JP2014214352A - Stainless base sheet and method of producing starting sheet for copper electrolytic refining - Google Patents

Stainless base sheet and method of producing starting sheet for copper electrolytic refining Download PDF

Info

Publication number
JP2014214352A
JP2014214352A JP2013093228A JP2013093228A JP2014214352A JP 2014214352 A JP2014214352 A JP 2014214352A JP 2013093228 A JP2013093228 A JP 2013093228A JP 2013093228 A JP2013093228 A JP 2013093228A JP 2014214352 A JP2014214352 A JP 2014214352A
Authority
JP
Japan
Prior art keywords
electrodeposition
stainless steel
plate
copper
electrodeposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013093228A
Other languages
Japanese (ja)
Other versions
JP6003788B2 (en
Inventor
範幸 長瀬
Noriyuki Nagase
範幸 長瀬
高裕 山田
Takahiro Yamada
高裕 山田
卓也 大原
Takuya Ohara
卓也 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013093228A priority Critical patent/JP6003788B2/en
Publication of JP2014214352A publication Critical patent/JP2014214352A/en
Application granted granted Critical
Publication of JP6003788B2 publication Critical patent/JP6003788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stainless base sheet which does not cause natural peeling during electrodeposition or breaking or wrinkling during stripping after electrodeposition, reduces the frequency of re-grinding, and has a long lifetime, and a method of producing a starting sheet for copper electrolytic refining using the stainless base sheet.SOLUTION: A stainless base sheet 1 is used in production of a starting sheet for copper electrolytic refining includes, in an electrolysis surface 1a, a plurality of polishing marks in a direction nearly perpendicular to the vertical direction when suspended in an electrolytic tank, and has a surface roughness of the electrolytic surface 1a of 3.0 μm or more and 5.0 μm or less in terms of the average of ten-point average roughness (Rz) in nine regions formed by dividing one side of the electrolytic surface 1a and the other sides perpendicular to the one side into three equal parts. A release agent is applied to the electrolytic surface 1a.

Description

本発明は、銅の電解精製用の種板を製造する際に用いられるステンレス母板、並びに、そのステンレス母板を用いた銅電解精製用の種板の製造方法に関する。   The present invention relates to a stainless steel mother plate used when producing a seed plate for electrolytic purification of copper, and a method for producing a seed plate for copper electrolytic purification using the stainless steel mother plate.

銅の電解精製においては、銅製錬工程で得られた粗銅を陽極とし、厚さ0.6mm程度の薄い電気銅の種板を陰極として電解し、この薄い種板の電着面に銅を電着させることにより電気銅を精製している。また、この銅の電解精製に用いられる種板も電気銅と同様に電解精製により製造され、その際の陽極は上記と同様に粗銅であるが、陰極にはチタンやステンレスのような銅とは異なる金属が母板として使用される。   In the electrolytic refining of copper, electrolysis is performed using crude copper obtained in the copper smelting process as an anode and a thin electrocopper seed plate having a thickness of about 0.6 mm as a cathode, and copper is applied to the electrodeposition surface of the thin seed plate. The electrolytic copper is refined by putting it on. In addition, the seed plate used for electrolytic purification of copper is also produced by electrolytic purification in the same way as electrolytic copper. The anode at that time is crude copper as described above, but the cathode is made of copper such as titanium or stainless steel. Different metals are used as the mother board.

具体的には、銅電解精製用の電気銅の種板を製造する場合、粗銅を陽極として陰極の母板に銅を0.6mm程度の厚さに電着させた後、この銅を引き剥がすことで種板が作られる。この引き剥がしの際に、母板と種板の間の電着力が高すぎると、薄い種板に破れやシワが発生してしまう。一方、電着力が低すぎると、電着中に種板が母板から自然剥離してしまう。種板と母板の電着力は母板の表面状態によって異なり、その表面状態の中でも表面粗さが最も影響する。   Specifically, when producing an electrolytic copper seed plate for copper electrolytic refining, copper is electrodeposited on a cathode base plate to a thickness of about 0.6 mm using crude copper as an anode, and then the copper is peeled off. A seed plate is made. If the electrodeposition force between the mother plate and the seed plate is too high at the time of peeling, the thin seed plate is broken or wrinkled. On the other hand, if the electrodeposition force is too low, the seed plate will spontaneously peel from the mother plate during electrodeposition. The electrodeposition force of the seed plate and the mother plate varies depending on the surface state of the mother plate, and the surface roughness is most influenced by the surface state.

母板の種類としては、チタンとステンレスが一般的に多く用いられている。チタン製の母板は、耐食性が良好で連続使用しても電着面の表面粗さの変化は少ないが、高価なため生産コストの上昇をまねくという問題がある。一方、ステンレス製の母板は、安価なため広く使われるようになってきたが、チタンのように耐食性が高くなく、電着面の表面粗さの管理が難しいため、電着中に種板が自然剥離したり、引き剥がし時に種板に破れやシワが生じたりする問題がある。   As a kind of mother board, titanium and stainless steel are generally used in many cases. The titanium base plate has good corrosion resistance, and there is little change in the surface roughness of the electrodeposited surface even if it is continuously used. However, since it is expensive, there is a problem that the production cost increases. On the other hand, stainless steel base plates have come to be widely used because they are inexpensive, but they are not as corrosion-resistant as titanium, and it is difficult to manage the surface roughness of the electrodeposition surface. However, there is a problem that the seed plate is naturally peeled off or the seed plate is torn or wrinkled at the time of peeling.

