部に含浸しきる前に低くなり過ぎる。つまり,比較例12,14,16についてはいずれも,注入後,電極体に含浸する際の電解液の粘度が高過ぎる状態となる。よって,電解液が電極体内に良好に含浸せず,負極板の表面に形成されるLiBOB被膜の厚さにムラが生じてしまったと考えられる。   In Comparative Example 12, the temperature of the secondary battery into which the electrolytic solution is injected is too low. In Comparative Example 14, the temperature of the injected electrolyte is too low. Further, in Comparative Example 16, the temperature of the secondary battery is the lower limit within the above preferable range, and the value of the heat capacity ratio Cb / Ce of the heat capacity Cb of the secondary battery to the heat capacity Ce of the electrolytic solution is too low. For this reason, in Comparative Examples 12 and 16, the temperature of the injected electrolyte solution becomes too low before the electrode body is completely impregnated. That is, in all of Comparative Examples 12, 14, and 16, the viscosity of the electrolyte when impregnating the electrode body after injection is too high. Therefore, it is considered that the electrolyte solution was not satisfactorily impregnated in the electrode body, and the thickness of the LiBOB coating formed on the surface of the negative electrode plate was uneven.

比較例13では,電解液の注入される二次電池の温度が高過ぎる。比較例15では,注入する電解液の温度が高過ぎる。比較例17では,二次電池の温度は上記の好ましい範囲内における上限値であり,二次電池の熱容量Cbの,電解液の熱容量Ceに対する熱容量比Cb/Ceの値が高過ぎる。つまり,比較例13,17では,注入された電解液は,温度の高い二次電池によって加熱されることにより,温度が高くなり過ぎる。このため,比較例13,15,17についてはいずれも,負極板の表面に,良質なLiBOB被膜が形成されなかったと考えられる。なお,その原因としては,比較例13,17については特に,LiBOB被膜に二次電池の構成部材から溶解した成分より生成された生成物の混在,もしくは生成物により表面が被覆されたことよるものであると考えられる。また,比較例15におけるLiBOB被膜は,厚さの均一性については問題のない程度であったが,良質で安定したものではなかった。   In Comparative Example 13, the temperature of the secondary battery into which the electrolytic solution is injected is too high. In Comparative Example 15, the temperature of the injected electrolyte is too high. In Comparative Example 17, the temperature of the secondary battery is the upper limit within the above preferable range, and the value of the heat capacity ratio Cb / Ce of the heat capacity Cb of the secondary battery to the heat capacity Ce of the electrolytic solution is too high. That is, in Comparative Examples 13 and 17, the injected electrolyte solution is heated by the secondary battery having a high temperature, so that the temperature becomes too high. For this reason, it is considered that in all of Comparative Examples 13, 15, and 17, a good LiBOB film was not formed on the surface of the negative electrode plate. The reason for this is that, particularly in Comparative Examples 13 and 17, the LiBOB coating is a mixture of products generated from components dissolved from the constituent members of the secondary battery, or the surface is covered with the products. It is thought that. Further, the LiBOB coating in Comparative Example 15 had no problem with respect to the uniformity of thickness, but it was not good quality and stable.

