JP2014217375A - Method for controlling expression of gip receptor - Google Patents

Method for controlling expression of gip receptor Download PDF

Info

Publication number
JP2014217375A
JP2014217375A JP2014060555A JP2014060555A JP2014217375A JP 2014217375 A JP2014217375 A JP 2014217375A JP 2014060555 A JP2014060555 A JP 2014060555A JP 2014060555 A JP2014060555 A JP 2014060555A JP 2014217375 A JP2014217375 A JP 2014217375A
Authority
JP
Japan
Prior art keywords
adipocytes
gip
gip receptor
cells
macrophages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014060555A
Other languages
Japanese (ja)
Inventor
シュ 陳
Shi Chen
シュ 陳
紀子 大崎
Noriko Osaki
紀子 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2014060555A priority Critical patent/JP2014217375A/en
Priority to PCT/JP2014/060222 priority patent/WO2014168153A1/en
Publication of JP2014217375A publication Critical patent/JP2014217375A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system enabling efficient expression of a GIP receptor in an adipocyte, and a method for using the expression system.SOLUTION: This invention relates to a method for enhancing expression of a GIP receptor in an adipocyte, a method for analyzing the function of a GIP receptor, and a method for screening a GIP receptor affinity substance, including the steps of (a) coculturing an adipocyte with a macrophage, (b) bringing a test substance into contact with the coculture, and (c) comparing the expression level of a GIP receptor in the case of bringing the test substance into contact with the coculture in the step (b) to the expression level of a GIP receptor in the case of not bringing the test substance into contact with the coculture.

Description

本発明は、脂肪細胞におけるGIP受容体の発現制御及びその利用に関する。   The present invention relates to regulation of GIP receptor expression in adipocytes and use thereof.

消化管ホルモンの1つであるGIP(glucose−dependent insulinotropic polypeptide)は、グルコース依存的に膵臓β細胞からインスリン分泌を促進し、血糖値の調節に寄与するインクレチンとして知られている。   GIP (glucose-dependent insulotropic polypeptide), one of the gastrointestinal hormones, is known as an incretin that promotes insulin secretion from pancreatic β cells in a glucose-dependent manner and contributes to the regulation of blood glucose level.

一方で、GIPはインクレチン作用以外に、脂肪組織、骨、神経細胞において様々な膵外作用を有することが報告されている(非特許文献1)。中でも、GIPと肥満の関連性が示唆されており、脂肪組織に対するGIPの作用は特に着目されている。すなわち、脂肪細胞にはGIP受容体(GIPR)が発現し、GIPR欠損マウスにおいて高脂肪食負荷による肥満が認められないことが報告され(非特許文献2)、また、脂肪組織に対するGIPの作用として、LPL(lipoprotein lipase)活性化を介した脂肪酸取り込みの促進(非特許文献3)、Aktを介した糖取り込みの亢進(非特許文献4)、脂肪蓄積亢進(非特許文献5)、炎症性の亢進(非特許文献6)等が報告されている。   On the other hand, GIP has been reported to have various extrapancreatic actions in adipose tissue, bone, and nerve cells in addition to the incretin action (Non-patent Document 1). Among them, the relationship between GIP and obesity has been suggested, and the action of GIP on adipose tissue has attracted particular attention. That is, it has been reported that GIP receptor (GIPR) is expressed in adipocytes, and obesity due to high fat diet load is not observed in GIPR-deficient mice (Non-patent Document 2). , Promotion of fatty acid uptake through activation of LPL (Lipoprotein Lipase) (Non-patent Document 3), enhanced sugar uptake through Akt (Non-patent Document 4), increased fat accumulation (Non-patent Document 5), inflammatory Enhancement (Non-Patent Document 6) has been reported.

したがって、脂肪細胞におけるGIP受容体の発現や機能の解析を進めることは、肥満や炎症のメカニズム解明や受容体分子を標的とした抗肥満物質や抗炎症物質の開発につながり、重要である。
上記非特許文献6では、アデノウィスルベクターを用い、GIP受容体を強制高発現させた脂肪細胞において、インターロイキン6(IL6)の発現・産生が促進し、炎症反応が亢進することが開示されているが、アデノウィスルベクターを用いGIP受容体を強制高発現させる系は、操作が煩雑であり、また非生理的であることから、受容体機能の解明やスクリーニング系として使用することには適さない。
Therefore, it is important to advance the analysis of the expression and function of GIP receptors in adipocytes, leading to the elucidation of obesity and inflammation mechanisms and the development of anti-obesity substances and anti-inflammatory substances targeting receptor molecules.
Non-Patent Document 6 discloses that the expression and production of interleukin 6 (IL6) is promoted and the inflammatory reaction is enhanced in adipocytes in which an adenovirus vector is used and the GIP receptor is forcibly highly expressed. However, a system for forcedly expressing the GIP receptor using an adenovirus vector is not suitable for use in elucidation of the receptor function or as a screening system because it is complicated and non-physiological. .

Seino Y et al. GIP and GLP-1, the two incretin hormones: Similarities and differences. Journal of Diabetes Investigation (2010), 1, pp.8-23Seino Y et al. GIP and GLP-1, the two incretin hormones: Similarities and differences. Journal of Diabetes Investigation (2010), 1, pp.8-23 Yip RG. et al. Functional GIP receptors are present on adipocytes. Endocrinology (1998), 139(9), pp.4004-4007Yip RG. Et al. Functional GIP receptors are present on adipocytes. Endocrinology (1998), 139 (9), pp. 4004-4007 Miyawaki et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. (2002), 8(7), pp.738-742Miyawaki et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. (2002), 8 (7), pp.738-742 Song DH et al. Glucose-Dependent Insulinotropic Polypeptide Enhances Adipocyte Development and Glucose Uptake in Part Through Akt Activation. Gastroenterology (2007), 133(6), pp.1796-1805Song DH et al. Glucose-Dependent Insulinotropic Polypeptide Enhances Adipocyte Development and Glucose Uptake in Part Through Akt Activation.Gastroenterology (2007), 133 (6), pp.1796-1805 Kim SJ et al. Activation of Lipoprotein Lipase by Glucose-dependent Insulinotropic Polypeptide in Adipocytes. JBC (2007), 282(12), pp.8557-8567Kim SJ et al. Activation of Lipoprotein Lipase by Glucose-dependent Insulinotropic Polypeptide in Adipocytes. JBC (2007), 282 (12), pp.8557-8567 Nie Y et al. Glucose-dependent insulinotropic polypeptide impairs insulin signaling via inducing adipocyte inflammation in glucose-dependent insulinotropic polypeptide receptor-overexpressing adipocytes. FASEB Journal (2012), 26(6), pp.2383-2393Nie Y et al. Glucose-dependent insulinotropic polypeptide impairs insulin signaling via inducing adipocyte inflammation in glucose-dependent insulinotropic polypeptide receptor-overexpressing adipocytes. FASEB Journal (2012), 26 (6), pp.2383-2393

本発明は、脂肪細胞においてGIP受容体を効率よく発現できる系、及び当該発現系の利用法を提供するものである。   The present invention provides a system that can efficiently express a GIP receptor in adipocytes, and a method of using the expression system.

本発明らは、脂肪細胞におけるGIP受容体の発現について検討したところ、脂肪細胞をマクロファージと共培養することにより、GIP受容体の発現が高まり且つ維持されることを見出した。   The present inventors examined the expression of the GIP receptor in adipocytes, and found that the expression of the GIP receptor was increased and maintained by co-culturing the adipocytes with macrophages.

すなわち、以下の1)−4)に係るものである。
1)脂肪細胞をマクロファージと共培養する、脂肪細胞におけるGIP受容体の発現増強方法。
2)脂肪細胞をマクロファージと共培養する、脂肪細胞におけるGIP受容体の機能解析方法。
3)脂肪細胞をマクロファージと共培養する工程を含む、GIP受容体発現制御物質のスクリーニング方法。
4)脂肪細胞をマクロファージと共培養する工程を含む、GIP受容体親和性物質のスクリーニング方法。
That is, it relates to the following 1) -4).
1) A method for enhancing GIP receptor expression in adipocytes, wherein adipocytes are co-cultured with macrophages.
2) A method for analyzing the function of GIP receptors in adipocytes, wherein adipocytes are co-cultured with macrophages.
3) A screening method for a GIP receptor expression regulator, comprising the step of co-culturing adipocytes with macrophages.
4) A method for screening a substance having affinity for GIP receptor, comprising a step of co-culturing adipocytes with macrophages.

本発明によれば、脂肪細胞におけるGIP受容体の発現を、アデノウィスルベクター等を用い、強発現させるような面倒な手間を掛けず、また、より生理的条件に近い系で効率よく行うことができる。したがって、脂肪細胞におけるGIP受容体の発現解析や機能解析を容易に行うことができ、これにより肥満や炎症のメカニズム解明や受容体分子を標的とした抗肥満物質や抗炎症物質等の探索が容易となる。   According to the present invention, the expression of the GIP receptor in adipocytes can be efficiently performed in a system that is closer to physiological conditions, without using the time-consuming labor of strong expression using an adenovirus vector or the like. it can. Therefore, expression analysis and functional analysis of GIP receptors in adipocytes can be easily performed, thereby making it possible to elucidate the mechanism of obesity and inflammation and to search for anti-obesity substances and anti-inflammatory substances targeting receptor molecules. It becomes.

接触法による、脂肪細胞(3T3−L1)とマクロファージ(Raw264)の共培養法(A)、及び対照培養法(B)を示す模式図。The schematic diagram which shows the co-culture method (A) of a fat cell (3T3-L1) and a macrophage (Raw264), and a control culture method (B) by a contact method. マクロファージ共培養による脂肪細胞におけるGIP受容体の発現変化を示すグラフ。The graph which shows the expression change of the GIP receptor in the fat cell by macrophage co-culture. マクロファージ共培養条件下における、GIPによるIL6遺伝子発現促進を示すグラフ。The graph which shows IL6 gene expression promotion by GIP under macrophage co-culture conditions. マクロファージ共培養条件下における、GIPによるIL6分泌促進を示すグラフ。The graph which shows IL6 secretion promotion by GIP under macrophage co-culture conditions. マクロファージ共培養系を用いた、GIP受容体阻害剤によるIL6分泌抑制を示すグラフ。The graph which shows IL6 secretion suppression by a GIP receptor inhibitor using a macrophage co-culture system. マクロファージ共培養系を用いた、GIP受容体阻害剤によるIL6分泌抑制を示すグラフ。The graph which shows IL6 secretion suppression by a GIP receptor inhibitor using a macrophage co-culture system. 3T3−L1細胞の分化に伴うGIP受容体の遺伝子発現を示すグラフ。The graph which shows the gene expression of the GIP receptor accompanying the differentiation of 3T3-L1 cell.

本発明において、GIP受容体(GIPR)の発現は、脂肪細胞とマクロファージを共培養することによって行われる。
ここで、「脂肪細胞」は、脂肪細胞の性質(例えば、脂肪細胞特有の細胞内代謝を行い、脂肪滴を多量に蓄積する)をもち、GIP受容体を発現し得る細胞であればよく、ヒトやラットの初代培養細胞等の培養脂肪細胞の他、前駆脂肪細胞から分化誘導された細胞でもよい。前駆脂肪細胞としては、脂肪細胞に分化する能力を有する線維芽細胞として広く当該研究領域で使用されている3T3−L1細胞(Journal of Biological Chemistry (1996), 271(5), pp.2365-2368)、Ob1771(Biochemical and Biophysical Research Communications (1997), 238(2), pp.606-611)等が挙げられる。各種の動物に由来する脂肪前駆細胞は市販されており、適当な販社から購入することができる。例えばマウス由来の3T3−L1細胞、3T3−F442A細胞はDSファーマバイオメディカル株式会社等から購入することができる。
前駆脂肪細胞から脂肪細胞への分化誘導は、公知の方法により前駆脂肪細胞に分化誘導刺激を加えることで行うことができる。例えば、3T3−L1細胞を脂肪細胞に誘導する場合、ウシ胎児血清(FBS)、Insulin、IBMX(3-Isobutyl−1−methylxanthine)、Dex(Dexamethasone)を含む脂肪細胞分化誘導カクテル等により当該前駆脂肪細胞の分化誘導を行うことができる(Wu Z. et
al., Genes & Dev. (1992), 9, pp.2350-2363.等)。
In the present invention, GIP receptor (GIPR) expression is performed by co-culturing adipocytes and macrophages.
Here, the “adipocyte” may be any cell that has the properties of an adipocyte (for example, performs intracellular metabolism peculiar to an adipocyte and accumulates a large amount of lipid droplets) and can express a GIP receptor, In addition to cultured adipocytes such as human and rat primary cultured cells, cells derived from preadipocytes may be used. As the preadipocytes, 3T3-L1 cells (Journal of Biological Chemistry (1996), 271 (5), pp.2365-2368) widely used in the research area as fibroblasts having the ability to differentiate into adipocytes. ), Ob1771 (Biochemical and Biophysical Research Communications (1997), 238 (2), pp. 606-611). Adipose precursor cells derived from various animals are commercially available and can be purchased from appropriate sales companies. For example, mouse-derived 3T3-L1 cells and 3T3-F442A cells can be purchased from DS Pharma Biomedical Corporation.
Differentiation induction from preadipocytes to adipocytes can be performed by applying differentiation induction stimulation to the preadipocytes by a known method. For example, in the case of inducing 3T3-L1 cells into adipocytes, the precursor fat is obtained by using a fat cell differentiation-inducing cocktail containing fetal bovine serum (FBS), Insulin, IBMX (3-Isobutyl-1-methylxanthine), Dex (Dexamethasone), or the like. Can induce cell differentiation (Wu Z. et
al., Genes & Dev. (1992), 9, pp.2350-2363.).

前駆脂肪細胞から脂肪細胞へ分化誘導する場合、参考例1に示すように、3T3−L1細胞の場合、GIP受容体は分化初期及び成熟期において2相性の発現を示し、その発現量は成熟期(分化誘導後6日目頃)において顕著に増加する。したがって、前駆脂肪細胞を分化誘導して用いる場合は、成熟期以降の細胞を用いるのが好ましく、例えば3T3−L1細胞であれば分化誘導後6日目以降、例えば6〜16日目の細胞を用いるのが好ましい。   In the case of inducing differentiation from preadipocytes to adipocytes, as shown in Reference Example 1, in the case of 3T3-L1 cells, the GIP receptor shows biphasic expression in the early differentiation stage and the mature stage, and the expression level thereof is in the mature stage. It increases markedly at around 6 days after differentiation induction. Therefore, when preadipocytes are differentiated and used, it is preferable to use cells after the maturation stage. For example, in the case of 3T3-L1 cells, cells after 6 days after differentiation induction, for example, cells 6 to 16 are used. It is preferable to use it.

本発明において用いられるマクロファージとしては、単球に由来するものであればよく、生物種は特に限定されず、例えばマウス、ラット、ヒト等の何れでもよい。好適には、例えば、マクロファージ様細胞として公知のRAW264細胞、RAW264.7細胞、腹腔マクロファージ(primary macrophages)等が挙げられる。
RAW264細胞、RAW264.7細胞は、DSファーマバイオメディカル株式会社等から購入可能である。また、腹腔マクロファージは、公知の調製方法、例えば、チオグリコネート含有液をマウスの腹腔内に投与し、2−4日後に腹腔内を洗浄し、その洗浄液からマクロファージを回収することにより得ることができる。
Macrophages used in the present invention are not particularly limited as long as they are derived from monocytes, and for example, any of mouse, rat, human and the like may be used. Suitable examples include RAW264 cells, RAW264.7 cells, and peritoneal macrophages known as macrophage-like cells.
RAW264 cells and RAW264.7 cells can be purchased from DS Pharma Biomedical Co., Ltd. In addition, peritoneal macrophages can be obtained by a known preparation method, for example, by administering a thioglyconate-containing solution into the abdominal cavity of mice, washing the abdominal cavity after 2-4 days, and collecting the macrophages from the washing solution. it can.

マクロファージと脂肪細胞の共培養は、脂肪細胞とマクロファージが相互に接触する方法(接触法)、或いは脂肪細胞とマクロファージが同じ培養系に存在するが物質の行き来が可能な隔壁により隔てられ、細胞自体を物理的に接触させない方法(非接触法)の何れでもよい。非接触法としては、例えば、通常の細胞培養に用いられるカルチャーインサート等のフィルターを用いて両細胞を隔てて培養するトランスウェル法が挙げられ、本発明においては、マクロファージと脂肪細胞を個々に回収し、それぞれの遺伝子発現の解析を行うこと、また、接触による両細胞間での相互作用を回避する点から当該非接触法を用いるのが好ましい。
トランスウェル法において、フィルターの孔径は、0.1μm以上、好ましくは0.4μm以上で、3μm以下、好ましくは1μm以下である。このようなフィルターとしては、BD Falcon セルカルチャーインサート等を挙げることができる。脂肪細胞とマクロファージのどちらをフィルター上に培養しても構わないが、マクロファージをフィルター上で培養するのが好ましい。
The co-culture of macrophages and adipocytes is a method in which adipocytes and macrophages are in contact with each other (contact method), or the cells themselves are separated by a partition wall in which the fat cells and macrophages are present in the same culture system, but the substance can move back and forth. Any of the methods (non-contact method) that does not allow physical contact with the substrate may be used. Non-contact methods include, for example, a transwell method in which both cells are cultured separately using a filter such as a culture insert used for normal cell culture. In the present invention, macrophages and adipocytes are individually collected. However, it is preferable to use the non-contact method from the viewpoint of analyzing the expression of each gene and avoiding the interaction between both cells due to contact.
In the transwell method, the pore size of the filter is 0.1 μm or more, preferably 0.4 μm or more, 3 μm or less, preferably 1 μm or less. Examples of such filters include BD Falcon cell culture inserts. Either fat cells or macrophages may be cultured on the filter, but it is preferable to culture the macrophages on the filter.

培養培地としては、任意の液体培養培地、好ましくは哺乳動物細胞用培地を使用できる。細胞培養培地としては、例えば、イーグル培地のような最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、RPMI1640培地、199培地を用いることができる。(H. Sakaue et al., Mol. Endocrinol. (2004), 11, 1552.; Miki et al., Mol. Cell. Biol. (2001), 21, 2521.; H. Sakaue et al., Genes & Dev. (2002), 16, 908.を参照)   As the culture medium, any liquid culture medium, preferably a medium for mammalian cells can be used. As the cell culture medium, for example, a minimal essential medium (MEM) such as Eagle medium, Dulbecco's modified Eagle medium (DMEM), RPMI 1640 medium, and 199 medium can be used. (H. Sakaue et al., Mol. Endocrinol. (2004), 11, 1552 .; Miki et al., Mol. Cell. Biol. (2001), 21, 2521 .; H. Sakaue et al., Genes & (See Dev. (2002), 16, 908.)

これらの培地には、GIP受容体の発現に影響を与えない範囲で、適宜添加剤を添加することができる。   Additives can be appropriately added to these media as long as they do not affect the expression of the GIP receptor.

共培養の温度は30℃〜40℃、好ましくは35℃〜37℃である。培地のpH値は、一般に6〜8、好ましくはpH7〜7.5である。
共培養は、通常、約5%のCO2雰囲気下で行われ、共培養期間は、例えば1時間以上、48時間以下であり、好ましくは、16時間以上、24時間以下である。
The temperature of co-culture is 30 ° C to 40 ° C, preferably 35 ° C to 37 ° C. The pH value of the medium is generally 6 to 8, preferably 7 to 7.5.
The co-culture is usually performed in a CO 2 atmosphere of about 5%, and the co-culture period is, for example, 1 hour or more and 48 hours or less, preferably 16 hours or more and 24 hours or less.

また、共培養開始時の脂肪細胞とマクロファージの細胞数の割合は、特に限定されないが、例えば、50:1〜1:1であり、好ましくは20:1〜1:1であり、より好ましくは5:1〜2:1である。   The ratio of the number of adipocytes and macrophages at the start of co-culture is not particularly limited, but is, for example, 50: 1 to 1: 1, preferably 20: 1 to 1: 1, more preferably 5: 1 to 2: 1.

共培養後、共培養物から脂肪細胞を回収する。回収方法は特に限定されないが、例えば、トリプシンを用いることが出来る。また、RNAを回収する際は、RNeasy mini 50(QIAGEN)付属のLysis Bufferを用いることが出来る。   After co-culture, adipocytes are collected from the co-culture. The recovery method is not particularly limited, but for example, trypsin can be used. In addition, when recovering RNA, a lysis buffer attached to RNeasy mini 50 (QIAGEN) can be used.

後記実施例に示すように、脂肪細胞をマクロファージと共培養すると、脂肪細胞におけるGIP受容体の発現量が増加し、且つその発現は維持される。
したがって、脂肪細胞とマクロファージの共培養系は、脂肪細胞におけるGIP受容体の発現増強のために使用できる。また、脂肪細胞とマクロファージの共培養系は、GIP受容体の機能を解析するため、GIP受容体発現制御物質又はGIP受容体親和性物質をスクリーニングするために使用できる。
As shown in Examples described later, when adipocytes are co-cultured with macrophages, the expression level of GIP receptors in adipocytes increases and the expression is maintained.
Therefore, the co-culture system of adipocytes and macrophages can be used for enhancing the expression of GIP receptors in adipocytes. In addition, the co-culture system of adipocytes and macrophages can be used for screening a GIP receptor expression controlling substance or a GIP receptor affinity substance in order to analyze the function of the GIP receptor.

ここで、GIP受容体の発現増強とは、脂肪細胞においてGIP受容体の存在量及び/又は産生量が増加することを意味する。当該GIP受容体の存在量又は産生量は、例えばGIP受容体遺伝子の発現量として測定でき、遺伝子発現量の測定は、公知の方法によりRNAを抽出し、cDNA合成後、定量的リアルタイムPCR法等を用いることにより行うことができる。   Here, enhanced expression of the GIP receptor means that the abundance and / or production amount of the GIP receptor increases in adipocytes. The abundance or production amount of the GIP receptor can be measured, for example, as the expression level of the GIP receptor gene. The gene expression level can be measured by extracting RNA by a known method, synthesizing cDNA, quantitative real-time PCR, etc. It can be performed by using.

GIP受容体の機能としては、GIP受容体を介して引き起こされる各種細胞刺激活性や、糖取り込み促進作用、脂肪蓄積促進作用、脂肪分解抑制作用等が挙げられる。細胞刺激活性としては、例えば、細胞内cAMP生成、細胞内cGMP生成、細胞内タンパク質のリン酸化、炎症性サイトカイン(インターロイキン6(IL6)、TNFα、MCP−1、PAI1)の産生等が挙げられる。   Examples of the function of the GIP receptor include various cell stimulating activities caused by the GIP receptor, sugar uptake promoting action, fat accumulation promoting action, lipolysis inhibiting action, and the like. Examples of the cell stimulating activity include intracellular cAMP generation, intracellular cGMP generation, phosphorylation of intracellular proteins, production of inflammatory cytokines (interleukin 6 (IL6), TNFα, MCP-1, PAI1), and the like. .

また、GIP受容体発現制御物質とは、脂肪細胞においてGIP受容体の発現量を増加又は減少させる物質を意味する。GIP受容体の発現量は、例えばGIP受容体遺伝子の発現量として測定できる。   The GIP receptor expression controlling substance means a substance that increases or decreases the expression level of the GIP receptor in adipocytes. The expression level of the GIP receptor can be measured, for example, as the expression level of the GIP receptor gene.

また、GIP受容体親和性物質としては、GIP受容体に結合して受容体を活性化する物質、GIP受容体に結合するが受容体を活性化しない物質等が挙げられる。受容体活性としては、GIP受容体を介した細胞刺激活性、例えば、細胞内cAMP生成、細胞内cGMP生成、細胞内タンパク質のリン酸化、IL6、TNFαの産生等が挙げられる。   Examples of GIP receptor affinity substances include substances that bind to the GIP receptor and activate the receptor, and substances that bind to the GIP receptor but do not activate the receptor. Examples of the receptor activity include cell stimulation activity via GIP receptor, for example, intracellular cAMP generation, intracellular cGMP generation, intracellular protein phosphorylation, IL6, TNFα production, and the like.

脂肪細胞とマクロファージの共培養を用いたGIP受容体発現制御物質のスクリーニング方法は、具体的には以下の工程(a)〜(c)を含むものである。
(a)脂肪細胞をマクロファージと共培養する工程
(b)被験物質を前記共培養系に接触させる工程
(c)工程(b)において被験物質を接触させた場合におけるGIP受容体の発現レベルと、被験物質を接触させない場合におけるGIP受容体の発現レベルとを比較する工程
A screening method for a GIP receptor expression regulator using co-culture of adipocytes and macrophages specifically includes the following steps (a) to (c).
(A) a step of co-culturing adipocytes with macrophages (b) a step of contacting a test substance with the co-culture system (c) an expression level of a GIP receptor when the test substance is contacted in step (b), A step of comparing the expression level of the GIP receptor when the test substance is not contacted

工程(a)の共培養は、前記したとおりである。工程(b)被験物質の接触は、被験物質を共培養系へ、1時間〜24時間程度接触させることが好ましい。工程(c)では、GIP受容体の発現レベルが評価されるが、当該GIP受容体発現レベルは、例えばGIP受容体遺伝子の発現量を測定することにより行うことができる。発現レベルの比較は、例えば、有意差の有無に基づいて行われる。比較の結果、被験物質の非存在下に対して被験物質の存在下で、GIP受容体発現レベルの抑制が確認できれば、その被験物質はGIP受容体発現抑制物質となり得る。   The co-culture in the step (a) is as described above. In the step (b), the test substance is preferably brought into contact with the co-culture system for about 1 to 24 hours. In step (c), the expression level of the GIP receptor is evaluated. The expression level of the GIP receptor can be determined, for example, by measuring the expression level of the GIP receptor gene. The comparison of the expression level is performed based on the presence or absence of a significant difference, for example. As a result of the comparison, if the suppression of the GIP receptor expression level can be confirmed in the presence of the test substance relative to the absence of the test substance, the test substance can be a GIP receptor expression inhibitor.

また脂肪細胞とマクロファージの共培養を用いたGIP受容体親和性物質のスクリーニング方法は、具体的には、例えば、以下の工程(d)〜(f)を含むものである。
(d)脂肪細胞をマクロファージと共培養する工程
(e)被験物質及びGIPを前記共培養系に接触させる工程
(f)工程(e)において被験物質の存在下でGIPを共培養系へ接触させた場合における受容体活性と、被験物質の非存在下でGIPを共培養系へ接触させた場合における受容体活性とを比較する工程
Moreover, the screening method of a GIP receptor affinity substance using the co-culture of adipocytes and macrophages specifically includes, for example, the following steps (d) to (f).
(D) The step of co-culturing adipocytes with macrophages (e) The step of contacting the test substance and GIP with the co-culture system (f) The step of contacting the GIP with the co-culture system in the presence of the test substance in step (e) Comparing the receptor activity in the case of contact with GIP in the absence of the test substance to the co-culture system

工程(d)の共培養は、前記したとおりである。工程(e)被験物質及びGIPの添加は、共培養系へ、1時間〜24時間程度接触させることが好ましい。工程(f)では、被験物質及びGIPの存在下における受容体活性が測定される。同時に該受容体活性を、被験物質の非存在下の活性と比較する。受容体活性の比較は、例えば、有意差の有無に基づいて行われる。比較の結果、被験物質の非存在下に対して被験物質の存在下で、活性の促進が確認できれば、その被験物質はGIP受容体作動物質、活性の抑制が確認できれば、その被験物質はGIP受容体阻害物質となり得る。   The co-culture in the step (d) is as described above. Step (e) The test substance and GIP are preferably added to the co-culture system for about 1 to 24 hours. In step (f), receptor activity in the presence of the test substance and GIP is measured. At the same time, the receptor activity is compared with the activity in the absence of the test substance. Comparison of receptor activity is performed based on, for example, the presence or absence of a significant difference. As a result of comparison, if the promotion of activity can be confirmed in the presence of the test substance relative to the absence of the test substance, the test substance is a GIP receptor agonist, and if suppression of the activity is confirmed, the test substance is GIP receptor. Can be a body inhibitor.

上述した実施形態に関し、本発明においては以下の態様が開示される。
<1>脂肪細胞をマクロファージと共培養する、脂肪細胞におけるGIP受容体の発現増強方法。
<2>脂肪細胞をマクロファージと共培養する、脂肪細胞におけるGIP受容体の機能解析方法。
<3>脂肪細胞をマクロファージと共培養する工程を含む、GIP受容体発現制御物質のスクリーニング方法。
<4>脂肪細胞をマクロファージと共培養する工程を含む、GIP受容体親和性物質のスクリーニング方法。
With respect to the above-described embodiment, the following aspects are disclosed in the present invention.
<1> A method for enhancing GIP receptor expression in adipocytes, wherein the adipocytes are co-cultured with macrophages.
<2> A method for analyzing the function of GIP receptors in adipocytes, wherein adipocytes are co-cultured with macrophages.
<3> A screening method for a GIP receptor expression regulator, comprising a step of co-culturing adipocytes with macrophages.
<4> A method for screening a substance having affinity for a GIP receptor, comprising a step of co-culturing adipocytes with macrophages.

<5>以下の工程(a)〜(c)を含む、<3>の方法。
(a)脂肪細胞をマクロファージと共培養する工程
(b)被験物質を前記共培養系に接触させる工程
(c)工程(b)において被験物質を接触させた場合におけるGIP受容体の発現レベルと、被験物質を接触させない場合におけるGIP受容体の発現レベルとを比較する工程
<6>以下の工程(d)〜(f)を含む、<4>の方法。
(d)脂肪細胞をマクロファージと共培養する工程
(e)被験物質及びGIPを前記共培養系に接触させる工程
(f)工程(e)において被験物質の存在下でGIPを共培養系へ接触させた場合における受容体活性と、被験物質の非存在下でGIPを共培養系へ接触させた場合における受容体活性とを比較する工程
<7>脂肪細胞が、3T3−L1細胞、3T3−F442A細胞及びOb1771細胞から選ばれる前駆脂肪細胞から分化誘導された細胞である、<1>〜<6>の方法。
<8>脂肪細胞として、3T3−L1細胞を分化誘導後、6〜16日目の細胞を用いる<1>〜<7>の方法。
<9>マクロファージが、RAW264細胞、RAW264.7細胞又は腹腔マクロファージである<1>〜<8>の方法。
<5> The method of <3>, comprising the following steps (a) to (c).
(A) a step of co-culturing adipocytes with macrophages (b) a step of contacting a test substance with the co-culture system (c) an expression level of a GIP receptor when the test substance is contacted in step (b), <6> The method of <4>, comprising the following steps (d) to (f): <6> comparing the expression level of the GIP receptor when the test substance is not contacted.
(D) The step of co-culturing adipocytes with macrophages (e) The step of contacting the test substance and GIP with the co-culture system (f) The step of contacting the GIP with the co-culture system in the presence of the test substance in step (e) <7> adipocytes are 3T3-L1 cells, 3T3-F442A cells, and a step of comparing the receptor activity in the case of contact with GIP in the absence of the test substance in the presence of the test substance And <1> to <6>, which are cells induced to differentiate from preadipocytes selected from Ob1771 cells.
<8> The method according to <1> to <7>, wherein the cells on the 6th to 16th days are used as adipocytes after inducing differentiation of 3T3-L1 cells.
<9> The method according to <1> to <8>, wherein the macrophages are RAW264 cells, RAW264.7 cells, or peritoneal macrophages.

実施例1
(1)脂肪細胞とマクロファージの共培養によるGIPRの発現
3T3−L1(DS ファーマバイオメディカル株式会社)をDMEM培地(10%FBS,High glucose,Sigma)にて37℃、5%CO2存在下で継代培養した後、24well plateに1×105cells/well、若しくは6well plateに1×106cells/wellで播種した。2日後、Insulin(Sigma):10μg/ml,IBMX(3−Isobutyl−1−methylxanthine,Sigma):0.5mM,Dex(Dexamethasone,Sigma):1μMを含む上記DMEM培地に交換し、分化誘導を開始した。更に2日後Insulin:5μg/mlを含むDMEM培地に交換し、2日間培養した。その後、DMEM培地にて2日毎に培地交換をし、分化誘導開始から合計6日間培養した。
マクロファージ様細胞(Raw264,DS ファーマバイオメディカル株式会社)をDMEM培地(10%FBS,High glucose,Sigma)にて37℃、5%CO2存在下で継代培養した後、0.4μm孔を有する多孔質膜からなる24well
plate、若しくは6well plate用トランスウェルインサート(BDファルコン)に1×104〜1×105cells/wellで播種し、24時間培養した。
分化誘導後6日目の3T3−L1と上記24時間培養したRaw264を図1(A)に示すようにトランスウェルを用いた非接触法により共培養を行った。24時間共培養後、下層ウェルの3T3−L1を採取し、下記(2)の方法で、GIPRの遺伝子発現レベルの測定を行った。なお、対照培養法として、図1(B)に示すように、3T3−L1とRaw264をそれぞれ単独で培養し、同様に遺伝子発現レベルの測定を行った。
Example 1
(1) Expression of GIPR by co-culture of adipocytes and macrophages 3T3-L1 (DS Pharma Biomedical Co., Ltd.) in DMEM medium (10% FBS, High glucose, Sigma) at 37 ° C. in the presence of 5% CO 2 After subculture, the cells were seeded at 1 × 10 5 cells / well on a 24 well plate or 1 × 10 6 cells / well on a 6 well plate. Two days later, the induction of differentiation was started by exchanging with the above DMEM medium containing Insulin (Sigma): 10 μg / ml, IBMX (3-Isobutyl-1-methylxanthine, Sigma): 0.5 mM, Dex (Dexamethasone, Sigma): 1 μM. did. Two more days later, the medium was replaced with DMEM medium containing Insulin: 5 μg / ml, followed by culturing for 2 days. Thereafter, the medium was changed every 2 days in the DMEM medium, and cultured for a total of 6 days from the start of differentiation induction.
Macrophage-like cells (Raw264, DS Pharma Biomedical Co., Ltd.) are subcultured in DMEM medium (10% FBS, High glucose, Sigma) at 37 ° C. in the presence of 5% CO 2 and then have a 0.4 μm pore. 24well made of porous membrane
plate or 6-well plate transwell insert (BD Falcon) was seeded at 1 × 10 4 to 1 × 10 5 cells / well and cultured for 24 hours.
As shown in FIG. 1 (A), 3T3-L1 on day 6 after differentiation induction and Raw 264 cultured for 24 hours were co-cultured by a non-contact method using a transwell. After co-culture for 24 hours, 3T3-L1 in the lower well was collected, and the gene expression level of GIPR was measured by the method (2) below. As a control culture method, as shown in FIG. 1 (B), 3T3-L1 and Raw264 were each cultivated alone, and the gene expression level was measured in the same manner.

(2)遺伝子発現量の測定
共培養した3T3−L1より、RNeasy mini 50(QIAGEN)を用いてRNAを抽出した。cDNA合成(High capacity RNA−to−cDNA Kit,Applied Biosystems)後、定量的リアルタイムPCR(Applied Biosystems 7500 Fast リアルタイムPCRシステム)により遺伝子の発現定量を行い、内部標準として36B4を用い、各遺伝子の発現量を補正した。なお、プライマーはApplied BiosystemsのTaqman Gene Expression assaysのGIP受容体(Mm01316344_m1)、36B4(Mm00725448_s1)を用いた。
(2) Measurement of gene expression level RNA was extracted from co-cultured 3T3-L1 using RNeasy mini 50 (QIAGEN). After cDNA synthesis (High capacity RNA-to-cDNA Kit, Applied Biosystems), gene expression is quantified by quantitative real-time PCR (Applied Biosystems 7500 Fast real-time PCR system), and 36B4 is used as an internal standard, and the expression level of each gene Was corrected. In addition, GIP receptors (Mm01316344_m1) and 36B4 (Mm00725448_s1) of Applied Biosystems Taqman Gene Expression Assays were used.

(3)結果
図2に示すように、共培養により3T3−L1におけるGIPRの発現が亢進した。また、遺伝子発現亢進の程度は、Raw264の細胞数に依存した。
(3) Results As shown in FIG. 2, the expression of GIPR in 3T3-L1 was enhanced by co-culture. The degree of gene expression enhancement depended on the number of Raw264 cells.

実施例2 GIPRの機能解析
実施例1の方法により発現されたGIPRの機能をIL6の発現を指標として確認した。
(1)IL6遺伝子発現量
実施例1と同様の方法により、3T3−L1とRaw264を24時間共培養した後、GIP,GIP+insulinを含む培地で刺激し、1,3,6時間後に下層ウェルの3T3−L1を採取し、cDNA合成(High capacity RNA−to−cDNA Kit,Applied Biosystems)後、定量的リアルタイムPCR(Applied Biosystems 7500 Fast リアルタイムPCRシステム)により遺伝子の発現定量を行い、36B4による補正を行った。なお、プライマーはApplied BiosystemsのTaqman Gene Expression assaysのIL6(Mm00446190_m1)を用いた。その結果、図3に示すようにGIPはインスリン存在下、非存在下いずれにおいても刺激後1時間においてIL6の遺伝子発現を亢進した。
Example 2 Functional Analysis of GIPR The function of GIPR expressed by the method of Example 1 was confirmed using IL6 expression as an index.
(1) IL6 gene expression level 3T3-L1 and Raw264 were co-cultured for 24 hours in the same manner as in Example 1, then stimulated with a medium containing GIP and GIP + insulin, and after 1, 3 and 6 hours, 3T3 in the lower well -L1 was collected, and after cDNA synthesis (High capacity RNA-to-cDNA Kit, Applied Biosystems), gene expression quantification was performed by quantitative real-time PCR (Applied Biosystems 7500 Fast real-time PCR system), and correction by 36B4 was performed. . As a primer, IL6 (Mm00446190_m1) of Applied Biosystems Taqman Gene Expression Assays was used. As a result, as shown in FIG. 3, GIP enhanced IL6 gene expression 1 hour after stimulation in the presence or absence of insulin.

(2)IL6産生量
実施例1と同様の方法により、3T3−L1とRaw264を24時間共培養した後、GIP,GIP+insulinを含む培地で刺激し、3時間後に培養上清を回収し、市販の固相酵素免疫検定法(Mouse IL6 ELISA MAX, Biolegend)を用いて、上清中IL6の定量を行った。
その結果、図4に示すようにGIPによりIL6の産生が亢進した。また、インスリン共存下においても、GIP刺激によりIL6の産生が亢進した。
(2) IL6 production amount 3T3-L1 and Raw264 were co-cultured for 24 hours by the same method as in Example 1, and then stimulated with a medium containing GIP and GIP + insulin. After 3 hours, the culture supernatant was collected, Quantification of IL6 in the supernatant was performed using a solid phase enzyme immunoassay (Mouse IL6 ELISA MAX, Biolegend).
As a result, IL6 production was enhanced by GIP as shown in FIG. In addition, IL6 production was enhanced by GIP stimulation even in the presence of insulin.

実施例3 GIP受容体阻害物質のIL6産生阻害作用
実施例1と同様の方法により、3T3−L1とRaw264を24時間共培養した後、GIPにより誘導される炎症性サイトカイン(IL6)の産生を抑制する物質として公知(Timper, K et al. Glucose-dependent insulinotropic polypeptide induces cytokine
expression, lipolysis, and insulin resistance in human adipocytes. Am J Physiol
Endocrinol Metab (2013), 304, E1-E13)のH−89(Cell Signaling
Technology Japan)20nMを1時間前処理した後、GIP 100nMを含む培地で刺激し、1時間後に下層ウェルの3T3−L1を採取し、IL6の遺伝子発現レベルの測定を行った。
その結果、図5に示すように、H−89により、GIPによるIL6の発現亢進が有意に阻害された。これより、本発明の共培養系は、H−89のようなGIP受容体阻害物質をスクリーニングするための系として有用であることが確認された。
Example 3 IL6 Production Inhibitory Action of GIP Receptor Inhibitor After Incubating 3T3-L1 and Raw 264 for 24 Hours Using the Same Method as Example 1, Suppresses Production of Inflammatory Cytokine (IL6) Induced by GIP (Timper, K et al. Glucose-dependent insulinotropic polypeptide induces cytokine
expression, lipolysis, and insulin resistance in human adipocytes. Am J Physiol
Endocrinol Metab (2013), 304, E1-E13) H-89 (Cell Signaling)
(Technology Japan) 20 nM was pretreated for 1 hour, and then stimulated with a medium containing 100 nM GIP. After 1 hour, 3T3-L1 was collected from the lower well, and the gene expression level of IL6 was measured.
As a result, as shown in FIG. 5, H-89 significantly inhibited IL6 expression enhancement by GIP. From this, it was confirmed that the co-culture system of the present invention is useful as a system for screening a GIP receptor inhibitor such as H-89.

実施例 4 GIP受容体親和性物質の評価
実施例3と同様の方法により、分化誘導後6日目の3T3−L1とRaw264を24時間共培養した後、実施例3で用いたH−89(Cell Signaling Technology Japan) 20nM、オウゴンエキス0.005%、ジンジャーエキス0.005%を添加した培地にて1h前処理した後、GIP 100nMを含む培地で刺激し、1時間後に下層ウェルの3T3−L1を採取し、IL6の遺伝子発現レベルの測定を行った。
その結果、図1に示すように、オウゴンエキス及びジンジャーエキスは、H−89と同様に、GIPによるIL6の発現亢進を有意に阻害した。また、結果は各剤を添加した刺激培地に対する相対値で示している。
したがって、オウゴンエキス及びジンジャーエキスは、GIP受容体阻害物質であると評価できる。
Example 4 Evaluation of GIP Receptor Affinity Substance According to the same method as in Example 3, 3T3-L1 and Raw264 on day 6 after differentiation induction were co-cultured for 24 hours, and then H-89 ( Cell Signaling Technology Japan) Pre-treated for 1 h in a medium supplemented with 20 nM, 0.005% argon extract, and 0.005% ginger extract, then stimulated with a medium containing GIP 100 nM, and 1 hour later, 3T3-L1 of the lower well Were collected, and the gene expression level of IL6 was measured.
As a result, as shown in FIG. 1, Augon extract and ginger extract significantly inhibited the increase in IL6 expression by GIP, similar to H-89. Moreover, the result is shown by the relative value with respect to the stimulation culture medium which added each agent.
Therefore, it can be evaluated that an argon extract and a ginger extract are GIP receptor inhibitors.

参考例1
3T3−L1を実施例1の方法に従い、分化誘導させ、分化誘導後0min、30min、2h、4h、8h、24h、2day、3day、4day、6day、8day、12day、16dayにおいて上記方法によりRNA抽出、GIP受容体の遺伝子発現解析を行った。
その結果、3T3−L1細胞の分化に伴い、GIP受容体は分化後2h、6日目に2相性の発現を示すことが確認された(図7)。
Reference example 1
3T3-L1 was induced to differentiate according to the method of Example 1, and RNA was extracted by the above method at 0 min, 30 min, 2 h, 4 h, 8 h, 24 h, 2 day, 3 day, 4 day, 6 day, 8 day, 12 day, 16 day after differentiation induction. GIP receptor gene expression analysis was performed.
As a result, it was confirmed that with differentiation of 3T3-L1 cells, the GIP receptor showed biphasic expression 2 days after differentiation and on the 6th day (FIG. 7).

Claims (9)

脂肪細胞をマクロファージと共培養する、脂肪細胞におけるGIP受容体の発現増強方法。   A method for enhancing GIP receptor expression in adipocytes, wherein the adipocytes are co-cultured with macrophages. 脂肪細胞をマクロファージと共培養する、脂肪細胞におけるGIP受容体の機能解析方法。   A method for analyzing the function of a GIP receptor in adipocytes, wherein the adipocytes are co-cultured with macrophages. 脂肪細胞をマクロファージと共培養する工程を含む、GIP受容体発現制御物質のスクリーニング方法。   A screening method for a GIP receptor expression regulator, comprising a step of co-culturing adipocytes with macrophages. 脂肪細胞をマクロファージと共培養する工程を含む、GIP受容体親和性物質のスクリーニング方法。   A method for screening a substance having affinity for a GIP receptor, comprising a step of co-culturing adipocytes with macrophages. 以下の工程(a)〜(c)を含む、請求項3記載の方法。
(a)脂肪細胞をマクロファージと共培養する工程
(b)被験物質を前記共培養系に接触させる工程
(c)工程(b)において被験物質を接触させた場合におけるGIP受容体の発現レベルと、被験物質を接触させない場合におけるGIP受容体の発現レベルとを比較する工程
The method of Claim 3 including the following process (a)-(c).
(A) a step of co-culturing adipocytes with macrophages (b) a step of contacting a test substance with the co-culture system (c) an expression level of a GIP receptor when the test substance is contacted in step (b), A step of comparing the expression level of the GIP receptor when the test substance is not contacted
以下の工程(d)〜(f)を含む、請求項4記載の方法。
(d)脂肪細胞をマクロファージと共培養する工程
(e)被験物質及びGIPを前記共培養系に接触させる工程
(f)工程(e)において被験物質の存在下でGIPを共培養系へ接触させた場合における受容体活性と、被験物質の非存在下でGIPを共培養系へ接触させた場合における受容体活性とを比較する工程
The method of Claim 4 including the following process (d)-(f).
(D) The step of co-culturing adipocytes with macrophages (e) The step of contacting the test substance and GIP with the co-culture system (f) The step of contacting the GIP with the co-culture system in the presence of the test substance in step (e) Comparing the receptor activity in the case of contact with GIP in the absence of the test substance to the co-culture system
脂肪細胞が、3T3−L1細胞、3T3−F442A細胞及びOb1771細胞から選ばれる前駆脂肪細胞から分化誘導された細胞である、請求項1〜6のいずれか1項記載の方法。   The method according to any one of claims 1 to 6, wherein the adipocytes are cells induced to differentiate from preadipocytes selected from 3T3-L1 cells, 3T3-F442A cells and Ob1771 cells. 脂肪細胞として、3T3−L1細胞を分化誘導後、6〜16日目の細胞を用いる請求項1〜7のいずれか1項記載の方法。   The method according to any one of claims 1 to 7, wherein 6 to 16 days of cells are used as adipocytes after inducing differentiation of 3T3-L1 cells. マクロファージが、RAW264細胞、RAW264.7細胞又は腹腔マクロファージである請求項1〜8のいずれか1項記載の方法。   The method according to any one of claims 1 to 8, wherein the macrophages are RAW264 cells, RAW264.7 cells or peritoneal macrophages.
JP2014060555A 2013-04-09 2014-03-24 Method for controlling expression of gip receptor Pending JP2014217375A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014060555A JP2014217375A (en) 2013-04-09 2014-03-24 Method for controlling expression of gip receptor
PCT/JP2014/060222 WO2014168153A1 (en) 2013-04-09 2014-04-08 Method for controlling expression of gip receptor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013081113 2013-04-09
JP2013081113 2013-04-09
JP2014060555A JP2014217375A (en) 2013-04-09 2014-03-24 Method for controlling expression of gip receptor

Publications (1)

Publication Number Publication Date
JP2014217375A true JP2014217375A (en) 2014-11-20

Family

ID=51936471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014060555A Pending JP2014217375A (en) 2013-04-09 2014-03-24 Method for controlling expression of gip receptor

Country Status (1)

Country Link
JP (1) JP2014217375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522556A (en) * 2015-07-23 2018-08-16 コリア リサーチ インスティチュート オブ ケミカル テクノロジーKorea Research Institute Of Chemical Technology Three-dimensional co-culture method of adipocytes and macrophages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522556A (en) * 2015-07-23 2018-08-16 コリア リサーチ インスティチュート オブ ケミカル テクノロジーKorea Research Institute Of Chemical Technology Three-dimensional co-culture method of adipocytes and macrophages

Similar Documents

Publication Publication Date Title
Yang et al. cAMP/PKA regulates osteogenesis, adipogenesis and ratio of RANKL/OPG mRNA expression in mesenchymal stem cells by suppressing leptin
YlÖstalo et al. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype
Liu et al. MicroRNA‐181a regulates local immune balance by inhibiting proliferation and immunosuppressive properties of mesenchymal stem cells
Yoon et al. Comparison of Explant‐Derived and Enzymatic Digestion‐Derived MSCs and the Growth Factors from Wharton’s Jelly
Menssen et al. Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development
Astudillo et al. Increased adipogenesis of osteoporotic human‐mesenchymal stem cells (MSCs) characterizes by impaired leptin action
Malaguarnera et al. Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid
Shahdadfar et al. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability
Skurk et al. Production and release of macrophage migration inhibitory factor from human adipocytes
Mitterberger et al. Adipogenic differentiation is impaired in replicative senescent human subcutaneous adipose-derived stromal/progenitor cells
Estève et al. Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells
Ayala-Sumuano et al. Srebf1a is a key regulator of transcriptional control for adipogenesis
Donzelli et al. ERK1 and ERK2 are involved in recruitment and maturation of human mesenchymal stem cells induced to adipogenic differentiation
Fernando et al. Expression of thyrotropin receptor, thyroglobulin, sodium-iodide symporter, and thyroperoxidase by fibrocytes depends on AIRE
Chung et al. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla
Lacour et al. R-spondin1 controls muscle cell fusion through dual regulation of antagonistic Wnt signaling pathways
Huang et al. lncRNA Gm10451 regulates PTIP to facilitate iPSCs-derived β-like cell differentiation by targeting miR-338-3p as a ceRNA
Fonseca et al. Decidual NK cell-derived conditioned medium from miscarriages affects endometrial stromal cell decidualisation: endocannabinoid anandamide and tumour necrosis factor-α crosstalk
Saben et al. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions
Monteiro et al. PBX1: a novel stage-specific regulator of adipocyte development
Yu et al. Wnt/β-catenin signaling regulates neuronal differentiation of mesenchymal stem cells
Tseng et al. Markers of accelerated skeletal muscle regenerative response in Murphy Roths large mice: Characteristics of muscle progenitor cells and circulating factors
Cheng et al. Neural cell adhesion molecule regulates chondrocyte hypertrophy in chondrogenic differentiation and experimental osteoarthritis
Chen et al. Caveolin-1 plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells into cardiomyocytes
Zhang et al. ChREBP and LXRα mediate synergistically lipogenesis induced by glucose in porcine adipocytes