JP2014219469A - Pattern formation method and support provided with resin structure having undercut shape - Google Patents

Pattern formation method and support provided with resin structure having undercut shape Download PDF

Info

Publication number
JP2014219469A
JP2014219469A JP2013096807A JP2013096807A JP2014219469A JP 2014219469 A JP2014219469 A JP 2014219469A JP 2013096807 A JP2013096807 A JP 2013096807A JP 2013096807 A JP2013096807 A JP 2013096807A JP 2014219469 A JP2014219469 A JP 2014219469A
Authority
JP
Japan
Prior art keywords
pattern
mass
alkali
composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013096807A
Other languages
Japanese (ja)
Inventor
禎典 平野
Sadanori Hirano
禎典 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013096807A priority Critical patent/JP2014219469A/en
Publication of JP2014219469A publication Critical patent/JP2014219469A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a support having a resin structure characterized by a lift-off shape with a large notch height.SOLUTION: A pattern formation method includes (1) a step of applying a photosensitive resin composition comprising ingredients (A) to (D) to a support, (2) a step of heating the support applied with the composition, (3) a step of irradiating the obtained film of the composition with radiation rays of wavelengths of 300-600 nm and (4) a step of forming a pattern by development with an alkaline developer. (A) An alkali-soluble novolak resin; (B) a photosensitizer based on a quinone diazide sulfonate ester; (C) an aromatic hydroxy compound of a formula weight of 240-1,500; and (D) an organic solvent. In the step (4), development is carried out for a development time 5-15 times the shortest development time yield a ratio of the line width to the space width of 1:1 when a line-and-space pattern is used so as to obtain a pattern shape and forming a resin structure having an undercut shape in the bottom part of the pattern shape.

Description

本発明は、アンダーカット形状を有する樹脂構造体を持つ支持体を形成するためのパターン形成方法及び該支持体に関する。   The present invention relates to a pattern forming method for forming a support having a resin structure having an undercut shape and the support.

半導体で用いられる支持体上にアルミニウム、銅、タンタル等の種々の金属配線パターンを形成する手段として、リフトオフ法が知られている。リフトオフ法は、例えば、支持体上にレジスト組成物を塗布し、マスクを介して露光し、現像して基板上にレジストパターンを形成した後、該レジストパターン上及び金属支持体上に金属膜をスパッタリング法、蒸着法等により形成し、次いでレジストパターンと該パターン上の金属膜を一緒に剥離して、基板上に金属配線を形成するというものである。このリフトオフ法において用いられる望ましいレジストパターン形状は、レジストパターンの下部(支持体接地部分)にマイクログルーブと呼ばれるアンダーカットを有する形状である。   A lift-off method is known as means for forming various metal wiring patterns such as aluminum, copper, and tantalum on a support used in a semiconductor. In the lift-off method, for example, a resist composition is applied on a support, exposed through a mask, developed to form a resist pattern on a substrate, and then a metal film is formed on the resist pattern and the metal support. It is formed by sputtering, vapor deposition or the like, and then the resist pattern and the metal film on the pattern are peeled together to form metal wiring on the substrate. A desirable resist pattern shape used in this lift-off method is a shape having an undercut called a microgroove in the lower part of the resist pattern (a support grounding portion).

このような形状を有する従来の報告例としては、特開平8−69111号公報(特許文献1)や特開2012−108415号公報(特許文献2)が挙げられる。特に、特開2012−108415号公報では、アルカリ可溶性セルロースを添加することによって、膜べりを抑制しつつ、切れ込み深さの大きなアンダーカットを発生させる手法が報告されている。しかしながら、MEMS(Micro Electro−Mechanical System)素子の製造等で用いられる金属成膜量は、従来の半導体製造工程に比べて厚い成膜を行うために、更に大きな切れ込み高さが形成できる材料、もしくはプロセスの提案が待ち望まれていたが、現状のポジ型リフトオフレジストの組成を変更しただけでは、切れ込み高さを所望の形状にすることはできなかった。   Examples of conventional reports having such a shape include JP-A-8-69111 (Patent Document 1) and JP-A-2012-108415 (Patent Document 2). In particular, Japanese Patent Application Laid-Open No. 2012-108415 reports a method of generating an undercut with a large depth of cut while suppressing film slippage by adding alkali-soluble cellulose. However, the metal film formation amount used in the manufacture of MEMS (Micro Electro-Mechanical System) elements, etc. is a material that can form a larger cut height in order to perform a thick film formation compared to the conventional semiconductor manufacturing process, or Although a proposal for a process has been awaited, the height of the cut cannot be made to a desired shape only by changing the composition of the current positive lift-off resist.

特開平8−69111号公報JP-A-8-69111 特開2012−108415号公報JP 2012-108415 A

本発明は、上記事情に鑑みなされたもので、感光性樹脂組成物として単層ポジ型リフトオフレジスト組成物を用いながら、切れ込み高さの大きなリフトオフ形状を有する樹脂構造体を持つ支持体を形成することができるパターン形成方法及び該支持体を提供することを目的とする。   The present invention has been made in view of the above circumstances, and forms a support having a resin structure having a lift-off shape with a large cut height while using a single-layer positive lift-off resist composition as a photosensitive resin composition. An object of the present invention is to provide a pattern forming method and the support.

本発明者は、上記目的を達成するため鋭意検討を行なった結果、(A)アルカリ可溶性ノボラック樹脂、(B)キノンジアジドスルホン酸エステル系感光剤、(C)式量240〜1,500である芳香族ヒドロキシ化合物、(D)有機溶剤を含む組成物を用い、過剰の現像を行うことによって、効果的に切れ込み高さを大きくすることができることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventor has (A) an alkali-soluble novolak resin, (B) a quinonediazide sulfonate ester photosensitizer, and (C) a fragrance having a formula weight of 240 to 1,500. The present inventors have found that by using a composition containing a group hydroxy compound and (D) an organic solvent and performing excessive development, the height of the cut can be effectively increased.

従って、本発明は、下記のパターン形成方法及びアンダーカット形状を有する樹脂構造体を持つ支持体を提供する。
[1] (1)下記(A)〜(D)成分を含有する感光性樹脂組成物を支持体に塗布する工程、
(A)アルカリ可溶性ノボラック樹脂、
(B)キノンジアジドスルホン酸エステル系感光剤、
(C)式量240〜1,500である芳香族ヒドロキシ化合物、
(D)有機溶剤、
(2)上記組成物が塗布された支持体を加熱する工程、
(3)得られた上記組成物の膜の所用箇所に300〜600nmの波長の放射線を照射する工程、
(4)アルカリ性現像液による現像でパターンを形成する工程
を含み、
上記(4)工程の現像時間について、上記組成物の膜の厚みと等しいライン幅とスペース幅の繰り返しから成るラインアンドスペースパターンを用いた際に得られるライン幅とスペース幅が1:1となる最短現像時間に対して5〜15倍の現像時間による現像を行い、現像後に得られたパターン形状のボトム部分にアンダーカット形状を有する樹脂構造体を形成することを特徴とするパターン形成方法。
[2] (2)工程後のレジスト膜厚をTとし、(4)工程後のアンダーカット形状の切れ込み高さをHとした際に、T≦5H、H≦0.7Tである[1]記載のパターン形成方法。
[3] (B)成分のキノンジアジドスルホン酸エステル系感光剤が、2,3,4−トリヒドロキシベンゾフェノンのナフトキノンジアジドスルホン酸エステル、2,3,4,4’−テトラヒドロキシベンゾフェノンのナフトキノンジアジドスルホン酸エステル、2,2’,4,4’−テトラヒドロキシベンゾフェノンのナフトキノンジアジドスルホン酸エステル、並びに下記一般式(1)もしくは(2)で示される化合物、トリヒドロキシベンゾフェノン、及びテトラヒドロキシベンゾフェノンから選ばれた化合物のうち一つもしくは複数のヒドロキシ基の水素原子をナフトキノンジアジドスルホニル基で置換した化合物から選ばれ、該(B)成分をアルカリ可溶性ノボラック樹脂(A)100質量部に対し20〜55質量部を配合した[1]又は[2]記載のパターン形成方法。

