JP2014215077A - Light ray property measurement device for light ray directivity control section, and light ray property measurement method for light ray directivity control section - Google Patents

Light ray property measurement device for light ray directivity control section, and light ray property measurement method for light ray directivity control section Download PDF

Info

Publication number
JP2014215077A
JP2014215077A JP2013090311A JP2013090311A JP2014215077A JP 2014215077 A JP2014215077 A JP 2014215077A JP 2013090311 A JP2013090311 A JP 2013090311A JP 2013090311 A JP2013090311 A JP 2013090311A JP 2014215077 A JP2014215077 A JP 2014215077A
Authority
JP
Japan
Prior art keywords
light
light beam
control unit
directing control
beam directing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013090311A
Other languages
Japanese (ja)
Other versions
JP6097133B2 (en
Inventor
斎藤 信雄
Nobuo Saito
信雄 斎藤
芳邦 平野
Yoshikuni Hirano
芳邦 平野
靖 本山
Yasushi Motoyama
靖 本山
田中克
Katsu Tanaka
克 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2013090311A priority Critical patent/JP6097133B2/en
Publication of JP2014215077A publication Critical patent/JP2014215077A/en
Application granted granted Critical
Publication of JP6097133B2 publication Critical patent/JP6097133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H04N13/04

Abstract

PROBLEM TO BE SOLVED: To evaluate an effectiveness of a light ray directivity control section of a light-emitting device without actually fabricating the light-emitting device.SOLUTION: A light ray property measurement device 1 comprises: an evaluation sample 10 including a transparent substrate 13 composed of the same material as a transparent dielectric layer 170 of a light-emitting device 110A, and light ray directivity control sections 11, 12 arranged on the transparent substrate 13 in an annular manner and having the same configuration as light ray directivity control sections 111, 112 of the light-emitting device 110A; a light source 20 irradiating an incidence surface 13a of the transparent substrate 13 with light; and a light detector 30 detecting a light ray emitted from the light ray directivity control sections 11, 12 of the evaluation sample 10 to measure the property. A distance D2 from bottom surfaces of the light ray directivity control sections 11, 12 of the evaluation sample 10 to the incidence surface 13a is equal to a distance D1 from bottom surfaces of the light ray directivity control sections 111, 112 of the light-emitting device 110A to a top face of a light-emitting section 120. The incidence surface 13a of the transparent substrate 13 included in the evaluation sample 10 serves as a diffusion surface.

Description

本発明は、発光素子に用いられ、光線の形成と方向制御を行う光線指向制御部から出射された光線の特性を測定するための光線指向制御部の光線特性測定装置および光線指向制御部の光線特性測定方法に関する。   The present invention is used in a light emitting element, and includes a light beam characteristic measuring device for a light beam directing control unit and a light beam for a light beam directing control unit for measuring the characteristics of the light beam emitted from a light beam directing control unit that performs light beam formation and direction control. The present invention relates to a characteristic measurement method.

近年、任意の視点から、特殊な立体メガネを用いることなく、立体画像を自由に見ることのできる立体画像方式の1つとして、インテグラルフォトグラフィ方式(以下、IPという)が知られている。
このIP方式の表示システムは、光線を再生する多数の微小なレンズ(要素レンズ)を配列したレンズアレイと、各レンズに対応した画像(要素画像)を多数並べて表示するディスプレイとによって構成される。観察者は、一つの要素レンズに対応する一つの要素画像から、観察者の位置に応じた部分的な情報を視覚的に得ることで、これらを要素レンズの数だけ並べた立体像を観察する。すなわち、立体像の解像度は、要素レンズの解像度と要素画像の解像度および観視距離で決まり、システムの視域角については要素レンズの性能が支配的な要因となる。このような事情から、実用的な立体像をIP方式で生成するには、発光素子と光学素子の高精細化と高機能化が不可欠となっている(例えば非特許文献1参照)。
In recent years, an integral photography method (hereinafter referred to as IP) is known as one of three-dimensional image methods that allow a stereoscopic image to be freely viewed without using special stereoscopic glasses from an arbitrary viewpoint.
This IP display system includes a lens array in which a large number of minute lenses (element lenses) that reproduce light rays are arranged, and a display that displays a large number of images (element images) corresponding to each lens. The observer visually obtains partial information corresponding to the position of the observer from one element image corresponding to one element lens, and observes a stereoscopic image in which these are arranged by the number of element lenses. . That is, the resolution of the stereoscopic image is determined by the resolution of the element lens, the resolution of the element image, and the viewing distance, and the performance of the element lens is a dominant factor for the viewing zone angle of the system. Under such circumstances, in order to generate a practical stereoscopic image by the IP method, it is indispensable to increase the definition and function of the light emitting element and the optical element (for example, see Non-Patent Document 1).

しかし、発光素子と光学素子の高精細化が進んでもレンズを使用する系にはレンズの回析限界や焦点距離のように原理的に取り除くことができない性能限界も存在する。例えばディスプレイの画素寸法が要素レンズの最小スポット寸法より小さくなると映像ボケが発生するため、同時にスポット寸法も小さくする必要があるが、これをAbbeの回析限界より小さくすることは原理的に不可能である。また、レンズを用いたシステムでの視域角は要素レンズの焦点距離に反比例するが、これを無限に小さくすることはできない。さらに視域角は要素レンズのピッチに比例もするため、レンズを使用する系における解像度と視域角との間にはトレードオフの関係がある。したがって、レンズを使用せず、例えば素子の表面形状等により微小な幅の光線を形成し、その放射方向を制御できる発光素子が実現できれば、立体形成技術を飛躍的に進歩させることができる。   However, even if the definition of the light emitting element and the optical element is increased, there are performance limits that cannot be removed in principle, such as the diffraction limit of the lens and the focal length, in the system using the lens. For example, if the pixel size of the display is smaller than the minimum spot size of the element lens, image blurring occurs, so it is necessary to simultaneously reduce the spot size, but it is impossible in principle to make this smaller than the Abbe diffraction limit. It is. The viewing zone angle in a system using a lens is inversely proportional to the focal length of the element lens, but it cannot be made infinitely small. Furthermore, since the viewing zone angle is also proportional to the pitch of the element lens, there is a trade-off relationship between the resolution and the viewing zone angle in the system using the lens. Therefore, if a light-emitting element that can form a light beam having a minute width according to the surface shape of the element and control the radiation direction without using a lens can be realized, the three-dimensional formation technique can be greatly advanced.

このような考えに基づき、発光素子単体で光線の形成と方向制御を可能とする簡易な素子構造が提案されている。例えば本願出願人は、既出願の特願2012−38249において図5に示したような素子構造や既出願の特願2012−163779において図6に示したような素子構造を提案している。これらの素子構造について図5,6を参照して説明する。   Based on such an idea, a simple element structure that enables the formation and direction control of light rays with a single light emitting element has been proposed. For example, the applicant of the present application has proposed an element structure as shown in FIG. 5 in Japanese Patent Application No. 2012-38249 and an element structure as shown in FIG. 6 in Japanese Patent Application No. 2012-163779. These element structures will be described with reference to FIGS.

図5に示す発光素子110は、n型半導体層150と、発光部120と、p型半導体層160とが積層されており、p型半導体層160上に、p型半導体層160と同じ材料で形成され、発光部120で発生した光の導波路となる柱状の光線指向制御部を備えている。光線指向制御部は、ここでは図5に示すように、6本の光線指向制御部で構成され、p型半導体層160上に環状に配置されている。また、3本の光線指向制御部112の高さが、その他の3本の光線指向制御部111の高さと異なるように形成されており、さらに、光線指向制御部112の高さが光線指向制御部111の高さよりも低くなるように形成されている。   A light-emitting element 110 illustrated in FIG. 5 includes an n-type semiconductor layer 150, a light-emitting portion 120, and a p-type semiconductor layer 160, and the same material as the p-type semiconductor layer 160 is formed on the p-type semiconductor layer 160. A columnar light beam directing control unit that is formed and serves as a waveguide for the light generated by the light emitting unit 120 is provided. Here, as shown in FIG. 5, the light beam directing control unit is composed of six light beam directing control units, and is arranged on the p-type semiconductor layer 160 in a ring shape. Further, the height of the three light beam direction control units 112 is formed to be different from the height of the other three light beam direction control units 111, and the height of the light beam direction control unit 112 is further set to the light beam direction control. It is formed to be lower than the height of the portion 111.

このような構成を備える発光素子110は、発光部120によって、n型半導体層150とp型半導体層160とから注入される電子および正孔の再結合によって生成されるエネルギーを光として放出する。そして、発光素子110は、p型半導体層160および光線指向制御部111,112内を伝搬して柱頭の射出面から放射された光が相互に干渉することで、光線を形成することができる。このとき、高さの低い光線指向制御部112内を伝搬する光が、高さの高い光線指向制御部111内を伝搬する光よりも柱頭の射出面に早く到達するので、空気中を早く進む。そのため、発光素子110は、高さの異なる光線指向制御部111,112の間に位相差を設けることができ、当該位相差に応じた方向に光線を放射することができる。具体的には、図5に示すように、発光素子110の表面の重心を通る法線Mに対し傾斜した光線を形成することができる。   In the light emitting element 110 having such a configuration, the light emitting unit 120 emits light generated by recombination of electrons and holes injected from the n-type semiconductor layer 150 and the p-type semiconductor layer 160 as light. The light emitting element 110 can form a light beam by the light emitted from the exit surface of the stigma propagating through the p-type semiconductor layer 160 and the light beam directing control units 111 and 112 to interfere with each other. At this time, the light propagating in the light beam directing control unit 112 having a low height reaches the exit surface of the stigma earlier than the light propagating in the light beam directing control unit 111 having a high height, and thus proceeds faster in the air. . Therefore, the light emitting element 110 can provide a phase difference between the light beam directing control units 111 and 112 having different heights, and can emit a light beam in a direction corresponding to the phase difference. Specifically, as shown in FIG. 5, a light beam inclined with respect to a normal M passing through the center of gravity of the surface of the light emitting element 110 can be formed.

図6に示す発光素子110Aは、図5に示した発光素子110よりも容易に作製可能な素子構造として提案されたものである。発光素子110Aは、p型半導体層160上に、p型半導体層160よりも誘電率が小さい材料で形成された透明誘電体層170をさらに積層し、この透明誘電体層170上に、透明誘電体層170と同じ材料で形成された柱状の光線指向制御部111,112を備えて構成されている。   A light-emitting element 110A illustrated in FIG. 6 is proposed as an element structure that can be more easily manufactured than the light-emitting element 110 illustrated in FIG. In the light emitting element 110A, a transparent dielectric layer 170 formed of a material having a dielectric constant smaller than that of the p-type semiconductor layer 160 is further stacked on the p-type semiconductor layer 160, and a transparent dielectric layer 170 is formed on the transparent dielectric layer 170. It is configured to include columnar light beam directing control units 111 and 112 made of the same material as the body layer 170.

ここで、図5,6に示した発光素子110,110Aは、発光部120がn型半導体層150上に一様に設けられているが、光線指向制御部111,112以外の素子表面から漏れ出た光と光線指向制御部から放射された光とが余分な干渉を引き起こすのを抑制し、光線方向の制御の精度を向上させるためには、発光領域を一定の範囲に限定するほうが好ましい。   Here, in the light emitting elements 110 and 110A shown in FIGS. 5 and 6, the light emitting section 120 is uniformly provided on the n-type semiconductor layer 150, but leaks from the element surfaces other than the light beam directing control sections 111 and 112. In order to suppress extraneous interference between the emitted light and the light emitted from the light beam directing control unit and to improve the accuracy of control of the light beam direction, it is preferable to limit the light emitting region to a certain range.