以上詳細に説明したように,本形態に係る二次電池10の製造方法では,電解液を注入する前工程において,二次電池10をその厚さ方向に拘束状態としつつ加熱する加熱プレスを行う。この加熱プレスにより,電極体20における正極板50や負極板60,セパレータ70のたわみが除去される。そのたわみの除去後,LiBOBを添加した電解液を注入することにより,負極板60の表面に,均一な厚さのLiBOB被膜を形成することができる。よって,電極板の表面に,電解液に添加した添加剤に起因する良質な被膜を形成することのできる非水電解液二次電池の製造方法が実現されている。   As described above in detail, in the method for manufacturing the secondary battery 10 according to this embodiment, in the previous step of injecting the electrolytic solution, a heating press for heating the secondary battery 10 in a restrained state in the thickness direction is performed. . By this heating press, the deflection of the positive electrode plate 50, the negative electrode plate 60, and the separator 70 in the electrode body 20 is removed. After removing the deflection, an LiBOB-coated film having a uniform thickness can be formed on the surface of the negative electrode plate 60 by injecting an electrolytic solution to which LiBOB is added. Therefore, a method for manufacturing a non-aqueous electrolyte secondary battery capable of forming a high-quality film resulting from the additive added to the electrolyte on the surface of the electrode plate has been realized.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。従って本発明は当然に,その要旨を逸脱しない範囲で種々の改良,変形が可能である。すなわち,例えば,電解液30を注入する前工程における二次電池10の加熱プレスについて,上記の本形態では固定部110と可動部120とを有する加熱プレス装置100を用いる方法について説明したが,これに限るものではない。例えば,二次電池10の拘束は,二次電池10をその厚さ方向に2枚のプレートで挟み込み,その2枚のプレートをボルトによって締め付けることによっても行うことができる。また例えば,加熱プレスにおける二次電池10の加熱は,固定部110と可動部120との内部のヒーターに限らず,例えば,二次電池10の環境温度を80℃〜110℃の範囲内とすることにより行うこともできる。   Note that this embodiment is merely an example, and does not limit the present invention. Accordingly, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. That is, for example, with respect to the heating press of the secondary battery 10 in the previous step of injecting the electrolyte solution 30, the method of using the heating press device 100 having the fixed portion 110 and the movable portion 120 has been described in the above embodiment. It is not limited to. For example, the secondary battery 10 can also be constrained by sandwiching the secondary battery 10 in the thickness direction between two plates and tightening the two plates with bolts. In addition, for example, the heating of the secondary battery 10 in the heating press is not limited to the heaters inside the fixed part 110 and the movable part 120, and for example, the environmental temperature of the secondary battery 10 is in the range of 80 ° C. to 110 ° C. Can also be done.

10 二次電池
20 電極体
30 電解液
40 電池ケース
44 注液口
50 正極板
60 負極板
70 セパレータ
100 加熱プレス装置
110 固定部
120 可動部
DESCRIPTION OF SYMBOLS 10 Secondary battery 20 Electrode body 30 Electrolytic solution 40 Battery case 44 Injection port 50 Positive electrode plate 60 Negative electrode plate 70 Separator 100 Heating press apparatus 110 Fixed part 120 Movable part

Claims (5)