このようなステンレス製の銅電解精製用種板における問題に対して、特許文献1には、自然剥離をなくし且つ電着後の種板の引き剥がしを容易にするために、銅種板電解のステンレス母板として、中心線平均粗さ(Ra)が0.15〜0.6μm、十点平均粗さ(Rz)が0.7〜2.5μmの表面粗さで、微細亀甲状の模様を有する冷間圧延ステンレス鋼板を用いることが提案されている。   In order to eliminate such natural peeling and facilitate the peeling of the seed plate after electrodeposition, Patent Document 1 discloses a copper seed plate electrolysis in order to solve such a problem in the stainless steel copper electrolytic purification seed plate. As a stainless steel base plate, it has a surface roughness with a center line average roughness (Ra) of 0.15-0.6 μm and a ten-point average roughness (Rz) of 0.7-2.5 μm, and a fine turtle-shaped pattern. It has been proposed to use a cold-rolled stainless steel plate.

また、特許文献2には、電着中の種板の自然剥離を防止し且つ電着後の種板の引き剥がし性を確保するために、主面(電着面)が略四角形のステンレス母板の電着面を9等分した各領域の十点平均粗さ(Rz)を平均した表面粗さを3.0μm以上にすることが記載されている。   Further, Patent Document 2 discloses a stainless steel mother whose main surface (electrodeposition surface) is substantially rectangular in order to prevent natural separation of the seed plate during electrodeposition and to ensure the peelability of the seed plate after electrodeposition. It is described that the surface roughness obtained by averaging the ten-point average roughness (Rz) of each region obtained by dividing the electrodeposited surface of the plate into nine equal parts is 3.0 μm or more.

上記特許文献1あるいは特許文献2に記載の方法によれば、種板の自然剥離の防止や電着後の種板の引き剥がし性をある程度改善することができるが、いずれも十分であるとは言えないため、更なる改善向上が求められている。   According to the method described in Patent Document 1 or Patent Document 2 described above, it is possible to prevent natural peeling of the seed plate and to improve the peelability of the seed plate after electrodeposition to some extent. Since it cannot be said, further improvement is required.

特開平06−346269号公報Japanese Patent Laid-Open No. 06-346269 特開2011−032564号公報JP 2011-032564 A

上記したように、銅電解精製用の種板の製造においては、種板とステンレス母板の電着力が低いと電着中に種板がステンレス母板から自然剥離しやすく、逆に種板とステンレス母板の電着力が高いと引き剥がし時に種板に破れやシワが発生しやすかった。しかし、このような種板の自然剥離及び引き剥がし時における種板の破れやシワの発生がなく、十分な繰り返し使用に耐えるステンレス母板は提供されていなかった。   As described above, in the production of a seed plate for copper electrolytic purification, if the electrodeposition force between the seed plate and the stainless steel mother plate is low, the seed plate is easily peeled off naturally from the stainless steel mother plate during electrodeposition. When the electrodeposition power of the stainless steel base plate was high, the seed plate was easily torn or wrinkled during peeling. However, there has been no stainless steel base plate that can withstand repeated use without causing the seed plate to be broken or wrinkled during such natural peeling and peeling of the seed plate.

しかも、種板の電着並びに引き剥がしをする際に、ステンレス母板の表面は電解液による腐食と種板の引き剥がしによる欠損により表面粗さが増加し、そのため母板を繰り返して使用するに伴い種板の引き剥がしが困難になっていた。このような場合には、種板の引き剥がし性を回復させるために、ステンレス母板表面の再研磨を頻繁に行わなければならず、その結果として研磨工数が増大してしまい、研磨による劣化によって母板の寿命も短くなるという問題があった。   In addition, when the seed plate is electrodeposited and peeled off, the surface of the stainless steel mother board increases in surface roughness due to corrosion by the electrolyte and defects due to peeling off the seed board, so the mother board is used repeatedly. Along with this, it was difficult to peel off the seed plate. In such a case, in order to recover the peelability of the seed plate, the surface of the stainless steel base plate must be re-polished frequently, resulting in an increase in the number of polishing steps, and deterioration due to polishing. There was a problem that the life of the mother board was shortened.

本発明は、このような従来の問題を解決し、電着時の自然剥離や電着後の種板の引き剥がし時に破れやシワが発生しないことに加え、表面を再研磨する頻度が少なくて済み、且つ寿命の長いステンレス母板を提供すること、及び、そのステンレス母板を用いた銅電解精製用種板の製造方法を提供することを目的とする。   The present invention solves such a conventional problem, and in addition to natural peeling at the time of electrodeposition and tearing or wrinkling at the time of peeling off the seed plate after electrodeposition, the frequency of re-polishing the surface is low. An object of the present invention is to provide a stainless steel base plate having a long life and a method for producing a seed plate for copper electrolytic purification using the stainless steel base plate.