Figure 2014219469
(式中、jは1又は2、k、m、pはそれぞれ0〜3、nは1〜4、qは1〜3、rは2又は3の整数で、m+p+n≦6、k+q≦5である。)
[4] (C)成分の芳香族ヒドロキシ化合物が、下記式(1),(2),(5)
Figure 2014219469
(式中、jは1又は2、k、m、pはそれぞれ0〜3、nは1〜4、qは1〜3、rは2又は3の整数で、m+p+n≦6、k+q≦5である。)
Figure 2014219469
[(式中、Ra、Rb、Rc、Rd、Re、Rfは、それぞれ独立して水素原子、メチル基、又は下記式(6)で示される基であって、Ra、Rb、Rcの少なくとも一つ及びRd、Re、Rfの少なくとも一つはベンゼン環にヒドロキシ基が付加した下記式(6)においてwが1〜3の整数である構造を有する。式中、x、yはそれぞれ0〜3の整数である。)
Figure 2014219469

(式中、v、wはそれぞれ0〜3の整数である。)]
で示される化合物から選ばれるものであり、該(C)成分をアルカリ可溶性ノボラック樹脂(A)100質量部に対し2〜70質量部を配合した[1]〜[3]のいずれかに記載のパターン形成方法。
[5] 前記感光性樹脂組成物が、更に(E)アルカリ可溶性セルロース樹脂を含み、その含有量がアルカリ可溶性ノボラック樹脂(A)100質量部に対して3〜30質量部である[1]〜[4]のいずれかに記載のパターン形成方法。
[6] [1]〜[5]のいずれかに記載のパターン形成方法により形成したアンダーカット形状を有する樹脂構造体からなるレジストパターン全面にメタル層を形成し、次いでレジストパターンと該パターン上に形成されたメタル層とを剥離することにより基板上にメタルパターンを形成することを特徴とするパターン形成方法。
[7] [1]〜[5]のいずれかに記載のパターン形成方法により形成されたアンダーカット形状を有する樹脂構造体をもつ支持体。
[8] [6]記載のパターン形成方法により形成されたメタルパターンを有する支持体。 Accordingly, the present invention provides a support having a resin structure having the following pattern forming method and undercut shape.
[1] (1) The process of apply | coating the photosensitive resin composition containing the following (A)-(D) component to a support body,
(A) an alkali-soluble novolak resin,
(B) a quinonediazide sulfonic acid ester photosensitizer,
(C) an aromatic hydroxy compound having a formula weight of 240 to 1,500,
(D) an organic solvent,
(2) A step of heating the support on which the composition is applied,
(3) A step of irradiating a desired portion of the obtained film of the composition with radiation having a wavelength of 300 to 600 nm,
(4) including a step of forming a pattern by development with an alkaline developer;
With regard to the development time in the step (4), the line width and space width obtained when a line-and-space pattern comprising a repetition of the line width and space width equal to the film thickness of the composition is 1: 1. A pattern forming method comprising performing development with a development time of 5 to 15 times the shortest development time, and forming a resin structure having an undercut shape at the bottom portion of the pattern shape obtained after development.
[2] (2) T ≦ 5H and H ≦ 0.7T, where T is the resist film thickness after the process, and (4) H is the cut height of the undercut shape after the process. The pattern formation method as described.
[3] The component (B) quinonediazide sulfonate photosensitizer is naphthoquinonediazide sulfonate of 2,3,4-trihydroxybenzophenone, naphthoquinonediazide sulfonate of 2,3,4,4′-tetrahydroxybenzophenone Ester, naphthoquinonediazide sulfonic acid ester of 2,2 ′, 4,4′-tetrahydroxybenzophenone, and a compound represented by the following general formula (1) or (2), trihydroxybenzophenone, and tetrahydroxybenzophenone The compound is selected from compounds in which one or a plurality of hydroxy group hydrogen atoms are substituted with a naphthoquinonediazidesulfonyl group, and the component (B) is added in an amount of 20 to 55 parts by mass with respect to 100 parts by mass of the alkali-soluble novolak resin (A). Blended [1] or Is the pattern forming method according to [2].
Figure 2014219469
(Wherein j is 1 or 2, k, m and p are 0 to 3, n is 1 to 4, q is 1 to 3, r is an integer of 2 or 3, and m + p + n ≦ 6 and k + q ≦ 5. is there.)
[4] The aromatic hydroxy compound of component (C) is represented by the following formulas (1), (2), (5)
Figure 2014219469
(Wherein j is 1 or 2, k, m and p are 0 to 3, n is 1 to 4, q is 1 to 3, r is an integer of 2 or 3, and m + p + n ≦ 6 and k + q ≦ 5. is there.)
Figure 2014219469
[In the formula, Ra, Rb, Rc, Rd, Re, and Rf are each independently a hydrogen atom, a methyl group, or a group represented by the following formula (6), and at least one of Ra, Rb, and Rc. And at least one of Rd, Re, and Rf has a structure in which w is an integer of 1 to 3 in the following formula (6) in which a hydroxy group is added to the benzene ring, wherein x and y are 0 to 3 respectively. Is an integer.)
Figure 2014219469

(Wherein v and w are each an integer of 0 to 3)]
Wherein the component (C) is blended in an amount of 2 to 70 parts by mass with respect to 100 parts by mass of the alkali-soluble novolak resin (A). Pattern forming method.
[5] The photosensitive resin composition further includes (E) an alkali-soluble cellulose resin, and the content thereof is 3 to 30 parts by mass with respect to 100 parts by mass of the alkali-soluble novolac resin (A). [4] The pattern forming method according to any one of [4].
[6] A metal layer is formed on the entire resist pattern made of a resin structure having an undercut shape formed by the pattern forming method according to any one of [1] to [5], and then the resist pattern and the pattern are formed on the resist pattern. A pattern forming method comprising forming a metal pattern on a substrate by peeling off a formed metal layer.
[7] A support having a resin structure having an undercut shape formed by the pattern forming method according to any one of [1] to [5].
[8] A support having a metal pattern formed by the pattern forming method according to [6].

本発明は、上記(A)〜(D)成分を含有する感光性樹脂組成物(リフトオフレジスト組成物)を用いて、従来のプロセスに比べて、切れ込み高さの大きなリフトオフ形状(アンダーカット形状)を特徴とする樹脂構造体を有する支持体を得ることができる。   The present invention uses a photosensitive resin composition (lift-off resist composition) containing the above-mentioned components (A) to (D), and has a lift-off shape (undercut shape) having a large cut height compared to conventional processes. A support having a resin structure characterized by the above can be obtained.

アンダーカット形状を有するレジストの断面図である。It is sectional drawing of the resist which has an undercut shape.

以下、本発明につき更に詳しく説明する。
本発明に用いることができる感光性樹脂組成物は、ポジ型リフトオフレジスト組成物で、一般的に知られている単層用ポジ型リフトオフレジスト組成物であれば、特段制限はないが、下記に示す単層用ポジ型リフトオフレジスト組成物であれば、本発明の効果を効果的に得ることができる。
Hereinafter, the present invention will be described in more detail.
The photosensitive resin composition that can be used in the present invention is a positive lift-off resist composition, and is not particularly limited as long as it is a generally known positive lift-off resist composition for a single layer. If it is the positive lift-off resist composition for single layers shown, the effect of the present invention can be effectively obtained.

即ち、本発明で感光性樹脂組成物として用いる単層用ポジ型リフトオフレジスト組成物は、(A)アルカリ可溶性ノボラック樹脂、(B)キノンジアジドスルホン酸エステル系感光剤、(C)式量240〜1,500である芳香族ヒドロキシ化合物及び(D)有機溶剤を必須成分とする。   That is, the positive lift-off resist composition for single layer used as the photosensitive resin composition in the present invention includes (A) an alkali-soluble novolak resin, (B) a quinonediazide sulfonate ester photosensitizer, and (C) a formula weight of 240 to 1 , 500 aromatic hydroxy compound and (D) an organic solvent as essential components.