そこで、本願出願人は、特願2012−38250において、図7に示す発光素子110Bのように、発光部120を、光線指向制御部111,112のそれぞれに対応する一部領域に限定して設けた素子構造を提案している。また、特願2012−38252において、図8に示す発光素子110Cのように、発光部120を、光線指向制御部111,112の直下を含む一部領域に限定して設けた素子構造を提案している。   Therefore, the applicant of the present application provides the light emitting unit 120 in a limited area corresponding to each of the light beam directing control units 111 and 112 as in the light emitting element 110B shown in FIG. A device structure is proposed. Further, in Japanese Patent Application No. 2012-38252, an element structure is proposed in which the light emitting unit 120 is limited to a partial region including directly below the light beam directing control units 111 and 112, as in the light emitting element 110C shown in FIG. ing.

財団法人機械システム振興協会・財団法人光産業技術振興協会、「自然な立体視を可能とする空間像の形成に関する調査研究報告書−要旨−」、システム技術開発調査研究 19-R-5、pp.14-16、2008年3月Japan Association for Mechanical Systems Promotion and Japan Optical Industry Technology Promotion Association, “Survey Report on Formation of Spatial Image that Enables Natural Stereoscopic Viewing—Abstract”, System Technology Development Survey 19-R-5, pp .14-16, March 2008

図5,6に示したような、従来の発光素子における光線指向制御部により形成される光線の強度分布や出射方向(指向性)等は、光線指向制御部の形状や寸法、配置等によって変化する。そのため、このような発光素子をIP立体ディスプレイの画素等に適用するためには光線指向制御部の形状や寸法、配置等の精密な制御が必要となる。そして、発光素子の光線指向制御部の設計の妥当性や形状の正確性を評価するためには、光線指向制御部から出射される光線の特性を測定することが不可欠である。   As shown in FIGS. 5 and 6, the intensity distribution and emission direction (directivity) of the light beam formed by the light beam directing control unit in the conventional light emitting element vary depending on the shape, size, arrangement, etc. of the light beam directing control unit. To do. Therefore, in order to apply such a light emitting element to a pixel or the like of an IP stereoscopic display, precise control of the shape, size, arrangement, etc. of the light beam directing control unit is required. Then, in order to evaluate the validity of the design of the light beam directing control unit and the accuracy of the shape of the light emitting element, it is essential to measure the characteristics of the light beam emitted from the light beam directing control unit.

ここで、従来の光線指向制御部の光線特性測定装置は、例えば図5に示した光線特性測定装置101のように、発光素子110と光検出装置130とにより構成され、また例えば図6に示した光線特性測定装置101Aのように、発光素子110Aと光検出装置130とにより構成されていた。例えば図5に示した光線特性測定装置101は、図5に破線で示したような軌道上を移動可能な光検出装置130により、発光素子110の光線指向制御部111,112から出射された光線を検出して、光線の強度分布や出射方向(指向性)を測定する。
図6に示した光線特性測定装置101Aも同様である。つまり、従来、発光素子の光線指向制御部の設計の妥当性や形状の正確性を評価するためには、発光素子を実際に作製し動作させなければならなかった。しかしながら、このようにして発光素子の光線指向制御部の設計の妥当性や形状の正確性の評価を行うことは容易ではなかった。その理由を以下に述べる。
Here, the conventional light characteristic measuring device of the light beam directing control unit is composed of the light emitting element 110 and the light detecting device 130 like the light characteristic measuring device 101 shown in FIG. 5, for example, as shown in FIG. Like the light characteristic measuring apparatus 101A, the light emitting element 110A and the light detecting apparatus 130 are included. For example, the light characteristic measuring apparatus 101 shown in FIG. 5 has a light beam emitted from the light beam directing control units 111 and 112 of the light emitting element 110 by the light detection device 130 that can move on the orbit as shown by a broken line in FIG. Is detected, and the light intensity distribution and the emission direction (directivity) are measured.
The same applies to the light characteristic measuring apparatus 101A shown in FIG. That is, conventionally, in order to evaluate the validity of the design and the accuracy of the shape of the light beam directing control unit of the light emitting element, the light emitting element has to be actually manufactured and operated. However, it is not easy to evaluate the design validity and the accuracy of the shape of the light beam directing control unit of the light emitting element in this way. The reason is described below.

例えば図5に示した発光素子110は、光線指向制御部111,112が、例えば集束イオンビームやフォトリソグラフィや電子線リソグラフィとエッチングとの組み合わせ等の公知の技術を用いてp型半導体層160上に形成されている。また例えばp型半導体層160を結晶成長あるいはエッチングすることで、p型半導体層160上に同じ半導体材料(例えばGaN等)で構成された光線指向制御部111,112が形成されている。しかし、この場合は、結晶成長条件の厳密な制御が必要であったり、半導体材料に応じて適用可能な加工方法が限定されたり、さらには半導体への物理的・化学的ダメージにも配慮しなくてはならないため作製に手間と時間を要してしまう。   For example, in the light emitting device 110 shown in FIG. 5, the light beam directing control units 111 and 112 are formed on the p-type semiconductor layer 160 using a known technique such as a focused ion beam, photolithography, a combination of electron beam lithography and etching. Is formed. Further, for example, by crystal growth or etching of the p-type semiconductor layer 160, the light beam directing control units 111 and 112 made of the same semiconductor material (for example, GaN) are formed on the p-type semiconductor layer 160. However, in this case, strict control of crystal growth conditions is necessary, applicable processing methods are limited depending on the semiconductor material, and physical and chemical damage to the semiconductor is not considered. Therefore, it takes time and labor to manufacture.

また例えば図6に示した発光素子110Aは、図5に示した発光素子110よりは容易に作製可能なものの、透明誘電体層170をp型半導体層160上に形成した後で光線指向制御部111,112をエッチングにより形成し、または、透明誘電体により光線指向制御部111,112を形成した後でp型半導体層160と貼り合わせなくてはならないため依然として作製に手間と時間を要してしまう。   Further, for example, the light emitting element 110A shown in FIG. 6 can be manufactured more easily than the light emitting element 110 shown in FIG. 5, but after the transparent dielectric layer 170 is formed on the p-type semiconductor layer 160, the light beam directing control unit. 111 and 112 are formed by etching, or after the light beam directing control portions 111 and 112 are formed by a transparent dielectric, they must be bonded to the p-type semiconductor layer 160. End up.

また、これらの発光素子の発光部で発光を生じさせるためには、発光素子を作製した後に、p型半導体層用の電極(p型電極)とn型半導体層用の電極(n型電極)とに分離した微細な電極を形成し、それぞれの電極から外部電源への外部配線が必要となる。前記したような発光素子は、例えば発光部を発光させるための電極が、例えば一般的なLED素子と同様に、p型半導体層とn型半導体層との間に段差を設け、当該段差から引き出された部分にオーミックコンタクトを形成するように設けられている。また例えばp型半導体層の表面にp型電極が設けられ、n型半導体層の側面にn型電極が設けられている。このp型電極とn型電極とは、仕事関数が異なる金属材料により形成しなければならないため製造工数が増えてしまう。また、発光素子は微細な構造物であるため、電極の正確な位置合わせには手間と時間を要してしまう。   In order to generate light emission in the light emitting portion of these light emitting elements, after the light emitting element is manufactured, an electrode for a p-type semiconductor layer (p-type electrode) and an electrode for an n-type semiconductor layer (n-type electrode) Fine electrodes separated into two are formed, and external wiring from each electrode to an external power supply is required. In the light-emitting element as described above, for example, an electrode for emitting light from the light-emitting portion is provided with a step between the p-type semiconductor layer and the n-type semiconductor layer, as in a general LED element, and is extracted from the step. An ohmic contact is formed on the part. For example, a p-type electrode is provided on the surface of the p-type semiconductor layer, and an n-type electrode is provided on the side surface of the n-type semiconductor layer. Since the p-type electrode and the n-type electrode must be formed of metal materials having different work functions, the number of manufacturing steps increases. Further, since the light emitting element is a fine structure, it takes time and effort to accurately position the electrodes.

また、従来の光線特性測定装置により発光素子の光線指向制御部から出射される光線の強度分布や出射方向(指向性)に代表される特性を測定し、これにより、光線指向制御部の設計の妥当性や形状の正確性等が確認できなかった場合、その発光素子をそのままIP立体ディスプレイ等に使用することはできない。そのため、発光素子の光線指向制御部として有効な構造を見つけ出すには、さらに多大な手間と時間を要してしまう。   In addition, the characteristics represented by the intensity distribution and the emission direction (directivity) of the light emitted from the light beam directing control unit of the light emitting element are measured by a conventional light characteristic measuring device, and thereby, the design of the light beam directing control unit is measured. If the validity and accuracy of the shape cannot be confirmed, the light emitting element cannot be used as it is for an IP stereoscopic display or the like. Therefore, it takes much more labor and time to find an effective structure as a light beam directing control unit of the light emitting element.

さらに、光線指向制御部111,112が形成された素子表面(図5ではp型半導体層160、図6では透明誘電体層170の表面)に電極を形成するため、電極領域や大きさ、さらには外部配線の形状等により光の干渉の状態が変化し光線の指向性や形状(太さ)に影響を与えてしまう場合があった。そのため、発光素子の光線指向制御部から出射される光線の特性を測定しても、発光素子の光線指向制御部の設計の妥当性や形状の正確性を正確に評価することが困難な場合があった。   Further, since the electrodes are formed on the element surface (the p-type semiconductor layer 160 in FIG. 5 and the transparent dielectric layer 170 in FIG. 6) on which the light beam directing control units 111 and 112 are formed, In some cases, the state of light interference changes depending on the shape of the external wiring and the like, which may affect the directivity and shape (thickness) of the light beam. Therefore, even if the characteristics of the light emitted from the light beam directing control unit of the light emitting element are measured, it may be difficult to accurately evaluate the validity of the design of the light beam directing control unit of the light emitting element and the accuracy of the shape. there were.

前記したように、発光素子の光線指向制御部から出射される光線の強度分布や出射方向等に代表される光線の特性は、光線指向制御部の形状や寸法、配置等に起因して変化する。そのため、発光素子の光線指向制御部からどのような光線が出射されるかがわかれば、発光素子そのものを作製しなくても、発光素子の光線指向制御部の設計の妥当性や形状の正確性の評価を行うことが可能となる。発光素子を作製することなく光線指向制御部から出射される光線の特性を測定できれば、発光素子の光線指向制御部の設計の妥当性や形状の正確性の評価の迅速性および正確性を飛躍的に向上させることができる。一方で、発光素子を実際に作製し動作させるやり方以外に、どのようにすれば発光素子の光線指向制御部から出射される光線の特性を測定することができるかは知られていない。   As described above, the characteristics of the light beam typified by the intensity distribution and the emission direction of the light beam emitted from the light beam direction control unit of the light emitting element vary due to the shape, size, arrangement, etc. of the light beam direction control unit. . Therefore, if it is known what light rays are emitted from the light beam direction control unit of the light emitting element, the design validity and shape accuracy of the light beam direction control unit of the light emitting element can be obtained without manufacturing the light emitting element itself. Can be evaluated. If the characteristics of the light beam emitted from the light beam directing control unit can be measured without producing a light emitting device, the validity of the design of the light beam directing control unit of the light emitting device and the rapidity and accuracy of the evaluation of the shape accuracy will be dramatically improved. Can be improved. On the other hand, it is not known how the characteristics of the light emitted from the light beam directing control unit of the light emitting element can be measured other than the method of actually manufacturing and operating the light emitting element.