電池ケースの内部に,添加剤を含む電解液と,正負の電極板をこれらの間にセパレータを挟み込みつつ捲回してなる扁平形状の電極体とを有し,
前記正負の電極板の少なくとも一方の表面には,前記添加剤に由来する被膜が形成されている非水電解液二次電池の製造方法において,
前記電池ケースに前記電極体を収容した後,前記電池ケース内に前記添加剤を添加した前記電解液を注入する前に,
前記電極体を収容した前記電池ケースを,前記電極体の厚さ方向に荷重をかけて拘束しつつ加熱する加熱プレス工程を行うことを特徴とする非水電解液二次電池の製造方法。
Inside the battery case, it has an electrolyte solution containing an additive, and a flat electrode body formed by winding a positive and negative electrode plate with a separator sandwiched between them,
In the method of manufacturing a non-aqueous electrolyte secondary battery in which a film derived from the additive is formed on at least one surface of the positive and negative electrode plates,
After containing the electrode body in the battery case, before injecting the electrolyte solution with the additive added into the battery case,
A method for producing a non-aqueous electrolyte secondary battery, wherein a heating press step is performed in which the battery case containing the electrode body is heated while being restrained by applying a load in a thickness direction of the electrode body.
請求項1に記載の非水電解液二次電池の製造方法において,
前記加熱プレス工程では,
前記電池ケースにかかる前記電極体の厚さ方向についての荷重が,圧力として0.15MPaから4.40MPaまでの範囲内となるように拘束しつつ,
前記電極体の温度が80℃から110℃までの範囲内となるように加熱することを特徴とする非水電解液二次電池の製造方法。
In the manufacturing method of the nonaqueous electrolyte secondary battery according to claim 1,
In the heating press process,
While restraining the load in the thickness direction of the electrode body on the battery case to be within the range from 0.15 MPa to 4.40 MPa as the pressure,
A method for producing a non-aqueous electrolyte secondary battery, wherein the electrode body is heated so that the temperature is within a range from 80 ° C to 110 ° C.
請求項1または請求項2に記載の非水電解液二次電池の製造方法において,
前記添加剤はLiBOBであり,
前記電解液の前記電池ケース内への注入を,
前記電解液の温度を20℃から30℃までの範囲内とし,
前記電極体の温度を35℃から50℃までの範囲内とした状態で行うことを特徴とする非水電解液二次電池の製造方法。
In the manufacturing method of the nonaqueous electrolyte secondary battery according to claim 1 or 2,
The additive is LiBOB;
Injecting the electrolyte into the battery case,
The temperature of the electrolyte is in the range of 20 ° C. to 30 ° C .;
The method for producing a non-aqueous electrolyte secondary battery is performed in a state where the temperature of the electrode body is in a range from 35 ° C to 50 ° C.
請求項3に記載の非水電解液二次電池の製造方法において,
前記電解液の前記電池ケース内への注入を,
前記電解液の注入前の構成の電池の熱容量の,前記電解液の熱容量に対する熱容量比を,0.9から1.5までの範囲内とした状態で行うことを特徴とする非水電解液二次電池の製造方法。
In the manufacturing method of the nonaqueous electrolyte secondary battery according to claim 3,
Injecting the electrolyte into the battery case,
The non-aqueous electrolyte is characterized in that the heat capacity ratio of the battery of the configuration before the electrolyte injection to the heat capacity of the electrolyte is within a range of 0.9 to 1.5. A method for manufacturing a secondary battery.
請求項1から請求項4のいずれかに記載の非水電解液二次電池の製造方法において,
前記加熱プレス工程は,
前記電解液の前記電池ケース内への注入前に前記電池ケース内の水分を除去する脱水工程を兼ねていることを特徴とする非水電解液二次電池の製造方法。
In the manufacturing method of the non-aqueous-electrolyte secondary battery in any one of Claims 1-4,
The heating press process includes:
A method for producing a non-aqueous electrolyte secondary battery, which also serves as a dehydration step for removing moisture in the battery case before injection of the electrolyte into the battery case.
JP2013098439A 2013-05-08 2013-05-08 Method of manufacturing nonaqueous electrolyte secondary battery Pending JP2014220109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013098439A JP2014220109A (en) 2013-05-08 2013-05-08 Method of manufacturing nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013098439A JP2014220109A (en) 2013-05-08 2013-05-08 Method of manufacturing nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014220109A true JP2014220109A (en) 2014-11-20

Family

ID=51938386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013098439A Pending JP2014220109A (en) 2013-05-08 2013-05-08 Method of manufacturing nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014220109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022139499A (en) * 2021-03-12 2022-09-26 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method for secondary battery
WO2022210741A1 (en) * 2021-03-29 2022-10-06 Apb株式会社 Method for manufacturing lithium ion battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315481A (en) * 1999-01-22 2000-11-14 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2002110233A (en) * 2000-09-29 2002-04-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2006185806A (en) * 2004-12-28 2006-07-13 Sony Corp Method of manufacturing non-aqueous electrolyte secondary battery
JP2006286314A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery
JP2007005238A (en) * 2005-06-27 2007-01-11 Mitsubishi Chemicals Corp Moisture concentration control method of sprayed and dried powder and its application to lithium secondary battery
JP2007188747A (en) * 2006-01-13 2007-07-26 Nissan Motor Co Ltd Lithium ion secondary battery, and battery pack using it
JP2009245922A (en) * 2008-03-13 2009-10-22 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2010010095A (en) * 2008-06-30 2010-01-14 Panasonic Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2010123287A (en) * 2008-11-17 2010-06-03 Panasonic Corp Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2010198987A (en) * 2009-02-26 2010-09-09 Sumitomo Chemical Co Ltd Manufacturing method of power storage device, and power storage device
JP2012028290A (en) * 2010-07-28 2012-02-09 Nissan Motor Co Ltd Method and device for impregnating electrolyte
JP2012155957A (en) * 2011-01-25 2012-08-16 Panasonic Corp Cylindrical lithium-ion battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315481A (en) * 1999-01-22 2000-11-14 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2002110233A (en) * 2000-09-29 2002-04-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2006185806A (en) * 2004-12-28 2006-07-13 Sony Corp Method of manufacturing non-aqueous electrolyte secondary battery
JP2006286314A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery
JP2007005238A (en) * 2005-06-27 2007-01-11 Mitsubishi Chemicals Corp Moisture concentration control method of sprayed and dried powder and its application to lithium secondary battery
JP2007188747A (en) * 2006-01-13 2007-07-26 Nissan Motor Co Ltd Lithium ion secondary battery, and battery pack using it
JP2009245922A (en) * 2008-03-13 2009-10-22 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2010010095A (en) * 2008-06-30 2010-01-14 Panasonic Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2010123287A (en) * 2008-11-17 2010-06-03 Panasonic Corp Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2010198987A (en) * 2009-02-26 2010-09-09 Sumitomo Chemical Co Ltd Manufacturing method of power storage device, and power storage device
JP2012028290A (en) * 2010-07-28 2012-02-09 Nissan Motor Co Ltd Method and device for impregnating electrolyte
JP2012155957A (en) * 2011-01-25 2012-08-16 Panasonic Corp Cylindrical lithium-ion battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022139499A (en) * 2021-03-12 2022-09-26 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method for secondary battery
JP7368408B2 (en) 2021-03-12 2023-10-24 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method for secondary batteries
WO2022210741A1 (en) * 2021-03-29 2022-10-06 Apb株式会社 Method for manufacturing lithium ion battery

Similar Documents

Publication Publication Date Title
JP6126546B2 (en) Method and apparatus for producing negative electrode for lithium ion secondary battery
DE112017007094T5 (en) Self-heating battery
KR20140113186A (en) Electrode Assembly and Secondary battery with the Same and Method of thereof
JP7199033B2 (en) battery
US11031650B2 (en) Battery module and battery pack comprising same
KR102265847B1 (en) Device for Eliminating Gas from Activated Battery Cell
JP2004164896A (en) Electrode for all-solid polymer battery and its manufacturing method
WO2014024525A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and method for manufacturing nonaqueous electrolyte secondary battery
JP2014137889A (en) Lithium ion secondary battery and battery pack
KR102392582B1 (en) Electrode of power storage device and manufacturing method thereof
CN101276934B (en) Rechargeable battery with polymer electrolyte and forming method thereof
JP6387692B2 (en) Nonaqueous storage device separator drying method, and storage device manufacturing method
JP2014220109A (en) Method of manufacturing nonaqueous electrolyte secondary battery
KR101154883B1 (en) Method for Production of Electrode Assembly with Improved Electrolyte Wetting Property
JP2016081605A (en) Lithium ion secondary battery
JP6268866B2 (en) Method for manufacturing power storage device
JP3956478B2 (en) Method for manufacturing lithium ion secondary battery
JP7068496B2 (en) Lithium-ion secondary battery and its manufacturing method
WO2014030279A1 (en) Method for manufacturing secondary battery
JP5595372B2 (en) Method for producing high-performance lithium secondary battery
JP2016091634A (en) Power storage device and manufacturing method thereof
JP6264780B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JP2011258493A (en) Method of manufacturing sealed battery
JP2022139498A (en) secondary battery
WO2019087668A1 (en) Separator slurry, secondary battery electrode and method for manufacturing same, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161025