(A)アルカリ可溶性ノボラック樹脂については、フェノール類とアルデヒド類の縮合反応生成物を用いることができる。前記フェノール類としては、フェノール、m−クレゾール、p−クレゾール、o−クレゾール、2,3−キシレノール、2,5−キシレノール、3,5−キシレノール、3,4−キシレノール等のキシレノール類、m−エチルフェノール、p−エチルフェノール、o−エチルフェノール等のアルキルフェノール類、p−メトキシフェノール、m−メトキシフェノール等のアルコキシフェノール類、p−イソプロペニルフェノール、o−イソプロペニルフェノール等のイソプロペニルフェノール類、ビスフェノールA等のポリヒドロキシフェノール類等を挙げることができる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらのフェノール類の中では、特にm−クレゾール、p−クレゾール、o−クレゾール、2,5−キシレノール、3,5−キシレノールが好適に用いられる。   (A) About alkali-soluble novolak resin, the condensation reaction product of phenols and aldehydes can be used. Examples of the phenols include xylenols such as phenol, m-cresol, p-cresol, o-cresol, 2,3-xylenol, 2,5-xylenol, 3,5-xylenol, 3,4-xylenol, m- Alkylphenols such as ethylphenol, p-ethylphenol and o-ethylphenol; alkoxyphenols such as p-methoxyphenol and m-methoxyphenol; isopropenylphenols such as p-isopropenylphenol and o-isopropenylphenol; Examples thereof include polyhydroxyphenols such as bisphenol A. These may be used alone or in combination of two or more. Among these phenols, m-cresol, p-cresol, o-cresol, 2,5-xylenol, and 3,5-xylenol are particularly preferably used.

前記アルデヒド類としては、例えばホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、トリメチルアセトアルデヒド、アクロレイン、クロトンアルデヒド、シクロヘキサンアルデヒド、フルフラール、フリルアクロレイン、ベンズアルデヒド、テレフタルアルデヒド、フェニルアセトアルデヒド、α−フェニルプロピルアルデヒド、β−フェニルプロピルアルデヒド、o−ヒドロキシベンズアルデヒド、m−ヒドロキシベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、o−クロロベンズアルデヒド、m−クロロベンズアルデヒド、p−クロロベンズアルデヒド等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらのアルデヒド類の中では、入手のしやすさからホルムアルデヒドが好適である。   Examples of the aldehydes include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, butyraldehyde, trimethylacetaldehyde, acrolein, crotonaldehyde, cyclohexanealdehyde, furfural, furylacrolein, benzaldehyde, terephthalaldehyde, phenylacetaldehyde, α-phenylpropyl. Aldehyde, β-phenylpropylaldehyde, o-hydroxybenzaldehyde, m-hydroxybenzaldehyde, p-hydroxybenzaldehyde, o-methylbenzaldehyde, m-methylbenzaldehyde, p-methylbenzaldehyde, o-chlorobenzaldehyde, m-chlorobenzaldehyde, p- Such as chlorobenzaldehyde It is. These may be used alone or in combination of two or more. Among these aldehydes, formaldehyde is preferable because of its availability.

フェノール類とアルデヒド類との縮合反応生成物は、酸性触媒の存在下、公知の方法で製造することができる。その際の酸性触媒としては、塩酸、硫酸、ギ酸、シュウ酸、p−トルエンスルホン酸等を使用することができる。このようにして得られた縮合生成物は、分画等の処理を施すことによって、低分子領域をカットしたものを用いることもできる。   The condensation reaction product of phenols and aldehydes can be produced by a known method in the presence of an acidic catalyst. As an acidic catalyst in that case, hydrochloric acid, sulfuric acid, formic acid, oxalic acid, p-toluenesulfonic acid and the like can be used. As the condensation product thus obtained, a product obtained by cutting a low molecular weight region by performing a treatment such as fractionation can be used.

本発明においては、特にm−クレゾール、p−クレゾール、o−クレゾール、2,5−キシレノール、3,5−キシレノールのフェノール類から選ばれる数種の混合フェノールとホルムアルデヒドとの縮合によって得られるノボラック樹脂が好ましく、中でもゲルパーミエーションクロマトグラフィー(GPC)法(溶媒テトラヒドロフラン)によるポリスチレン換算値の重量平均分子量が2,000〜20,000が好ましく、より好ましくは2,500〜15,000の範囲にあるノボラック樹脂である。   In the present invention, a novolak resin obtained by condensation of several mixed phenols selected from m-cresol, p-cresol, o-cresol, 2,5-xylenol and 3,5-xylenol phenols with formaldehyde Among them, the weight average molecular weight in terms of polystyrene by gel permeation chromatography (GPC) method (solvent tetrahydrofuran) is preferably 2,000 to 20,000, more preferably 2,500 to 15,000. It is a novolac resin.

(B)キノンジアジドスルホン酸エステル系感光剤としては、公知の2,3,4−トリヒドロキシベンゾフェノンのナフトキノンジアジドスルホン酸エステル、2,3,4,4’−テトラヒドロキシベンゾフェノンのナフトキノンジアジドスルホン酸エステル、2,2’,4,4’−テトラヒドロキシベンゾフェノンのナフトキノンジアジドスルホン酸エステル等、工業的に生産されているものに限らず、下記一般式(1)もしくは(2)で示される化合物、トリヒドロキシベンゾフェノン及びテトラヒドロキシベンゾフェノンから選ばれた化合物のうち、一つもしくは複数のヒドロキシ基の水素原子をナフトキノンジアジドスルホニル基で置換した感光剤を用いることができる。   (B) As quinonediazide sulfonic acid ester photosensitizers, known naphthoquinone diazide sulfonic acid ester of 2,3,4-trihydroxybenzophenone, naphthoquinone diazide sulfonic acid ester of 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone naphthoquinonediazide sulfonic acid ester and the like, but not limited to those produced industrially, compounds represented by the following general formula (1) or (2), trihydroxy Among the compounds selected from benzophenone and tetrahydroxybenzophenone, a photosensitizer in which one or a plurality of hydroxy group hydrogen atoms are substituted with a naphthoquinonediazidesulfonyl group can be used.

Figure 2014219469
(式中、jは1又は2、k、m、pはそれぞれ0〜3、nは1〜4、qは1〜3、rは2又は3の整数で、m+p+n≦6、k+q≦5である。)
Figure 2014219469
(Wherein j is 1 or 2, k, m and p are 0 to 3, n is 1 to 4, q is 1 to 3, r is an integer of 2 or 3, and m + p + n ≦ 6 and k + q ≦ 5. is there.)

中でも、フェノール性ヒドロキシ基の65モル%以上がナフトキノンジアジドスルホン酸によりエステル化されていることがリフトオフパターン形成上好ましい。本発明においては、ナフトキノンジアジドスルホニル基で置換されていないヒドロキシ基の一部がアシル化されていても構わない。その場合、アシル化は定法によって行なうことができる。   Of these, 65 mol% or more of the phenolic hydroxy group is preferably esterified with naphthoquinone diazide sulfonic acid in terms of lift-off pattern formation. In the present invention, a part of the hydroxy group that is not substituted with a naphthoquinonediazidesulfonyl group may be acylated. In that case, acylation can be carried out by a conventional method.

本発明において、(A)アルカリ可溶性ノボラック樹脂100質量部に対する感光剤成分の配合量は、20〜55質量部が好ましく、より好ましくは25〜50質量部、最も好ましくは30〜45質量部である。これら感光剤は、単独で用いてもよいし、2種以上を組み合わせてもよい。   In the present invention, the blending amount of the photosensitive agent component with respect to 100 parts by mass of (A) alkali-soluble novolak resin is preferably 20 to 55 parts by mass, more preferably 25 to 50 parts by mass, and most preferably 30 to 45 parts by mass. . These photosensitizers may be used alone or in combination of two or more.

(C)式量240〜1,500である芳香族ヒドロキシ化合物は、ベンゼン環の個数が、好ましくは2〜15個、より好ましくは3〜10個、特に好ましくは3〜7個であり、かつヒドロキシ基の数とベンゼン環の数の比率が、好ましくは0.4〜3.0、より好ましくは0.5〜2.0、最も好ましくは0.6〜1.5である。ヒドロキシ基の数が少ないと、アルカリ現像液に対する溶解速度が小さくなり、所望の切れ込みサイズを得ることができなくなり、多くなりすぎると密着性が低下するおそれがある。また、式量が1,500を超える芳香族ヒドロキシ化合物の場合、本発明の効果が低下してしまうため、適さない。具体的には、式量1,500を超える芳香族ヒドロキシ化合物を配合した場合、狙いとするアンダーカットが小さくなってしまい、本発明の効果が得られ難い。本発明においては、ヒドロキシ基の一部がアシル化されていても構わない。その場合、アシル化は定法によって行なうことができる。   (C) The aromatic hydroxy compound having a formula weight of 240 to 1,500 has preferably 2 to 15, more preferably 3 to 10, particularly preferably 3 to 7, benzene rings, and The ratio of the number of hydroxy groups to the number of benzene rings is preferably 0.4 to 3.0, more preferably 0.5 to 2.0, and most preferably 0.6 to 1.5. When the number of hydroxy groups is small, the dissolution rate with respect to the alkaline developer is reduced, and a desired slit size cannot be obtained. When the number is too large, the adhesion may be lowered. In addition, an aromatic hydroxy compound having a formula weight exceeding 1,500 is not suitable because the effect of the present invention is lowered. Specifically, when an aromatic hydroxy compound having a formula weight exceeding 1,500 is blended, the target undercut becomes small, and it is difficult to obtain the effects of the present invention. In the present invention, a part of the hydroxy group may be acylated. In that case, acylation can be carried out by a conventional method.