本発明は、以上のような問題点に鑑みてなされたものであり、実際に発光素子を作製することなく、発光素子の光線指向制御部から出射される光線を模擬的に作製しこの光線の特性を測定することが可能な光線指向制御部の光線特性測定装置および光線指向制御部の光線特性測定方法を提供することを課題とする。   The present invention has been made in view of the above-described problems. A light beam emitted from the light beam directing control unit of the light-emitting element is simulated and manufactured without actually manufacturing the light-emitting element. It is an object of the present invention to provide a light beam characteristic measuring device of a light beam directing control unit and a light beam characteristic measuring method of a light beam directing control unit capable of measuring characteristics.

前記問題を解決するため、請求項1に記載の光線指向制御部の光線特性測定装置は、評価する発光素子に形成された柱状の光線指向制御部と同じ光線指向制御部を透明誘電体により形成される透明基板上に形成した評価用試料の光線の特性を、前記発光素子の光線の特性として測定する光線指向制御部の光線特性測定装置であって、前記評価用試料と、前記評価用試料の底面側に設置する光源と、前記光源からの光により前記評価用試料の光線指向制御部から出射される光線の特性を測定する光検出装置と、を備えることを特徴とする。   In order to solve the above problem, the light beam characteristic measuring device of the light beam directing control unit according to claim 1, wherein the same light beam directing control unit as the columnar light beam directing control unit formed in the light emitting element to be evaluated is formed of a transparent dielectric. A beam characteristic measuring device of a beam directing control unit that measures the characteristics of a light beam of an evaluation sample formed on a transparent substrate as a light beam characteristic of the light emitting element, wherein the evaluation sample and the evaluation sample And a light detection device for measuring characteristics of light emitted from the light beam directing control unit of the sample for evaluation by light from the light source.

かかる構成によれば、光線指向制御部の光線特性測定装置は、評価用試料が、評価する発光素子の光線指向制御部と同じ光線指向制御部を透明誘電体で形成される透明基板上に形成してなる。つまり、評価用試料は、光線指向制御部が、発光素子の光線指向制御部と同じ材料で作製されるとともに、同じ寸法、形状、数および配置となっている。   According to such a configuration, the light beam characteristic measuring apparatus of the light beam directing control unit forms the same light beam directing control unit as the light beam directing control unit of the light emitting element to be evaluated on the transparent substrate formed of the transparent dielectric. Do it. That is, in the sample for evaluation, the light beam directing control unit is made of the same material as the light beam directing control unit of the light emitting element, and has the same size, shape, number, and arrangement.

また、光線指向制御部の光線特性測定装置は、評価用試料の底面側に配置した光源によって、透明基板の入射面側から光線指向制御部に向かう光を照射する。このように光線指向制御部の光線特性測定装置は、外部光源で発生した光を利用するため、評価用試料において光線指向制御部が形成される透明基板の表面に電極を形成する必要がなくなる。そのため、電極の位置合わせ等や電極に電力を供給するための微細な配線の設置が不要となる。また、電極が形成されることによる光線の形状への影響も考慮する必要がなくなる。光源としては、例えば指向性に優れるレーザやSLD(Super Luminescent Diode)等を用いることができる。   Moreover, the light characteristic measuring apparatus of the light beam directing control unit irradiates light directed from the incident surface side of the transparent substrate toward the light beam directing control unit with a light source arranged on the bottom surface side of the sample for evaluation. As described above, since the light characteristic measuring apparatus of the light beam directing control unit uses light generated by the external light source, it is not necessary to form electrodes on the surface of the transparent substrate on which the light beam directing control unit is formed in the sample for evaluation. Therefore, it is not necessary to position the electrodes and install fine wiring for supplying power to the electrodes. Further, it is not necessary to consider the influence on the shape of the light beam due to the formation of the electrode. As the light source, for example, a laser having excellent directivity, an SLD (Super Luminescent Diode), or the like can be used.

さらに、光線指向制御部の光線特性測定装置は、光検出装置によって、評価用試料の光線指向制御部の内部を伝搬し、それぞれの柱頭の射出面から放射された光の干渉により形成される光線を検出し、この光線の特性を測定する。このようにして測定された光線の特性に基づいて、発光素子の光線指向制御部の設計の妥当性や形状の正確性等の正確な評価を行うことが可能となる。   Furthermore, the light beam characteristic measuring device of the light beam directing control unit propagates through the light beam directing control unit of the sample for evaluation by the light detection device, and is formed by interference of light emitted from the exit surface of each stigma. , And the characteristics of this light are measured. Based on the characteristics of the light beam thus measured, it is possible to perform an accurate evaluation such as the validity of the design of the light beam directing control unit of the light emitting element and the accuracy of the shape.

ここで、評価用試料は、光源から照射された光が入射される部分である透明基板の入射面から光線指向制御部の底面までの距離が、発光素子の発光部の上面から光線指向制御部の底面までの距離と等しくなっている。そのため、光源から入射面に入射した光が光線指向制御部に入射されるまでの距離と、発光素子の発光部で発光した光が光線指向制御部に入射されるまでの距離とを等しくすることができる。
なお、透明基板における入射面以外の周囲部分については適宜厚さを設定すればよいので、十分な厚さとすれば、評価用試料の強度を確保することができ、取り扱いが容易となる。
Here, the evaluation sample is such that the distance from the incident surface of the transparent substrate, which is the portion where the light emitted from the light source is incident, to the bottom surface of the light beam directing control unit is from the upper surface of the light emitting unit of the light emitting element to the light beam directing control unit. It is equal to the distance to the bottom. Therefore, the distance until the light incident on the incident surface from the light source is incident on the light beam directing control unit is equal to the distance until the light emitted from the light emitting unit of the light emitting element is incident on the light beam directing control unit. Can do.
In addition, since thickness should just be set suitably about surrounding parts other than the entrance plane in a transparent substrate, if it is sufficient thickness, the intensity | strength of the sample for evaluation can be ensured and handling will become easy.

このように評価用試料を構成することで、評価用試料の光線指向制御部に照射される光の照射パターンを、発光素子の光線指向制御部に照射される光の照射パターンと同じとすることができる。つまり、評価用試料の光線指向制御部において、発光素子の光線指向制御部から出射される光線と同等の光線を出射することができる。よって、この評価用試料の光線指向制御部から出射される光線の特性を測定することは、発光素子の光線指向制御部から出射される光線の特性を測定することと同義であるといえる。そのため、光線特性測定装置によれば、発光素子を作製しなくても、発光素子の光線指向制御部から出射される光線の特性を正確に測定することができる。このようにして測定された光線の特性に基づいて、発光素子の光線指向制御部の設計の妥当性や形状の正確性等の正確な評価を行うことが可能となる。   By configuring the evaluation sample in this way, the light irradiation pattern irradiated to the light beam directing control unit of the evaluation sample should be the same as the light irradiation pattern irradiated to the light beam directing control unit of the light emitting element. Can do. That is, the light beam directing control unit of the evaluation sample can emit a light beam equivalent to the light beam emitted from the light beam directing control unit of the light emitting element. Therefore, measuring the characteristic of the light beam emitted from the light beam directing control unit of the sample for evaluation can be said to be synonymous with measuring the characteristic of the light beam emitted from the light beam directing control unit of the light emitting element. Therefore, according to the light characteristic measuring apparatus, it is possible to accurately measure the characteristic of light emitted from the light beam directing control unit of the light emitting element without producing the light emitting element. Based on the characteristics of the light beam thus measured, it is possible to perform an accurate evaluation such as the validity of the design of the light beam directing control unit of the light emitting element and the accuracy of the shape.

また、請求項2に係る光線指向制御部の光線特性測定装置は、請求項1に係る光線指向制御部の光線特性測定装置において、評価用試料は、透明基板の入射面が拡散面となっている。かかる構成によれば、光源で発生した光を入射面で拡散させることで光の干渉性を抑えてから透明基板の内部に入射させることができる。光源として例えば指向性に優れるレーザやSLD(Super Luminescent Diode)等を用いる場合、これらで発生する光は、発光素子の発光部で発生する光に比べて干渉性が非常に高いため、そのままでは発光素子の発光部で発生する光と同じ照射パターン(ファーフィールドパターン)を形成することができない。一方、光線指向制御部の光線特性測定装置によれば、光源で発生し透明基板の内部に入射する光の干渉性を、発光素子の発光部で発生する光の干渉性と同程度まで抑えることができる。   According to a second aspect of the present invention, there is provided a light beam characteristic measuring apparatus for a light beam directing control unit according to the first aspect, wherein the evaluation sample has a light incident surface of a transparent substrate as a diffusion surface. Yes. According to this configuration, the light generated by the light source can be diffused on the incident surface to suppress the coherence of the light, and then enter the transparent substrate. When using, for example, a laser having excellent directivity or an SLD (Super Luminescent Diode) as the light source, the light generated by these is much more coherent than the light generated by the light emitting portion of the light emitting element, so that the light is emitted as it is. The same irradiation pattern (far field pattern) as the light generated in the light emitting portion of the element cannot be formed. On the other hand, according to the light beam characteristic measuring apparatus of the light beam directing control unit, the coherence of the light generated by the light source and entering the transparent substrate is suppressed to the same level as the coherence of the light generated by the light emitting unit of the light emitting element. Can do.

したがって、このように評価用試料を構成することで、光源で発生する光の干渉性が発光素子の発光部で発生する光の干渉性よりも高い場合であっても、透明基板の内部を伝搬して光線指向制御部に照射される光の照射パターンを、発光素子の発光部で発生し光線指向制御部に照射される光の照射パターンと同じとすることができる。   Therefore, by configuring the sample for evaluation in this way, even if the coherence of the light generated by the light source is higher than the coherence of the light generated by the light emitting portion of the light emitting element, it propagates inside the transparent substrate. Thus, the light irradiation pattern applied to the light beam directing control unit can be the same as the light irradiation pattern generated in the light emitting unit of the light emitting element and applied to the light beam directing control unit.

さらに、請求項3に係る光線指向制御部の光線特性測定装置は、請求項1または請求項2に係る光線指向制御部の光線特性測定装置において、前記光検出装置は、前記評価用試料の光線指向制御部から出射された光線の強度分布と、前記評価用試料の表面の重心を通る法線に対する前記光線の天頂角と、を前記光線の特性として測定することを特徴とする。   Furthermore, the light characteristic measuring device of the light beam directing control unit according to claim 3 is the light characteristic measuring device of the light beam directing control unit according to claim 1 or 2, wherein the light detecting device is a light beam of the evaluation sample. The intensity distribution of the light beam emitted from the directivity control unit and the zenith angle of the light beam with respect to the normal passing through the center of gravity of the surface of the evaluation sample are measured as the characteristics of the light beam.

かかる構成によれば、光線指向制御部の光線特性測定装置は、光検出装置によって、評価用試料の光線指向制御部から出射された光線を検出しその形状と、評価用試料の表面の重心を通る法線に対する光線の天頂角と、を光線の特性として測定する。このようにして検出された光線の特性に基づいて、発光素子の光線指向制御部の設計の妥当性や形状の正確性等の正確な評価を行うことが可能となる。   According to such a configuration, the light characteristic measurement device of the light beam directing control unit detects the light beam emitted from the light beam directing control unit of the evaluation sample by the light detection device, and calculates the shape and the center of gravity of the surface of the evaluation sample. The zenith angle of the ray with respect to the normal passing therethrough is measured as a characteristic of the ray. Based on the characteristics of the light beam thus detected, it is possible to perform an accurate evaluation such as the validity of the design of the light beam directing control unit of the light emitting element and the accuracy of the shape.

また、前記課題を解決するために、本発明の請求項4に係る光線指向制御部の光線特性測定方法は、請求項1から請求項3のいずれか一項に記載の光線指向制御部の光線特性測定装置により、前記光線指向制御部から出射された光線の特性を前記発光素子の光線指向制御部から出射された光線の特性として測定するための光線指向制御部の光線特性測定方法であって、光照射ステップと、光線特性検出ステップと、を含むことを特徴とする。   Moreover, in order to solve the said subject, the light beam characteristic measuring method of the light beam direction control part which concerns on Claim 4 of this invention is a light beam of the light beam direction control part as described in any one of Claims 1-3. A beam characteristic measuring method of a beam directing control unit for measuring a characteristic of a light beam emitted from the light beam directing control unit as a characteristic of a light beam emitted from the light beam directing control unit of the light emitting element by a characteristic measuring device. And a light irradiation step and a light characteristic detection step.

かかる構成によれば、光線指向制御部の光線特性測定方法は、光照射ステップにて、光源の射出面と評価用試料の透明基板の入射面とが対向するように、評価用試料の底面に光源を配置するとともに、光源の射出面から入射面に光を照射する。これにより、評価用試料の光線指向制御部から光線が出射される。そして、光線指向制御部の光線特性測定方法は、光線特性評価ステップにて、光照射ステップにて評価用試料の光線指向制御部から出射された光線の特性を発光素子の光線指向制御部から出射される光線の特性として測定する。   According to such a configuration, the light beam characteristic measuring method of the light beam directing control unit is arranged on the bottom surface of the evaluation sample so that the emission surface of the light source and the incident surface of the transparent substrate of the evaluation sample face each other in the light irradiation step. A light source is disposed, and light is irradiated from the exit surface of the light source to the incident surface. Thereby, a light beam is emitted from the light beam directing control unit of the sample for evaluation. In the light beam characteristic measuring method of the light beam directing control unit, in the light beam characteristic evaluating step, the characteristic of the light beam emitted from the light beam directing control unit of the evaluation sample in the light irradiation step is emitted from the light beam directing control unit of the light emitting element. Measured as the characteristics of the light beam.

このような光線指向制御部の光線特性測定方法によれば、発光素子そのものを作製しなくても、発光素子の光線指向制御部から出射される光線の特性を測定することができる。このようにして測定された光線の特性に基づいて、発光素子の光線指向制御部の設計の妥当性や形状の正確性等の正確な評価を行うことが可能となる。   According to such a method of measuring the light beam characteristics of the light beam directing control unit, it is possible to measure the characteristics of the light beam emitted from the light beam directing control unit of the light emitting element without manufacturing the light emitting element itself. Based on the characteristics of the light beam thus measured, it is possible to perform an accurate evaluation such as the validity of the design of the light beam directing control unit of the light emitting element and the accuracy of the shape.

本発明は、以下に示す優れた効果を奏するものである。
請求項1,4に係る発明によれば、評価用試料の光線指向制御部から出射された光線の特性を発光素子の光線指向制御部から出射される光線の特性として測定することができるので、発光素子そのものを作製しなくても、発光素子の光線指向制御部から出射される光線の特性を測定することができる。これにより、発光素子の光線指向制御部の設計の妥当性や形状の正確性等の迅速かつ正確な評価を行うことが可能となる。したがって、発光素子の光線指向制御部として有効な構造を迅速かつ簡易に見つけ出すことが可能となる。
The present invention has the following excellent effects.
According to the first and fourth aspects of the invention, the characteristics of the light beam emitted from the light beam directing control unit of the sample for evaluation can be measured as the characteristics of the light beam emitted from the light beam directing control unit of the light emitting element. Even without manufacturing the light emitting element itself, it is possible to measure the characteristics of light emitted from the light beam directing control unit of the light emitting element. As a result, it is possible to quickly and accurately evaluate the validity of the design of the light beam directing control unit of the light emitting element and the accuracy of the shape. Therefore, it is possible to quickly and easily find a structure effective as the light beam directing control unit of the light emitting element.

請求項2に係る発明によれば、光源で発生する光の干渉性が発光素子の発光部で発生する光の干渉性よりも高い場合であっても、光源により光線指向制御部に照射される光の照射パターンを、発光素子の発光部により光線指向制御部に照射される光の照射パターンと同じとすることができる。   According to the second aspect of the present invention, even when the coherence of the light generated by the light source is higher than the coherence of the light generated by the light emitting unit of the light emitting element, the light beam directing control unit is irradiated by the light source. The light irradiation pattern can be the same as the light irradiation pattern irradiated to the light beam directing control unit by the light emitting unit of the light emitting element.

請求項3に係る発明によれば、評価用試料の光線指向制御部から出射された光線の特性を発光素子の光線指向制御部から出射される光線の特性を測定することができる。これにより、発光素子の光線指向制御部の設計の妥当性や形状の正確性の迅速かつ正確な評価を行うことが可能となる。   According to the invention which concerns on Claim 3, the characteristic of the light ray radiate | emitted from the light beam direction control part of a light emitting element can be measured for the characteristic of the light ray radiate | emitted from the light beam direction control part of the sample for evaluation. As a result, it becomes possible to quickly and accurately evaluate the validity of the design of the light beam directing control unit of the light emitting element and the accuracy of the shape.

本発明の実施形態に係る光線指向制御部の光線特性測定装置を模式的に示す構成図である。It is a block diagram which shows typically the light characteristic measuring apparatus of the light directivity control part which concerns on embodiment of this invention. (a)は、従来の発光素子の発光部から光線指向制御部への光の照射パターンを示す図であり、(b)は、本発明の実施形態に係る光線特性測定装置の光源から評価用試料の光線指向制御部への光の照射パターンを示す図である。(A) is a figure which shows the irradiation pattern of the light from the light emission part of the conventional light emitting element to the light beam direction control part, (b) is for evaluation from the light source of the light characteristic measuring apparatus which concerns on embodiment of this invention. It is a figure which shows the irradiation pattern of the light to the light beam orientation control part of a sample. 本発明の実施形態の光線指向制御部の光線特性測定装置により光線指向制御部の光線の特性を測定する方法を示すフローチャートである。It is a flowchart which shows the method of measuring the characteristic of the light beam of a light beam direction control part by the light beam characteristic measurement apparatus of the light beam direction control part of embodiment of this invention. (a)は、従来の発光素子の発光部から光線指向制御部への光の照射パターンを示す図であり、(b)は、本発明の実施形態の変形例に係る光線特性測定装置の光源から評価用試料の光線指向制御部への光の照射パターンを示す図である。(A) is a figure which shows the irradiation pattern of the light from the light emission part of the conventional light emitting element to the light beam orientation control part, (b) is the light source of the light characteristic measuring apparatus which concerns on the modification of embodiment of this invention. It is a figure which shows the irradiation pattern of the light to the light beam directing control part of the sample for evaluation. 従来の光線特性測定装置の一例を模式的に示す構成図である。It is a block diagram which shows typically an example of the conventional light characteristic measuring apparatus. 従来の光線特性測定装置の一例を模式的に示す構成図である。It is a block diagram which shows typically an example of the conventional light characteristic measuring apparatus. 従来の発光素子の一例を模式的に示す構成図である。It is a block diagram which shows typically an example of the conventional light emitting element. 従来の発光素子の一例を模式的に示す構成図である。It is a block diagram which shows typically an example of the conventional light emitting element.

以下、本発明の実施形態に係る光線指向制御部の光線特性測定装置について、図面を参照しながら説明する。なお、各図面が示す部材の寸法や位置関係等は、説明の便宜上誇張していることがある。さらに、以下の説明において、同一の名称および符号については原則として同一もしくは同質の部材を示しており、詳細説明を適宜省略する。   Hereinafter, a light characteristic measuring device of a light beam directing control unit according to an embodiment of the present invention will be described with reference to the drawings. In addition, the dimension of the member which each drawing shows, the positional relationship, etc. may be exaggerated for convenience of explanation. Furthermore, in the following description, the same name and reference sign indicate the same or the same members in principle, and the detailed description will be omitted as appropriate.

本発明の実施形態に係る光線指向制御部の光線特性測定装置の構成について説明する。
図1に示すように、光線特性測定装置1は、評価用試料10と、光源20と、光検出装置30と、を備えている。なお、図1では光源20を簡略化して示している。以下では、図2(a),(b)を適宜参照し、図2(a)に示した従来の発光素子110Aと適宜対比しながら、図2(b)に示した評価用試料10の構成を説明する。なお、図2(a)に示した発光素子110Aの構成は、図6を参照して説明した発光素子110Aの構成と同様であるので、ここでは説明を適宜省略する。図2(a)に示した発光素子110Aは、透明誘電体層170の上面にp型電極180が形成され、n型半導体層150の下面にn型電極190が形成されている。
The configuration of the light characteristic measuring device of the light directivity control unit according to the embodiment of the present invention will be described.
As shown in FIG. 1, the light characteristic measurement device 1 includes an evaluation sample 10, a light source 20, and a light detection device 30. In FIG. 1, the light source 20 is shown in a simplified manner. In the following, the configuration of the evaluation sample 10 shown in FIG. 2B will be referred to as appropriate with reference to FIGS. 2A and 2B and appropriately compared with the conventional light emitting device 110A shown in FIG. Will be explained. Note that the structure of the light-emitting element 110A illustrated in FIG. 2A is similar to the structure of the light-emitting element 110A described with reference to FIG. In the light emitting device 110A shown in FIG. 2A, a p-type electrode 180 is formed on the upper surface of the transparent dielectric layer 170, and an n-type electrode 190 is formed on the lower surface of the n-type semiconductor layer 150.

図1および図2(b)に示すように、評価用試料10は、柱状の光線指向制御部11,12と、この光線指向制御部11,12の下側に形成される透明基板13と、を備えて構成される。   As shown in FIG. 1 and FIG. 2 (b), an evaluation sample 10 includes a columnar light beam directing control unit 11, 12, a transparent substrate 13 formed below the light beam directing control unit 11, 12, It is configured with.

光線指向制御部11,12は、図2(a)に示した発光素子110Aの光線指向制御部111,112と同じ構成となっている。つまり、図2(b)に示した評価用試料10の光線指向制御部11,12は、図2(a)に示した発光素子110Aの光線指向制御部111,112と同じ透明誘電体で形成され、同じ寸法、形状、数で構成されている。また、図2(b)に示した評価用試料10の表面における光線指向制御部11,12の配置が、図2(a)に示した発光素子110Aの表面における光線指向制御部111,112の配置と同じとなっている。   The light beam directing control units 11 and 12 have the same configuration as the light beam directing control units 111 and 112 of the light emitting element 110A shown in FIG. That is, the light directivity control units 11 and 12 of the evaluation sample 10 shown in FIG. 2B are formed of the same transparent dielectric as the light directivity control units 111 and 112 of the light emitting element 110A shown in FIG. And are composed of the same dimensions, shapes and numbers. Further, the arrangement of the light beam directing control units 11 and 12 on the surface of the evaluation sample 10 shown in FIG. 2B corresponds to the arrangement of the light beam directing control units 111 and 112 on the surface of the light emitting element 110A shown in FIG. It is the same as the arrangement.