発明者らは、上記した従来の問題について鋭意検討した結果、電着中に種板の自然剥離が発生せず且つ電着後の種板の引き剥がし性にも優れていて、電着面における表面粗さが同じステンレス母板であっても、電着面の研磨方向を電着時に電解槽に吊り下げたときの上下方向に対して略直角方向とし且つ電着面に剥離剤を塗布したときには、電着後の種板の引き剥がし性がより一層向上することを見出した。   As a result of intensive studies on the above-described conventional problems, the inventors did not experience spontaneous peeling of the seed plate during electrodeposition and had excellent peelability of the seed plate after electrodeposition, Even if the stainless steel base plate has the same surface roughness, the polishing direction of the electrodeposition surface is set to a direction substantially perpendicular to the vertical direction when suspended in the electrolytic cell during electrodeposition, and a release agent is applied to the electrodeposition surface. Sometimes, it has been found that the peelability of the seed plate after electrodeposition is further improved.

この知見に基づいて更に調査検討を重ねたところ、ステンレス母板の電着面に剥離剤を塗布すると、塗布された剥離剤は研磨によるヘアライン状の研磨傷に沿って流れるため、電着面の研磨方向を電着時に電解槽に吊り下げたときの上下方向に対して略直角方向としたときには、横方向の研磨傷の溝で剥離剤が保持されるため剥離剤の垂れ落ちが少なく、電着面に残る剥離剤が多くなっていること、そのため電着後の種板の引き剥がし性が向上することが判明し、本発明に至ったものである。   Based on this knowledge, further investigations were conducted, and when a release agent was applied to the electrodeposition surface of the stainless steel mother board, the applied release agent flowed along the hairline-shaped polishing scratches caused by polishing. When the polishing direction is set to a direction substantially perpendicular to the vertical direction when hung from the electrolytic cell during electrodeposition, the release agent is held by the grooves in the lateral polishing scratches, so that the release agent does not sag drastically. It has been found that the amount of release agent remaining on the contact surface is increased, and therefore the peelability of the seed plate after electrodeposition is improved, leading to the present invention.

即ち、本発明が提供するステンレス母板は、銅電解精製用種板の製造に使用する電着面が略四角形のステンレス母板であって、電着面の表面に電解槽に吊り下げたときの上下方向に対し略直交する方向に複数の研磨傷を有し、電着面の一辺及び該一辺に直交する他辺をそれぞれ3等分してなる9領域における十点平均粗さ(Rz)を平均した電着面の表面粗さが3.0μm以上5.0μm以下であって、その電着面に剥離剤が塗布されていることを特徴とする。   That is, the stainless steel base plate provided by the present invention is a stainless steel base plate having a substantially rectangular electrodeposition surface used for the production of a copper electrorefining seed plate, and is hung on the surface of the electrodeposition surface in an electrolytic cell. 10-point average roughness (Rz) in 9 regions having a plurality of polishing flaws in a direction substantially perpendicular to the vertical direction of the electrode and dividing one side of the electrodeposition surface and the other side perpendicular to the one side into three equal parts. The average surface roughness of the electrodeposited surface is 3.0 μm or more and 5.0 μm or less, and a release agent is applied to the electrodeposited surface.

また、本発明が提供する銅電解精製用種板の製造方法は、上記本発明によるステンレス母板を電解槽内に吊り下げて、通電することにより電着面に銅を電着させた後、電着面に電着した銅をステンレス母板から引き剥がして種板とすることを特徴とする。   In addition, the method for producing a seed plate for copper electrolytic purification provided by the present invention is as follows: the stainless steel mother plate according to the present invention is suspended in an electrolytic cell, and then the electrodeposited copper is electrodeposited by energization. The copper electrodeposited on the electrodeposition surface is peeled off from the stainless steel base plate to form a seed plate.

本発明によれば、銅の電解精製用種板を製造する際に、電着中に種板がステンレス母板から自然剥離することがなく、電着後にはステンレス母板からの種板の引き剥がしが容易なステンレス母板を提供することができる。従って、本発明のステンレス母板を用いることにより、シワや破れのない種板を容易に製造することができる。しかも、本発明によるステンレス母板は長寿命化を達成できるため、経済的にも極めて有利である。   According to the present invention, when producing a seed plate for electrolytic purification of copper, the seed plate does not spontaneously peel off from the stainless steel mother plate during electrodeposition, and after the electrodeposition, the seed plate is pulled from the stainless steel mother plate. A stainless steel mother board that can be easily peeled off can be provided. Therefore, by using the stainless steel base plate of the present invention, a seed plate free from wrinkles or tears can be easily manufactured. Moreover, since the stainless steel base plate according to the present invention can achieve a long life, it is extremely advantageous economically.

本発明によるステンレス母板の平面図であり、電着面の十点平均粗さ(Rz)を測定するための9領域を示している。It is a top view of the stainless steel mother board by the present invention, and has shown nine fields for measuring ten point average roughness (Rz) of an electrodeposition surface.

本発明によるステンレス母板の第1の特徴点は、その略四角形の電着面を研磨する際に、図1に示すように、母板1の電着面1aの表面に電解槽に吊り下げたときの上下方向a(縦方向とも称する)に対し略直交する方向b(横方向とも称する)に複数の研磨傷を形成するように研磨され、且つ、その電着面1aの表面粗さが3.0μm以上5.0μm以下に調整されていることである。尚、上記電着面の研磨方法としては、一般的に使用されている平面研削盤や走行式のホイール研磨機などによる研磨方法を用いることができる。   The first feature of the stainless steel base plate according to the present invention is that when the substantially quadrangular electrodeposition surface is polished, as shown in FIG. And polished so as to form a plurality of polishing flaws in a direction b (also referred to as a horizontal direction) substantially perpendicular to the vertical direction a (also referred to as a vertical direction), and the surface roughness of the electrodeposited surface 1a is It is adjusted to 3.0 μm or more and 5.0 μm or less. In addition, as a polishing method for the electrodeposited surface, a polishing method using a generally used surface grinder, a traveling wheel polisher, or the like can be used.

上記電着面の表面粗さとは、図1に示すように、ステンレス母板1の電着面1aの一辺及び該一辺に直交する他辺をそれぞれ3等分してなる9領域における十点平均粗さ(Rz)を測定し、9領域ごとに得られた十点平均粗さ(Rz)を平均した値である。上記9領域における十点平均粗さ(Rz)は、JIS B0601−1994に基づいて求めたものである。尚、十点平均粗さ(Rz)を求めるための粗さ曲線は触針式粗さ測定機を用いて測定されるが、本発明においては触針式粗さ測定機としてミツトヨ社製のSJ−201(商品名)を使用した。   As shown in FIG. 1, the surface roughness of the electrodeposition surface is an average of 10 points in 9 regions obtained by dividing one side of the electrodeposition surface 1a of the stainless base plate 1 and the other side orthogonal to the one side into three equal parts. Roughness (Rz) is measured, and the 10-point average roughness (Rz) obtained for every nine regions is an average value. The ten-point average roughness (Rz) in the nine regions is obtained based on JIS B0601-1994. In addition, although the roughness curve for calculating | requiring ten-point average roughness (Rz) is measured using a stylus-type roughness measuring machine, in this invention, SJ by Mitutoyo Corporation is used as a stylus-type roughness measuring machine. -201 (trade name) was used.

本発明によるステンレス母板の第2の特徴点は、上記した横方向に複数の研磨傷が形成され且つ上記特定の表面粗さに研磨された電着面に、電着した銅の種板の剥ぎ取りをスムーズにするため剥離剤が塗布されていることである。   The second feature of the stainless steel base plate according to the present invention is that the electrodeposited copper seed plate is formed on the electrodeposited surface in which a plurality of polishing flaws are formed in the lateral direction and polished to the specific surface roughness. The release agent is applied for smooth stripping.

上記剥離剤としては、石鹸液、ワニス、重油等のほか、市販の剥離剤を用いることもできる。好適に使用できる市販の剥離剤としては、例えば、北広ケミカル株式会社製のエレカット(商品名)等がある。これらの剥離剤は、必要に応じて水や溶剤等を加えて、適当な濃度に調整することが好ましい。尚、剥離剤の付着量は、剥離剤を塗布して乾燥した後の母板の重量と塗布前の母板の重量との差として求めることができる。   As said release agent, besides a soap solution, varnish, heavy oil, etc., a commercially available release agent can also be used. Examples of commercially available release agents that can be suitably used include ELECUT (trade name) manufactured by Kitahiro Chemical Co., Ltd. These release agents are preferably adjusted to an appropriate concentration by adding water, a solvent, or the like as necessary. In addition, the adhesion amount of a release agent can be calculated | required as a difference of the weight of the mother board after apply | coating and drying a release agent, and the weight of the mother board before application | coating.

上記第1及び第2の特徴点を具えた本発明のステンレス母板は、電着面に塗布した剥離剤が研磨により形成された横方向の研磨傷に沿って流れるため、剥離剤の垂れ落ちが少なく、研磨傷の溝で保持されて電着面に残る剥離剤の量が多くなる。その結果として、本発明のステンレス母板で電着した種板は、電着後の引き剥がし性が向上し、破れやシワの発生を効果的に抑制することができる。   In the stainless steel base plate of the present invention having the first and second features described above, the release agent applied to the electrodeposition surface flows along the lateral polishing scratches formed by polishing, so that the release agent droops. The amount of the release agent retained on the electrodeposition surface by being held in the grooves of the polishing scratches is small. As a result, the seed plate electrodeposited with the stainless steel mother plate of the present invention has improved peelability after electrodeposition, and can effectively suppress the generation of tears and wrinkles.

また、本発明におけるステンレス母板の材質としては、ステンレスであれば特に限定されないが、耐食性と強度の関係からSUS304、SUS304L、SUS316Lのいずれかを用いることが好ましい。   Further, the material of the stainless steel base plate in the present invention is not particularly limited as long as it is stainless steel, but it is preferable to use any one of SUS304, SUS304L, and SUS316L from the relationship between corrosion resistance and strength.

次に、本発明のステンレス母板を用いた銅電解精製用種板の製造方法について説明する。上記のごとく電着面を横方向に研磨し且つその電着面に剥離剤を塗布乾燥させた本発明のステンレス母板を、電解槽内に吊り下げて通電することにより、母板の電着面に銅を電着させる。電着が終了した後、電着面に電着した銅をステンレス母板から引き剥がすことにより、銅電解精製用の種板が得られる。   Next, the manufacturing method of the seed plate for copper electrolytic purification using the stainless steel mother board of this invention is demonstrated. As described above, the electrodeposited surface of the mother plate is hung in the electrolytic cell by energizing the stainless steel mother plate of the present invention, in which the electrodeposited surface is polished laterally and a release agent is applied and dried on the electrodeposited surface. Electrodeposit copper on the surface. After the electrodeposition is completed, the copper electrodeposited on the electrodeposition surface is peeled off from the stainless steel base plate to obtain a seed plate for copper electrolytic purification.

具体的には、本発明のステンレス母板は、銅を電着するため電解槽内に吊り下げる際には、図1に示すように、平面形状が略四角形であるステンレス母板1の上縁部の3箇所に設けた耳板2にビーム3を連結して、このビーム3から電力が供給されるようになっている。   Specifically, when the stainless steel mother board of the present invention is suspended in an electrolytic cell for electrodeposition of copper, as shown in FIG. 1, the upper edge of the stainless steel mother board 1 having a substantially square shape as shown in FIG. The beam 3 is connected to the ear plate 2 provided at three locations of the section, and power is supplied from the beam 3.

このステンレス母板を陰極として電解槽内に装入して吊り下げると共に、その母板の表裏の電着面に対向する位置にそれぞれ粗銅からなる陽極を装入して配置する。これらのステンレス母板の陰極と粗銅の陽極の間に通電することにより、ステンレス母板の表裏両面の電着面に銅を電着させる。電解液には硫酸銅溶液が使用されるが、添加剤と電解条件は電解装置や工程に見合ったものを選べばよい。   The stainless steel base plate is inserted into the electrolytic cell as a cathode and suspended, and anodes made of crude copper are inserted and arranged at positions facing the front and back electrodeposition surfaces of the base plate. By energizing between the cathode of these stainless steel mother boards and the anode of crude copper, copper is electrodeposited on the electrodeposition surfaces on both the front and back surfaces of the stainless steel mother board. A copper sulfate solution is used as the electrolytic solution, but additives and electrolysis conditions may be selected in accordance with the electrolysis apparatus and process.

ステンレス母板の電着面に形成させる種板の厚みは0.6mm程度である。形成された種板は、電着の終了後、引き剥がし装置によりステンレス母板の電着面から引き剥がされる。その際に、破れやシワの発生した種板は検査工程で検出し、不良品として処理される。   The thickness of the seed plate formed on the electrodeposition surface of the stainless steel mother plate is about 0.6 mm. The formed seed plate is peeled off from the electrodeposition surface of the stainless steel mother board by a peeling device after the electrodeposition is completed. At that time, the seed plate in which the tear or wrinkle has occurred is detected in the inspection process and treated as a defective product.

[実施例1]
SUS304製のステンレス板の両面を#40〜#240のサンドペーパーで研磨して、電着面の寸法が105cm×107cmのステンレス母板を作製した。その際、研磨の方向を、電解槽に吊り下げたときの上下方向に対し略直交する方向(横方向)又は略平行する方向(縦方向)とすると共に、電着面の表面粗さを変化させて、試料1〜13の各ステンレス母板を得た。尚、電着面の表面粗さは、電着面の一辺及び該一辺に直交する他辺をそれぞれ3等分してなる9領域における十点平均粗さ(Rz)を平均した値である。
[Example 1]
Both surfaces of a stainless steel plate made of SUS304 were polished with sandpaper of # 40 to # 240 to produce a stainless steel mother plate having a size of electrodeposition surface of 105 cm × 107 cm. At that time, the polishing direction is set to a direction substantially perpendicular to the vertical direction when suspended in the electrolytic cell (lateral direction) or substantially parallel to the vertical direction (longitudinal direction), and the surface roughness of the electrodeposition surface is changed. Thus, stainless steel mother plates of Samples 1 to 13 were obtained. The surface roughness of the electrodeposition surface is a value obtained by averaging ten-point average roughness (Rz) in nine regions obtained by dividing one side of the electrodeposition surface and the other side orthogonal to the one side into three equal parts.