この場合、(C)成分の芳香族ヒドロキシ化合物としては、下記式(1),(2)、更に式(5)で示される化合物が好適に用いられる。

Figure 2014219469
(式中、jは1又は2、k、m、pはそれぞれ0〜3、nは1〜4、qは1〜3、rは2又は3の整数で、m+p+n≦6、k+q≦5である。) In this case, as the aromatic hydroxy compound as the component (C), compounds represented by the following formulas (1) and (2) and further the formula (5) are preferably used.
Figure 2014219469
(Wherein j is 1 or 2, k, m and p are 0 to 3, n is 1 to 4, q is 1 to 3, r is an integer of 2 or 3, and m + p + n ≦ 6 and k + q ≦ 5. is there.)

Figure 2014219469
[(式中、Ra、Rb、Rc、Rd、Re、Rfはそれぞれ独立して水素原子、メチル基、又は下記式(6)で示される基であって、Ra、Rb、Rcの少なくとも一つ及びRd、Re、Rfの少なくとも一つはベンゼン環にヒドロキシ基が付加した式(6)の構造を有する。式中、x、yはそれぞれ0〜3の整数である。)
Figure 2014219469
(式中、v、wはそれぞれ0〜3の整数である。)]
Figure 2014219469
[In the formula, Ra, Rb, Rc, Rd, Re, and Rf are each independently a hydrogen atom, a methyl group, or a group represented by the following formula (6), and at least one of Ra, Rb, and Rc. And at least one of Rd, Re, and Rf has the structure of formula (6) in which a hydroxy group is added to the benzene ring, wherein x and y are each an integer of 0 to 3.)
Figure 2014219469
(Wherein v and w are each an integer of 0 to 3)]

本発明において、(C)芳香族ヒドロキシ化合物は、単独で用いてもよいし、2種以上を組み合わせてもよい。
その配合量は、(A)アルカリ可溶性ノボラック樹脂100質量部に対して、好ましくは2〜70質量部、より好ましくは5〜60質量部、特に好ましくは10〜50質量部である。
In the present invention, the (C) aromatic hydroxy compound may be used alone or in combination of two or more.
The blending amount is preferably 2 to 70 parts by mass, more preferably 5 to 60 parts by mass, and particularly preferably 10 to 50 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble novolak resin.

また、本発明の目的を損なわない範囲で、ポリヒドロキシスチレン、アルカリ可溶性セルロース樹脂等のアルカリ可溶性樹脂、2−ベンゼンアゾ−4−メチルフェノール、4−ヒドロキシ−4’−ジメチルアミノアゾベンゼン等のアゾ化合物やクルクミン等の染料、顔料等の各種配合剤を添加することができる。中でも、アルカリ可溶性セルロース樹脂は、本発明の効果を、効果的に得ることができるため、特に好ましい。   In addition, polyhydroxystyrene, alkali-soluble resins such as alkali-soluble cellulose resin, azo compounds such as 2-benzeneazo-4-methylphenol and 4-hydroxy-4′-dimethylaminoazobenzene, Various compounding agents such as a dye such as curcumin and a pigment can be added. Among these, alkali-soluble cellulose resins are particularly preferable because the effects of the present invention can be effectively obtained.

このアルカリ可溶性セルロース樹脂とは、下記構造式(3)

Figure 2014219469
[式中、R1は独立に、酸価30〜150KOHmg/gを示す範囲において、水素原子、炭素数1〜4のアルキル基、炭素数1〜4のヒドロキシアルキル基、炭素数1〜8のアシル基又は下記構造式(4)
Figure 2014219469
(式中、R’は炭素数1〜6のアルキレン基、フェニレン基、又はシクロヘキシレン基である。)
で表される有機基であり、かつR1中の上記式(4)で表される有機基の割合が単位グルコース環あたり平均2〜30モル%であり、sは2〜10,000の整数である。]
で表されるアルカリ可溶性セルロース樹脂が好ましい。 This alkali-soluble cellulose resin is the following structural formula (3)
Figure 2014219469
[In the formula, R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 8 carbon atoms in a range showing an acid value of 30 to 150 KOHmg / g. Acyl group or the following structural formula (4)
Figure 2014219469
(In the formula, R ′ represents an alkylene group having 1 to 6 carbon atoms, a phenylene group, or a cyclohexylene group.)
The ratio of the organic group represented by the above formula (4) in R 1 is an average of 2 to 30 mol% per unit glucose ring, and s is an integer of 2 to 10,000 It is. ]
An alkali-soluble cellulose resin represented by

このアルカリ可溶性セルロース樹脂は、導入されたカルボキシアルキル基が酸性では解離せず、それ自身が疎水性で耐酸性を示すが、弱酸性から中性領域では解離するため、水性又はアルカリ性液中で溶解し、また露光光源に対して透明な樹脂バインダーとなる。このアルカリ可溶性セルロースを含有することにより、上記理由によって高感度になり、アンダーカットを大きくすることができる。   This alkali-soluble cellulose resin does not dissociate when the introduced carboxyalkyl group is acidic, and itself is hydrophobic and acid-resistant, but dissociates in a weakly acidic to neutral region, so it dissolves in an aqueous or alkaline solution. In addition, it becomes a resin binder that is transparent to the exposure light source. By containing this alkali-soluble cellulose, the sensitivity becomes high for the above reasons, and the undercut can be increased.

式(3)において酸価30に満たない場合、感度向上やアンダーカット促進の効果が少なく、また150より多いとパターン形成後、残膜量が少なくなる場合がある。   When the acid value is less than 30 in the formula (3), the effect of improving the sensitivity and promoting the undercut is small.

また、R1は独立に、酸価30〜150KOHmg/gを示す範囲において水素原子、炭素数1〜4のアルキル基、炭素数1〜4のヒドロキシアルキル基、炭素数2〜8のアシル基又は上記構造式(4)で表される有機基であり、かつR1中の上記式(4)で表される有機基の割合が単位グルコース環あたり平均2〜30モル%である。 R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group having 1 to 4 carbon atoms, an acyl group having 2 to 8 carbon atoms, or an acid group within a range showing an acid value of 30 to 150 KOH mg / g. The ratio of the organic group represented by the structural formula (4) and the organic group represented by the above formula (4) in R 1 is an average of 2 to 30 mol% per unit glucose ring.

1としては、例えば水素原子、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、ter−ブチル基等の炭素数1〜4のアルキル基、ヒドロキシメチル基、ヒドロキシエチル基、2−ヒドロキシプロピル基等の炭素数1〜4のヒドロキシアルキル基、アセチル基、プロピオニル基、ブチリル基等の炭素数2〜8のアシル基が挙げられる。また、式(4)中のR’としてはエチレン基等の炭素数2〜6のアルキレン基、フェニレン基又はシクロヘキシレン基が挙げられる。 R 1 is, for example, a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a ter-butyl group or the like, an alkyl group having 1 to 4 carbon atoms, a hydroxymethyl group, a hydroxyethyl group. Groups, C1-C4 hydroxyalkyl groups such as 2-hydroxypropyl group, C2-C8 acyl groups such as acetyl group, propionyl group and butyryl group. Moreover, as R 'in Formula (4), C2-C6 alkylene groups, such as ethylene group, a phenylene group, or a cyclohexylene group is mentioned.

1中の上記式(4)で表される有機基の割合は、単位グルコース環あたり平均2〜30モル%であるが、特に5〜25モル%が好ましい。上記式(4)で表される有機基の割合が2モル%未満だと現像時のアルカリ液中での溶解性が劣り、30モル%を超えるとアルカリ液中での溶解性が大きくなりすぎ、現像後の膜減りの原因となる。またsは2〜10,000の整数であり、特に100〜5,000が好ましい。 The ratio of the organic group represented by the above formula (4) in R 1 is 2-30 mol% on average per unit glucose ring, but 5-25 mol% is particularly preferable. When the proportion of the organic group represented by the above formula (4) is less than 2 mol%, the solubility in an alkali solution during development is inferior, and when it exceeds 30 mol%, the solubility in an alkali solution becomes too large. Cause film loss after development. Moreover, s is an integer of 2 to 10,000, and 100 to 5,000 is particularly preferable.

式(3)で表される(E)アルカリ可溶性セルロース樹脂の配合量は、(A)成分のアルカリ可溶性ノボラック樹脂100質量部に対して0〜30質量部、好ましくは3〜30質量部であり、特に7〜20質量部配合するのが好ましい。一方、30質量部を超えると、水性アルカリ性液中での組成物の溶解度が増し、残膜性に劣り、またアンダーカットが大きくなりすぎ、パターン形成が困難となる場合がある。   The compounding amount of the (E) alkali-soluble cellulose resin represented by the formula (3) is 0 to 30 parts by mass, preferably 3 to 30 parts by mass with respect to 100 parts by mass of the alkali-soluble novolak resin as the component (A). In particular, it is preferable to blend 7 to 20 parts by mass. On the other hand, if the amount exceeds 30 parts by mass, the solubility of the composition in the aqueous alkaline solution increases, the remaining film property is inferior, the undercut becomes too large, and pattern formation may be difficult.

本発明においては、上記各成分以外に、塗布性を向上するために用いられている界面活性剤を添加することができる。界面活性剤としては、ノニオン系、フッ素系、シリコーン系の各種界面活性剤を用いることができるが、中でも非イオン性のものが好ましく、例えばフロラードFC−430(住友スリーエム社製)、X−70−092、X−70−093(いずれも信越化学工業(株)製)等が挙げられる。   In the present invention, in addition to the above-mentioned components, a surfactant used for improving coating properties can be added. As the surfactant, various nonionic, fluorine, and silicone surfactants can be used. Among them, nonionic ones are preferable, for example, Fluorad FC-430 (manufactured by Sumitomo 3M), X-70. -092, X-70-093 (all manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.

本発明で用いられる溶剤として、例えば、酢酸ブチル、酢酸アミル、酢酸シクロヘキシル、酢酸3−メトキシブチル、メチルエチルケトン、メチルアミルケトン、シクロヘキサノン、シクロペンタノン、3−エトキシエチルプロピオネート、3−エトキシメチルプロピオネート、3−メトキシメチルプロピオネート、アセト酢酸メチル、アセト酢酸エチル、ジアセトンアルコール、ピルビン酸メチル、ピルビン酸エチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルプロピオネート、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、3−メチル−3−メトキシブタノール、N−メチルピロリドン、ジメチルスルホキシド、γ−ブチロラクトン、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸プロピル、テトラメチレンスルホン等が挙げられるが、これらに限定されるものではない。特に好ましいものは、酢酸アルキルエステル、乳酸アルキルエステルである。これらの溶剤は単独でも2種以上混合してもよい。   Examples of the solvent used in the present invention include butyl acetate, amyl acetate, cyclohexyl acetate, 3-methoxybutyl acetate, methyl ethyl ketone, methyl amyl ketone, cyclohexanone, cyclopentanone, 3-ethoxyethyl propionate, 3-ethoxymethyl propionate. Pionate, 3-methoxymethyl propionate, methyl acetoacetate, ethyl acetoacetate, diacetone alcohol, methyl pyruvate, ethyl pyruvate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether propionate, Propylene glycol monoethyl ether propionate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol mono Tyl ether, diethylene glycol monoethyl ether, 3-methyl-3-methoxybutanol, N-methylpyrrolidone, dimethyl sulfoxide, γ-butyrolactone, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, methyl lactate, lactic acid Examples include, but are not limited to, ethyl, propyl lactate, and tetramethylene sulfone. Particularly preferred are acetic acid alkyl esters and lactic acid alkyl esters. These solvents may be used alone or in combination of two or more.

なお、溶剤の使用量は適宜選定されるが、通常アルカリ可溶性ノボラック樹脂(A)100質量部に対し100〜9,800質量部が好適である。   In addition, although the usage-amount of a solvent is selected suitably, 100-9,800 mass parts is suitable with respect to 100 mass parts of alkali-soluble novolak resin (A) normally.

本発明の単層用ポジ型リフトオフレジスト組成物を用いたリフトオフ形状を特徴とする樹脂構造体を有する支持体は、
(1)単層用ポジ型リフトオフレジスト組成物を支持体に塗布する工程、
(2)感光性樹脂組成物を塗布した支持体を加熱する工程、
(3)上記組成物膜に300〜600nmの波長の放射線を照射する工程、
(4)アルカリ性現像液による現像でパターンを形成する工程
を含み、(4)工程の現像時間について、組成物膜の厚みと等しいライン幅とスペース幅の繰り返しから成るラインアンドスペースパターンを用いた際に得られるライン幅とスペース幅が1:1となる最短現像時間に対して5〜15倍の現像時間による現像を行うことにより、現像後に得られたパターン形状のボトム部分にアンダーカット形状を有する樹脂構造体を形成することによって得ることができる。
A support having a resin structure characterized by a lift-off shape using the positive lift-off resist composition for a single layer of the present invention,
(1) A step of applying a positive lift-off resist composition for a single layer to a support,
(2) a step of heating the support coated with the photosensitive resin composition;
(3) A step of irradiating the composition film with radiation having a wavelength of 300 to 600 nm,
(4) including a step of forming a pattern by development with an alkaline developer, and using a line-and-space pattern comprising a repetition of a line width and a space width equal to the thickness of the composition film for the development time of the step (4) The bottom portion of the pattern shape obtained after development has an undercut shape by performing development with a development time of 5 to 15 times the shortest development time in which the line width and space width obtained are 1: 1. It can be obtained by forming a resin structure.

樹脂構造体を形成する支持体の製法としては、(1)単層用ポジ型リフトオフレジスト組成物を支持体に塗布する工程では、Si、SiO2、SiN、SiON、TiN、WSi、BPSG、SOG等の支持体(基板)に加え、Au、Ti、W、Cu、Ni−Fe、Ta、Zn、Co、Pb等の金属支持体、有機反射防止膜等の支持体上にスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターブレードコート等の適当な塗布方法により、所望の膜厚になるよう塗布する工程である。 As a manufacturing method of the support for forming the resin structure, (1) in the step of applying the positive lift-off resist composition for single layer to the support, Si, SiO 2 , SiN, SiON, TiN, WSi, BPSG, SOG In addition to a support (substrate) such as Au, Ti, W, Cu, Ni-Fe, Ta, Zn, Co, Pb, etc., a spin coat or roll coat on a support such as an organic antireflection film This is a step of applying a desired film thickness by an appropriate application method such as flow coating, dip coating, spray coating, doctor blade coating or the like.

次に、(2)上記の感光性樹脂組成物を塗布して支持体上に成膜し、支持体を加熱する工程により、ホットプレート上又はオーブン中で60〜150℃、1〜60分間、好ましくは80〜120℃、1〜10分間プリベークを行い、0.5〜20μm、好ましくは0.6〜10μmの膜厚を得る。   Next, (2) by applying the photosensitive resin composition described above to form a film on a support, and heating the support, the process is performed on a hot plate or in an oven at 60 to 150 ° C. for 1 to 60 minutes. Preferably, prebaking is performed at 80 to 120 ° C. for 1 to 10 minutes to obtain a film thickness of 0.5 to 20 μm, preferably 0.6 to 10 μm.

そして、(3)上記組成物膜に300〜600nmの波長の放射線を照射する工程では、紫外線、電子線等から選ばれる光源を用いて、目的とするパターンを所定のマスクを通じて露光を行う工程である。その際の露光量は、1〜1,500mJ/cm2程度、好ましくは、10〜1,000mJ/cm2程度となるように露光することが好ましい。 (3) In the step of irradiating the composition film with radiation having a wavelength of 300 to 600 nm, the target pattern is exposed through a predetermined mask using a light source selected from ultraviolet rays, electron beams, and the like. is there. Exposure at that time, 1~1,500mJ / cm 2, preferably about, it is preferable that the exposure so that 10~1,000mJ / cm 2 approximately.

その後、必要に応じて、ホットプレート上又はオーブン中で60〜150℃、1〜30分間、好ましくは80〜120℃、1〜10分間ポストエクスポージャベーク(PEB)しても構わない。   Thereafter, post-exposure baking (PEB) may be performed on a hot plate or in an oven at 60 to 150 ° C. for 1 to 30 minutes, preferably 80 to 120 ° C. for 1 to 10 minutes, if necessary.

最後に、(4)アルカリ性現像液による現像でパターンを形成する工程では、0.1〜5質量%、好ましくは2〜3質量%のテトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液の現像液を用い、0.1〜60分間、好ましくは0.5〜10分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の定法で現像する工程であり、この際、アスペクト比(ラインの幅とスペース幅の比)が、1:1となる現像時間に対し、5〜15倍、好ましくは6〜10倍の現像時間で現像を行うことにより、本発明の効果である切れ込み高さの大きなリフトオフパターン形状を特徴とする樹脂構造体を有する支持体を得ることができる。なお、アスペクト比は、ライン幅とスペース幅の比で表すが、更には、ライン幅=スペース幅=レジスト膜厚となることが望ましい。アスペクト比が1:1となる現像最短時間に対し、5倍未満の現像時間では、かえって切れ込み高さが低くなってしまう。逆に、15倍を超える現像時間では、パターンサイズに依存するものの、横方向の切れ込み長さが長くなりすぎてしまい、パターン倒れが発生してしまうために、好ましくない。また、アンダーカット形状は特に定める形状ではないが、厚さ方向において、レジスト膜厚をTとし、アルカリ現像工程後のアンダーカット形状の切れ込み高さをHとした際に、T≦5H、H≦0.7Tになるように構造体を形成することが望ましい。   Finally, (4) in the step of forming a pattern by development with an alkaline developer, a developer of an aqueous alkali solution such as 0.1 to 5% by mass, preferably 2-3% by mass of tetramethylammonium hydroxide (TMAH). And developing for 0.1 to 60 minutes, preferably 0.5 to 10 minutes, by a conventional method such as a dip method, a paddle method, or a spray method. It is the effect of the present invention by performing development at a development time of 5 to 15 times, preferably 6 to 10 times the development time when the ratio (ratio of line width to space width) is 1: 1. A support having a resin structure characterized by a lift-off pattern shape having a large cut height can be obtained. The aspect ratio is expressed as a ratio between the line width and the space width, and it is further desirable that the line width = space width = resist film thickness. When the development time is less than 5 times the shortest development time when the aspect ratio is 1: 1, the cut height becomes low. On the other hand, a development time exceeding 15 times is not preferable because it depends on the pattern size, but the horizontal cut length becomes too long and the pattern collapses. The undercut shape is not particularly defined, but when the resist film thickness is T and the undercut shape cut height after the alkali development step is H in the thickness direction, T ≦ 5H, H ≦ It is desirable to form the structure so as to be 0.7T.

なお、現像時間については、30秒毎に現像液から支持体を取り出し、純水にてリンス、その後、乾燥した支持体表面の露光部分において、残膜が存在せず、かつ組成膜の厚みと等しいライン幅とスペース幅の繰り返しから成るラインアンドスペースパターンを用いた際に得られるライン幅とスペース幅が1:1となる現像時間のうち、最も短い現像時間を最短の現像時間とした。   Regarding the development time, the support is taken out from the developer every 30 seconds, rinsed with pure water, and then there is no residual film in the exposed portion of the dried support surface, and the thickness of the composition film The shortest development time was defined as the shortest development time among the development times in which the line width and the space width were 1: 1 when a line and space pattern consisting of repetition of equal line width and space width was used.

その後、得られた支持体に、金属膜(Cu,Al,Cr,Fe,Au,Ag,Ta、Ru、Rh、Pt、Pd、Ir等)やSiを含む誘電膜(poly−Si,シリコン窒化膜,シリコン酸窒化膜など)等をスパッタリング法、プラズマCVD法等により、0.1〜10μmを形成した後、レジストパターンと該パターン上の膜を一緒に剥離して、支持体上に所望の成膜パターンを形成すればよい。   Thereafter, a metal film (Cu, Al, Cr, Fe, Au, Ag, Ta, Ru, Rh, Pt, Pd, Ir, etc.) and a dielectric film (poly-Si, silicon nitride) containing Si are formed on the obtained support. Film, silicon oxynitride film, etc.) is formed by sputtering, plasma CVD, etc. to a thickness of 0.1 to 10 μm, and then the resist pattern and the film on the pattern are peeled together to form a desired surface on the support. A film formation pattern may be formed.

以下、合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。   EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[合成例1]ノボラック樹脂の合成
撹拌機、コンデンサー、温度計を装着した3つ口フラスコにp−クレゾール75.7g(0.7mol)、m−クレゾール32.5g(0.3mol)、37質量%ホルムアルデヒド水溶液52.3g(0.549mol)及び重縮合触媒であるシュウ酸2水和物0.30g(2.40×10-3mol)を仕込み、フラスコをオイルバスに浸し、内温を100℃に保持し、1時間重縮合を行った。反応終了後、500mLのMIBK(メチルイソブチルケトン)を加え、30分撹拌した後、水層を分離し、MIBK層に抽出された生成物を300mLの純水で5回水洗、分液し、エバポレーターにて4mmHgで150℃の減圧ストリップを行い、重量平均分子量(Mw)8,000のノボラック樹脂(87g)を得た。なお、Mwの測定は、東ソー(株)製、GPCカラム(G−2000H6・2本、G−3000H6・1本、G−4000H6・1本)を用い、流量1.5mL/min、溶出溶媒THF、カラム温度40℃で行った。
[Synthesis Example 1] Synthesis of novolak resin In a three-necked flask equipped with a stirrer, a condenser and a thermometer, 75.7 g (0.7 mol) of p-cresol, 32.5 g (0.3 mol) of m-cresol, 37 masses. % Aqueous solution of formaldehyde 52.3 g (0.549 mol) and oxalic acid dihydrate 0.30 g (2.40 × 10 −3 mol) as a polycondensation catalyst were charged, the flask was immersed in an oil bath, and the internal temperature was 100 The temperature was kept at 0 ° C. and polycondensation was performed for 1 hour. After completion of the reaction, 500 mL of MIBK (methyl isobutyl ketone) was added and stirred for 30 minutes. Then, the aqueous layer was separated, and the product extracted into the MIBK layer was washed with 300 mL of pure water five times and separated to obtain an evaporator. And a vacuum strip at 150 ° C. at 4 mmHg to obtain a novolak resin (87 g) having a weight average molecular weight (Mw) of 8,000. In addition, the measurement of Mw uses the Tosoh Co., Ltd. product, GPC column (G-2000H6 * 2, G-3000H6 * 1, G-4000H6 * 1), flow volume 1.5mL / min, elution solvent THF. The column temperature was 40 ° C.

[組成物1〜3]
合成例1で得られたアルカリ可溶性ノボラック樹脂100質量部と、2,3,4−トリヒドロキシベンゾフェノンの66モル%がナフトキノンジアジド−5−スルホン酸でエステル化されたキノンジアジド化合物(東洋合成工業(株)製、NT−200)(I)、下記式(7)に示す芳香族ヒドロキシ化合物(分子量292)(II)、アルカリ可溶性セルロースA(信越化学工業(株)製、ヒドロキシプロピルメチルセルロースフタレート:酸価92KOHmg/g、カルボキシベンゾイル基20モル%含有)(III)を表1の配合比で混合し、塗布性向上のため界面活性剤としてX−70−093(信越化学工業(株)製オルガノシロキサンポリマー)を0.1質量部添加し、乳酸エチルと酢酸ブチルの混合比が85質量部と15質量部である溶剤で均一溶液とした後、0.2μmのメンブランフィルターでろ過し、表1に示すポジ型リフトオフレジスト溶液を調製した。
[Compositions 1 to 3]
100 parts by mass of the alkali-soluble novolak resin obtained in Synthesis Example 1 and 66 mol% of 2,3,4-trihydroxybenzophenone esterified with naphthoquinonediazide-5-sulfonic acid (Toyo Gosei Co., Ltd.) NT-200) (I), aromatic hydroxy compound (molecular weight 292) (II) represented by the following formula (7), alkali-soluble cellulose A (manufactured by Shin-Etsu Chemical Co., Ltd., hydroxypropyl methylcellulose phthalate: acid value) 92 KOH mg / g, containing 20 mol% of carboxybenzoyl group) (III) was mixed at the compounding ratio shown in Table 1, and X-70-093 (organosiloxane polymer manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a surfactant to improve coating properties. 0.1 parts by mass), and the mixing ratio of ethyl lactate and butyl acetate is 85 parts by mass and 15 parts by mass. After the solvent in homogeneous solution is, filtered through a 0.2μm membrane filter, to prepare a positive lift-off resist solution shown in Table 1.

Figure 2014219469
Figure 2014219469

Figure 2014219469
Figure 2014219469

得られたレジスト溶液をSi基板上に塗布し、ホットプレートにて100℃で120秒間のソフトベークを行ない、組成物1については1.5μm、組成物2については3μm、組成物3については5μmのレジスト膜を形成し、支持体とした。次いでレチクルを介しi線ステッパーで露光(ニコン社製、NA=0.5)し、120℃で90秒間加熱した後、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で現像後、純水にて30秒間リンスし、乾燥を行なった。この際の現像時間を表2に示す。
なお、最短現像時間は30秒毎に現像液から支持体を取り出し、膜の厚みと等しいライン幅とスペース幅の繰り返しから成るラインアンドスペースパターンを用いた際に得られるライン幅とスペース幅が1:1となる時間を現像時間とした。なお、アスペクト比=レジスト膜厚/ライン幅=1であった。
The obtained resist solution was applied onto a Si substrate and soft-baked on a hot plate at 100 ° C. for 120 seconds. The composition 1 was 1.5 μm, the composition 2 was 3 μm, and the composition 3 was 5 μm. A resist film was formed as a support. Next, exposure with an i-line stepper through a reticle (Nikon, NA = 0.5), heating at 120 ° C. for 90 seconds, development with an aqueous 2.38 mass% tetramethylammonium hydroxide (TMAH) solution, It was rinsed with water for 30 seconds and dried. The development time at this time is shown in Table 2.
The shortest development time is 1 line width and space width obtained when the support is taken out from the developer every 30 seconds and a line and space pattern consisting of repeated line width and space width equal to the film thickness is used. The development time was defined as the time at which the ratio becomes 1. The aspect ratio = resist film thickness / line width = 1.

最適露光量(Eop)については、組成物1、2、3について、順に1.5μm、3μm、5μmのラインとスペースの繰り返しが等しくなるときの露光量とした。その最適露光量における10μmのラインとスペースの繰り返しパターンでパターン形状の確認を行い、図1に示すようなパターン形状であることの確認を行った。パターン形状については、電子顕微鏡(日立製)にて断面の形状を観察し、図1に示す横方向の切れ込み量(片側)Cと基板からの最大切れ込み高さ量Hを測定した。結果を表2に示す。なお、図1において、A:ライン幅、B:基板との接地幅、C:切れ込み幅、H:切れ込み高さを示している(A=B+2C)。また、横方向の切れ込み量と高さ方向の切れ込み量の両者を総合的に判断した結果、アンダーカット形状良好を○、アンダーカット形状不良を×として判断した。
結果を表2に示す。
About the optimal exposure amount (Eop), it was set as the exposure amount when the repetition of a 1.5 micrometers, 3 micrometers, and 5 micrometers line and space becomes equal in order about composition 1,2,3. The pattern shape was confirmed with a repeated pattern of 10 μm lines and spaces at the optimum exposure dose, and the pattern shape as shown in FIG. 1 was confirmed. Regarding the pattern shape, the cross-sectional shape was observed with an electron microscope (manufactured by Hitachi), and the horizontal cut amount (one side) C and the maximum cut height amount H from the substrate shown in FIG. 1 were measured. The results are shown in Table 2. In FIG. 1, A: line width, B: ground contact width with substrate, C: notch width, H: notch height (A = B + 2C). Moreover, as a result of comprehensively judging both the amount of cut in the horizontal direction and the amount of cut in the height direction, a good undercut shape was judged as ◯, and a poor undercut shape was judged as x.
The results are shown in Table 2.

Figure 2014219469
Figure 2014219469

いずれの実施例においても切れ込み度合いの高い、ボトム部分にアンダーカット形状を有するパターンを形成することができた。   In any of the examples, a pattern having an undercut shape at the bottom portion having a high degree of cut was able to be formed.

従って、本発明によれば、既存のポジ型リフトオフレジスト組成物を用いながら、切れ込み高さの大きなリフトオフレジストパターンを得ることができる。   Therefore, according to the present invention, it is possible to obtain a lift-off resist pattern having a large notch height while using an existing positive lift-off resist composition.

更に、再度、組成物1を用いて、実施例1と同様のプロセスを行った支持体に対し、スパッタ装置(キヤノンアネルバ(株)製)にTiターゲットを装着し、500W,15分成膜処理を行った。得られた基板について、電子顕微鏡を用いて断面観察を行ったところ、0.25μmのTi膜が積層されていることを確認した。この基板をN−メチル−2−ピロリドン中に、60℃、20分間浸漬し、純水によるリンス後、乾燥した基板を電子顕微鏡にて確認したところ、レジスト残渣がなく、目的とする成膜パターンが得られていた。   Furthermore, a Ti target was mounted on a sputtering apparatus (manufactured by Canon Anelva Co., Ltd.) on the support having been subjected to the same process as in Example 1 again using composition 1, and was subjected to a film formation process at 500 W for 15 minutes. Went. When the cross section of the obtained substrate was observed using an electron microscope, it was confirmed that a 0.25 μm Ti film was laminated. This substrate was immersed in N-methyl-2-pyrrolidone at 60 ° C. for 20 minutes, rinsed with pure water, and the dried substrate was confirmed with an electron microscope. Was obtained.

Claims (8)

(1)下記(A)〜(D)成分を含有する感光性樹脂組成物を支持体に塗布する工程、
(A)アルカリ可溶性ノボラック樹脂、
(B)キノンジアジドスルホン酸エステル系感光剤、
(C)式量240〜1,500である芳香族ヒドロキシ化合物、
(D)有機溶剤、
(2)上記組成物が塗布された支持体を加熱する工程、
(3)得られた上記組成物の膜の所用箇所に300〜600nmの波長の放射線を照射する工程、
(4)アルカリ性現像液による現像でパターンを形成する工程
を含み、
上記(4)工程の現像時間について、上記組成物の膜の厚みと等しいライン幅とスペース幅の繰り返しから成るラインアンドスペースパターンを用いた際に得られるライン幅とスペース幅が1:1となる最短現像時間に対して5〜15倍の現像時間による現像を行い、現像後に得られたパターン形状のボトム部分にアンダーカット形状を有する樹脂構造体を形成することを特徴とするパターン形成方法。
(1) The process of apply | coating the photosensitive resin composition containing the following (A)-(D) component to a support body,
(A) an alkali-soluble novolak resin,
(B) a quinonediazide sulfonic acid ester photosensitizer,
(C) an aromatic hydroxy compound having a formula weight of 240 to 1,500,
(D) an organic solvent,
(2) A step of heating the support on which the composition is applied,
(3) A step of irradiating a desired portion of the obtained film of the composition with radiation having a wavelength of 300 to 600 nm,
(4) including a step of forming a pattern by development with an alkaline developer;
With regard to the development time in the step (4), the line width and space width obtained when a line-and-space pattern comprising a repetition of the line width and space width equal to the film thickness of the composition is 1: 1. A pattern forming method comprising performing development with a development time of 5 to 15 times the shortest development time, and forming a resin structure having an undercut shape at the bottom portion of the pattern shape obtained after development.
(2)工程後のレジスト膜厚をTとし、(4)工程後のアンダーカット形状の切れ込み高さをHとした際に、T≦5H、H≦0.7Tである請求項1記載のパターン形成方法。   (2) The pattern according to claim 1, wherein T ≦ 5H and H ≦ 0.7T, where T is the resist film thickness after the process, and (4) H is the cut height of the undercut shape after the process. Forming method. (B)成分のキノンジアジドスルホン酸エステル系感光剤が、2,3,4−トリヒドロキシベンゾフェノンのナフトキノンジアジドスルホン酸エステル、2,3,4,4’−テトラヒドロキシベンゾフェノンのナフトキノンジアジドスルホン酸エステル、2,2’,4,4’−テトラヒドロキシベンゾフェノンのナフトキノンジアジドスルホン酸エステル、並びに下記一般式(1)もしくは(2)で示される化合物、トリヒドロキシベンゾフェノン、及びテトラヒドロキシベンゾフェノンから選ばれた化合物のうち一つもしくは複数のヒドロキシ基の水素原子をナフトキノンジアジドスルホニル基で置換した化合物から選ばれ、該(B)成分をアルカリ可溶性ノボラック樹脂(A)100質量部に対し20〜55質量部を配合した請求項1又は2記載のパターン形成方法。
Figure 2014219469
(式中、jは1又は2、k、m、pはそれぞれ0〜3、nは1〜4、qは1〜3、rは2又は3の整数で、m+p+n≦6、k+q≦5である。)
The component (B) quinonediazide sulfonate photosensitizer is a naphthoquinone diazide sulfonate ester of 2,3,4-trihydroxybenzophenone, a naphthoquinone diazide sulfonate ester of 2,3,4,4′-tetrahydroxybenzophenone, 2 , 2 ′, 4,4′-tetrahydroxybenzophenone naphthoquinonediazide sulfonic acid ester, and compounds selected from the following general formula (1) or (2), trihydroxybenzophenone, and tetrahydroxybenzophenone Claims selected from compounds in which hydrogen atoms of one or more hydroxy groups are substituted with naphthoquinonediazidesulfonyl groups, and the component (B) is blended in an amount of 20 to 55 parts by mass with respect to 100 parts by mass of the alkali-soluble novolak resin (A) Item 1 or 2 The pattern formation method of mounting.
Figure 2014219469
(Wherein j is 1 or 2, k, m and p are 0 to 3, n is 1 to 4, q is 1 to 3, r is an integer of 2 or 3, and m + p + n ≦ 6 and k + q ≦ 5. is there.)
(C)成分の芳香族ヒドロキシ化合物が、下記式(1),(2),(5)
Figure 2014219469
(式中、jは1又は2、k、m、pはそれぞれ0〜3、nは1〜4、qは1〜3、rは2又は3の整数で、m+p+n≦6、k+q≦5である。)
Figure 2014219469
[(式中、Ra、Rb、Rc、Rd、Re、Rfは、それぞれ独立して水素原子、メチル基、又は下記式(6)で示される基であって、Ra、Rb、Rcの少なくとも一つ及びRd、Re、Rfの少なくとも一つはベンゼン環にヒドロキシ基が付加した下記式(6)においてwが1〜3の整数である構造を有する。式中、x、yはそれぞれ0〜3の整数である。)
Figure 2014219469

(式中、v、wはそれぞれ0〜3の整数である。)]
で示される化合物から選ばれるものであり、該(C)成分をアルカリ可溶性ノボラック樹脂(A)100質量部に対し2〜70質量部を配合した請求項1〜3のいずれか1項記載のパターン形成方法。
The aromatic hydroxy compound of component (C) is represented by the following formulas (1), (2), (5)
Figure 2014219469
(Wherein j is 1 or 2, k, m and p are 0 to 3, n is 1 to 4, q is 1 to 3, r is an integer of 2 or 3, and m + p + n ≦ 6 and k + q ≦ 5. is there.)
Figure 2014219469
[In the formula, Ra, Rb, Rc, Rd, Re, and Rf are each independently a hydrogen atom, a methyl group, or a group represented by the following formula (6), and at least one of Ra, Rb, and Rc. And at least one of Rd, Re, and Rf has a structure in which w is an integer of 1 to 3 in the following formula (6) in which a hydroxy group is added to the benzene ring, wherein x and y are 0 to 3 respectively. Is an integer.)
Figure 2014219469

(Wherein v and w are each an integer of 0 to 3)]
The pattern according to any one of claims 1 to 3, wherein 2 to 70 parts by mass of the component (C) is blended with respect to 100 parts by mass of the alkali-soluble novolak resin (A). Forming method.
前記感光性樹脂組成物が、更に(E)アルカリ可溶性セルロース樹脂を含み、その含有量がアルカリ可溶性ノボラック樹脂(A)100質量部に対して3〜30質量部である請求項1〜4のいずれか1項記載のパターン形成方法。   The photosensitive resin composition further comprises (E) an alkali-soluble cellulose resin, and the content thereof is 3 to 30 parts by mass with respect to 100 parts by mass of the alkali-soluble novolak resin (A). The pattern forming method according to claim 1. 請求項1〜5のいずれか1項記載のパターン形成方法により形成したアンダーカット形状を有する樹脂構造体からなるレジストパターン全面にメタル層を形成し、次いでレジストパターンと該パターン上に形成されたメタル層とを剥離することにより基板上にメタルパターンを形成することを特徴とするパターン形成方法。   A metal layer is formed on the entire resist pattern made of a resin structure having an undercut shape formed by the pattern forming method according to claim 1, and then the resist pattern and the metal formed on the pattern A pattern forming method comprising forming a metal pattern on a substrate by peeling off a layer. 請求項1〜5のいずれか1項記載のパターン形成方法により形成されたアンダーカット形状を有する樹脂構造体をもつ支持体。   The support body which has the resin structure which has the undercut shape formed by the pattern formation method of any one of Claims 1-5. 請求項6記載のパターン形成方法により形成されたメタルパターンを有する支持体。   A support having a metal pattern formed by the pattern forming method according to claim 6.
JP2013096807A 2013-05-02 2013-05-02 Pattern formation method and support provided with resin structure having undercut shape Pending JP2014219469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013096807A JP2014219469A (en) 2013-05-02 2013-05-02 Pattern formation method and support provided with resin structure having undercut shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013096807A JP2014219469A (en) 2013-05-02 2013-05-02 Pattern formation method and support provided with resin structure having undercut shape

Publications (1)

Publication Number Publication Date
JP2014219469A true JP2014219469A (en) 2014-11-20

Family

ID=51937974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013096807A Pending JP2014219469A (en) 2013-05-02 2013-05-02 Pattern formation method and support provided with resin structure having undercut shape

Country Status (1)

Country Link
JP (1) JP2014219469A (en)

Similar Documents

Publication Publication Date Title
JP2929684B2 (en) Positive resist composition
JP5578044B2 (en) Positive lift-off resist composition and pattern forming method
JP4752754B2 (en) Two-layer laminated film and pattern forming method using the same
JP4152852B2 (en) POSITIVE PHOTORESIST COMPOSITION FOR DISCHARGE NOZZLE TYPE COATING METHOD AND METHOD FOR FORMING RESIST PATTERN
JP2006010779A (en) Organic film composition and method for forming resist pattern
JP4545553B2 (en) Non-spin coating positive photoresist composition and resist pattern forming method
JP4121925B2 (en) Positive photoresist composition
JP3660195B2 (en) Photoresist composition and method for forming semiconductor pattern using the same
JPH04174438A (en) Resist composition of positive type
JP4209297B2 (en) POSITIVE PHOTORESIST COMPOSITION FOR DISCHARGE NOZZLE TYPE COATING METHOD AND METHOD FOR FORMING RESIST PATTERN
JP5112772B2 (en) Positive photoresist composition for manufacturing liquid crystal element and method for forming resist pattern
JP4405293B2 (en) POSITIVE PHOTORESIST COMPOSITION FOR DISCHARGE NOZZLE TYPE COATING METHOD AND METHOD FOR FORMING RESIST PATTERN
JP6361361B2 (en) Positive lift-off resist composition and pattern forming method
JP2014219469A (en) Pattern formation method and support provided with resin structure having undercut shape
JP5189909B2 (en) Positive resist composition for lift-off
JP4112416B2 (en) POSITIVE PHOTORESIST COMPOSITION FOR DISCHARGE NOZZLE TYPE COATING METHOD AND METHOD FOR FORMING RESIST PATTERN
JP2006209099A (en) Method for producing photoresist solution
US6127087A (en) Positive photoresist compositions and multilayer resist materials using same
JP2799610B2 (en) Radiation-sensitive resin composition
JPH07281429A (en) Positive type resist solution
JP3652065B2 (en) Positive photoresist composition and multilayer resist material using the same
JP2010015040A (en) Rinsing liquid and method for forming resist pattern for lift-off process
JPH08179499A (en) Positive type resist solution
JPH05204149A (en) Positive type photoresist composition
JP2005091497A (en) Positive resist composition and pattern forming method