図2(a)に示した発光素子110Aにおいて、n型半導体層150およびp型半導体層160が例えばGaNから構成される場合は、光線指向制御部111,112および透明誘電体層170は、当該GaNよりも誘電率および屈折率の低いSiO,SiO,SiN,MgF,ZrO等の透明誘電体で形成される。したがって、図2(b)に示した評価用試料10の光線指向制御部11,12もこれらのいずれかの透明誘電体で形成されている。図2(a)に示した発光素子110Aの詳細な構成については、既出願の特願2012−163779に記載のとおりであるので、ここでは詳細な説明を省略する。 In the light emitting device 110A shown in FIG. 2A, when the n-type semiconductor layer 150 and the p-type semiconductor layer 160 are made of, for example, GaN, the light beam directing control units 111 and 112 and the transparent dielectric layer 170 are It is formed of a transparent dielectric material such as SiO 2 , SiO, SiN, MgF 2 , ZrO 2 or the like having a dielectric constant and refractive index lower than those of GaN. Therefore, the light beam directing control units 11 and 12 of the evaluation sample 10 shown in FIG. 2B are also formed of any one of these transparent dielectrics. The detailed configuration of the light emitting element 110A shown in FIG. 2A is as described in the already filed Japanese Patent Application No. 2012-163779, and thus detailed description thereof is omitted here.

光線指向制御部11,12は、図1に示すように、3本ごとに異なる高さに形成されている。すなわち、光線指向制御部11,12は、図1に示すように、隣接して配置される3本の光線指向制御部12の高さが、隣接して配置されるその他の3本の光線指向制御部11の高さと異なるように形成され、ここでは光線指向制御部12の高さが光線指向制御部11の高さよりも低くなるように形成されている。   As shown in FIG. 1, the light beam directing control units 11 and 12 are formed at different heights for every three. That is, as shown in FIG. 1, the light beam direction control units 11 and 12 are arranged such that the heights of the three light beam direction control units 12 arranged adjacent to each other are the other three light beam directions arranged adjacent to each other. It is formed to be different from the height of the control unit 11, and here, the height of the light beam directing control unit 12 is formed to be lower than the height of the light beam directing control unit 11.

このように3本の光線指向制御部12と他の3本の他の光線指向制御部11とを異なる高さとすることで、当該高さの差に応じて光線の出射方向(天頂角)を制御することができる。この天頂角とは、図1に示すように、評価用試料10の表面の重心を通る法線Mに対する光線の出射方向の角度を意味する。なお、光線指向制御部11,12の高さが全て同じ場合(高さの差がない場合)は、光線指向制御部11,12によって形成される光線は、評価用試料10の表面と垂直な方向に放射される。   Thus, by setting the three light beam directing control units 12 and the other three other light beam directing control units 11 to different heights, the light emission direction (zenith angle) is changed according to the height difference. Can be controlled. As shown in FIG. 1, the zenith angle means an angle in the light emission direction with respect to the normal M passing through the center of gravity of the surface of the evaluation sample 10. When the heights of the light beam directing control units 11 and 12 are all the same (when there is no difference in height), the light beam formed by the light beam directing control units 11 and 12 is perpendicular to the surface of the evaluation sample 10. Radiated in the direction.

光線指向制御部11,12は、光源20で発生した光の導波路として機能する。ここで、例えば光源20としてSLDを用いる場合、SLDの可干渉長は一般的に10μm程度であるため、微小な空間において異なる経路長を経た光は、干渉効果による空間分布を形成する。従って、光線指向制御部11,12の内部を伝播した光は、光線指向制御部11,12の最上面である射出面11a,12a(図2(b)参照)から評価用試料10の表面と垂直な方向、すなわち図1における上方向に放射された後、光の干渉効果によって、評価用試料10の表面の重心から前記した評価用試料10の表面と垂直な方向に、1本の光線が生成される。なお、ここでの評価用試料10の表面とは、具体的には図1に示す透明基板13の上面のことを意味している。また、ここでの光線とは拡がりのある光を指すものとする。   The light beam directing control units 11 and 12 function as a waveguide for light generated by the light source 20. Here, for example, when an SLD is used as the light source 20, since the coherence length of the SLD is generally about 10 μm, light having a different path length in a minute space forms a spatial distribution due to the interference effect. Therefore, the light propagating through the light beam directing control units 11 and 12 passes from the exit surfaces 11a and 12a (see FIG. 2B) which are the uppermost surfaces of the light beam directing control units 11 and 12 to the surface of the evaluation sample 10. After being radiated in the vertical direction, that is, in the upward direction in FIG. 1, one light beam is emitted from the center of gravity of the surface of the evaluation sample 10 in the direction perpendicular to the surface of the evaluation sample 10 due to the light interference effect. Generated. In addition, the surface of the sample 10 for evaluation here specifically means the upper surface of the transparent substrate 13 shown in FIG. In addition, the light beam here means light that spreads.

光線指向制御部11,12は、平面視でそれぞれ円形状に形成され、透明基板13上にそれぞれ同じ断面積で形成されている。光線指向制御部11,12は、それぞれの直径が等しくなるように形成されており、具体的には自由空間(空気中)における光の波長程度に設定されている。光線指向制御部11,12は、それぞれの柱の中心軸が同じ円周上に等間隔で位置するように、環状に配置されている。   The beam directing control units 11 and 12 are each formed in a circular shape in plan view, and are formed on the transparent substrate 13 with the same cross-sectional area. The light beam directing control units 11 and 12 are formed so that the diameters thereof are equal to each other, and specifically, are set to about the wavelength of light in free space (in the air). The light beam directing control units 11 and 12 are arranged in an annular shape so that the central axes of the respective columns are positioned at equal intervals on the same circumference.

光線指向制御部11の高さと光線指向制御部12の高さとは、それぞれ光線指向制御部11,12の内部を伝播する光の波長程度、あるいはその数倍の高さに設定される。ここで、光線指向制御部11の高さを「H」とし、光線指向制御部11と光線指向制御部12との高さの差を「d」とし、高さHに対する高さの差dの割合(=d/H)を「δ」とする。この場合、光線指向制御部11と光線指向制御部12との高さの差dは、d=δHで表わすことができる。なお、以下の説明では、光線指向制御部11の高さHに対する柱の高さの差dの割合δを「柱高低差割合δ」として説明する。柱高低差割合δの値を大きくすると、評価用試料10の表面と垂直な方向に対する光線の成す角θ(以下、天頂角θという。図2(b)参照)が増加する。光線指向制御部11,12による光線の方向制御の詳細については、図2(a)に示した発光素子110Aの光線指向制御部111,112による光線の方向制御と同様であるので、ここでは詳細な説明を省略する。 The height of the light beam directing control unit 11 and the height of the light beam directing control unit 12 are set to about the wavelength of light propagating through the light beam directing control units 11 and 12, or several times as high as that. Here, the height of the light beam directing control unit 11 is “H”, the height difference between the light beam directing control unit 11 and the light beam directing control unit 12 is “d”, and the height difference d with respect to the height H is The ratio (= d / H) is “δ”. In this case, the height difference d between the light beam directing control unit 11 and the light beam directing control unit 12 can be expressed by d = δH. In the following description, the ratio δ of the column height difference d with respect to the height H of the beam directing control unit 11 will be described as “column height difference ratio δ”. Increasing the column height difference ratio δ increases the angle θ 1 (hereinafter referred to as the zenith angle θ 1 , see FIG. 2B) formed by the light beam in the direction perpendicular to the surface of the sample 10 for evaluation. Details of the direction control of the light beam by the light beam direction control units 11 and 12 are the same as the direction control of the light beam by the light beam direction control units 111 and 112 of the light emitting element 110A shown in FIG. The detailed explanation is omitted.

透明基板13は、光線指向制御部11,12を支持するものである。透明基板13は、透明誘電体で形成されており、表面が平坦であり、表面形状が矩形状となっている。透明基板13の表面積は、図2(a)に示した発光素子110Aの透明誘電体層170の表面積と同等となるように形成されている。透明基板13は、ここでは光線指向制御部11,12と同じ透明誘電体で形成されている。また、透明基板13は、これに限定されず、ガラス、または、例えば熱可塑性樹脂や光硬化樹脂等の樹脂材料を用いて形成されていてもよい。   The transparent substrate 13 supports the light beam directing control units 11 and 12. The transparent substrate 13 is formed of a transparent dielectric, has a flat surface, and has a rectangular surface shape. The surface area of the transparent substrate 13 is formed to be equal to the surface area of the transparent dielectric layer 170 of the light emitting device 110A shown in FIG. Here, the transparent substrate 13 is formed of the same transparent dielectric as the light beam direction control units 11 and 12. The transparent substrate 13 is not limited to this, and may be formed using glass or a resin material such as a thermoplastic resin or a photo-curing resin.

図2(b)に示すように、透明基板13は、光源20で発生した光を入射する入射面13aを備えている。
入射面13aは、ここでは図7に示した発光素子110Bと同様に、透明基板13の底面における光線指向制御部11,12の直下を含む一部領域に1つ設けられている。入射面13aの入射範囲(入射面13aの横断面の面積)は、光源20からの光を全ての光線指向制御部11,12に十分に入射させることができるように設計されている。
As shown in FIG. 2B, the transparent substrate 13 includes an incident surface 13a on which light generated by the light source 20 is incident.
Here, as with the light emitting element 110B shown in FIG. 7, one incident surface 13 a is provided in a partial region including the portion directly below the light beam directing control units 11 and 12 on the bottom surface of the transparent substrate 13. The incident range of the incident surface 13a (the area of the cross section of the incident surface 13a) is designed so that the light from the light source 20 can be sufficiently incident on all the light beam directing control units 11 and 12.

例えば入射面13aの横断面の面積を、光線指向制御部11,12の全てを含む外接円の面積以下となるように形成するとよい。このようにすると、入射面13aから入射された光が、光線指向制御部11,12以外の評価用試料10の表面から漏れ出るのを抑制することができる。よって、評価用試料10の表面から漏れ出た光と、光線指向制御部11,12の射出面11a,12aからそれぞれ射出された光と、による余分な干渉効果が生じるのを抑制することができる。   For example, the area of the cross section of the incident surface 13a may be formed so as to be equal to or less than the area of a circumscribed circle including all of the light beam directing control units 11 and 12. If it does in this way, it can suppress that the light which injected from the entrance plane 13a leaks out from the surface of the sample 10 for evaluation other than the light beam direction control parts 11 and 12. FIG. Therefore, it is possible to suppress an extra interference effect caused by the light leaking from the surface of the evaluation sample 10 and the light emitted from the emission surfaces 11a and 12a of the light beam directing control units 11 and 12, respectively. .

また例えば入射面13aの横断面の面積を、光線指向制御部11,12の柱の横断面の面積の総和以上となるように形成してもよい。このようにすると、入射面13aから入射された光の大部分を、光線指向制御部11,12に入射させることができる。よって、光線指向制御部11,12の射出面11a,12aから射出される光の強度を高くすることができる。   Further, for example, the area of the cross section of the incident surface 13a may be formed to be equal to or greater than the sum of the areas of the cross sections of the columns of the light beam directing control units 11 and 12. In this way, most of the light incident from the incident surface 13 a can be incident on the light beam directing control units 11 and 12. Therefore, it is possible to increase the intensity of light emitted from the emission surfaces 11a and 12a of the beam directing control units 11 and 12.

図2(b)に示すように、透明基板13は、光線指向制御部11,12の底面(入射界面)から入射面13aまでの距離D2が、図2(a)に示した発光素子110Aの光線指向制御部111,112の底面(入射界面)から発光部120の上面までの距離D1と等しくなっている。   As shown in FIG. 2B, the transparent substrate 13 has a distance D2 from the bottom surface (incident interface) of the light beam directing control units 11 and 12 to the incident surface 13a of the light emitting element 110A shown in FIG. It is equal to the distance D1 from the bottom surface (incident interface) of the light beam directing control units 111 and 112 to the top surface of the light emitting unit 120.

透明基板13をこのように構成することで、図2(b)に示した光源20で発生した光が、評価用試料10の透明基板13の内部を伝搬して光線指向制御部11,12に入射されるまでの距離と、図2(a)に示した発光素子110Aの発光部120で発生した光が、p型半導体層160および透明誘電体層170の内部を伝搬して光線指向制御部111,112に入射されるまでの距離とを等しくすることができる。   By configuring the transparent substrate 13 in this way, the light generated by the light source 20 shown in FIG. 2B propagates through the transparent substrate 13 of the evaluation sample 10 to the light beam directing control units 11 and 12. The distance until the light enters and the light generated in the light emitting unit 120 of the light emitting element 110A shown in FIG. 2A propagates through the p-type semiconductor layer 160 and the transparent dielectric layer 170, and the light beam directing control unit. It is possible to make the distances until they are incident on 111 and 112 equal.

図2(b)に示すように、透明基板13の入射面13aは、集束イオンビーム(FIB: Focused Ion Beam)、フォトリソグラフィや電子線リソグラフィとエッチングとの組み合わせや異方性エッチング等の公知の技術により形成することができる。例えば透明基板13の所定位置に入射面13aの径と同じ径を有する凹状の穴を形成するように、底面側から表面側に向かって所定量エッチングすることで、透明基板13の厚さ方向の所定位置に入射面13aを形成することができる。   As shown in FIG. 2 (b), the incident surface 13a of the transparent substrate 13 is a known ion beam (FIB: Focused Ion Beam), a combination of photolithography, electron beam lithography and etching, anisotropic etching, or the like. It can be formed by technology. For example, by etching a predetermined amount from the bottom surface side to the front surface side so as to form a concave hole having the same diameter as that of the incident surface 13a at a predetermined position of the transparent substrate 13, the thickness of the transparent substrate 13 is increased. The incident surface 13a can be formed at a predetermined position.

なお、透明基板13において、入射面13a以外の部分の厚さは特に限定されない。例えば透明基板13は、表面から底面までの厚さが、図2(a)に示した発光素子110Aの透明誘電体層170の表面からn型半導体層150の底面までの厚さと同等となるように形成されていてもよい。このように透明基板13を十分な厚さで形成することで、評価用試料10の強度を確保することができ、取り扱いが容易となる。   In the transparent substrate 13, the thickness of the portion other than the incident surface 13a is not particularly limited. For example, the thickness of the transparent substrate 13 from the front surface to the bottom surface is equal to the thickness from the surface of the transparent dielectric layer 170 of the light emitting element 110A shown in FIG. 2A to the bottom surface of the n-type semiconductor layer 150. It may be formed. Thus, by forming the transparent substrate 13 with a sufficient thickness, the strength of the evaluation sample 10 can be ensured, and the handling becomes easy.

また、図2(b)に示すように、透明基板13の入射面13aは、拡散面となっている。例えば入射面13aに微細な傷をつける等して表面を荒らす加工をすることで拡散面とすることができる。拡散の程度は、光源20で発生する光の干渉性の程度に応じて適宜設定することができる。   As shown in FIG. 2B, the incident surface 13a of the transparent substrate 13 is a diffusing surface. For example, the surface can be roughened by making fine scratches on the incident surface 13a, so that the diffusion surface can be obtained. The degree of diffusion can be appropriately set according to the degree of coherence of light generated by the light source 20.

光源20として、例えば指向性に優れるレーザやSLDを用いる場合、これらで発生する光は、図2(a)に示した発光素子110Aの発光部120で発生する光に比べて干渉性が非常に高い。このように干渉性の程度が異なるため、光源20で発生した光を何ら工夫せずに入射面13aに照射しても、発光素子110Aの発光部120で発生した光と同じ照射パターンを形成することはできない。一方、図2(b)に示した評価用試料10は、透明基板13の入射面13aが拡散面となっているので、光源20で発生した干渉性の高い光を入射面13aで拡散させることで、光源20で発生した光の干渉性を、図2(a)に示した発光素子110Aの発光部120により発生する光の干渉性と同程度まで抑えてから、評価用試料10の透明基板13の内部に入射させることができる。   When a laser or SLD with excellent directivity is used as the light source 20, for example, the light generated by these is much more coherent than the light generated by the light emitting unit 120 of the light emitting element 110A shown in FIG. high. Since the degree of coherence is different in this way, even if the light generated by the light source 20 is irradiated on the incident surface 13a without any modification, the same irradiation pattern as the light generated by the light emitting unit 120 of the light emitting element 110A is formed. It is not possible. On the other hand, in the sample 10 for evaluation shown in FIG. 2B, since the incident surface 13a of the transparent substrate 13 is a diffusing surface, highly coherent light generated by the light source 20 is diffused by the incident surface 13a. Then, the coherence of the light generated by the light source 20 is suppressed to the same level as the coherence of the light generated by the light emitting unit 120 of the light emitting element 110A shown in FIG. 13 can be incident.

以上説明したように、図2(b)に示した評価用試料10は、表面(透明基板13の表面)に、図2(a)に示した発光素子110Aの光線指向制御部111,112と同じ構成の光線指向制御部11,12を備えている。
また、図2(b)に示した評価用試料10は、表面(透明基板13の表面)から入射面13aまでの距離D2が、図2(a)に示した発光素子110Aの表面(透明誘電体層170の表面)から発光部120の上面までの距離D1と等しくなっている。
さらに、図2(b)に示した評価用試料10は、透明基板13の入射面13aが拡散面となっている。
As described above, the evaluation sample 10 shown in FIG. 2B has the light beam directing control units 111 and 112 of the light emitting element 110A shown in FIG. 2A on the surface (the surface of the transparent substrate 13). The beam directing control units 11 and 12 having the same configuration are provided.
Further, in the evaluation sample 10 shown in FIG. 2B, the distance D2 from the surface (the surface of the transparent substrate 13) to the incident surface 13a is such that the surface of the light emitting element 110A shown in FIG. It is equal to the distance D1 from the surface of the body layer 170 to the upper surface of the light emitting unit 120.
Further, in the evaluation sample 10 shown in FIG. 2B, the incident surface 13a of the transparent substrate 13 is a diffusion surface.

評価用試料10をこのように構成することで、光源20から光線指向制御部11,12に照射される光の照射パターンを、図2(a)に示した発光素子110Aの発光部120から光線指向制御部111,112に照射される光の照射パターンと同じとすることができる。   By configuring the evaluation sample 10 in this way, the irradiation pattern of the light irradiated from the light source 20 to the light beam directing control units 11 and 12 is changed from the light emitting unit 120 of the light emitting element 110A shown in FIG. It can be the same as the irradiation pattern of the light irradiated to the directivity control units 111 and 112.

そのため、図2(b)に示した評価用試料10の光線指向制御部11,12の内部を伝搬し、射出面11a,12aから射出された光の干渉によって形成される光線は、図2(a)に示した発光素子110Aの光線指向制御部111,112の内部を伝搬し、射出面111a,112aから射出された光の干渉によって形成される光線と同等となる。よって、図2(b)に示した評価用試料10の光線指向制御部11,12により形成された光線の特性を測定することは、図2(a)に示した発光素子110Aの光線指向制御部111,112により形成される光線の特性を測定することと同義であるといえる。   Therefore, the light rays that propagate through the light beam directing control units 11 and 12 of the evaluation sample 10 shown in FIG. 2B and are formed by the interference of the light emitted from the emission surfaces 11a and 12a are shown in FIG. The light beam propagates through the light beam directing control units 111 and 112 of the light emitting element 110A shown in a), and is equivalent to a light beam formed by interference of light emitted from the emission surfaces 111a and 112a. Therefore, measuring the characteristics of the light beam formed by the light beam directing control units 11 and 12 of the evaluation sample 10 shown in FIG. 2B is the light beam directing control of the light emitting element 110A shown in FIG. It can be said that it is synonymous with measuring the characteristics of the light beam formed by the portions 111 and 112.

評価用試料10は、光線指向制御部11,12の高さと透明基板13の厚さとを合計した厚さの矩形状の透明誘電体材料を加工することで形成することができる。具体的には、光線指向制御部11,12は、例えば集束イオンビーム(FIB: Focused Ion Beam)、フォトリソグラフィや電子線リソグラフィとエッチングとの組み合わせ等の公知の技術を用いて透明誘電体材料を加工することで容易に形成することができる。また、透明基板13の入射面13aは、異方性エッチング等の公知の技術を用いて容易に形成することができる。   The sample 10 for evaluation can be formed by processing a rectangular transparent dielectric material having a total thickness of the heights of the light beam directing control units 11 and 12 and the thickness of the transparent substrate 13. Specifically, the beam directing control units 11 and 12 use, for example, a known technique such as a focused ion beam (FIB), photolithography, a combination of electron beam lithography and etching, or the like to form a transparent dielectric material. It can be easily formed by processing. Further, the incident surface 13a of the transparent substrate 13 can be easily formed by using a known technique such as anisotropic etching.

このような評価用試料10は、ここでは図1に示すように、透明基板13を底面側から支持する載置台40に載置されている。なお、透明基板13の入射面13aの直下は光源20が配置されるため、載置台40はこの部分を除いて設けられている。   Here, as shown in FIG. 1, such an evaluation sample 10 is mounted on a mounting table 40 that supports the transparent substrate 13 from the bottom surface side. Since the light source 20 is disposed immediately below the incident surface 13a of the transparent substrate 13, the mounting table 40 is provided except for this portion.

図1および図2(b)に示すように、光源20は、図示しない外部電源から供給された電力により光を発生させ、発生させた光を評価用試料10の透明基板13の入射面13aに照射するものである。光源20は、評価用試料10の入射面13aの直下に配置されており、光の射出面20aが入射面13aと対向するように配置されている。光源20は、射出面20aにより照射される光の横断面の面積が、評価用試料10の入射面13aの横断面の面積と略同等となっている。これによって、評価用試料10の入射面13aの全体に、光源20で発生した光をもれなく入射させることができる。   As shown in FIGS. 1 and 2B, the light source 20 generates light by power supplied from an external power source (not shown), and the generated light is incident on the incident surface 13a of the transparent substrate 13 of the evaluation sample 10. Irradiation. The light source 20 is disposed immediately below the incident surface 13a of the evaluation sample 10, and is disposed such that the light exit surface 20a faces the incident surface 13a. In the light source 20, the area of the cross section of the light irradiated by the exit surface 20a is substantially equal to the area of the cross section of the incident surface 13a of the evaluation sample 10. Accordingly, the light generated by the light source 20 can be incident on the entire incident surface 13a of the evaluation sample 10.

光源20としては、例えばレーザやSLDを用いることができる。レーザやSLDにより形成される光は指向性が高いため、光源20と評価用試料10とが離間して配置され、光源20における光の射出面から透明基板13の入射面13aまでの距離が長い場合であっても、光線の拡がりを抑制して入射面13aに十分な量の光を入射させることができる。   As the light source 20, for example, a laser or an SLD can be used. Since the light formed by the laser or SLD has high directivity, the light source 20 and the sample 10 for evaluation are arranged apart from each other, and the distance from the light emission surface of the light source 20 to the incident surface 13a of the transparent substrate 13 is long. Even in this case, a sufficient amount of light can be incident on the incident surface 13a while suppressing the spread of the light beam.

光検出装置30は、評価用試料10の上方に所定距離離間して配置され、光線指向制御部11,12により形成された光線を検出しその特性を測定するものである。光検出装置30は、図示しないアームを介して駆動装置に接続されている。光検出装置30は、ここでは図示を省略するが、評価用試料10の光線指向制御部11,12により形成された光線を撮影するカメラ部と撮影した光線の強度分布を積算する制御部とを備えている。なお、制御部は、光検出装置30が備えている必要はなく、光検出装置30に接続された制御装置(図示せず)が制御部による処理を行ってもよい。   The light detection device 30 is disposed above the evaluation sample 10 at a predetermined distance, detects the light beam formed by the light beam directing control units 11 and 12, and measures its characteristics. The light detection device 30 is connected to a drive device via an arm (not shown). Although not shown here, the light detection device 30 includes a camera unit that captures the light beam formed by the light beam directing control units 11 and 12 of the evaluation sample 10 and a control unit that integrates the intensity distribution of the captured light beam. I have. Note that the control unit need not be included in the light detection device 30, and a control device (not shown) connected to the light detection device 30 may perform processing by the control unit.

ここで、評価用試料10の上方から被せるように配置した半球体を仮定する。評価用試料10は重心が、半球体の天頂部分と同軸上に位置するように半球体の内底面に配置されているものとする。このとき、光検出装置30は、この半球体の表面をなぞるように所定の軌道に沿って移動することで、様々な方向からの光線を検出可能となっている。所定の軌道とは、半球体の底面の円周上のある位置の点Aから基準位置(天頂部分)を通り、円周上における点Aに対向する位置にある点Bに向かう軌道である。
なお、光検出装置30は半球体の天頂部分とレンズ面(図示せず)の中心とが同軸上となる位置が基準位置となる。光検出装置30は、評価用試料10の光線指向制御部11,12から出射された光線を入射したときの自身の位置(基準位置からの距離と方向)から、光線の天頂角θを光線の特性として測定するようになっている。この光検出装置30は、カメラ部のレンズ面(図示せず)に対し垂直に入射された光線を撮影し、この光線の強度分布を光線の特性として測定するようになっている。
Here, a hemisphere arranged so as to cover the evaluation sample 10 is assumed. The sample 10 for evaluation shall be arrange | positioned at the inner bottom face of a hemisphere so that a gravity center may be located coaxially with the zenith part of a hemisphere. At this time, the light detection device 30 can detect light rays from various directions by moving along a predetermined trajectory so as to trace the surface of the hemisphere. The predetermined trajectory is a trajectory that goes from a point A on the circumference of the bottom surface of the hemisphere to a point B that passes through the reference position (the zenith portion) and faces the point A on the circumference.
In the light detection device 30, the reference position is a position where the zenith portion of the hemisphere and the center of the lens surface (not shown) are coaxial. The light detection device 30 determines the zenith angle θ 1 of the light beam from its own position (distance and direction from the reference position) when the light beam emitted from the light beam directing control units 11 and 12 of the evaluation sample 10 is incident. It is designed to measure as a characteristic. The light detection device 30 captures a light beam incident perpendicularly to a lens surface (not shown) of the camera unit, and measures the intensity distribution of the light beam as a characteristic of the light beam.

また、光検出装置30は、図2(b)に示した評価用試料10の光線指向制御部11,12が配置された評価用試料10の表面の重心を通る法線Mに対する光線の天頂角θを測定する。光検出装置30は、柱高低差割合δが異なる複数の評価用試料10ごとに光線の天頂角θを測定する。 Further, the light detection device 30 has a zenith angle of the light beam with respect to the normal M passing through the center of gravity of the surface of the evaluation sample 10 on which the light beam directing control units 11 and 12 of the evaluation sample 10 shown in FIG. Measure θ 1 . The light detection device 30 measures the zenith angle θ 1 of the light beam for each of the plurality of evaluation samples 10 having different column height difference ratios δ.

このようにして、光検出装置30によって測定された光線の特性の評価を行うことで、光線指向制御部11,12の設計の妥当性および形状の正確性が確保されているか否かを確認できる。
なお、前記した光線の特性の評価は、光検出装置30の図示しない制御部により行っても構わない。
In this way, by evaluating the characteristics of the light beam measured by the light detection device 30, it is possible to confirm whether the design validity and the shape accuracy of the light beam directing control units 11 and 12 are ensured. .
Note that the evaluation of the characteristics of the light beam described above may be performed by a control unit (not shown) of the light detection device 30.

このような光線特性測定装置1により発光素子の光線指向制御部から出射された光線の特性を測定する方法について図3および適宜図1,2を参照して説明する。
まず、光源20の射出面20aと評価用試料10の透明基板13の入射面13aとが対向するように、光源20の上側に評価用試料10を配置して光源20で発生させた光を、透明基板13の入射面13aに照射する(ステップS1:光照射ステップ)。
これにより、光源20で発生した光が透明基板13の内部に入射して伝搬され、光線指向制御部11,12の底面から内部に入射される。そして、評価用試料10の光線指向制御部11,12により光が伝搬され柱頭の射出面11a,12aから空気中に放射される。そして、射出面11a,12aから放射された光の相互の干渉により光線が形成される。このようにして、評価用試料10の光線指向制御部11,12から光線が出射される。
A method of measuring the characteristics of the light beam emitted from the light beam directing control unit of the light emitting element by using the light beam characteristic measuring apparatus 1 will be described with reference to FIG. 3 and FIGS.
First, light generated by the light source 20 by placing the evaluation sample 10 on the upper side of the light source 20 so that the emission surface 20a of the light source 20 and the incident surface 13a of the transparent substrate 13 of the evaluation sample 10 face each other. Irradiate the incident surface 13a of the transparent substrate 13 (step S1: light irradiation step).
Thereby, the light generated by the light source 20 is incident on the inside of the transparent substrate 13 and propagated, and is incident on the inside from the bottom surfaces of the light beam directing control units 11 and 12. Then, light is propagated by the light beam directing control units 11 and 12 of the evaluation sample 10 and is emitted from the exit surfaces 11a and 12a of the stigma into the air. A light beam is formed by mutual interference of light emitted from the exit surfaces 11a and 12a. In this way, light rays are emitted from the light beam directing control units 11 and 12 of the evaluation sample 10.

そして、光検出装置30により、ステップS1において評価用試料10の光線指向制御部11,12から出射された光線を検出し、光線の強度分布(光線形状)と光線の天頂角θとをそれぞれ測定する(ステップS2:光線特性測定ステップ)。光検出装置30は、柱高低差割合δが異なる複数の評価用試料10ごとに光線の強度分布と光線の天頂角θをそれぞれ測定する。 Then, the light detector 30 detects the light beams emitted from the light beam directing control units 11 and 12 of the evaluation sample 10 in step S1, and determines the light intensity distribution (light beam shape) and the light beam zenith angle θ 1. Measurement is performed (step S2: light characteristic measurement step). The light detection device 30 measures the intensity distribution of the light beam and the zenith angle θ 1 of the light beam for each of the plurality of evaluation samples 10 having different column height difference ratios δ.

以上説明した本発明の実施形態に係る光線指向制御部の光線特性測定装置および光線特性測定方法によれば、評価用試料の光線指向制御部により形成される光線の特性を、発光素子の光線指向制御部により形成される光線の特性として測定することができるので、発光素子そのものを作製しなくても、発光素子の光線指向制御部により形成される光線の特性を測定することが可能となる。これにより、発光素子の光線指向制御部の設計の妥当性や形状の正確性等の迅速かつ正確な評価を行うことが可能となる。   According to the light beam characteristic measuring apparatus and the light beam characteristic measuring method of the light beam directing control unit according to the embodiment of the present invention described above, the characteristics of the light beam formed by the light beam directing control unit of the sample for evaluation are changed to the light beam directivity of the light emitting element. Since it can be measured as the characteristic of the light beam formed by the control unit, the characteristic of the light beam formed by the light beam directing control unit of the light emitting element can be measured without manufacturing the light emitting element itself. As a result, it is possible to quickly and accurately evaluate the validity of the design of the light beam directing control unit of the light emitting element and the accuracy of the shape.

また、光線指向制御部の光線特性測定装置および光線特性測定方法によれば、評価用試料が、光源で発生した光により光線を形成することができるため、評価用試料において光線指向制御部が形成される透明基板の表面に電極を形成する必要がなくなる。そのため、電極の位置合わせ等や電極に電力を供給するための微細な配線の設置が不要となる。また、電極が形成されることによる光線の形状への影響も考慮する必要がなくなる。これにより、発光素子の光線指向制御部の設計の妥当性や形状の正確性等のより迅速かつ正確な評価を行うことが可能となる。
このように、光線指向制御部の光線特性測定装置および光線特性測定方法によれば、発光素子の光線指向制御部として有効な構造を迅速かつ簡易に見つけ出す行うことが可能となる。
Further, according to the light beam characteristic measuring device and the light beam characteristic measuring method of the light beam directing control unit, since the evaluation sample can form a light beam by the light generated by the light source, the light beam directing control unit is formed in the evaluation sample. It is not necessary to form electrodes on the surface of the transparent substrate. Therefore, it is not necessary to position the electrodes and install fine wiring for supplying power to the electrodes. Further, it is not necessary to consider the influence on the shape of the light beam due to the formation of the electrode. Thereby, it becomes possible to perform quicker and more accurate evaluation of the validity of the design of the light beam directing control unit of the light emitting element and the accuracy of the shape.
Thus, according to the light beam characteristic measuring apparatus and the light beam characteristic measuring method of the light beam directing control unit, it is possible to quickly and easily find an effective structure as the light beam directing control unit of the light emitting element.

そして、光線指向制御部の光線特性測定装置および光線特性測定方法によれば、評価用試料の光線指向制御部の有効性が確認された場合、光線指向制御部を、評価用試料の光線指向制御部と同じ構成とした発光素子を作製することで、発光素子そのものを作製して光線指向制御部の有効性を確認する場合と比較して材料の無駄を削減することができる。   Then, according to the light beam characteristic measuring device and the light beam characteristic measuring method of the light beam directing control unit, when the effectiveness of the light beam directing control unit of the evaluation sample is confirmed, the light beam directing control unit is moved to the light beam directing control of the evaluation sample. By manufacturing the light emitting element having the same configuration as the unit, it is possible to reduce the waste of materials as compared with the case where the light emitting element itself is manufactured and the effectiveness of the light beam directing control unit is confirmed.

以上、実施形態に基づいて本発明を説明したが、本発明は前記した実施形態に限定されるものではない。
例えば光線特性測定装置1は、図2(b)に示した評価用試料10に代えて図4(b)に示す評価用試料10Aを用いてもよい。図4(b)に示した評価用試料10Aは、図2(b)に示した評価用試料10に対し、透明基板13に、光線指向制御部11,12のそれぞれに対応して入射面13aが形成されている点が相違する。つまり、図4(b)に示す評価用試料10Aは、透明基板13の底面に、光線指向制御部11,12の数に対応して6つの入射面13aが形成されている。
As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to above-described embodiment.
For example, the light characteristic measuring apparatus 1 may use an evaluation sample 10A shown in FIG. 4B instead of the evaluation sample 10 shown in FIG. The evaluation sample 10A shown in FIG. 4B is different from the evaluation sample 10 shown in FIG. 2B on the transparent substrate 13 on the incident surface 13a corresponding to each of the beam directing control units 11 and 12. Is different. That is, the evaluation sample 10 </ b> A shown in FIG. 4B has six incident surfaces 13 a formed on the bottom surface of the transparent substrate 13 corresponding to the number of the light beam directing control units 11 and 12.

図4(b)に示した評価用試料10Aにおいて、透明基板13の各入射面13aの横断面の面積は、光源20からの光を対応する光線指向制御部11,12に十分に入射させることができる大きさで設計されている。光線指向制御部11,12の横断面の面積に対する入射面13aの横断面の面積の設定の仕方は、図8に示した発光素子110C(既出願の特願2012−38250参照)と同様に行うことができる。なお、図4(a)に示した発光素子110Aは、図2(a)に示した発光素子110Aと同様であるが、図8に示した発光素子110Cと同じ思想で柱毎に発光部120を分けている。   In the evaluation sample 10A shown in FIG. 4B, the cross-sectional area of each incident surface 13a of the transparent substrate 13 is sufficient to allow the light from the light source 20 to be incident on the corresponding beam directing control units 11 and 12. It is designed to be large enough. The method of setting the cross-sectional area of the incident surface 13a with respect to the cross-sectional area of the beam directing control units 11 and 12 is performed in the same manner as the light emitting element 110C shown in FIG. 8 (see Japanese Patent Application No. 2012-38250 already filed). be able to. The light emitting element 110A illustrated in FIG. 4A is the same as the light emitting element 110A illustrated in FIG. 2A, but the light emitting unit 120 is provided for each column in the same idea as the light emitting element 110C illustrated in FIG. Is divided.

1,1A 光線特性測定装置(光線指向制御部の光線特性測定装置)
10,10A 評価用試料
11 光線指向制御部
11a 射出面
12 光線指向制御部
12a 射出面
13 透明基板
13a 入射面
20 光源
30 光検出装置
40 載置台
110,110A,110B,110C 発光素子
111 光線指向制御部
112 光線指向制御部
120 発光部
130 光検出装置
150 n型半導体層
160 p型半導体層
170 透明誘電体層
180 p型電極
190 n型電極
1,1A light characteristic measuring device (light characteristic measuring device of light directivity control unit)
10, 10A Evaluation Sample 11 Light Direction Control Unit 11a Emission Surface 12 Light Direction Control Unit 12a Emission Surface 13 Transparent Substrate 13a Incidence Surface 20 Light Source 30 Photodetector 40 Mounting Base 110, 110A, 110B, 110C Light Emitting Element 111 Light Direction Control Unit 112 beam directing control unit 120 light emitting unit 130 photodetector 150 n-type semiconductor layer 160 p-type semiconductor layer 170 transparent dielectric layer 180 p-type electrode 190 n-type electrode

Claims (4)

評価する発光素子に形成された柱状の光線指向制御部と同じ光線指向制御部を透明誘電体により形成される透明基板上に形成した評価用試料の光線の特性を、前記発光素子の光線の特性として測定する光線指向制御部の光線特性測定装置であって、
前記評価用試料と、
前記評価用試料の底面側に設置する光源と、
前記光源からの光により前記評価用試料の光線指向制御部から出射される光線を検出しこの光線の特性を測定する光検出装置と、を備え、
前記評価用試料の前記透明基板は、前記光源から照射された光を入射する入射面から前記光線指向制御部の底面までの距離が、前記発光素子の前記発光部の上面から前記光線指向制御部の底面までの距離と等しいことを特徴とする光線指向制御部の光線特性測定装置。
The light beam characteristics of the sample for evaluation formed on the transparent substrate in which the same light beam directing control unit as the columnar light beam directing control unit formed in the light emitting element to be evaluated is formed of a transparent dielectric material, the light beam characteristics of the light emitting element A beam characteristic measuring device of a beam directing control unit to measure as
The evaluation sample;
A light source installed on the bottom side of the sample for evaluation;
A light detecting device that detects light emitted from the light beam directing control unit of the sample for evaluation by light from the light source and measures the characteristics of the light; and
In the transparent substrate of the sample for evaluation, the distance from the incident surface on which light emitted from the light source is incident to the bottom surface of the light beam directing control unit is from the upper surface of the light emitting unit of the light emitting element to the light beam directing control unit. The light beam characteristic measuring device of the light beam directing control unit characterized by being equal to the distance to the bottom surface of the light beam.
前記評価用試料は、前記透明基板の前記入射面が、拡散面となっていることを特徴とする請求項1に記載の光線指向制御部の光線特性測定装置。   2. The light characteristic measuring apparatus for a light beam directing control unit according to claim 1, wherein in the evaluation sample, the incident surface of the transparent substrate is a diffusion surface. 3. 前記光検出装置は、前記評価用試料の光線指向制御部から出射された光線の特性として前記光線の強度分布と、前記評価用試料の表面の重心を通る法線に対する前記光線の天頂角とを測定することを特徴とする請求項1または請求項2に記載の光線指向制御部の光線特性測定装置。   The light detection device includes: an intensity distribution of the light beam as a characteristic of the light beam emitted from the light beam directing control unit of the evaluation sample; and a zenith angle of the light beam with respect to a normal passing through the center of gravity of the surface of the evaluation sample. The light characteristic measuring device for a light beam directing control unit according to claim 1, wherein the light characteristic measuring device measures the light characteristic. 請求項1から請求項3のいずれか一項に記載の光線指向制御部の光線特性測定装置により、前記光線指向制御部から出射された光線を前記発光素子の光線指向制御部から出射された光線として検出するための光線指向制御部の光線特性測定方法であって、
前記光源の射出面と前記評価用試料の前記透明基板の入射面とが対向するように、前記評価用試料の底面に前記光源を配置するとともに、前記光源の射出面から前記入射面に光を照射する光照射ステップと、
前記光検出装置により、前記光線指向制御部から出射された光線の特性を測定する光線特性測定ステップと、を含むことを特徴とする光線指向制御部の光線特性測定方法。
The light beam emitted from the light beam directing control unit by the light beam characteristic measuring device of the light beam directing control unit according to any one of claims 1 to 3, and the light beam emitted from the light beam directing control unit of the light emitting element. A beam characteristic measuring method of a beam directing control unit for detecting as
The light source is arranged on the bottom surface of the evaluation sample so that the emission surface of the light source and the incidence surface of the transparent substrate of the evaluation sample face each other, and light is emitted from the emission surface of the light source to the incidence surface. A light irradiation step for irradiating;
A light characteristic measuring step of measuring a characteristic of a light beam emitted from the light beam directing control unit by the photodetecting device;
JP2013090311A 2013-04-23 2013-04-23 Light beam characteristic measuring device of light beam directing control unit and light beam characteristic measuring method of light beam directing control unit Expired - Fee Related JP6097133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013090311A JP6097133B2 (en) 2013-04-23 2013-04-23 Light beam characteristic measuring device of light beam directing control unit and light beam characteristic measuring method of light beam directing control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013090311A JP6097133B2 (en) 2013-04-23 2013-04-23 Light beam characteristic measuring device of light beam directing control unit and light beam characteristic measuring method of light beam directing control unit

Publications (2)

Publication Number Publication Date
JP2014215077A true JP2014215077A (en) 2014-11-17
JP6097133B2 JP6097133B2 (en) 2017-03-15

Family

ID=51940978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013090311A Expired - Fee Related JP6097133B2 (en) 2013-04-23 2013-04-23 Light beam characteristic measuring device of light beam directing control unit and light beam characteristic measuring method of light beam directing control unit

Country Status (1)

Country Link
JP (1) JP6097133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076576A (en) * 2014-10-06 2016-05-12 日本放送協会 Light beam directional characteristic measuring device and light beam directional characteristic measuring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561683A (en) * 1994-01-27 1996-10-01 Kwon; O'dae Circular grating surface emitting laser diode
JP2005217093A (en) * 2004-01-29 2005-08-11 Kyocera Corp Storage package for photo-semiconductor element
JP2008117666A (en) * 2006-11-06 2008-05-22 Sharp Corp Light-emitting device and backlight device using it
WO2011040528A1 (en) * 2009-09-30 2011-04-07 日本電気株式会社 Optical element, light source device, and projection display device
JP2011159650A (en) * 2010-01-29 2011-08-18 Kyocera Corp Light-emitting element
WO2013046865A1 (en) * 2011-09-27 2013-04-04 日本電気株式会社 Optical element, light source device, and projection-type display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561683A (en) * 1994-01-27 1996-10-01 Kwon; O'dae Circular grating surface emitting laser diode
JP2005217093A (en) * 2004-01-29 2005-08-11 Kyocera Corp Storage package for photo-semiconductor element
JP2008117666A (en) * 2006-11-06 2008-05-22 Sharp Corp Light-emitting device and backlight device using it
WO2011040528A1 (en) * 2009-09-30 2011-04-07 日本電気株式会社 Optical element, light source device, and projection display device
JP2011159650A (en) * 2010-01-29 2011-08-18 Kyocera Corp Light-emitting element
WO2013046865A1 (en) * 2011-09-27 2013-04-04 日本電気株式会社 Optical element, light source device, and projection-type display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076576A (en) * 2014-10-06 2016-05-12 日本放送協会 Light beam directional characteristic measuring device and light beam directional characteristic measuring method

Also Published As

Publication number Publication date
JP6097133B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
KR102279614B1 (en) Miniaturized imaging apparatus for wafer edge
JP2015531068A5 (en)
US20130329222A1 (en) Inspecting apparatus and method for manufacturing semiconductor device
TWI551952B (en) Euv lithography system
TWI567365B (en) Self-adjusting groove focusing and leveling device and method thereof
JP2011175213A (en) Laser emitting device
TW201716745A (en) Image ranging system, light source module and image sensing module
CN103364374A (en) An apparatus and a method for inspecting a graphene board
KR20140081159A (en) Measurement Device with a means of Width adjustment for line beam and cylinder lens
JP6097133B2 (en) Light beam characteristic measuring device of light beam directing control unit and light beam characteristic measuring method of light beam directing control unit
US20120012754A1 (en) Diffraction grating, method for producing the same, and radiation imaging apparatus
JP6393078B2 (en) Light emitting element
Leiner et al. A simulation procedure interfacing ray-tracing and finite-difference time-domain methods for a combined simulation of diffractive and refractive optical elements
JP6397298B2 (en) Light emitting element
WO2021217406A1 (en) Optical diffusion sheet, light source apparatus, and distance measurement apparatus
WO2021087998A1 (en) Light emitting module, depth camera and electronic device
TW200425272A (en) Wafer, exposure mask, method of detecting mark and method of exposure
JP6412392B2 (en) Light beam directivity measuring apparatus and light beam directivity measuring method
JP2014072278A (en) Light-emitting element manufacturing method, apparatus therefor, and light-emitting element
WO2012073346A1 (en) Light-receiving module for semiconductor light-emitting element and inspection device for semiconductor light-emitting element
CN111198093B (en) Exposure light angle measuring equipment
JP6126940B2 (en) Light exit direction calculating apparatus and light exit direction calculating method
KR102057956B1 (en) An Optical Sensing Apparatus Integrated with a Camera
TWI683087B (en) Measurement apparatus for exposure angle
JP5685961B2 (en) Spot image position detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160301

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170217

R150 Certificate of patent or registration of utility model

Ref document number: 6097133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees