JP2014219265A - Magnetic flux vector direction detector - Google Patents

Magnetic flux vector direction detector Download PDF

Info

Publication number
JP2014219265A
JP2014219265A JP2013098517A JP2013098517A JP2014219265A JP 2014219265 A JP2014219265 A JP 2014219265A JP 2013098517 A JP2013098517 A JP 2013098517A JP 2013098517 A JP2013098517 A JP 2013098517A JP 2014219265 A JP2014219265 A JP 2014219265A
Authority
JP
Japan
Prior art keywords
axis
magnetic flux
antenna
vector direction
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013098517A
Other languages
Japanese (ja)
Other versions
JP6026950B2 (en
Inventor
昌輝 古田
Masateru Furuta
昌輝 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2013098517A priority Critical patent/JP6026950B2/en
Publication of JP2014219265A publication Critical patent/JP2014219265A/en
Application granted granted Critical
Publication of JP6026950B2 publication Critical patent/JP6026950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics

Landscapes

  • Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic flux vector direction detector capable of calculating a vector direction of a magnetic flux of a received radio wave.SOLUTION: A radio wave receiver 1 comprises an XY-axis antenna 5 and a YZ-axis antenna 6 as well as an X-axis antenna 2, a Y-axis antenna 3, and a Z-axis antenna 4. When receiving a radio wave, a receive intensity level measuring unit 8 measures intensity levels in five directions of an X-axis, a Y-axis, a Z-axis, an XY-axis, a YZ-axis. It is discriminated whether a vector direction of a magnetic flux in an X-Y-axis plane is negative or positive by comparing the intensity level of the XY-axis with a threshold obtained from the intensity levels of the X-axis and the Y-axis. It is discriminated whether a vector direction of a magnetic flux in a Y-Z-axis plane is negative or positive by comparing the intensity level of the YZ-axis with a threshold obtained from the intensity levels of the Y-axis and the Z-axis. It is discriminated whether a vector direction of a magnetic flux in a Z-X-axis plane is negative or positive by a combination of the calculated positive or negative vector directions of the magnetic fluxes of the X-Y-axis plate and the Y-Z-axis plate.

Description

本発明は、受信した電波において磁束のベクトル方向を検出可能な磁束ベクトル方向検出装置に関する。   The present invention relates to a magnetic flux vector direction detecting device capable of detecting the vector direction of magnetic flux in received radio waves.

従来、例えば3軸アンテナ(X軸アンテナ、Y軸アンテナ、Z軸アンテナ)を備えた電波受信装置が周知である(例えば、特許文献1等参照)。3軸アンテナの電波受信装置の場合、電波を3方向で受信することが可能となるので、電波の受信特性がよくなる。   2. Description of the Related Art Conventionally, a radio wave receiver provided with, for example, a three-axis antenna (X-axis antenna, Y-axis antenna, Z-axis antenna) is well known (see, for example, Patent Document 1). In the case of a three-axis antenna radio wave receiver, radio waves can be received in three directions, so that the radio wave reception characteristics are improved.

特開2009−2742号公報JP 2009-2742 A

図9に、3軸アンテナを備えた電波受信装置のX−Y軸における受信電波の座標系を示す。例えば、受信電波のX軸方向強度をxa、受信電波のY軸方向強度をyaとすると、受信電波を強度でしか測定できない場合、X−Y軸における受信電波としては、2つのベクトルR1,R2が算出されてしまう。即ち、X−Y軸における受信電波の正負を区別することができず、ベクトルR1,R2を認識できない問題があった。なお、この問題は、Y−Z軸やX−Z軸においても同様に生じる。   FIG. 9 shows a coordinate system of received radio waves on the XY axes of a radio wave receiver provided with a triaxial antenna. For example, if the intensity of the received radio wave is xa and the intensity of the received radio wave in the Y-axis direction is ya, when the received radio wave can only be measured by intensity, the received radio waves on the XY axis are represented by two vectors R1, R2. Will be calculated. That is, there is a problem that the positive and negative of the received radio wave on the XY axis cannot be distinguished, and the vectors R1 and R2 cannot be recognized. This problem also occurs in the YZ axis and the XZ axis.

本発明の目的は、受信電波の磁束のベクトル方向を算出することができる磁束ベクトル方向検出装置を提供することにある。   An object of the present invention is to provide a magnetic flux vector direction detection device capable of calculating the vector direction of the magnetic flux of received radio waves.

前記問題点を解決する磁束ベクトル方向検出装置は、X軸方向の電波を受信するX軸アンテナと、Y軸方向の電波を受信するY軸アンテナと、Z軸方向の電波を受信するZ軸アンテナと、前記X軸アンテナ及び前記Y軸アンテナに対して45°傾くアンテナ、及び前記Y軸アンテナ及び前記Z軸アンテナに対して45°傾くアンテナのうち、少なくとも一方からなる軸傾きアンテナと、前記軸傾きアンテナで受信した電波の強度レベルを用い、受信した磁束においてベクトル成分の正負を算出する磁束ベクトル方向算出部とを備えた。   A magnetic flux vector direction detecting device that solves the above problems includes an X-axis antenna that receives radio waves in the X-axis direction, a Y-axis antenna that receives radio waves in the Y-axis direction, and a Z-axis antenna that receives radio waves in the Z-axis direction. And an axis tilt antenna comprising at least one of an antenna tilted at 45 ° with respect to the X-axis antenna and the Y-axis antenna, and an antenna tilted at 45 ° with respect to the Y-axis antenna and the Z-axis antenna; A magnetic flux vector direction calculating unit that calculates the positive / negative of the vector component in the received magnetic flux using the intensity level of the radio wave received by the tilt antenna is provided.

本構成によれば、X軸アンテナ、Y軸アンテナ及びZ軸アンテナに加え、所定の軸に対して45°傾く軸傾きアンテナを更に設けた。受信電波の磁束のベクトル成分を算出するとき、軸傾きアンテナが追加されれば、磁束のベクトル方向を算出するためのパラメータが1つ増えることとなる。このため、軸傾きアンテナにおける受信電波の強度レベルを用いれば、受信アンテナがX,Y,Zの3軸のみのときには判別できなかった磁束のベクトル成分の正負が分かる。よって、より詳細な磁束のベクトル方向の情報を得ることが可能となる。   According to this configuration, in addition to the X-axis antenna, the Y-axis antenna, and the Z-axis antenna, an axis tilt antenna that tilts 45 ° with respect to a predetermined axis is further provided. When calculating the vector component of the magnetic flux of the received radio wave, if an axial tilt antenna is added, the parameter for calculating the vector direction of the magnetic flux increases by one. For this reason, if the intensity level of the received radio wave at the axis tilt antenna is used, the sign of the magnetic flux vector component that cannot be determined when the receiving antenna has only three axes of X, Y, and Z can be known. Therefore, it is possible to obtain more detailed information on the vector direction of the magnetic flux.

前記磁束ベクトル方向検出装置において、前記軸傾きアンテナは、前記X軸アンテナ及び前記Y軸アンテナに対して45°傾くXY軸アンテナ、及び前記Y軸アンテナ及び前記Z軸アンテナに対して45°傾くYZ軸アンテナの両方からなり、前記磁束ベクトル方向算出部は、前記XY軸アンテナ及び前記YZ軸アンテナの各々で受信した電波の強度レベルを用いて、受信した磁束のベクトル成分の正負を算出することが好ましい。この構成によれば、X,Y,Zの3軸アンテナに、XY軸アンテナ及びYZ軸アンテナの2つのアンテナを追加したので、磁束のベクトル方向を算出するためのパラメータが更に増えることとなる。よって、磁束のベクトル成分の正負を、より精度よく判定するのに有利となる。   In the magnetic flux vector direction detecting device, the axis tilt antenna includes an XY axis antenna tilted by 45 ° with respect to the X axis antenna and the Y axis antenna, and YZ tilted by 45 ° with respect to the Y axis antenna and the Z axis antenna. The magnetic flux vector direction calculating unit includes both axial antennas, and the magnetic flux vector direction calculating unit calculates the positive / negative of the vector component of the received magnetic flux using the intensity level of the radio wave received by each of the XY axis antenna and the YZ axis antenna. preferable. According to this configuration, since two antennas, the XY axis antenna and the YZ axis antenna, are added to the X, Y, and Z triaxial antennas, the parameters for calculating the vector direction of the magnetic flux further increase. Therefore, it is advantageous to more accurately determine whether the magnetic flux vector component is positive or negative.

前記磁束ベクトル方向検出装置において、前記X軸アンテナの受信電波の強度レベルをx、前記Y軸アンテナの受信電波の強度レベルをy、前記Z軸アンテナの受信電波の強度レベルをzとすると、前記XY軸アンテナの受信電波の強度レベルを比較する際に使用する第1閾値をKxy、前記YZ軸アンテナの受信電波の強度レベルを比較する際に使用する第2閾値をKyzは、   In the magnetic flux vector direction detecting device, when the received radio wave intensity level of the X axis antenna is x, the received radio wave intensity level of the Y axis antenna is y, and the received radio wave intensity level of the Z axis antenna is z, Kxy is a first threshold value used when comparing the received radio wave intensity level of the XY axis antenna, and Kyz is a second threshold value used when comparing the received radio wave intensity level of the YZ axis antenna.

から算出され、前記磁束ベクトル方向算出部は、前記XY軸アンテナの受信電波の強度レベルと前記第1閾値とを比較することにより、磁束ベクトルのX−Y軸平面における正負を算出し、前記YZ軸アンテナの受信電波の強度レベルと前記第2閾値とを比較することにより、磁束ベクトルのY−Z軸平面における正負を算出し、X−Y軸の磁束ベクトルとY−Z軸の磁束ベクトルとの組み合わせにより、磁束ベクトルのZ−X軸平面における正負を算出することが好ましい。この構成によれば、簡素な演算処理により、磁束のベクトル成分の正負を算出することが可能となる。 The magnetic flux vector direction calculation unit calculates the positive / negative of the magnetic flux vector on the XY axis plane by comparing the received radio wave intensity level of the XY axis antenna with the first threshold, and the YZ By comparing the intensity level of the received radio wave of the axial antenna with the second threshold value, the positive / negative of the magnetic flux vector in the YZ axis plane is calculated, and the XY magnetic flux vector and the YZ magnetic flux vector It is preferable to calculate the positive / negative of the magnetic flux vector in the Z-X axis plane by the combination. According to this configuration, it is possible to calculate the sign of the magnetic flux vector component by a simple calculation process.

本発明によれば、受信電波の磁束のベクトル方向を算出することができる。   According to the present invention, the vector direction of the magnetic flux of the received radio wave can be calculated.

一実施形態の磁束ベクトル方向検出装置の構成図。The block diagram of the magnetic flux vector direction detection apparatus of one Embodiment. 5軸の各アンテナの座標軸図。The coordinate axis figure of each antenna of 5 axes. 受信した磁束のX−Y軸の座標系。X-Y axis coordinate system of received magnetic flux. 受信した磁束のY−Z軸の座標系。The coordinate system of the YZ axis of the received magnetic flux. (a)〜(c)はZ−X磁束ベクトル方向の判別概念を示す説明図。(A)-(c) is explanatory drawing which shows the discrimination concept of a ZX magnetic flux vector direction. (a)〜(c)はZ−X磁束ベクトル方向の判別概念を示す説明図。(A)-(c) is explanatory drawing which shows the discrimination concept of a ZX magnetic flux vector direction. 磁束ベクトル方向の組み合わせ表。Combination table of magnetic flux vector directions. 磁束ベクトル方向の分布図、及び磁束の強度レベルの分布図。The distribution map of a magnetic flux vector direction, and the distribution map of the intensity level of magnetic flux. 従来の正負が判別できない磁束ベクトルを示す磁束のX−Y軸の座標系。The coordinate system of the XY axis of the magnetic flux which shows the magnetic flux vector which cannot distinguish the conventional positive / negative.

以下、磁束ベクトル方向検出装置の一実施形態を図1〜図8に従って説明する。
図1に示すように、電波受信装置1には、各々異なる方向の電波を受信可能な複数(本例は5本)のアンテナ2〜6と、アンテナ2〜6で受信した電波を増幅や変調等してデータ読み取りする受信制御回路7とが設けられている。本例のアンテナ2〜6は、5軸(X軸、Y軸、Z軸、XY軸、YZ軸)のアンテナからなり、X軸アンテナ2、Y軸アンテナ3、Z軸アンテナ4、XY軸アンテナ5及びYZ軸アンテナ6を備える。なお、XY軸アンテナ5及びYZ軸アンテナ6が軸傾きアンテナの一例である。
Hereinafter, an embodiment of a magnetic flux vector direction detection device will be described with reference to FIGS.
As shown in FIG. 1, the radio wave receiving apparatus 1 includes a plurality of (5 in this example) antennas 2 to 6 that can receive radio waves in different directions, and amplifies and modulates radio waves received by the antennas 2 to 6. And a reception control circuit 7 for reading the data in the same manner. The antennas 2 to 6 in this example are antennas of five axes (X axis, Y axis, Z axis, XY axis, YZ axis), and are an X axis antenna 2, a Y axis antenna 3, a Z axis antenna 4, and an XY axis antenna. 5 and a YZ axis antenna 6. The XY axis antenna 5 and the YZ axis antenna 6 are examples of an axial tilt antenna.

図2に、5軸のアンテナ2〜6によって構築される座標軸を示す。X軸、Y軸及びZ軸は、互いに90度の角度をなす軸である。XY軸は、X軸及びY軸の各々に対して45度傾く軸に設定されている。また、図示はしないが、YZ軸も同様に、Y軸及びZ軸の各々に対して45度傾く軸に設定されている。   FIG. 2 shows coordinate axes constructed by five-axis antennas 2-6. The X axis, the Y axis, and the Z axis are axes that form an angle of 90 degrees with each other. The XY axis is set to an axis inclined by 45 degrees with respect to each of the X axis and the Y axis. Although not shown, the YZ axis is similarly set to an axis inclined by 45 degrees with respect to each of the Y axis and the Z axis.

図1に示すように、受信制御回路7には、電波を各アンテナ2〜6で受信した際の強度レベルを測定する受信強度レベル測定部8と、受信した磁束においてベクトル成分(X,Y,Z)の正負を判別する磁束ベクトル方向判別部9と設けられている。磁束ベクトル方向判別部9は、X軸アンテナ2、Y軸アンテナ3、Z軸アンテナ4、XY軸アンテナ5及びYZ軸アンテナ6の受信電波の強度レベルを基に、受信電波において、X−Y軸平面における磁束のベクトル方向、Y−Z軸平面における磁束のベクトル方向、及びX−Z軸平面における磁束のベクトル方向を判別する。なお、受信強度レベル測定部8及び磁束ベクトル方向判別部9が磁束ベクトル方向算出部の一例である。   As shown in FIG. 1, the reception control circuit 7 includes a reception intensity level measurement unit 8 that measures an intensity level when radio waves are received by the antennas 2 to 6, and a vector component (X, Y, Z) is provided with a magnetic flux vector direction discriminating section 9 for discriminating between positive and negative. The magnetic flux vector direction discriminating unit 9 uses the X-Y axis in the received radio wave based on the received radio wave intensity levels of the X axis antenna 2, the Y axis antenna 3, the Z axis antenna 4, the XY axis antenna 5, and the YZ axis antenna 6. The vector direction of the magnetic flux in the plane, the vector direction of the magnetic flux in the YZ axis plane, and the vector direction of the magnetic flux in the XZ axis plane are determined. The reception intensity level measurement unit 8 and the magnetic flux vector direction determination unit 9 are examples of the magnetic flux vector direction calculation unit.

次に、図1,図3〜図8を用いて、磁束のベクトル方向において正負の算出手順を説明する。
[磁束ベクトル方向の判別処理]
図1に示すように、電波受信時、受信強度レベル測定部8は、5軸のアンテナ2〜6における受信電波の各々の強度レベルを測定する。即ち、受信強度レベル測定部8は、X軸アンテナ2の強度レベル「x」と、Y軸アンテナ3の強度レベル「y」と、Z軸アンテナ4の強度レベル「z」と、XY軸アンテナ5の強度レベル「xy」と、YZ軸アンテナ6の強度レベル「yz」とを測定する。
Next, a procedure for calculating positive / negative in the vector direction of the magnetic flux will be described with reference to FIGS.
[Flux vector direction discrimination processing]
As shown in FIG. 1, at the time of radio wave reception, the reception intensity level measurement unit 8 measures the intensity level of each reception radio wave at the 5-axis antennas 2 to 6. That is, the reception intensity level measuring unit 8 includes the intensity level “x” of the X axis antenna 2, the intensity level “y” of the Y axis antenna 3, the intensity level “z” of the Z axis antenna 4, and the XY axis antenna 5. The intensity level “xy” and the intensity level “yz” of the YZ axis antenna 6 are measured.

図3に示すように、例えばX−Y軸平面における磁束のベクトル方向(以降、X−Y磁束ベクトル方向と記す)は、3軸アンテナの従来の場合、2つのX−Y磁束ベクトルBxy1,Bxy2としてしか算出できない。本例の磁束ベクトル方向判別部9は、受信した磁束のX−Y軸平面におけるベクトル方向が、2つのX−Y磁束ベクトルBxy1,Bxy2のうち、どちらのベクトル成分であるのかを判別する。   As shown in FIG. 3, for example, the vector direction of magnetic flux in the XY axis plane (hereinafter referred to as XY magnetic flux vector direction) is two XY magnetic flux vectors Bxy1, Bxy2 in the conventional case of a three-axis antenna. Can only be calculated as The magnetic flux vector direction discriminating unit 9 of this example discriminates which vector component of the two XY magnetic flux vectors Bxy1 and Bxy2 is the vector direction in the XY axis plane of the received magnetic flux.

磁束ベクトル方向判別部9は、第1の判定ステップとして、X−Y軸平面の磁束のベクトル方向を判別する。このとき、磁束ベクトル方向判別部9は、次式(1)を用いて、X−Y軸判定用の閾値Kxyを算出する。なお、閾値Kxyが第1閾値の一例である。   The magnetic flux vector direction discriminating unit 9 discriminates the vector direction of the magnetic flux on the XY axis plane as the first determination step. At this time, the magnetic flux vector direction discriminating unit 9 calculates a threshold value Kxy for XY axis determination using the following equation (1). The threshold value Kxy is an example of the first threshold value.

磁束ベクトル方向判別部9は、XY軸アンテナ5で測定した強度レベルである「xy」と閾値Kxyとの大小関係を確認する。 The magnetic flux vector direction discriminating unit 9 confirms the magnitude relationship between “xy” which is the intensity level measured by the XY axis antenna 5 and the threshold value Kxy.

ここで、図3に示すように、閾値Kxyは、例えばBxy1(Bxy2)のベクトル長を直径とする円軌跡において、Y軸上の点からXY軸に下ろした垂線の交点Paに相当する。このため、強度レベル「xy」と閾値Kxyとを比較するということは、いま判別しようとしているX−Y磁束ベクトルの頂点からXY軸に下ろした垂線の交点が、交点Paよりも上に位置するのか、或いは下に位置するのかを確認するのと同義である。磁束ベクトル方向判別部9は、「xy≧Kxy」が成立すれば、いま受信している磁束のベクトル方向をX−Y磁束ベクトルBxy1と判定する。一方、磁束ベクトル方向判別部9は、「xy<Kxy」が成立すれば、いま受信している磁束のベクトル方向をX−Y磁束ベクトルBxy2と判別する。   Here, as shown in FIG. 3, the threshold value Kxy corresponds to, for example, an intersection Pa of a perpendicular line drawn from a point on the Y axis to the XY axis in a circular locus having a diameter of the vector length of Bxy1 (Bxy2). For this reason, comparing the intensity level “xy” with the threshold value Kxy means that the intersection point of the perpendicular line drawn from the vertex of the XY magnetic flux vector to be determined to the XY axis is positioned above the intersection point Pa. It is synonymous with confirming whether it is located below. If “xy ≧ Kxy” is satisfied, the magnetic flux vector direction determination unit 9 determines that the vector direction of the magnetic flux currently received is the XY magnetic flux vector Bxy1. On the other hand, when “xy <Kxy” is satisfied, the magnetic flux vector direction determination unit 9 determines the vector direction of the magnetic flux currently received as the XY magnetic flux vector Bxy2.

図4に示すように、例えばY−Z軸平面における磁束のベクトル方向(以降、Y−Z磁束ベクトル方向と記す)は、3軸アンテナの従来の場合、2つのY−Z磁束ベクトルByz1,Byz2としてしか算出できない。本例の磁束ベクトル方向判別部9は、受信した磁束のY−Z軸平面におけるベクトル方向が、2つのY−Z磁束ベクトルByz1,Byz2のうち、どちらのベクトル成分であるのかを判別する。   As shown in FIG. 4, for example, the vector direction of magnetic flux in the YZ axis plane (hereinafter referred to as YZ magnetic flux vector direction) is two YZ magnetic flux vectors Byz1, Byz2 in the conventional case of a three-axis antenna. Can only be calculated as The magnetic flux vector direction discriminating unit 9 of this example discriminates which vector component of the vector directions of the received magnetic flux in the YZ axis plane is the two YZ magnetic flux vectors Byz1 and Byz2.

磁束ベクトル方向判別部9は、第2の判定ステップとして、Y−Z軸平面の磁束のベクトル方向を判別する。このとき、磁束ベクトル方向判別部9は、次式(2)を用いて、Y−Z軸判定用の閾値Kyzを算出する。なお、閾値Kyzが第2閾値の一例である。   The magnetic flux vector direction discriminating unit 9 discriminates the vector direction of the magnetic flux in the YZ axis plane as the second determination step. At this time, the magnetic flux vector direction discriminating unit 9 calculates a threshold value Kyz for Y-Z axis determination using the following equation (2). The threshold value Kyz is an example of the second threshold value.

ここで、図4に示すように、閾値Kyzは、例えばByz 1(Byz 2)のベクトル長を直径とする円軌跡において、Z軸上の点からYZ軸に下ろした垂線の交点Pbに相当する。このため、強度レベル「yz」と閾値Kyzとを比較するということは、いま判別しようとしているY−Z磁束ベクトルの頂点からYZ軸に下ろした垂線の交点が、交点Pbよりも上に位置するのか、或いは下に位置するのかを確認するのと同義である。磁束ベクトル方向判別部9は、「yz≧Kyz」が成立すれば、いま受信している磁束のベクトル方向をY−Z磁束ベクトルByz1と判定する。一方、磁束ベクトル方向判別部9は、「yz<Kyz」が成立すれば、いま受信している磁束のベクトル方向をY−Z磁束ベクトルByz2と判別する。 Here, as shown in FIG. 4, the threshold value Kyz corresponds to, for example, an intersection Pb of a perpendicular line drawn from a point on the Z axis to the YZ axis in a circular locus having a diameter of the vector length of Byz 1 (Byz 2). . For this reason, comparing the intensity level “yz” with the threshold value Kyz means that the intersection of the perpendicular line drawn from the vertex of the YZ magnetic flux vector to be determined to the YZ axis is located above the intersection Pb. It is synonymous with confirming whether it is located below. If “yz ≧ Kyz” is established, the magnetic flux vector direction determination unit 9 determines that the vector direction of the magnetic flux currently received is YZ magnetic flux vector Byz1. On the other hand, if “yz <Kyz” is satisfied, the magnetic flux vector direction determination unit 9 determines the vector direction of the magnetic flux currently received as the YZ magnetic flux vector Byz2.

続いて、図5に、受信した磁束のY−Z軸平面におけるベクトル方向(以降、Z−X磁束ベクトル方向と記す)の判別原理を図示する。例えば、図5(a)に示すように、X−Y磁束ベクトル方向がX−Y座標系の第1象限及び第3象限を横断する方向をとる場合、座標(x,y)は、(+,+)又は(−,−)の組み合わせをとる。図5(b)に示すように、Y−Z磁束ベクトル方向がY−Z座標系の第1象限及び第3象限を横断する方向をとる場合、座標(y,z)は、(+,+)又は(−,−)の組み合わせをとる。よって、図5(c)に示すように、Z−X座標系を考えた場合、座標(z,x)は、座標(x,y)=(+,+)と座標(y,z)=(+,+)とによって(+,+)が導かれ、座標(x,y)=(−,−)と座標(y,z)=(−,−)とによって(−,−)が導かれる。即ち、Z−X磁束ベクトル方向は、Z−X座標系において第1象限及び第3象限を横断する方向のベクトルと判定できる。   Next, FIG. 5 illustrates the principle of determining the vector direction of the received magnetic flux on the YZ axis plane (hereinafter referred to as the ZX magnetic flux vector direction). For example, as shown in FIG. 5 (a), when the XY magnetic flux vector direction takes a direction crossing the first quadrant and the third quadrant of the XY coordinate system, the coordinates (x, y) are (+ , +) Or (-,-). As shown in FIG. 5B, when the YZ magnetic flux vector direction is a direction that crosses the first quadrant and the third quadrant of the YZ coordinate system, the coordinates (y, z) are (+, + ) Or a combination of (-,-). Therefore, as shown in FIG. 5C, when a Z-X coordinate system is considered, coordinates (z, x) are coordinates (x, y) = (+, +) and coordinates (y, z) = (+, +) Leads to (+, +), and coordinates (x, y) = (−, −) and coordinates (y, z) = (−, −) lead to (−, −). It is burned. That is, the ZX magnetic flux vector direction can be determined as a vector in a direction crossing the first quadrant and the third quadrant in the ZX coordinate system.

また、図6(a),(b)に示すように、X−Y磁束ベクトル方向がX−Y座標系の第1象限及び第3象限を横断する方向をとり、Y−Z磁束ベクトル方向がY−Z座標系の第2象限及び第4象限を横断する方向をとる場合を考える。このとき、座標(x,y)は(+,+)又は(−,−)の組み合わせをとり、座標(y,z)は(+,−)又は(−,+)の組合せをとる。よって、図6(c)に示すように、座標(z,x)は、座標(x,y)=(+,+)と座標(y,z)=(+,−)とによって(−,+)が導かれ、座標(x,y)=(−,−)と座標(y,z)=(−,+)とによって(+,−)が導かれる。即ち、Z−X磁束ベクトル方向は、Z−X座標系において第2象限及び第4象限を横断する方向のベクトルと判定できる。   Further, as shown in FIGS. 6A and 6B, the XY magnetic flux vector direction takes a direction crossing the first quadrant and the third quadrant of the XY coordinate system, and the YZ magnetic flux vector direction is Consider a case in which the direction crosses the second and fourth quadrants of the YZ coordinate system. At this time, the coordinate (x, y) takes a combination of (+, +) or (−, −), and the coordinate (y, z) takes a combination of (+, −) or (−, +). Therefore, as shown in FIG. 6C, the coordinates (z, x) are expressed by the coordinates (x, y) = (+, +) and coordinates (y, z) = (+, −). +) Is derived, and (+, −) is derived from coordinates (x, y) = (−, −) and coordinates (y, z) = (−, +). That is, the ZX magnetic flux vector direction can be determined as a vector in a direction crossing the second quadrant and the fourth quadrant in the ZX coordinate system.

磁束ベクトル方向判別部9は、図5及び図6で説明した原理を用いて、受信電波のZ−X軸平面におけるベクトル方向を判別する。以上のようにして、磁束ベクトル方向判別部9は、受信電波において、X軸、Y軸及びZ軸の正負を判別する。   The magnetic flux vector direction discriminating unit 9 discriminates the vector direction of the received radio wave on the Z-X axis plane using the principle described with reference to FIGS. As described above, the magnetic flux vector direction determination unit 9 determines whether the X axis, the Y axis, and the Z axis are positive or negative in the received radio wave.

図7に、磁束ベクトル方向のX,Y,Zの正負の組み合わせをまとめた表10を図示する。同図に示されるように、磁束のX−Y軸平面、Y−Z軸平面及びZ−X軸平面の各ベクトル方向の組み合わせは、合計4つパターンをとることが分かる。このように、電波受信時、受信した電波の磁束がX,Y,Zのどの方向を向くのかを更に細分化して精度よく識別することが可能となる。   FIG. 7 shows a table 10 in which positive / negative combinations of X, Y, and Z in the magnetic flux vector direction are summarized. As shown in the figure, it can be seen that the combinations of the vector directions of the XY axis plane, the YZ axis plane, and the ZX axis plane of the magnetic flux have a total of four patterns. In this way, when receiving radio waves, it is possible to further subdivide the X, Y, and Z directions in which the magnetic flux of the received radio waves is directed and identify with high accuracy.

[電波受信装置の一使用例]
図8に示すように、電波受信装置1は、ある距離離れた送信アンテナ11から送信される電波を受信するよう動作をとる。本例の電波受信装置1は、受信電波の磁束のベクトル方向を精度よく判別することが可能であるので、磁束ベクトル方向の分布図12からも分かるように、磁束ベクトル方向を確認することにより、ある程度の精度で自位置を判定することが可能である。また、電波受信装置1は、受信電波の強度レベルも計測可能であるので、強度レベルの分布図13からも分かるように、強度レベルを確認すれば、ある程度の精度で自位置を判定することが可能である。
[Example of use of radio wave receiver]
As shown in FIG. 8, the radio wave receiving apparatus 1 operates to receive radio waves transmitted from a transmission antenna 11 that is separated by a certain distance. Since the radio wave receiver 1 of this example can accurately determine the vector direction of the magnetic flux of the received radio wave, as can be seen from the distribution diagram 12 of the magnetic flux vector direction, by checking the magnetic flux vector direction, It is possible to determine the own position with a certain degree of accuracy. Further, since the radio wave receiving apparatus 1 can also measure the intensity level of the received radio wave, as can be seen from the intensity level distribution chart 13, if the intensity level is confirmed, the own position can be determined with a certain degree of accuracy. Is possible.

このように、磁束ベクトル方向と強度レベルとを組み合わせれば、電波受信装置1の位置を精度よく判定することができるはずである。そうすれば、送信アンテナ11が形成する電波のエリアを精度よく形成したり、送信アンテナ11を少なくしたりできるなどに有利となる。   Thus, if the magnetic flux vector direction and the intensity level are combined, it should be possible to accurately determine the position of the radio wave receiver 1. This is advantageous in that the radio wave area formed by the transmission antenna 11 can be accurately formed, the number of transmission antennas 11 can be reduced, and the like.

本実施形態の構成によれば、以下に記載の効果を得ることができる。
(1)X軸アンテナ2、Y軸アンテナ3及びZ軸アンテナ4の各アンテナに対し、軸が45°傾くXY軸アンテナ5及びYZ軸アンテナ6を追加する。電波受信時、X軸、Y軸、Z軸、XY軸及びYZ軸の5方向の強度レベルを測定し、これら測定値を基に受信電波の磁束のベクトル方向を算出する。このとき、X−Y軸平面、Y−Z軸平面及びZ−X軸平面における磁束のベクトル方向の正負を、XY軸アンテナ5の強度レベル、及びYZ軸アンテナ6の強度レベルを用い、識別する。このため、受信アンテナがX,Y,Zの3軸のみのときには判別できなかったベクトル成分の正負が分かる。よって、より詳細な磁束のベクトル方向の情報を得ることができる。
According to the configuration of the present embodiment, the following effects can be obtained.
(1) An XY axis antenna 5 and a YZ axis antenna 6 whose axes are inclined by 45 ° are added to the X axis antenna 2, the Y axis antenna 3 and the Z axis antenna 4, respectively. At the time of radio wave reception, the intensity levels in five directions of the X axis, Y axis, Z axis, XY axis, and YZ axis are measured, and the vector direction of the magnetic flux of the received radio wave is calculated based on these measured values. At this time, the positive / negative of the vector direction of the magnetic flux in the XY axis plane, the YZ axis plane, and the ZX axis plane is identified using the intensity level of the XY axis antenna 5 and the intensity level of the YZ axis antenna 6. . For this reason, the positive / negative of the vector component which could not be discriminated when the receiving antenna has only three axes of X, Y, and Z is known. Therefore, more detailed information on the magnetic flux vector direction can be obtained.

(2)追加する受信アンテナは、XY軸アンテナ5及びYZ軸アンテナ6の2つである。よって、磁束のベクトル方向を算出するためのパラメータを多くとることが可能となるので、磁束のベクトル成分の正負を、より精度よく判定するのに有利となる。   (2) The two receiving antennas to be added are the XY axis antenna 5 and the YZ axis antenna 6. Therefore, it is possible to take many parameters for calculating the vector direction of the magnetic flux, which is advantageous for determining the positive / negative of the vector component of the magnetic flux with higher accuracy.

(3)X−Y軸平面における磁束のベクトル成分の正負は、XY軸アンテナ5の強度レベルを閾値Kxyと比較することで判別し、Y−Z軸平面における磁束のベクトル成分の正負は、YZ軸アンテナ6の強度レベルを閾値Kyzと比較することで判別する。そして、明らかとなったX−Y軸平面の磁束ベクトルの正負とY−Z軸平面の磁束ベクトルの正負との組み合わせから、Z−X軸平面の磁束ベクトルの正負を判別する。よって、比較的簡素な演算処理により、磁束のベクトル成分の正負を算出することができる。   (3) Whether the vector component of the magnetic flux in the XY axis plane is positive or negative is determined by comparing the intensity level of the XY axis antenna 5 with a threshold value Kxy. It discriminate | determines by comparing the intensity level of the axial antenna 6 with the threshold value Kyz. Then, the positive / negative of the magnetic flux vector on the Z-X axis plane is determined from the combination of the positive / negative of the magnetic flux vector on the X-Y axis plane and the positive / negative of the magnetic flux vector on the Y-Z axis plane. Therefore, the sign of the magnetic flux vector component can be calculated by a relatively simple calculation process.

(4)磁束のベクトル方向の正負が分かれば、ベクトル方向を確認することにより、送信アンテナ11からの電波を受信したときの自位置を判定することもできる。また、ベクトル方向の正負と受信電波の強度とを組み合わせて位置判定すれば、一層精度よく自位置を判定することができる。ひいては、送信アンテナ11が形成する通信エリアの精度向上に有利であり、またこれは用意する送信アンテナ11が少なく済むという利点にも繋がる。   (4) If the sign of the vector direction of the magnetic flux is known, it is possible to determine the own position when the radio wave from the transmitting antenna 11 is received by checking the vector direction. In addition, if the position is determined by combining the positive / negative of the vector direction and the intensity of the received radio wave, the own position can be determined with higher accuracy. As a result, it is advantageous in improving the accuracy of the communication area formed by the transmission antenna 11, and this also leads to the advantage that the number of transmission antennas 11 to be prepared can be reduced.

なお、実施形態はこれまでに述べた構成に限らず、以下の態様に変更してもよい。
・軸傾きアンテナは、XY軸アンテナ5及びYZ軸アンテナ6の何れかであればよい。
・軸傾きアンテナは、X軸及びZ軸に各々45°傾くZX軸アンテナでもよい。
Note that the embodiment is not limited to the configuration described so far, and may be modified as follows.
The axis tilt antenna may be any one of the XY axis antenna 5 and the YZ axis antenna 6.
The axis tilt antenna may be a ZX axis antenna that is tilted by 45 ° with respect to each of the X axis and the Z axis.

・磁束ベクトル方向のX,Y,Zの正負の算出方法は、軸傾きアンテナで計測される電波の強度レベルを使用したロジックであれば、種々の算出方法が適用可能である。
・磁束ベクトル方向検出装置は、車両の電子キーシステムに使用されることに限らず、種々の機器や装置に適用可能である。
A variety of calculation methods can be applied to X, Y, and Z positive / negative calculation methods in the magnetic flux vector direction as long as the logic uses the intensity level of the radio wave measured by the axis tilt antenna.
The magnetic flux vector direction detection device is not limited to being used in an electronic key system of a vehicle, but can be applied to various devices and devices.

次に、上記実施形態及び別例から把握できる技術的思想について、以下に追記する。
(イ)前記磁束ベクトル方向検出装置において、前記ベクトル方向算出部は、前記軸傾きアンテナで受信した電波の強度レベルを用い、受信した磁束において、X−Y軸平面の正負、Y−Z軸平面の正負、及びZ−X軸平面の正負を各々算出する。
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.
(A) In the magnetic flux vector direction detection device, the vector direction calculation unit uses the intensity level of the radio wave received by the axis tilt antenna, and in the received magnetic flux, the positive / negative of the XY axis plane, the YZ axis plane And the positive and negative of the Z-X axis plane are respectively calculated.

(ロ)前記磁束ベクトル方向検出装置において、前記軸傾きアンテナは、2つの直交する軸の2等分線を軸とするアンテナである。   (B) In the magnetic flux vector direction detection device, the axis inclination antenna is an antenna having a bisecting line of two orthogonal axes as an axis.

2…X軸アンテナ、3…Y軸アンテナ、4…Z軸アンテナ、5…軸傾きアンテナを構成するXY軸アンテナ、6…軸傾きアンテナを構成するYZ軸アンテナ、8…磁束ベクトル方向算出部を構成する受信強度レベル測定部、9…磁束ベクトル方向算出部を構成する磁束ベクトル方向判別部、Kxy…第1閾値としてのX−Y軸判定用の閾値、Kyz…第2閾値としてのY−Z軸判定用の閾値。   2 ... X-axis antenna, 3 ... Y-axis antenna, 4 ... Z-axis antenna, 5 ... XY axis antenna constituting the axis tilt antenna, 6 ... YZ axis antenna constituting the axis tilt antenna, 8 ... magnetic flux vector direction calculation unit Receiving intensity level measuring unit constituting, 9... Magnetic flux vector direction discriminating unit constituting magnetic flux vector direction calculating unit, Kxy... XY axis determination threshold as first threshold, Kyz. Axis threshold value.

Claims (3)

X軸方向の電波を受信するX軸アンテナと、
Y軸方向の電波を受信するY軸アンテナと、
Z軸方向の電波を受信するZ軸アンテナと、
前記X軸アンテナ及び前記Y軸アンテナに対して45°傾くアンテナ、及び前記Y軸アンテナ及び前記Z軸アンテナに対して45°傾くアンテナのうち、少なくとも一方からなる軸傾きアンテナと、
前記軸傾きアンテナで受信した電波の強度レベルを用い、受信した磁束においてベクトル成分の正負を算出する磁束ベクトル方向算出部と
を備えたことを特徴とする磁束ベクトル方向検出装置。
An X-axis antenna that receives radio waves in the X-axis direction;
A Y-axis antenna that receives radio waves in the Y-axis direction;
A Z-axis antenna that receives radio waves in the Z-axis direction;
An axis tilt antenna comprising at least one of an antenna tilted at 45 ° with respect to the X-axis antenna and the Y-axis antenna, and an antenna tilted at 45 ° with respect to the Y-axis antenna and the Z-axis antenna;
A magnetic flux vector direction detecting device, comprising: a magnetic flux vector direction calculating unit that calculates the positive / negative of a vector component in the received magnetic flux using an intensity level of a radio wave received by the axis tilt antenna.
前記軸傾きアンテナは、前記X軸アンテナ及び前記Y軸アンテナに対して45°傾くXY軸アンテナ、及び前記Y軸アンテナ及び前記Z軸アンテナに対して45°傾くYZ軸アンテナの両方からなり、
前記磁束ベクトル方向算出部は、前記XY軸アンテナ及び前記YZ軸アンテナの各々で受信した電波の強度レベルを用いて、受信した磁束のベクトル成分の正負を算出する
ことを特徴とする請求項1に記載の磁束ベクトル方向検出装置。
The axis tilt antenna is composed of both an XY axis antenna inclined at 45 ° with respect to the X axis antenna and the Y axis antenna, and a YZ axis antenna inclined at 45 ° with respect to the Y axis antenna and the Z axis antenna.
The magnetic flux vector direction calculation unit calculates the positive / negative of the vector component of the received magnetic flux using the intensity level of the radio wave received by each of the XY axis antenna and the YZ axis antenna. The magnetic flux vector direction detection apparatus as described.
前記X軸アンテナの受信電波の強度レベルをx、前記Y軸アンテナの受信電波の強度レベルをy、前記Z軸アンテナの受信電波の強度レベルをzとすると、前記XY軸アンテナの受信電波の強度レベルを比較する際に使用する第1閾値をKxy、前記YZ軸アンテナの受信電波の強度レベルを比較する際に使用する第2閾値をKyzは、
から算出され、
前記磁束ベクトル方向算出部は、前記XY軸アンテナの受信電波の強度レベルと前記第1閾値とを比較することにより、磁束ベクトルのX−Y軸平面における正負を算出し、前記YZ軸アンテナの受信電波の強度レベルと前記第2閾値とを比較することにより、磁束ベクトルのY−Z軸平面における正負を算出し、X−Y軸の磁束ベクトルとY−Z軸の磁束ベクトルとの組み合わせにより、磁束ベクトルのZ−X軸平面における正負を算出する
ことを特徴とする請求項2に記載の磁束ベクトル方向検出装置。
If the intensity level of the received radio wave of the X axis antenna is x, the intensity level of the received radio wave of the Y axis antenna is y, and the intensity level of the received radio wave of the Z axis antenna is z, the intensity of the received radio wave of the XY axis antenna The first threshold value used when comparing the levels is Kxy, and the second threshold value used when comparing the intensity levels of the received radio waves of the YZ axis antenna is Kyz,
Calculated from
The magnetic flux vector direction calculation unit calculates the positive / negative of the magnetic flux vector on the XY axis plane by comparing the intensity level of the received radio wave of the XY axis antenna with the first threshold, and receives the YZ axis antenna. By comparing the intensity level of the radio wave and the second threshold value, the positive / negative of the magnetic flux vector in the YZ axis plane is calculated. 3. The magnetic flux vector direction detecting device according to claim 2, wherein the positive / negative of the magnetic flux vector in the Z-X axis plane is calculated.
JP2013098517A 2013-05-08 2013-05-08 Magnetic flux vector direction detector Expired - Fee Related JP6026950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013098517A JP6026950B2 (en) 2013-05-08 2013-05-08 Magnetic flux vector direction detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013098517A JP6026950B2 (en) 2013-05-08 2013-05-08 Magnetic flux vector direction detector

Publications (2)

Publication Number Publication Date
JP2014219265A true JP2014219265A (en) 2014-11-20
JP6026950B2 JP6026950B2 (en) 2016-11-16

Family

ID=51937859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013098517A Expired - Fee Related JP6026950B2 (en) 2013-05-08 2013-05-08 Magnetic flux vector direction detector

Country Status (1)

Country Link
JP (1) JP6026950B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203990A (en) * 2015-10-23 2015-12-30 成都九华圆通科技发展有限公司 Monitoring and direction-finding method based on levitation interferometer
CN105223542A (en) * 2015-10-23 2016-01-06 成都九华圆通科技发展有限公司 A kind of monitoring and direction-finding method of carrying direction-finding equipment based on aircraft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951371A (en) * 1982-09-17 1984-03-24 Mitsubishi Electric Corp Antenna
JPH06265618A (en) * 1993-03-15 1994-09-22 Matsushita Electric Ind Co Ltd Detecting means for radio-wave generating direction
JP3043622U (en) * 1997-03-07 1997-11-28 学校法人東海大学 Electromagnetic wave arrival direction measurement system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951371A (en) * 1982-09-17 1984-03-24 Mitsubishi Electric Corp Antenna
JPH06265618A (en) * 1993-03-15 1994-09-22 Matsushita Electric Ind Co Ltd Detecting means for radio-wave generating direction
JP3043622U (en) * 1997-03-07 1997-11-28 学校法人東海大学 Electromagnetic wave arrival direction measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203990A (en) * 2015-10-23 2015-12-30 成都九华圆通科技发展有限公司 Monitoring and direction-finding method based on levitation interferometer
CN105223542A (en) * 2015-10-23 2016-01-06 成都九华圆通科技发展有限公司 A kind of monitoring and direction-finding method of carrying direction-finding equipment based on aircraft

Also Published As

Publication number Publication date
JP6026950B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US7468696B2 (en) Method and device for trilateration using LOS link prediction and pre-measurement LOS path filtering
US9404996B2 (en) Position estimation device, position estimation method, program, and integrated circuit
US8838403B2 (en) Method and system for a self-calibrated multi-magnetometer platform
TWI580992B (en) System, method and test instrument for determining location and orientation of wire
JP6026950B2 (en) Magnetic flux vector direction detector
CN104528527A (en) Deflection detection system, method and device for engineering machinery suspension arm and engineering machinery
US11946986B2 (en) Magnetic detector, detection method, and non-transitory computer readable storage medium
JP5375394B2 (en) Magnetic data processing apparatus, magnetic data processing method, and magnetic data processing program
CN110620836B (en) Mobile phone hearing positioning method
CN103869278A (en) Multi-target positioning method and device based on distance measurement
Blankenbach et al. A novel magnetic indoor positioning system for indoor location services
JP2013061194A (en) Measuring apparatus and measuring method
TWI540331B (en) Magnetic positioning device
CN104869631A (en) Locating method
JP6818752B2 (en) Method and device to indicate direction
CN107708203A (en) A kind of localization method and device based on geographical fingerprint
CN107734450A (en) A kind of indoor bluetooth localization method and system
JP2018530192A5 (en)
CN104837198A (en) Terminal
JP2012202781A (en) Moving body position estimation and detection device and program for moving body position estimation and detection
KR101413010B1 (en) Unmanned Underwater Vehicle Recovery System and Underwater Recovery Method thereof
CN108322269A (en) The emitting performance appraisal procedure and device of oriented antenna
CN109716064A (en) Electronic compass
CN114814328A (en) Current measuring method and system based on three-axis magnetoresistance and storage medium
JP7112936B2 (en) TERMINAL OWNER DETECTION SYSTEM, TERMINAL OWNER DETECTION METHOD, AND COMPUTER PROGRAM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161013

R150 Certificate of patent or registration of utility model

Ref document number: 6026950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees