JP2014216416A - Semiconductor light emitting device and method of measuring the same - Google Patents

Semiconductor light emitting device and method of measuring the same Download PDF

Info

Publication number
JP2014216416A
JP2014216416A JP2013091391A JP2013091391A JP2014216416A JP 2014216416 A JP2014216416 A JP 2014216416A JP 2013091391 A JP2013091391 A JP 2013091391A JP 2013091391 A JP2013091391 A JP 2013091391A JP 2014216416 A JP2014216416 A JP 2014216416A
Authority
JP
Japan
Prior art keywords
substrate
light emitting
wire
emitting element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013091391A
Other languages
Japanese (ja)
Inventor
泰司 小谷
Taiji Kotani
泰司 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013091391A priority Critical patent/JP2014216416A/en
Priority to KR1020140041097A priority patent/KR20140127152A/en
Publication of JP2014216416A publication Critical patent/JP2014216416A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting device which, with less amount of reflection members, provides a shielding effect similar to that of a conventional device containing much reflection members, with damage on a wire being prevented.SOLUTION: A semiconductor light emitting device 100 includes a sub-mount substrate 20 on which a wiring pattern is formed, with one or a plurality of light emitting elements 30 mounted, a metal substrate 10 which is equipped with an electrode part, for fixing the sub-mount substrate 20, a wire 50 for electrically connecting the wiring pattern of the sub-mount substrate 20 to the electrode part of the metal substrate 10, and a reflection part 40 which is positioned on a light emitting element mounting surface of the sub-mount substrate, and partially covers the light emitting element mounting surface of the sub-mount substrate, a side surface of the light emitting element 30, and the wire 50. Relating to the wire 50, between the junction part to the sub-mount substrate and the junction part to the metal substrate, a bending part is formed at a level higher than the position of the intersection between the reflection part 40 and the wire 50.

Description

本発明は、半導体発光素子の周囲に反射部材を設けてなる半導体発光装置に関し、特に効果的に反射部材を配置する技術に関する。   The present invention relates to a semiconductor light emitting device in which a reflecting member is provided around a semiconductor light emitting element, and more particularly to a technique for effectively arranging a reflecting member.

半導体発光素子を用いた半導体発光装置では、素子側面から出る光を有効利用するために、側面を反射部材で覆い、発光素子が側面から発する光を反射部材との界面で反射させて光取り出し面(側面と直交する上面)から取り出せるようにした構造が採用されている。   In a semiconductor light emitting device using a semiconductor light emitting element, in order to effectively use the light emitted from the side surface of the element, the side surface is covered with a reflecting member, and the light emitted from the side surface of the light emitting element is reflected at the interface with the reflecting member to obtain a light extraction surface. A structure that can be taken out from (the upper surface orthogonal to the side surface) is employed.

発光素子の側面を反射部材で覆うために、例えば、特許文献1に記載された半導体発光装置では、発光素子が搭載されるサブマウント基板の周囲にリング状の枠材を基板と一体に或いは別途設けて、枠材内に反射部材となる材料、例えば白色フィラーなどを含有せしめた樹脂を注入し、反射部材の層を形成している。   In order to cover the side surface of the light emitting element with the reflecting member, for example, in the semiconductor light emitting device described in Patent Document 1, a ring-shaped frame material is integrated with the substrate around the submount substrate on which the light emitting element is mounted or separately. The material of the reflection member, for example, a resin containing a white filler or the like is injected into the frame member to form a layer of the reflection member.

特開2012−33823号公報JP 2012-33823 A

枠材を用いて反射部材の層を形成する技術は、発光素子がサブマウント基板に接する面に2つの電極を備えるタイプの場合には適用できるが、ワイヤボンディングによって金属基板等の電極部との接続を取る必要がある発光素子の場合には、枠材がワイヤボンディングの障害になるため適用しにくい。このような発光素子の場合にはサブマウント基板を金属基板に固定しワイヤボンディングした後、金属基板に枠材を設け、枠材内をすべて反射部材で埋めることになるため、かなりの量の反射部材が必要となる。さらに反射部材は、発光素子駆動時に発生する熱により熱膨張するため、反射部材に埋め込まれたワイヤに応力がかかり、ワイヤにゆがみが発生しやすい。最悪の場合には断線などを引き起こす可能性がある。   The technique of forming the layer of the reflection member using the frame material can be applied to a type in which the light emitting element has two electrodes on the surface in contact with the submount substrate, but it can be applied to an electrode portion such as a metal substrate by wire bonding. In the case of a light-emitting element that needs to be connected, the frame material becomes an obstacle to wire bonding and is difficult to apply. In the case of such a light emitting element, after fixing the submount substrate to the metal substrate and wire bonding, a frame material is provided on the metal substrate and the inside of the frame material is filled with a reflecting member. A member is required. Further, since the reflecting member is thermally expanded by heat generated when the light emitting element is driven, stress is applied to the wire embedded in the reflecting member, and the wire is likely to be distorted. In the worst case, it may cause disconnection.

これに対し、枠材を設けることなく、ポッティングによって発光素子の周囲に反射部材を設けることが考えられるが、その場合、発光素子の周囲だけに反射部材を配置するためにはポッティングする反射部材の粘度の調整が難しいという問題がある。また発光素子を搭載したサブマウント基板の電極端子と金属基板の電極部とを接続するワイヤを伝って反射部材を構成する樹脂が流れやすく、発光素子の周囲に反射部材として機能するのに十分な厚みの層を均一に形成することが難しい。   On the other hand, it is conceivable to provide a reflecting member around the light emitting element by potting without providing a frame material. In that case, in order to arrange the reflecting member only around the light emitting element, the reflecting member to be potted is arranged. There is a problem that it is difficult to adjust the viscosity. In addition, the resin constituting the reflecting member easily flows along the wire connecting the electrode terminal of the submount substrate on which the light emitting element is mounted and the electrode portion of the metal substrate, and is sufficient to function as a reflecting member around the light emitting element. It is difficult to form a thick layer uniformly.

本発明は、枠材を使わずに少量で効果的に発光素子の周囲を覆う反射部材が形成された発光装置を提供することを課題とする。   An object of the present invention is to provide a light emitting device in which a reflective member that effectively covers the periphery of a light emitting element is formed in a small amount without using a frame material.

上記課題を解決するため、本発明はサブマウント基板と金属基板とを接続するワイヤの形状を工夫することによって、ポッティングした反射部材が流れることなく、発光素子周囲に留まり、これによって均一に発光素子周囲を覆う反射部材の層が形成された発光装置を提供するものである。   In order to solve the above problems, the present invention devised the shape of the wire connecting the submount substrate and the metal substrate, so that the potted reflecting member does not flow and stays around the light emitting device, thereby uniformly emitting the light emitting device. Provided is a light emitting device in which a layer of a reflective member covering the periphery is formed.

すなわち本発明の半導体発光装置は、配線パターンが形成された第一の基板(サブマウント基板)と、前記第一の基板に実装された1ないし複数の発光素子と、電極部を備え、前記第一の基板を固定する第二の基板(金属基板)と、前記第一の基板の配線パターンと前記第二の基板の電極部とを電気的に接続するワイヤとを備え、前記第一の基板の発光素子搭載面上であって、前記第一の基板の発光素子搭載面、前記発光素子の側面及び前記ワイヤの一部を覆う反射部を備えるものである。   That is, a semiconductor light emitting device of the present invention includes a first substrate (submount substrate) on which a wiring pattern is formed, one or more light emitting elements mounted on the first substrate, and an electrode unit. A second substrate (metal substrate) that fixes one substrate; and a wire that electrically connects a wiring pattern of the first substrate and an electrode portion of the second substrate; The light emitting element mounting surface of the first substrate includes a light emitting element mounting surface of the first substrate, a side surface of the light emitting element, and a reflecting portion that covers a part of the wire.

本発明の半導体発光装置において、ワイヤは、前記第一の基板に固定された第一端部と前記第二の基板の電極部に固定された第二端部との間に屈曲部を有し、前記第一の基板の発光素子搭載面から前記屈曲部までの最大高さは、前記第一の基板の発光素子搭載面から、前記ワイヤと前記反射部の表面との交点までの高さより高い。またワイヤと反射部の表面との交点におけるワイヤと第一の基板表面とのなす角度が45°以上100°以下である。   In the semiconductor light emitting device of the present invention, the wire has a bent portion between a first end portion fixed to the first substrate and a second end portion fixed to the electrode portion of the second substrate. The maximum height from the light emitting element mounting surface of the first substrate to the bent portion is higher than the height from the light emitting element mounting surface of the first substrate to the intersection of the wire and the surface of the reflecting portion. . Further, the angle formed by the wire and the first substrate surface at the intersection of the wire and the surface of the reflecting portion is 45 ° or more and 100 ° or less.