上記横方向の研磨又は縦方向の研磨を施した各ステンレス母板は、剥離液槽に浸漬し、引き出して乾燥させた。剥離剤を塗布して乾燥した後のステンレス母板の重量と塗布前の母板の重量との差から、剥離剤の付着量を求めた。尚、上記剥離液としては北広ケミカル株式会社製のエレカット(商品名)を使用し、その濃度が3kg/mとなるように温水で希釈して用いた。 Each stainless steel base plate subjected to the above-described lateral polishing or vertical polishing was immersed in a stripping solution tank, pulled out, and dried. From the difference between the weight of the stainless steel base plate after the release agent was applied and dried and the weight of the base plate before application, the amount of the release agent adhered was determined. In addition, Kitahiro Chemical Co., Ltd. ELECUT (trade name) was used as the stripping solution, and it was diluted with warm water so that its concentration was 3 kg / m 3 .

上記試料1〜13の各ステンレス母板を電解槽内に吊り下げ、下記表1に示す電解条件により電解して電着面に銅を電着させた。その後、ステンレス母板を電解槽から引き上げ、電着面に電着した銅をステンレス母板から引き剥がして銅電解精製用の種板を製造した。   Each of the stainless steel base plates of Samples 1 to 13 was suspended in an electrolytic bath, and electrolyzed under the electrolysis conditions shown in Table 1 below, and copper was electrodeposited on the electrodeposition surface. Thereafter, the stainless steel mother plate was pulled up from the electrolytic cell, and the copper electrodeposited on the electrodeposition surface was peeled off from the stainless steel mother plate to produce a seed plate for copper electrolytic purification.

Figure 2014214352
Figure 2014214352

種板を剥離した後のステンレス母板は、再び剥離剤を塗布して乾燥した後、電解槽内に装入し、電解を繰り返して種板を製造した。ステンレス母板を延べ160回繰り返し使用して種板を製造したとき、回収した160枚の種板について不良の有無と、発生した不良の状態を調べた。   After the seed plate was peeled off, the stainless steel mother plate was again coated with a release agent and dried, and then placed in an electrolytic cell, and electrolysis was repeated to produce a seed plate. When a seed plate was manufactured by repeatedly using a stainless steel base plate 160 times, the recovered 160 seed plates were examined for defects and the state of defects that occurred.

試料1〜13の各ステンレス母板について、上記不良の有無と不良の状態を調査した結果を、ステンレス母板の研磨方向と電着面の表面粗さ(Rz)及び剥離剤付着量と共に、下記表2に示した。   About each stainless steel mother board of samples 1-13, the result of investigating the existence of the above-mentioned defect and the state of the defect together with the polishing direction of the stainless steel mother board, the surface roughness (Rz) of the electrodeposited surface, and the amount of release agent attached are as follows. It is shown in Table 2.

Figure 2014214352
Figure 2014214352

上記表2の結果から、剥離剤の付着量はステンレス母板の研磨方向及び電着面の表面粗さと相関があり、更に縦方向の研磨に比較して横方向の研磨の方が比較的多くの剥離剤が付着残存していることが分る。   From the results of Table 2 above, the amount of the release agent attached has a correlation with the polishing direction of the stainless steel base plate and the surface roughness of the electrodeposited surface, and the polishing in the horizontal direction is relatively larger than the polishing in the vertical direction. It can be seen that the release agent remains attached.

具体的には、表面粗さが3μm未満のものは研磨方向によらず自然剥離が発生したが、3μm以上のものでは自然剥離は発生しなかった。また、縦方向の研磨では表面粗さ4μm以上で引き剥がし不良が発生したが、横方向の研磨では表面粗さ5μmまで引き剥がし不良が発生しなかった。このことから、ほぼ同じ表面粗さであっても、横研磨したステンレス母板では縦研磨と比較して不良板の発生が少なく、より有効であることが確認された。   Specifically, spontaneous peeling occurred regardless of the polishing direction when the surface roughness was less than 3 μm, but spontaneous peeling did not occur when the surface roughness was 3 μm or more. Further, in the polishing in the vertical direction, a peeling failure occurred with a surface roughness of 4 μm or more, but in the polishing in the horizontal direction, the peeling failure did not occur up to a surface roughness of 5 μm. From this fact, it was confirmed that even if the surface roughness was almost the same, the laterally polished stainless steel base plate was less effective than the vertical polishing and was more effective.

更に、上記した電解の繰り返しにより製造した160枚の種板に不良が発生しなかったステンレス母板のうち、試料2、3、5並びに試料9、10、13のステンレス母板について、電着面の表面粗さが増大して規定範囲である5μmを超えて払い出されるまでの年間使用回数を調べ、その結果を下記表3に示した。   Further, among the 160 stainless steel base plates in which defects were not generated in the 160 seed plates produced by repeating the above-described electrolysis, the electrodeposition surfaces of the stainless base plates of Samples 2, 3, 5 and Samples 9, 10, 13 The number of times of annual use until the surface roughness of the steel sheet was increased and discharged beyond the specified range of 5 μm was examined, and the results are shown in Table 3 below.

Figure 2014214352
Figure 2014214352

上記表3の結果から分るように、研磨による初期の表面粗さが低いほど繰り返し使用回数は多くなった。しかし、縦方向の研磨を実施した試料9、10、13のステンレス母板については、1ヶ月から4ヶ月程度で表面粗さが増大して使用できなくなった。この結果は、剥離液の付着量が少ない縦研磨の母板では、種板の電着と引き剥がしを繰り返す際に電解液による腐食と引き剥がしによる欠損が起こりやすく、横研磨の母板と比較して表面粗さの増大速度が速いことを示唆している。   As can be seen from the results in Table 3, the lower the initial surface roughness by polishing, the greater the number of repeated uses. However, the stainless steel base plates of Samples 9, 10, and 13 that had been polished in the vertical direction could not be used because the surface roughness increased in about 1 to 4 months. As a result, in the case of vertical polishing base plate with a small amount of stripping solution attached, it is easy to cause corrosion due to electrolytic solution and peeling due to peeling during repeated electrodeposition and peeling of the seed plate. This suggests that the increasing speed of the surface roughness is fast.

以上の結果から、横方向に研磨したステンレス母板は、縦方向に研磨した母板よりも多くの剥離剤を保持することができ、電着した種板の剥取不良を抑制することができる。   From the above results, the stainless steel base plate polished in the horizontal direction can hold more release agent than the base plate polished in the vertical direction, and can suppress the peeling failure of the electrodeposited seed plate. .

[実施例2]
上記実施例1と同様にして、研磨の方向が横方向又は縦方向であり且つ電着面の表面粗さを変化させた試料14〜17の各ステンレス母板を作製した。各ステンレス母板は、上記実施例1と同様に剥離剤を塗布して乾燥した後、電解槽内に吊り下げ、上記表1に示す電解条件により電解して銅を電着させた。
[Example 2]
In the same manner as in Example 1, each stainless steel base plate of Samples 14 to 17 in which the polishing direction was the horizontal direction or the vertical direction and the surface roughness of the electrodeposition surface was changed was produced. Each stainless steel base plate was coated with a release agent in the same manner as in Example 1 and dried, then suspended in an electrolytic cell, and electrolyzed under the electrolysis conditions shown in Table 1 to electrodeposit copper.

その後、電着面に電着した銅を母板から引き剥がして、銅電解精製用の種板を製造した。いずれのステンレス母板でも、不良が発生することなく種板を製造することができた。   Thereafter, the copper electrodeposited on the electrodeposition surface was peeled off from the base plate to produce a seed plate for copper electrolytic purification. With any stainless steel base plate, a seed plate could be produced without causing defects.

種板を剥離したステンレス母板は、再び剥離剤を塗布して乾燥した後、電解槽内に装入し、電解による種板の製造を繰り返した。電着面の表面粗さが増大して規定範囲である5μmを超えて使用不能となり、払い出されるまでの繰り返し使用回数を調べ、その結果を下記表4に示した。   The stainless steel mother plate from which the seed plate was peeled was again coated with a release agent and dried, and then inserted into the electrolytic cell, and the production of the seed plate by electrolysis was repeated. The surface roughness of the electrodeposited surface was increased, and the use range exceeded 5 μm, which was the specified range, and the number of repeated use until it was dispensed was examined. The results are shown in Table 4 below.

Figure 2014214352
Figure 2014214352

上記表4から分るように、横方向に研磨し且つ電着面の表面粗さが本発明の範囲内にある試料14〜15のステンレス母板は、剥離剤濃度が希薄であっても、電解中における種板の保持製に優れていて自然剥離がなく、しかも良好な引き剥がし性により破れやシワの発生がない種板が得られることが分かった。   As can be seen from Table 4 above, the stainless steel base plates of Samples 14 to 15 that are polished in the lateral direction and the surface roughness of the electrodeposited surface is within the scope of the present invention, even if the release agent concentration is dilute, It has been found that a seed plate is obtained that is excellent in holding a seed plate during electrolysis, does not spontaneously peel, and does not break or wrinkle due to good peelability.

1 母板
1a 電着面
2 耳板
3 ビーム
1 Base plate 1a Electrodeposition surface 2 Ear plate 3 Beam

Claims (2)

銅電解精製用種板の製造に使用する電着面が略四角形のステンレス母板であって、電着面の表面に電解槽に吊り下げたときの上下方向に対し略直交する方向に複数の研磨傷を有し、電着面の一辺及び該一辺に直交する他辺をそれぞれ3等分してなる9領域における十点平均粗さ(Rz)を平均した電着面の表面粗さが3.0μm以上5.0μm以下であって、その電着面に剥離剤が塗布されていることを特徴とするステンレス母板。   The electrodeposition surface used for the production of the copper electrorefining seed plate is a substantially rectangular stainless steel mother plate, and a plurality of the electrodeposition surfaces in a direction substantially perpendicular to the vertical direction when suspended on the electrolytic cell on the surface of the electrodeposition surface The surface roughness of the electrodeposited surface obtained by averaging the ten-point average roughness (Rz) in nine regions each having a polishing flaw and dividing one side of the electrodeposited surface and the other side orthogonal to the one side into three equal parts. A stainless steel mother board having a thickness of 0.0 μm or more and 5.0 μm or less, and a release agent applied to the electrodeposition surface. 請求項1に記載のステンレス母板を電解槽内に吊り下げて、通電することにより電着面に銅を電着させた後、電着面に電着した銅をステンレス母板から引き剥がして種板とすることを特徴とする銅電解精製用種板の製造方法。   The stainless steel base plate according to claim 1 is suspended in an electrolytic cell, and copper is electrodeposited on the electrodeposition surface by energizing, and then the copper electrodeposited on the electrodeposition surface is peeled off from the stainless steel base plate. A method for producing a seed plate for copper electrolytic purification, characterized by using a seed plate.
JP2013093228A 2013-04-26 2013-04-26 Stainless steel mother board and method for producing seed plate for copper electrolytic purification Active JP6003788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093228A JP6003788B2 (en) 2013-04-26 2013-04-26 Stainless steel mother board and method for producing seed plate for copper electrolytic purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093228A JP6003788B2 (en) 2013-04-26 2013-04-26 Stainless steel mother board and method for producing seed plate for copper electrolytic purification

Publications (2)

Publication Number Publication Date
JP2014214352A true JP2014214352A (en) 2014-11-17
JP6003788B2 JP6003788B2 (en) 2016-10-05

Family

ID=51940413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093228A Active JP6003788B2 (en) 2013-04-26 2013-04-26 Stainless steel mother board and method for producing seed plate for copper electrolytic purification

Country Status (1)

Country Link
JP (1) JP6003788B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182298A (en) * 2021-11-15 2022-03-15 新余市木林森线路板有限公司 Method for utilizing electrolytic mother copper plate recovered from circuit board alkaline etching copper
JP7196574B2 (en) 2018-11-30 2022-12-27 住友金属鉱山株式会社 Cathode plate for electrolysis and electrorefining method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100078319A1 (en) * 2007-02-13 2010-04-01 Outotec Oyj Method of manufacturing a cathode plate, and a cathode plate
JP2011032564A (en) * 2009-08-05 2011-02-17 Sumitomo Metal Mining Co Ltd Mother sheet for starting sheet in copper electrolysis, and method for production of starting sheet in copper electrorefining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100078319A1 (en) * 2007-02-13 2010-04-01 Outotec Oyj Method of manufacturing a cathode plate, and a cathode plate
JP2011032564A (en) * 2009-08-05 2011-02-17 Sumitomo Metal Mining Co Ltd Mother sheet for starting sheet in copper electrolysis, and method for production of starting sheet in copper electrorefining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7196574B2 (en) 2018-11-30 2022-12-27 住友金属鉱山株式会社 Cathode plate for electrolysis and electrorefining method using the same
CN114182298A (en) * 2021-11-15 2022-03-15 新余市木林森线路板有限公司 Method for utilizing electrolytic mother copper plate recovered from circuit board alkaline etching copper

Also Published As

Publication number Publication date
JP6003788B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
TW379260B (en) Method of surface-roughening treatment of copper foil
JP5323677B2 (en) Method and apparatus for producing surface roughened copper plate, and surface roughened copper plate
JP2012211397A (en) Stainless steel electrolytic plate
US8062498B2 (en) Method of manufacturing a cathode plate, and a cathode plate
KR101325359B1 (en) Method and Apparatus for Manufacturing Metal Foil
JP6003788B2 (en) Stainless steel mother board and method for producing seed plate for copper electrolytic purification
TW201704557A (en) Production method for stainless steel containing member
CN103173831A (en) Surface hardening process of aluminum alloy die for bottle blowing machines
JP2014091845A (en) Nickel plating material and method for manufacturing the same
FI68430B (en) KATOD FOER ELEKTROLYTISK RENING AV KOPPAR
JP2013181180A (en) Pretreatment method for electroplating, and method of producing copper clad laminated resin film by electroplating method including the pretreatment method
CN104028716B (en) The method of nickel plating fourplatemold narrow boards is repaired with the plating of Ni-Co-W alloy plating liquid
BRPI0409978A (en) Method of providing an electrically conductive coating on a cathode plate, anode for use in an electroplating and upper portion of a cathode plate having a suspension bar and a cathode plate and process for polishing a cathode plate
CN101962797A (en) Disposable electrolytic cell for etching aluminium foil
JP5084055B2 (en) Electrolytic degreasing apparatus and electrolytic degreasing method
CN109097779A (en) A kind of electrolytic copper foil titanium cathode roller chemical polishing solution and polishing method
JP2010235974A (en) Production method of nickel alloy electroformed film, and nickel alloy electroformed film
CN219117594U (en) Niobium material stretching surface treatment device for capacitor
JP2006183107A (en) Conductor roll
CN201857436U (en) Cylinder pulling plate for electroplating process
KR101373167B1 (en) Apparatus and method for coating of strip
JP5014782B2 (en) Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material
JP3540903B2 (en) Temper rolling roll for plated steel strip with excellent foreign matter adhesion resistance
JP2009256742A (en) Copper electro-refining method in which planned blackout is carried out
JP4765426B2 (en) Method for producing electrotinned steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150