また本発明の半導体発光装置の製造方法は、第一の基板に半導体発光素子を実装する工程と、第一の基板を第二の基板に固定する工程と、第一の基板と第二の基板とを電気的に接続するワイヤを接合する工程と、第一の基板の上であって且つ第一の基板に実装された半導体発光素子の周囲に、硬化前の反射部材を配置した後、反射部材を硬化して反射部を形成する工程と、を含み、前記ワイヤを接合する工程は、第一の基板へのワイヤ接合部(第一接合部)と第二の基板へのワイヤ接合部(第二接合部)との間にあるワイヤの形状を調整する工程を含み、前記ワイヤの形状は、硬化前の反射部材がワイヤを伝って第一の基板から流れ落ちるのを防止する形状である。   The method for manufacturing a semiconductor light emitting device of the present invention includes a step of mounting a semiconductor light emitting element on a first substrate, a step of fixing the first substrate to a second substrate, a first substrate and a second substrate. And a step of bonding a wire for electrically connecting to the semiconductor substrate, and a reflective member before curing is disposed on the first substrate and around the semiconductor light emitting element mounted on the first substrate, and then reflected. A step of curing the member to form a reflection portion, and the step of bonding the wire includes a wire bonding portion to the first substrate (first bonding portion) and a wire bonding portion to the second substrate ( A step of adjusting the shape of the wire between the second bonding portion and the second bonding portion), and the shape of the wire is a shape that prevents the reflection member before curing from flowing down the first substrate along the wire.

本発明により、少量で効果的に発光素子の周囲を覆う反射部材が形成された発光装置を提供することができる。   According to the present invention, it is possible to provide a light emitting device in which a reflecting member that effectively covers the periphery of a light emitting element is formed in a small amount.

本発明の発光装置の一実施形態を示す上面図The top view which shows one Embodiment of the light-emitting device of this invention 図1の発光装置のA−A線断面図AA line sectional view of the light emitting device of FIG. ワイヤ形状を説明する図Diagram explaining wire shape (a)反射部の表面形状の変化を示す図、(b)はワイヤの出射角度を説明する図。(A) The figure which shows the change of the surface shape of a reflection part, (b) is a figure explaining the outgoing angle of a wire. 別の実施形態の発光装置の側断面図Side sectional view of a light emitting device according to another embodiment 本発明の発光装置の製造方法の一実施形態を示す図The figure which shows one Embodiment of the manufacturing method of the light-emitting device of this invention. ワイヤ形状の調整工程を説明する図The figure explaining the adjustment process of a wire shape 従来の発光装置を示す側断面図Side sectional view showing a conventional light emitting device

以下、本発明の発光装置の実施形態を、図面を参照して説明する。図1及び図2は、本実施形態の発光装置の上面図および側断面図である。   Hereinafter, embodiments of a light emitting device of the present invention will be described with reference to the drawings. 1 and 2 are a top view and a side sectional view of the light emitting device of this embodiment.

図示するように、本実施形態の発光装置100は、主な要素として、金属基板(第二の基板)10と、基板10上にAgペースト等の接着剤によって固定されたサブマウント基板(第一の基板)20と、サブマウント基板20に搭載された発光素子30と、発光素子30の周囲を覆う反射部材の層(反射部)40とを備えている。サブマウント基板20に搭載される発光素子30は一つでも複数でもよく、図1に示す実施形態では4つの発光素子30が搭載された場合を示している。   As shown in the figure, the light emitting device 100 of the present embodiment includes, as main elements, a metal substrate (second substrate) 10 and a submount substrate (first substrate) fixed on the substrate 10 with an adhesive such as Ag paste. Substrate) 20, a light emitting element 30 mounted on the submount substrate 20, and a reflection member layer (reflecting portion) 40 covering the periphery of the light emitting element 30. There may be one or a plurality of light emitting elements 30 mounted on the submount substrate 20, and the embodiment shown in FIG. 1 shows a case where four light emitting elements 30 are mounted.

基板10は、アルミニウム、銅などの金属製の板材或いはAlN等のセラミック製の板材で構成されており、サブマウント基板20が固定される領域の周囲に、発光素子30に給電するための電極11が形成されている。図1の実施形態では、発光素子30の配列方向に2つの電極、アノードとカソードが配置されている。   The substrate 10 is made of a metal plate material such as aluminum or copper or a ceramic plate material such as AlN, and an electrode 11 for supplying power to the light emitting element 30 around a region where the submount substrate 20 is fixed. Is formed. In the embodiment of FIG. 1, two electrodes, an anode and a cathode, are arranged in the arrangement direction of the light emitting elements 30.

サブマウント基板20は、AlN等のセラミックやFRPなどの耐熱性の高い材料から成る板材で、発光素子30に給電するための配線パターンが形成され、発光素子30が搭載される領域を除く周辺近傍に、電極パッド21が設けられている。この電極パッド21は、基板10の電極11とAu等からなるワイヤ50によってワイヤボンドされる。   The submount substrate 20 is a plate material made of a material having high heat resistance such as ceramic such as AlN or FRP, and a wiring pattern for supplying power to the light emitting element 30 is formed, and the vicinity of the periphery excluding the region where the light emitting element 30 is mounted. In addition, an electrode pad 21 is provided. The electrode pad 21 is wire-bonded to the electrode 11 of the substrate 10 by a wire 50 made of Au or the like.

発光素子30は、LED素子を用いて所定の波長の光を取り出すことができるものであれば種々のタイプの発光素子を用いることができる。図示する実施形態では、LED素子31の上に蛍光体層32が形成され、その上を透明板材33で覆った構造の発光素子が採用されている。LED素子31は、典型的には、紫外光から青色の波長の光を発生するLED素子であり、蛍光体層32はLED素子31が発生する光を吸収し、異なる波長の光を発生する蛍光体を含む層である。蛍光体層32は、例えば蛍光体粒子をシリコーン樹脂やエポキシ樹脂等の耐熱性があり且つ光の透過性に優れた樹脂中に分散した状態で成膜されている。透明板材33は、ガラスや透明性の高い樹脂等からなり、LED素子31の上に蛍光体層32を均一に形成するために用いられ、発光素子の光出射面を提供する。   As the light emitting element 30, various types of light emitting elements can be used as long as they can extract light of a predetermined wavelength using an LED element. In the illustrated embodiment, a light emitting element having a structure in which a phosphor layer 32 is formed on an LED element 31 and is covered with a transparent plate 33 is employed. The LED element 31 is typically an LED element that generates light having a blue wavelength from ultraviolet light, and the phosphor layer 32 absorbs light generated by the LED element 31 and generates light having different wavelengths. A layer containing the body. The phosphor layer 32 is formed, for example, in a state where phosphor particles are dispersed in a resin having heat resistance such as silicone resin and epoxy resin and excellent light transmittance. The transparent plate 33 is made of glass, highly transparent resin, or the like, and is used to uniformly form the phosphor layer 32 on the LED elements 31, and provides a light emission surface of the light emitting element.

発光素子30は、金バンプ等の導電性接合剤でサブマウント基板20の配線パターンに電気的且つ機械的に接続されている。これにより発光素子30は、サブマウント基板20の電極パッド21及びワイヤ50を介して基板10の電極11に接続され、給電が可能となる。   The light emitting element 30 is electrically and mechanically connected to the wiring pattern of the submount substrate 20 with a conductive bonding agent such as a gold bump. As a result, the light emitting element 30 is connected to the electrode 11 of the substrate 10 via the electrode pad 21 and the wire 50 of the submount substrate 20, and power can be supplied.

反射部40は、酸化チタン、酸化亜鉛、酸化タンタル、酸化ニオブ、酸化ジルコニア、酸化アルミニウムなどの白色顔料を含む反射部材からなり、白色顔料以外にベース材として、シリコーン樹脂などの耐熱性樹脂や無機バインダーを含む。反射部40のショアA硬度は10〜60程度が好ましい。   The reflective portion 40 is made of a reflective member containing a white pigment such as titanium oxide, zinc oxide, tantalum oxide, niobium oxide, zirconia oxide, and aluminum oxide. In addition to the white pigment, the base material is a heat-resistant resin such as a silicone resin or an inorganic material. Contains a binder. As for the Shore A hardness of the reflection part 40, about 10-60 is preferable.

反射部40は、発光素子30が固定されている部分を除くサブマウント基板20上面(発光素子搭載面)と、発光素子30の側面すなわちLED素子31、蛍光体層32及び透明板材33の周囲を覆うように配置されている。従って、基板10の電極11とサブマウント基板20の電極パッド21とを接続するワイヤ50は、一部が反射部40に埋め込まれ、残りの部分が反射部40から飛び出して、屈曲して基板10の電極11に接続されている。反射部40は、上述した白色顔料を含む樹脂或いはバインダー(反射部材または白色樹脂ともいう)を硬化前に、ワイヤボンディング後のサブマウント基板20の発光素子搭載面にポッティングすることによって、サブマウント基板20上に配置することができるが、この際、このワイヤ50の形状と長さを適切にすることによって、ポッティングされた硬化前の反射部材がサブマウント基板20からワイヤ50を伝って流れ落ちるのを防止できる。   The reflection unit 40 includes the upper surface of the submount substrate 20 (light emitting element mounting surface) excluding the portion to which the light emitting element 30 is fixed, and the side surface of the light emitting element 30, that is, the periphery of the LED element 31, the phosphor layer 32, and the transparent plate member 33. It is arranged to cover. Therefore, a part of the wire 50 that connects the electrode 11 of the substrate 10 and the electrode pad 21 of the submount substrate 20 is embedded in the reflecting portion 40, and the remaining portion protrudes from the reflecting portion 40 and is bent and bent. Are connected to the electrode 11. The reflection unit 40 pots the light-emitting element mounting surface of the submount substrate 20 after wire bonding before curing the resin or binder (also referred to as a reflection member or white resin) containing the above-described white pigment before curing. In this case, by making the shape and length of the wire 50 appropriate, the potted uncured reflecting member is allowed to flow down from the submount substrate 20 along the wire 50. Can be prevented.

以下、硬化前の反射部材がサブマウント基板から流れ落ちるのを防止するためのワイヤ50の形状について詳述する。図3は、図2を拡大した断面図である。以下の説明では、図3における上下及び左右を、発光装置100の上下、左右として説明し、上下方向のサイズを高さ、左右方向のサイズを幅とする。   Hereinafter, the shape of the wire 50 for preventing the reflection member before curing from flowing down from the submount substrate will be described in detail. FIG. 3 is an enlarged cross-sectional view of FIG. In the following description, the upper and lower sides and the left and right sides in FIG. 3 are described as the upper and lower sides and the left and right sides of the light emitting device 100, and the vertical size is the height and the horizontal size is the width.

一般的にワイヤボンディングにより電気配線をする場合、ワイヤは接続した基板間で曲線を描くようにボンディングされる。すなわち、ワイヤ50は、サブマウント基板20の電極パッド21に接合されたワイヤ50の一端部(第一端部)50aから上方に引き上げられた後、屈曲部50cを経て、他方の端部(第二端部)50bが基板10の電極11に接合される。このワイヤ端部50aがサブマウント基板20の上面となす角度をワイヤ50の出射角度という。本実施形態では、この屈曲部50cのサブマウント基板20からの高さと出射角度を適切な範囲とすることにより、白色樹脂が発光素子の側面を確実に覆い且つサブマウント基板に留まった状態の反射部40を形成することができる。   In general, when electric wiring is performed by wire bonding, the wires are bonded so as to draw a curve between the connected substrates. That is, the wire 50 is pulled up from one end (first end) 50a of the wire 50 bonded to the electrode pad 21 of the submount substrate 20, and then passes through the bent portion 50c to the other end (first). The two ends 50 b are joined to the electrode 11 of the substrate 10. The angle formed by the wire end portion 50a with the upper surface of the submount substrate 20 is referred to as an emission angle of the wire 50. In the present embodiment, the height of the bent portion 50c from the submount substrate 20 and the emission angle are set in an appropriate range, so that the white resin reliably covers the side surface of the light emitting element and remains in the submount substrate. The portion 40 can be formed.

ワイヤ50の出射角度が図4(b)の実線に示すように90°の場合、すなわち端部50a近傍のワイヤ50の部分が、サブマウント基板20の上面(発光素子搭載面)に対しほぼ垂直(90°)である場合について詳述する。サブマウント基板20の上面からワイヤ50の屈曲部50c(頂点)までの高さh1が、垂直に伸びるワイヤ50が反射部40となる白色樹脂の表面から外にでる点(ワイヤ50と反射部40表面との交点)までの高さh0と同程度かそれよりも低い場合(h1≦h0)には、白色樹脂は屈曲部50cと端部50bとの間のワイヤ50部分を伝ってサブマウント基板20の上面から流れ落ちる。屈曲部50cまでの高さh1が高さh0よりも高ければ(h1>h0)、白色樹脂はワイヤ50の影響を受けないか、むしろワイヤ50との界面で引き上げられて、サブマウント基板20上に留まる。   When the emission angle of the wire 50 is 90 ° as shown by the solid line in FIG. 4B, that is, the portion of the wire 50 in the vicinity of the end 50a is substantially perpendicular to the upper surface (light emitting element mounting surface) of the submount substrate 20. The case of (90 °) will be described in detail. The height h1 from the upper surface of the submount substrate 20 to the bent portion 50c (vertex) of the wire 50 is such that the vertically extending wire 50 comes out from the surface of the white resin that becomes the reflecting portion 40 (the wire 50 and the reflecting portion 40). When the height h0 (intersection with the surface) is approximately equal to or lower than the height h0 (h1 ≦ h0), the white resin travels along the wire 50 between the bent portion 50c and the end portion 50b, and the submount substrate. 20 flows down from the top surface. If the height h1 up to the bent portion 50c is higher than the height h0 (h1> h0), the white resin is not affected by the wire 50, or rather is pulled up at the interface with the wire 50, and thus on the submount substrate 20. Stay on.

サブマウント基板20表面(電極パッド21の位置)から反射部の表面までの高さh0は、サブマント基板20の端部20aから電極パッド21までの距離dによって異なり、端部20aからの距離dが短いほど高さh0は低い。また白色樹脂のポッティング量によっても異なる。従って、ワイヤ50の屈曲部50cの高さを設計するためには、これらを考慮して決める必要がある。まず発光素子30の上面端部とサブマウント基板20の上面端部とを結ぶ直線L(断面で見た場合の直線:実際は傾斜面)の高さhは、サブマウント基板20の端部20aから発光素子30までの距離Dと発光素子の高さHが決まれば決まる(h=(H÷D)×d)。しかし白色樹脂によって形成される反射部の表面形状は表面張力により直線的にはならないので、電極パッド21の位置から反射部の表面までの高さh0は、この高さhに対し表面張力による変形分が増減されたものとなる。   The height h0 from the surface of the submount substrate 20 (position of the electrode pad 21) to the surface of the reflecting portion depends on the distance d from the end 20a of the submount substrate 20 to the electrode pad 21, and the distance d from the end 20a is The shorter the height, the lower the height h0. It also depends on the amount of white resin potting. Therefore, in order to design the height of the bent portion 50c of the wire 50, it is necessary to determine these in consideration. First, the height h of a straight line L (straight line when viewed in cross section: actually an inclined surface) connecting the upper surface end of the light emitting element 30 and the upper surface end of the submount substrate 20 is from the end 20a of the submount substrate 20. It is determined if the distance D to the light emitting element 30 and the height H of the light emitting element are determined (h = (H ÷ D) × d). However, since the surface shape of the reflecting portion formed of the white resin does not become linear due to the surface tension, the height h0 from the position of the electrode pad 21 to the surface of the reflecting portion is deformed by the surface tension with respect to this height h. Minutes will be increased or decreased.

反射部の表面の形状は、白色樹脂のポッティイング量により変化し、図4(a)に示すように、上述した直線L(傾斜面)に対し凹状となる場合から直線L(傾斜面)に対し凸状に膨らんだ形状となる場合まで変化し得る。本実施形態では、白色樹脂のポッティング量は、発光素子30の側面全面を覆い且つサブマウント基板20上からこぼれない程度の量に調整される。このとき反射部40は直線Lに対し凸状となる。ワイヤ50の屈曲部50cの高さh1は、このような状態における反射部40表面とワイヤ50との交点の高さ(hmax)よりも高くなるように決める必要がある。   The shape of the surface of the reflecting portion changes depending on the potting amount of the white resin, and, as shown in FIG. 4A, changes from a concave shape to the straight line L (inclined surface) to the straight line L (inclined surface). On the other hand, it can be changed up to the case where the shape swells in a convex shape. In the present embodiment, the potting amount of the white resin is adjusted to an amount that covers the entire side surface of the light emitting element 30 and does not spill from the submount substrate 20. At this time, the reflecting portion 40 is convex with respect to the straight line L. The height h1 of the bent portion 50c of the wire 50 needs to be determined to be higher than the height (hmax) of the intersection between the surface of the reflecting portion 40 and the wire 50 in such a state.

一例として、サブマウント基板20の端部から770μm離れた位置に(d=770μm)、高さが270μmの発光素子30をサブマウント基板20に搭載し、発光素子の周囲に白色樹脂を上限ポッティング量用いて反射部材を形成した場合、サブマウント基板20上面から白色樹脂表面までの高さは、表1のようになる。表1中、hは直線Lまでの高さ(計算値)であり、サブマウント基板20上面から白色樹脂表面までの高さh0は、直線Lまでの高さhに対し反射部40の膨らみ分(ワイヤ出射角度90度のとき80μm、ワイヤ出射角度45度のとき60μm)を加算した値であり、hmaxに相当する。

Figure 2014216416
As an example, a light emitting element 30 having a height of 270 μm is mounted on the submount substrate 20 at a position 770 μm away from the end of the submount substrate 20 (d = 770 μm), and a white resin is placed around the light emitting element with an upper limit potting amount. When the reflecting member is formed by using, the height from the upper surface of the submount substrate 20 to the surface of the white resin is as shown in Table 1. In Table 1, h is the height (calculated value) up to the straight line L, and the height h0 from the upper surface of the submount substrate 20 to the white resin surface is the bulge of the reflecting portion 40 with respect to the height h up to the straight line L. It is a value obtained by adding (80 μm when the wire emission angle is 90 degrees, 60 μm when the wire emission angle is 45 degrees), and corresponds to hmax.
Figure 2014216416

表1に示すように、上述した例では、サブマウント基板20(電極パッド位置)表面から反射部40の表面までの高さh0は、直線Lまでの高さhの約1.5倍〜2倍である。   As shown in Table 1, in the above-described example, the height h0 from the surface of the submount substrate 20 (electrode pad position) to the surface of the reflecting portion 40 is approximately 1.5 times to 2 times the height h to the straight line L. Is double.

以上のことから、ワイヤ50の屈曲部50cの高さh1を、端部50bからの反射部材50の高さh0が最大となる値(hmax)より高くすることにより、ワイヤ50を伝って白色樹脂が流れ落ちることを防止することができることになる。また平均的なサイズの発光装置では、h1を発光素子30の上面端部とサブマウント基板20の端部とを結ぶ直線Lの高さの1.5倍〜2倍にすることにより、白色樹脂が流れ落ちることを防止できる。   From the above, by setting the height h1 of the bent portion 50c of the wire 50 higher than the value (hmax) at which the height h0 of the reflecting member 50 from the end portion 50b is maximized, the white resin is transmitted along the wire 50. Can be prevented from flowing down. In an average size light emitting device, h1 is set to 1.5 to 2 times the height of a straight line L connecting the upper end of the light emitting element 30 and the end of the submount substrate 20 to obtain a white resin. Can be prevented from flowing down.

ただし屈曲部50cから基板10までのワイヤ50部分が製造時のぶれ等によっても確実に白色樹脂に触れないようにするために、実際にワイヤボンディングする場合のワイヤ50の高さh1は、hmaxよりも若干高いことが望ましい。この量は限定されるものではないが、前掲のサイズのサブマウント基板20及び発光素子30の配置において、20〜80μm程度とすることが好ましい。表1に示す例では、h1はh0+50μmとしている。   However, in order to prevent the portion of the wire 50 from the bent portion 50c to the substrate 10 from coming into contact with the white resin even if it is shaken during manufacturing, the height h1 of the wire 50 in actual wire bonding is less than hmax. It is desirable that the height be slightly higher. The amount is not limited, but is preferably about 20 to 80 μm in the arrangement of the submount substrate 20 and the light emitting element 30 having the above-mentioned size. In the example shown in Table 1, h1 is h0 + 50 μm.

なお以上の説明では、ワイヤ50の出射角度が90°の場合すなわちワイヤ50をサブマウント基板20の上面に対し垂直に接合した場合を示したが、ワイヤ50の出射角度は、ワイヤ50と反射部40表面との角度を考慮して適宜決めることができる。図4(b)にワイヤ50の出射角度を異ならせた場合(点線)を示す。   In the above description, the case where the emission angle of the wire 50 is 90 °, that is, the case where the wire 50 is bonded perpendicularly to the upper surface of the submount substrate 20 is shown. The angle can be appropriately determined in consideration of the angle with the 40 surface. FIG. 4B shows the case where the emission angle of the wire 50 is varied (dotted line).

白色樹脂がワイヤ50を伝わるのを防止するためには、ワイヤ50は反射部40の表面に対し、法線方向を向いているか、それより垂直方向に向いていることが望ましい。法線方向は、反射部40の表面が概ね平坦な傾斜面であると仮定すると、サブマウント基板20の端部20aから発光素子30までの距離Dとサブマウント基板20上面から発光素子30上面までの高さHで決まる斜面(図3の直線L)の傾斜で決まる。サブマウント基板20上面と斜面との角度θ2とワイヤ50の出射角度θ1との和が90°となるようにワイヤ50の出射角度θ1を決めれば、ワイヤ50は反射部材40の表面から概ね法線方向に外に出ることになる。サブマウント基板20の短辺が短いものでは、その上面と斜面との角度θ2は45°程度になるので、ワイヤ50の出射角度は45°以上であることが好ましい。ただし、上述した屈曲部の高さを制御しやすいという観点からは90°が最も好ましい。なお白色樹脂の流れ落ち防止という観点からはワイヤ50の出射角度は90°以上でもよいが、角度が大きすぎると、ワイヤ50の端部50aを基板10に接合するために屈曲部50cの曲げを大きくする必要がある。曲げを大きくするとワイヤに応力がかかるため、出射角度は100°以下であることが好ましい。   In order to prevent the white resin from being transmitted through the wire 50, it is desirable that the wire 50 is oriented in the normal direction or in a direction perpendicular to the surface of the reflecting portion 40. Assuming that the surface of the reflective portion 40 is a substantially flat inclined surface, the normal direction is a distance D from the end 20a of the submount substrate 20 to the light emitting element 30 and from the upper surface of the submount substrate 20 to the upper surface of the light emitting element 30. It is determined by the slope of the slope determined by the height H (straight line L in FIG. 3). If the outgoing angle θ1 of the wire 50 is determined so that the sum of the angle θ2 between the upper surface of the submount substrate 20 and the inclined surface and the outgoing angle θ1 of the wire 50 is 90 °, the wire 50 is substantially normal to the surface of the reflecting member 40. Will go out in the direction. In the case where the short side of the submount substrate 20 is short, the angle θ2 between the upper surface and the inclined surface is about 45 °. Therefore, the emission angle of the wire 50 is preferably 45 ° or more. However, 90 ° is most preferable from the viewpoint of easily controlling the height of the bent portion. From the viewpoint of preventing the white resin from flowing down, the emission angle of the wire 50 may be 90 ° or more. However, if the angle is too large, the bending portion 50c is greatly bent in order to join the end portion 50a of the wire 50 to the substrate 10. There is a need to. Since the wire is stressed when the bending is increased, the emission angle is preferably 100 ° or less.

ワイヤ50の出射角度を45°にした場合の、ワイヤ50の屈曲部50cの高さh1(設計値)を併せて表1に示している。表1からわかるように出射角度が45°の場合にも、屈曲部の高さを、発光素子30の上面端部とサブマウント基板20の上面端部とを結ぶ直線Lまでの高さhの1.5倍〜2倍にすることにより、実際的なワイヤ接合位置において、ワイヤから白色樹脂が流れ落ちるのを防止できる。   Table 1 also shows the height h1 (design value) of the bent portion 50c of the wire 50 when the outgoing angle of the wire 50 is 45 °. As can be seen from Table 1, even when the emission angle is 45 °, the height of the bent portion is the height h up to a straight line L connecting the upper surface end of the light emitting element 30 and the upper surface end of the submount substrate 20. By making it 1.5 times to 2 times, it is possible to prevent the white resin from flowing down from the wire at a practical wire bonding position.

以上詳述したように、本実施形態の発光装置100は、発光素子30を搭載したサブマウント基板20と基板10とを電気的に接続するワイヤ50を、反射部材40から付き出した形状としたことにより、ワイヤが反射部材40の熱膨張の影響を受けて変形することなく、安定した動作を確保できる。   As described above in detail, the light emitting device 100 of the present embodiment has a shape in which the wire 50 that electrically connects the submount substrate 20 on which the light emitting element 30 is mounted and the substrate 10 is extended from the reflecting member 40. Thus, a stable operation can be ensured without the wire being deformed by the influence of the thermal expansion of the reflecting member 40.

なお上述した実施形態では、発光素子30として、フリップチップタイプの発光素子を用いた発光装置100を例示したが、本発明は図5に示すようなMB素子300を用いた場合にも同様に適用することができる。図5に示すMB素子は、LED素子301の両面に電極が形成されており、上面に形成された電極をサブマウント基板20の電極21にワイヤボンディングしたものであり、その上面に樹脂層302と板部材303を積層した構造を有している。樹脂層302は蛍光体入り樹脂でも透明樹脂でもよく、樹脂層302が蛍光体入り樹脂の場合には、板部材303は透明ガラスでも蛍光体プレートでもよい。また樹脂層302が透明樹脂の場合には板部材303は蛍光体プレートを用いる。このような構造のMB素子においては、樹脂層302及び板部材303の側面から出る光は発光素子の光出射面から出る光と色味が異なるため、上から見たときに周辺だけ色が異なって見える。樹脂層302と板部材303の側面を反射部材40で覆うことにより、側面から出る光が反射部材40で反射されて光出射面に向かう光と混色されるので、上述した色味の違いが生じるのを防止できる。   In the above-described embodiment, the light emitting device 100 using the flip chip type light emitting element is illustrated as the light emitting element 30, but the present invention is similarly applied to the case where the MB element 300 as shown in FIG. 5 is used. can do. The MB element shown in FIG. 5 has electrodes formed on both surfaces of the LED element 301, and the electrodes formed on the upper surface are wire-bonded to the electrodes 21 of the submount substrate 20. The plate member 303 is laminated. The resin layer 302 may be a resin containing a phosphor or a transparent resin. When the resin layer 302 is a resin containing a phosphor, the plate member 303 may be a transparent glass or a phosphor plate. When the resin layer 302 is a transparent resin, the plate member 303 uses a phosphor plate. In the MB element having such a structure, the light emitted from the side surfaces of the resin layer 302 and the plate member 303 is different in color from the light emitted from the light emitting surface of the light emitting element. Looks. By covering the side surfaces of the resin layer 302 and the plate member 303 with the reflection member 40, the light emitted from the side surfaces is reflected by the reflection member 40 and mixed with the light traveling toward the light exit surface, so that the above-described color difference occurs. Can be prevented.

次に本発明の発光装置の製造方法を説明する。   Next, the manufacturing method of the light-emitting device of this invention is demonstrated.

本発明の発光装置の製造方法は、主として、図6に示すように、サブマウント基板に発光素子を実装する工程S61、発光素子を実装したサブマウント基板を金属基板に固定する工程S62、サブマウント基板(電極パッド)と金属基板(電極)とをワイヤボンディングする工程S63、発光素子の周囲に反射部材を配置する反射部形成工程S64とからなる。ワイヤボンディング工程S63と、反射部形成工程S64以外の工程は、従来の半導体発光装置の製造方法と同様であるので、以下、工程S63、S64を中心に各工程を説明する。以下の説明では、複数(たとえば5個)の発光素子を一列に配置した発光装置を例に説明する。   As shown in FIG. 6, the manufacturing method of the light emitting device of the present invention mainly includes a step S61 for mounting a light emitting element on a submount substrate, a step S62 for fixing the submount substrate on which the light emitting element is mounted to a metal substrate, and a submount. The process includes a step S63 of wire bonding a substrate (electrode pad) and a metal substrate (electrode), and a reflection portion forming step S64 in which a reflection member is disposed around the light emitting element. Since steps other than the wire bonding step S63 and the reflection portion forming step S64 are the same as those in the conventional method of manufacturing a semiconductor light emitting device, each step will be described below with a focus on steps S63 and S64. In the following description, a light emitting device in which a plurality of (for example, five) light emitting elements are arranged in a row will be described as an example.

<素子実装工程S61>
サブマント基板20及びLED素子31を準備する。LED素子は、例えばサイズが0.8mm×0.8mmで高さが0.27mmのフリップチップタイプの素子である。サブマンント基板は所定の電極パターンが形成された配線基板であり、短辺の長さは素子の一辺のサイズよりも大きく、長辺は素子の[一辺のサイズ×素子数]よりも大きい長方形の上面形状を有し、上面のLED素子の周囲には所定の面積が設けられている。このLED素子の周囲の所定の場所にLED素子に給電するための電極パッド21が形成されている。電極パッドが形成される位置は、限定されるものではないが、図1の本実施形態のように複数のLED素子を一列に配置した発光装置では、サブマウント基板の長手方向に沿って2か所に電極パッドが設けられる。またサブマウント基板の端部からの距離については、ワイヤボンディングの作業性等を考慮してサブマウント基板の端部とLED素子との中間に適切な位置に決められる。
<Element mounting process S61>
The sub-mant substrate 20 and the LED element 31 are prepared. The LED element is, for example, a flip chip type element having a size of 0.8 mm × 0.8 mm and a height of 0.27 mm. The submant substrate is a wiring substrate on which a predetermined electrode pattern is formed, the length of the short side is larger than the size of one side of the element, and the long side is a rectangular upper surface larger than [size of one side × number of elements] of the element. It has a shape, and a predetermined area is provided around the LED element on the upper surface. An electrode pad 21 for supplying power to the LED element is formed at a predetermined location around the LED element. The position where the electrode pad is formed is not limited, but in the light emitting device in which a plurality of LED elements are arranged in a row as in the present embodiment of FIG. 1, there are two positions along the longitudinal direction of the submount substrate. An electrode pad is provided at the location. The distance from the end of the submount substrate is determined at an appropriate position between the end of the submount substrate and the LED element in consideration of wire bonding workability and the like.

サブマウント基板への素子実装は、まずバンプボンダー装置を用いて、サブマウント基板上の所定の位置にバンプを配置する。次いで、フリップ実装装置によりバンプ上にLED素子を配置する。次にLED素子直上にポッティングにより蛍光体含有樹脂を滴下し、その上から透明板材を配置する。このとき蛍光体含有樹脂は表面張力により透明板材の下面全体とLED素子の側面まで回り込み、LED素子の上面と側面が蛍光体含有樹脂の層(波長変換層)で覆われた構造(フィレット構造)が形成される。なお蛍光体含有樹脂中に所定のサイズのスペーサ粒子を入れておくことにより、LED素子上面と平行に透明板材を配置することができる。   For element mounting on the submount substrate, first, bumps are arranged at predetermined positions on the submount substrate by using a bump bonder device. Next, LED elements are arranged on the bumps by a flip mounting apparatus. Next, a phosphor-containing resin is dropped directly on the LED element by potting, and a transparent plate material is disposed thereon. At this time, the phosphor-containing resin wraps around the entire lower surface of the transparent plate and the side surface of the LED element due to surface tension, and the upper and side surfaces of the LED element are covered with a phosphor-containing resin layer (wavelength conversion layer) (fillet structure). Is formed. In addition, a transparent board | plate material can be arrange | positioned in parallel with the LED element upper surface by putting the spacer particle | grains of predetermined size in fluorescent substance containing resin.

<金属基板への配置工程S62>
サブマウント基板より大きいサイズの金属基板を用意する。接着剤をポッティングにより、金属基板の所定の位置に滴下し、サブマウント基板を配置する。
<Arrangement Step S62 on Metal Substrate>
Prepare a metal substrate larger than the submount substrate. The adhesive is dropped at a predetermined position on the metal substrate by potting to dispose the submount substrate.

<ワイヤボンディング工程S63>
ワイヤボンディング装置を用いて、サブマウント基板の電極パッドを金属基板に電気的に接続する。ワイヤボンディング装置では、接続すべき2つの点のうち、最初の点(第1接合点)にワイヤ先端を接合(溶接)した後、ワイヤを引き出すキャピラリーを所定の方向に移動させながら所定長さのワイヤを引き出し、もう一方の点(第2接合点)においてワイヤの接合と切断を行うことにより、2点間のワイヤボンディングを行う。このときキャピラリーによりワイヤを引き上げる移動量と角度の設定を、移動の段階毎に行うことによりワイヤループ(屈曲部)の形状を制御する。
<Wire bonding process S63>
The electrode pad of the submount substrate is electrically connected to the metal substrate using a wire bonding apparatus. In the wire bonding apparatus, after joining (welding) the tip of the wire to the first point (first joining point) of the two points to be connected, the capillary for pulling out the wire is moved in a predetermined direction while having a predetermined length. By pulling out the wire and joining and cutting the wire at the other point (second joining point), wire bonding between the two points is performed. At this time, the shape of the wire loop (bent portion) is controlled by setting the amount and angle of movement for pulling up the wire by the capillary at each stage of movement.

上述した移動量と角度の設定は、例えば以下のようなワイヤボンディング装置のパラメータで制御することができる。
P1:y方向の移動量の設定(ツールアップ)
P2:y方向の移動の微量の設定(ツール戻し量)
P3:x方向の移動量の設定(リバース高さ)
P4:y方向の移動量の設定(リバース量)
P5:第2点までの移動軌跡の補正(軌跡補正)
The above-described movement amount and angle setting can be controlled by the following parameters of the wire bonding apparatus, for example.
P1: Set the amount of movement in the y direction (tool up)
P2: Setting a small amount of movement in the y direction (tool return amount)
P3: Setting of movement amount in x direction (reverse height)
P4: Y-direction movement amount setting (reverse amount)
P5: Correction of movement trajectory up to the second point (trajectory correction)

出射角度については、例えばP3を+方向に調整し、P4を短めに設定することにより、第1接合点からの角度を垂直に対し斜めにすることができる。また屈曲部(ループ)頂点の高さについては、P4を短くすると頂点が低くなる。またP5を[−方向]に補正すれば頂点の高さを低く、[+方向]に補正すれば頂点の高さを高くすることが可能となる。この様子を図7に示す。これらパラメータP1〜P5によって、第1点と第2点とを結ぶワイヤの長さ及び軌跡が所望の長さ・軌跡となるように制御することができる。   With respect to the emission angle, for example, by adjusting P3 in the + direction and setting P4 short, the angle from the first junction point can be made oblique to the vertical. As for the height of the bent portion (loop) apex, the apex is lowered when P4 is shortened. Further, if P5 is corrected to [− direction], the height of the vertex can be reduced, and if corrected to [+ direction], the height of the vertex can be increased. This is shown in FIG. With these parameters P1 to P5, it is possible to control the length and locus of the wire connecting the first point and the second point so as to have a desired length and locus.

本実施形態では、例えばサブマウント基板20の電極パッド21を第1接合点、金属基板10の電極11を第2接合点としたとき、第1接合点におけるワイヤの水平面に対する角度を45°〜100°の範囲に設定する。好ましくは、90°に設定する。また屈曲部の頂点の高さを、サブマウント基板の端部と発光素子上面端部とを結ぶ傾斜面(直線L)の電極パッド21直上の高さhと白色樹脂の表面張力による膨らみ分との合計より高い値、例えば高さhの1.5倍〜2倍となるように設定する。これにより次の工程で、発光素子の周囲に反射部材の材料である白色樹脂を配置したときに、硬化前の白色樹脂がサブマウント基板からワイヤを伝って流れ落ちることなく、発光素子の周囲に適切な量の白色樹脂を配置できる。   In the present embodiment, for example, when the electrode pad 21 of the submount substrate 20 is the first bonding point and the electrode 11 of the metal substrate 10 is the second bonding point, the angle of the wire at the first bonding point with respect to the horizontal plane is 45 ° to 100 °. Set in the range of °. Preferably, it is set to 90 °. Further, the height of the apex of the bent portion is defined as the height h immediately above the electrode pad 21 on the inclined surface (straight line L) connecting the end portion of the submount substrate and the upper end portion of the light emitting element, and the amount of swelling due to the surface tension of the white resin. It is set to be a value higher than the sum of, for example, 1.5 to 2 times the height h. As a result, in the next step, when a white resin, which is a material of the reflecting member, is arranged around the light emitting element, the white resin before curing does not flow down from the submount substrate along the wire, and is appropriately applied around the light emitting element. An appropriate amount of white resin can be placed.

なおここでは、ワイヤボンディングの第1接合点をサブマウント基板側としたが、基板側を第1接合点としてもよく、同様に制御することができる。   Here, the first bonding point of the wire bonding is the submount substrate side, but the substrate side may be the first bonding point and can be controlled in the same manner.

<反射部形成工程S64>
反射部材は、発光装置の実施形態で説明したように、白色顔料をシリコーン樹脂や無機バインダーに分散させたものであり、硬化前の粘度は従来の反射部材の形成に用いる白色樹脂と同程度かやや高い程度である。具体的には粘度は5〜20Pa・sが好ましく、白色顔料の含有量や樹脂の種類などを調整することにより、調整することができる。
<Reflecting part forming step S64>
As described in the embodiment of the light emitting device, the reflecting member is obtained by dispersing a white pigment in a silicone resin or an inorganic binder. Is the viscosity before curing the same as the white resin used for forming the conventional reflecting member? Slightly high. Specifically, the viscosity is preferably 5 to 20 Pa · s, and can be adjusted by adjusting the content of the white pigment, the type of resin, and the like.

このような白色樹脂をポッティング装置でサブマウント基板上に滴下しながら行う。例えば、まず配列する発光素子の片側からポッティングし、発光素子間及び発光素子の下側に白色樹脂を行き渡らせる。その後、発光素子の周囲を囲むようにノズルを移動させながらポッティングを行い、発光素子の側面を覆うように白色樹脂を配置する。白色樹脂のポッティング量は、サブマウント基板の端部と発光素子上面端部とを結ぶ傾斜面より凸状に反射部が形成される量である。このような量はある程度計算によって求めることができる。最後に白色樹脂を加熱して硬化することにより反射部が形成される。   Such white resin is dropped while being dropped on the submount substrate with a potting apparatus. For example, potting is first performed from one side of the arranged light emitting elements, and white resin is spread between the light emitting elements and below the light emitting elements. Then, potting is performed while moving the nozzle so as to surround the periphery of the light emitting element, and a white resin is disposed so as to cover the side surface of the light emitting element. The potting amount of the white resin is an amount by which the reflection portion is formed in a convex shape from the inclined surface connecting the end portion of the submount substrate and the upper end portion of the light emitting element. Such an amount can be determined to some extent by calculation. Finally, the reflective portion is formed by heating and curing the white resin.

本発明の半導体発光装置の製造方法によれば、反射部形成工程に先立つワイヤボンディング工程において、ワイヤ形状を調整し、反射部材がサブマウント基板からワイヤを伝って流れ落ちない形状にしておくことにより、発光素子の周囲に必要量の反射部材を配置することができ、反射部材の使用量が少ないにも拘わらず十分な遮蔽効果を持つ発光装置を製造することができる。   According to the method for manufacturing a semiconductor light emitting device of the present invention, in the wire bonding step prior to the reflecting portion forming step, the wire shape is adjusted, and the reflecting member is kept from flowing through the wire from the submount substrate. A necessary amount of reflecting members can be arranged around the light emitting element, and a light emitting device having a sufficient shielding effect can be manufactured even though the amount of the reflecting members used is small.

以下、本発明の発光装置の実施例を説明する。   Examples of the light emitting device of the present invention will be described below.

<発光装置の作製>
発光素子としてYAG蛍光体を用いたフリップ型白色発光素子(素子数:4個、素子サイズ:0.8mm×0.8mm)を用いて、図1及び図2に示す構造の発光装置を以下のように作製した。
<Production of light emitting device>
Using a flip-type white light emitting element (number of elements: 4, element size: 0.8 mm × 0.8 mm) using a YAG phosphor as a light emitting element, the light emitting device having the structure shown in FIGS. It produced as follows.

まず発光素子をAuバンプを用いてAlN製のサブマウント基板に実装した後、サブマウント基板を金属基板にAgフィラー入りシリコーン接着剤を用いて固定した。素子実装後のサブマウント基板と素子との関係は、サブマウント基板の端部から発光素子の端部までの距離(D)が0.77mm、サブマウント基板上面から発光素子の高さ(H)が0.27mmであった。次いで、サブマウント側を第1接合点とし、基板側を第2接合点とし、ワイヤの出射角度90°でAuワイヤを用いたワイヤボンディングを行った。サブマウント基板の端部から第1接合点までの距離は0.25mmであり、ワイヤの屈曲部の高さを第1接合点から直線Lまでの高さの2倍+0.05mm(0.22mm)に調整した。その後、発光素子の周囲に反射部材(TiO2含有シリコーン樹脂:硬化前の粘度:8Pa・s、硬化後のショアA硬度53)を配置し、実施例の発光装置を製造した。   First, the light emitting element was mounted on a submount substrate made of AlN using Au bumps, and then the submount substrate was fixed to a metal substrate with a silicone adhesive containing Ag filler. The relationship between the submount substrate after mounting the element and the element is such that the distance (D) from the end of the submount substrate to the end of the light emitting element is 0.77 mm, and the height of the light emitting element from the top surface of the submount substrate (H). Was 0.27 mm. Next, wire bonding using an Au wire was performed at a wire emission angle of 90 ° with the submount side as the first bonding point and the substrate side as the second bonding point. The distance from the end of the submount substrate to the first bonding point is 0.25 mm, and the height of the bent portion of the wire is twice the height from the first bonding point to the straight line L + 0.05 mm (0.22 mm). ). Thereafter, a reflective member (TiO 2 -containing silicone resin: viscosity before curing: 8 Pa · s, Shore A hardness 53 after curing) was disposed around the light emitting element, and the light emitting device of the example was manufactured.

また参考例として、図8に示すような、従来構造の発光装置を作製した。この発光装置は、発光素子30を実装したサブマウント基板20を金属基板10に固定するまでは実施例と全く同じに製造し、その後、ワイヤボンディングを行った後、金属基板10の周囲に壁材60を配置し、壁材の中に白色樹脂を充填して反射部40を形成した。   As a reference example, a light emitting device having a conventional structure as shown in FIG. 8 was manufactured. This light-emitting device is manufactured in exactly the same manner as in the embodiment until the submount substrate 20 on which the light-emitting element 30 is mounted is fixed to the metal substrate 10, and then wire bonding is performed, and then a wall material is formed around the metal substrate 10. 60 was disposed, and the wall portion was filled with white resin to form the reflection portion 40.

参考例で要した白色樹脂の使用量100重量%に対し、実施例では白色樹脂の使用量は11重量%であり、樹脂使用料を約1/9に減らすことができた。   In contrast to the amount of white resin used in the reference example of 100% by weight, the amount of white resin used in the example was 11% by weight, and the resin usage fee was reduced to about 1/9.

<評価>
実施例及び参考例の発光装置について、次の評価を行った。結果を表2に示す。
(1)反射部材を配置する前と後の色度及び色温度の測定
20mAの電流を供給して発光装置を発光させたときの、光をファイバーにて分光器(大塚電子製:瞬間マルチ測光システムMCPD)に取り込み、色度(CIE-XYZ表色系)と色温度を分光光度計を用いて計測した。
(2)広い発光面積の輝度を測定可能なシステムを用いて測定し、発光部分面積内の平均輝度及び最大輝度を算出した。
(3)冷熱サイクル試験(−40℃と165℃との間のサイクル、3000回)を行い、それに伴うワイヤの変形をx線にて側面から観察し、ループ部分の凹みや根元の折れ具合を確認した。

Figure 2014216416
<Evaluation>
The following evaluation was performed about the light-emitting device of the Example and the reference example. The results are shown in Table 2.
(1) Measurement of chromaticity and color temperature before and after disposing the reflecting member Spectrometer (manufactured by Otsuka Electronics: Instant multi-photometry) when a light emitting device emits light by supplying a current of 20 mA. System MCPD), and chromaticity (CIE-XYZ color system) and color temperature were measured using a spectrophotometer.
(2) Measurement was performed using a system capable of measuring the luminance of a wide light emitting area, and the average luminance and the maximum luminance within the light emitting partial area were calculated.
(3) Conduct a thermal cycle test (cycle between −40 ° C. and 165 ° C., 3000 times), observe the deformation of the wire accompanying it from the side with x-rays, and check the dents in the loop part and the bending of the root confirmed.
Figure 2014216416

表2に示す結果からわかるように、色度及び色温度は実施例及び参考例ともに、反射部材の配置前後で同様の値を示した。また輝度についても実施例と参考例は同様の結果が得られ、参考例と同様の遮蔽効果(側面からの光漏れがない)があることが確認された。これらの結果から、実施例の発光装置は枠材内に反射部材を配置した場合と同等の性能が得られることがわかった。   As can be seen from the results shown in Table 2, the chromaticity and the color temperature showed similar values before and after the arrangement of the reflecting member in both the example and the reference example. In addition, the same results were obtained for the example and the reference example with respect to the luminance, and it was confirmed that there was a shielding effect similar to the reference example (no light leakage from the side surface). From these results, it was found that the light emitting device of the example can obtain the same performance as the case where the reflecting member is arranged in the frame member.

一方、参考例の発光装置では、冷熱サイクルの1回でワイヤに変形が発生し、回数の増加に伴い変形が進行していくことが確認されたのに対し、実施例の発光装置はワイヤの多くの部分が反射部材の外に出ているため、変形していなかった。   On the other hand, in the light emitting device of the reference example, it was confirmed that the wire was deformed in one cooling cycle, and the deformation progressed as the number of times increased. Since many parts had come out of the reflecting member, they were not deformed.

本発明によれば、少ない量の反射部材でありながら、反射部材量が多い従来装置と同様の遮蔽効果が得られ、且つワイヤの損傷が防止できる発光装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, although it is a small amount of reflecting members, the light-emitting device which can acquire the shielding effect similar to the conventional apparatus with many amounts of reflecting members, and can prevent damage to a wire is provided.

10・・・基板、11・・・電極、20・・・サブマウント基板、21・・・電極パッド、30、300・・・発光素子、31・・・LED素子、32・・・蛍光体層、33・・・透明板材、40・・・反射部(反射部材)、50・・・ワイヤ、100・・・発光装置。 DESCRIPTION OF SYMBOLS 10 ... Board | substrate, 11 ... Electrode, 20 ... Submount board | substrate, 21 ... Electrode pad, 30, 300 ... Light emitting element, 31 ... LED element, 32 ... Phosphor layer 33 ... transparent plate material, 40 ... reflecting part (reflective member), 50 ... wire, 100 ... light emitting device.

Claims (5)

配線パターンが形成された第一の基板と、
前記第一の基板に実装された1ないし複数の発光素子と、
電極部を備え、前記第一の基板を固定する第二の基板と、
前記第一の基板の配線パターンに固定された第一端部、前記第二の基板の電極部に固定された第二端部、及び前記第一端部と前記第二端部との間に屈曲部を備え、前記配線パターンと前記電極部との間を電気的に接続するワイヤと、
前記第一の基板の発光素子搭載面上であって、かつ、前記第一の基板をその法線方向から見たときにその端面より内側の領域に、前記第一の基板の発光素搭載面、前記発光素子の側面及び前記ワイヤの一部を覆う反射部とを備え、
前記第一の基板の発光素子搭載面から前記屈曲部までの高さは、前記第一の基板の発光素子搭載面から、前記ワイヤと前記反射部の表面との交点までの高さより高く、
前記ワイヤと前記反射部の表面との交点における前記ワイヤと前記第一の基板表面とのなす角度が45°以上100°以下であることを特徴とする半導体発光装置。
A first substrate on which a wiring pattern is formed;
One or more light-emitting elements mounted on the first substrate;
A second substrate comprising an electrode portion and fixing the first substrate;
A first end fixed to the wiring pattern of the first substrate, a second end fixed to the electrode portion of the second substrate, and between the first end and the second end A wire having a bent portion, and electrically connecting the wiring pattern and the electrode portion;
The light emitting element mounting surface of the first substrate on the light emitting element mounting surface of the first substrate and in a region inside the end surface when the first substrate is viewed from the normal direction. A reflective portion covering a side surface of the light emitting element and a part of the wire,
The height from the light emitting element mounting surface of the first substrate to the bent portion is higher than the height from the light emitting element mounting surface of the first substrate to the intersection of the wire and the surface of the reflecting portion,
An angle between the wire and the first substrate surface at an intersection between the wire and the surface of the reflecting portion is 45 ° or more and 100 ° or less.
請求項1に記載の半導体発光装置であって、
前記発光素子は、半導体発光素子と、少なくとも前記半導体発光素子の光取り出し面を覆う波長変換材料層と、前記波長変換材料層の上に固定された透明板材とを備えることを特徴とする半導体発光装置。
The semiconductor light emitting device according to claim 1,
The light emitting device includes a semiconductor light emitting device, a wavelength conversion material layer covering at least a light extraction surface of the semiconductor light emitting device, and a transparent plate fixed on the wavelength conversion material layer. apparatus.
第一の基板に半導体発光素子を実装する工程と、
第一の基板を第二の基板に固定する工程と、
第一の基板と第二の基板とを電気的に接続するワイヤを接合する工程と、
第一の基板の上であって且つ第一の基板に実装された半導体発光素子の周囲に、硬化前の反射部材を配置した後、反射部材を硬化して反射部を形成する工程と、を含み、
前記ワイヤを接合する工程は、第一の基板へのワイヤ接合部(第一接合部)と第二の基板へのワイヤ接合部(第二接合部)との間にあるワイヤの形状を調整する工程を含み、
前記ワイヤの形状は、硬化前の反射部材がワイヤを伝って第一の基板から流れ落ちるのを防止する形状であることを特徴とする半導体発光装置の製造方法。
Mounting the semiconductor light emitting element on the first substrate;
Fixing the first substrate to the second substrate;
Bonding a wire for electrically connecting the first substrate and the second substrate;
A step of disposing a reflection member before curing on the first substrate and around the semiconductor light emitting element mounted on the first substrate, and then curing the reflection member to form a reflection portion; Including
The step of bonding the wires adjusts the shape of the wire between the wire bonding portion (first bonding portion) to the first substrate and the wire bonding portion (second bonding portion) to the second substrate. Including steps,
The method of manufacturing a semiconductor light emitting device, wherein the shape of the wire is a shape that prevents the uncured reflecting member from flowing down from the first substrate along the wire.
請求項3に記載の半導体発光装置の製造方法であって、
前記ワイヤを接合する工程は、前記第一接合部と前記第二接合部との間にワイヤの屈曲部を形成する工程を含み、当該工程において、前記第一の基板の上面から前記ワイヤの屈曲部までの高さが、前記反射部の表面とワイヤとの交点の、前記第一の基板の上面からの高さより高くなるように前記ワイヤの形状を調整することを特徴とする半導体発光装置の製造方法。
It is a manufacturing method of the semiconductor light-emitting device according to claim 3,
The step of bonding the wire includes a step of forming a bent portion of the wire between the first bonded portion and the second bonded portion. In this step, the bent wire is bent from the upper surface of the first substrate. The shape of the wire is adjusted so that the height to the portion is higher than the height from the top surface of the first substrate of the intersection of the surface of the reflecting portion and the wire. Production method.
請求項3又は4に記載の半導体発光装置の製造方法であって、
前記ワイヤを接合する工程は、前記第一接合部から延びるワイヤの角度を調整する工程を含むことを特徴とする半導体発光装置の製造方法。
A method of manufacturing a semiconductor light emitting device according to claim 3 or 4,
The method of manufacturing a semiconductor light emitting device, wherein the step of bonding the wire includes a step of adjusting an angle of the wire extending from the first bonding portion.
JP2013091391A 2013-04-24 2013-04-24 Semiconductor light emitting device and method of measuring the same Pending JP2014216416A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013091391A JP2014216416A (en) 2013-04-24 2013-04-24 Semiconductor light emitting device and method of measuring the same
KR1020140041097A KR20140127152A (en) 2013-04-24 2014-04-07 Semiconductor light-emitting device and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013091391A JP2014216416A (en) 2013-04-24 2013-04-24 Semiconductor light emitting device and method of measuring the same

Publications (1)

Publication Number Publication Date
JP2014216416A true JP2014216416A (en) 2014-11-17

Family

ID=51941931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013091391A Pending JP2014216416A (en) 2013-04-24 2013-04-24 Semiconductor light emitting device and method of measuring the same

Country Status (2)

Country Link
JP (1) JP2014216416A (en)
KR (1) KR20140127152A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028124A (en) * 2015-07-23 2017-02-02 日亜化学工業株式会社 Light-emitting apparatus and manufacturing method therefor
WO2022071230A1 (en) * 2020-09-30 2022-04-07 日亜化学工業株式会社 Light-emitting device and light-emitting device manufacturing method
JP2022058212A (en) * 2020-09-30 2022-04-11 日亜化学工業株式会社 Light-emitting device and manufacturing method for the same
EP4160704A1 (en) 2021-09-29 2023-04-05 Nichia Corporation Light emitting device and method of manufacturing light emitting device
JP7505395B2 (en) 2020-12-21 2024-06-25 豊田合成株式会社 Light emitting device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218274A (en) * 2008-03-07 2009-09-24 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2011014890A (en) * 2009-06-02 2011-01-20 Mitsubishi Chemicals Corp Metal substrate and light source device
JP2012033823A (en) * 2010-08-02 2012-02-16 Stanley Electric Co Ltd Light emitting device and method for manufacturing the same
JP2013065641A (en) * 2011-09-16 2013-04-11 Nichia Chem Ind Ltd Light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218274A (en) * 2008-03-07 2009-09-24 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2011014890A (en) * 2009-06-02 2011-01-20 Mitsubishi Chemicals Corp Metal substrate and light source device
JP2012033823A (en) * 2010-08-02 2012-02-16 Stanley Electric Co Ltd Light emitting device and method for manufacturing the same
JP2013065641A (en) * 2011-09-16 2013-04-11 Nichia Chem Ind Ltd Light-emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028124A (en) * 2015-07-23 2017-02-02 日亜化学工業株式会社 Light-emitting apparatus and manufacturing method therefor
WO2022071230A1 (en) * 2020-09-30 2022-04-07 日亜化学工業株式会社 Light-emitting device and light-emitting device manufacturing method
JP2022058212A (en) * 2020-09-30 2022-04-11 日亜化学工業株式会社 Light-emitting device and manufacturing method for the same
JP7174290B2 (en) 2020-09-30 2022-11-17 日亜化学工業株式会社 Light-emitting device and method for manufacturing light-emitting device
JP7505395B2 (en) 2020-12-21 2024-06-25 豊田合成株式会社 Light emitting device and manufacturing method thereof
EP4160704A1 (en) 2021-09-29 2023-04-05 Nichia Corporation Light emitting device and method of manufacturing light emitting device

Also Published As

Publication number Publication date
KR20140127152A (en) 2014-11-03

Similar Documents

Publication Publication Date Title
US8058668B2 (en) Semiconductor light-emitting apparatus
US7531845B2 (en) Semiconductor light emitting device
JP5569389B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
TW201724554A (en) Light-emitting device, integrated light-emitting device, and light-emitting module
JP2011014695A (en) Light emitting device, and method for manufacturing same
JP2014216416A (en) Semiconductor light emitting device and method of measuring the same
CN102593333B (en) Light emitting device package and manufacture method thereof
US10224469B2 (en) Light emitting device and method for manufacturing light emitting device
JP2012069645A (en) Semiconductor light-emitting device and manufacturing method therefor
US10408420B2 (en) Light emitting device with conductive members having wide and narrow parts, and reflecting member covering conductive members
US20200020838A1 (en) Optical semiconductor element
JP6104946B2 (en) Light emitting device and manufacturing method thereof
JP4945416B2 (en) Light emitting module and manufacturing method thereof
JP6985615B2 (en) Luminescent device
JP2012044034A (en) Semiconductor light-emitting device and semiconductor light-emitting device manufacturing method
US20220209079A1 (en) Light-emitting module and method of manufacturing light-emitting module
JP2006203080A (en) Semiconductor light emitting device and method for manufacturing the same
KR101901890B1 (en) Luminescence device
JP6092136B2 (en) Light emitting device
JP2009152227A (en) Reflection type light emitting diode
JP7483182B1 (en) Light emitting device and method for manufacturing the same
JP7185157B2 (en) Light-emitting module and method for manufacturing light-emitting module
US20220416141A1 (en) Semiconductor light-emitting device and manufacturing method of the same
JP5865929B2 (en) Light emitting device
JP2016178135A (en) Method of manufacturing light emission device and light emission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509