JP2014214169A - Two liquid type epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material - Google Patents

Two liquid type epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material Download PDF

Info

Publication number
JP2014214169A
JP2014214169A JP2013089900A JP2013089900A JP2014214169A JP 2014214169 A JP2014214169 A JP 2014214169A JP 2013089900 A JP2013089900 A JP 2013089900A JP 2013089900 A JP2013089900 A JP 2013089900A JP 2014214169 A JP2014214169 A JP 2014214169A
Authority
JP
Japan
Prior art keywords
reinforced composite
epoxy resin
fiber
resin composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013089900A
Other languages
Japanese (ja)
Inventor
岡 英樹
Hideki Oka
英樹 岡
富岡 伸之
Nobuyuki Tomioka
伸之 富岡
史郎 本田
Shiro Honda
史郎 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013089900A priority Critical patent/JP2014214169A/en
Publication of JP2014214169A publication Critical patent/JP2014214169A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Abstract

PROBLEM TO BE SOLVED: To provide a two liquid type epoxy resin composition: excellent in workability during resin preparation, viscosity stability of a resin composition at low temperature and impregnating ability by holding low viscosity during injection into reinforced fibers; and capable of hardening itself in a short time during molding and providing a fiber reinforced composite material high in dimensional accuracy, and a fiber reinforced composite material using the same.SOLUTION: The two liquid type epoxy resin composition for fiber reinforced composite materials includes the components of following [A]-[D], where an acid dissociation constant pKa of each compound corresponding to the component [C] is 10.2 or more and 13 or less, and the component [D] is a liquid at normal temperature or a solid having a melting point of 90°C or less. [A] is epoxy resin, [B] is acid anhydride, [C] is a compound having a hydroxyphenyl structure, and [D] is an organic phosphorous compound or an imidazole derivative.

Description

本発明は、繊維強化複合材料に用いられる2液型エポキシ樹脂組成物、2液型エポキシ樹脂組成物に用いられる硬化剤液、およびそれを用いた繊維強化複合材料に関するものである。   The present invention relates to a two-component epoxy resin composition used for a fiber-reinforced composite material, a curing agent solution used for a two-component epoxy resin composition, and a fiber-reinforced composite material using the same.

強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、強化繊維とマトリックス樹脂の利点を生かした材料設計が出来るため、航空宇宙分野を始め、スポーツ分野、一般産業分野などに用途が拡大されている。   Fiber reinforced composite materials composed of reinforced fibers and matrix resins can be designed using the advantages of reinforced fibers and matrix resins, so the applications are expanded to aerospace, sports, general industrial fields, etc. .

強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維などが用いられる。マトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂のいずれも用いられるが、強化繊維への含浸が容易な熱硬化樹脂が用いられることが多い。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ビスマレイミド樹脂、シアネート樹脂などが用いられる。   As the reinforcing fiber, glass fiber, aramid fiber, carbon fiber, boron fiber or the like is used. As the matrix resin, either a thermosetting resin or a thermoplastic resin is used, but a thermosetting resin that can be easily impregnated into the reinforcing fiber is often used. As the thermosetting resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, bismaleimide resin, cyanate resin and the like are used.

繊維強化複合材料の製造には、プリプレグ法、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法、RTM(Resin Transfer Molding:樹脂注入成形)法などの方法が適用される。   For the production of the fiber reinforced composite material, a prepreg method, a hand layup method, a filament winding method, a pultrusion method, an RTM (Resin Transfer Molding) method, or the like is applied.

近年、世界的に自動車の環境規制が厳しくなる中、内外の自動車メーカーは燃費性能を左右する車体の軽量化に取り組んでおり、重量で鉄の半分、アルミの7割程度となる炭素繊維複合材料の適用が活発に検討されている。自動車用の各種部材は、軽量化とともに高い剛性、強度特性が求められ、かつ、三次元的な複雑形状を有する場合が多い。従って、高剛性・高強度な炭素繊維を連続繊維として用い、複雑形状に対応可能なRTM法が有力な成形方法となっている。RTM法とは型内に強化繊維基材を配置した後に型を閉じ、樹脂注入口から樹脂を注入し強化繊維に含浸させた後に樹脂を硬化させ、型を開放して成形品を取り出すことで繊維強化複合材料を得る方法である。ここで、自動車への炭素繊維複合材料普及の大きな課題が生産性であり、これが障壁となり一部の高級車に僅かに採用されるにとどまっている。   In recent years, environmental regulations for automobiles have become more stringent worldwide, and domestic and overseas automobile manufacturers have been working to reduce the weight of the vehicle body, which affects fuel efficiency. Carbon fiber composite materials that are half the weight of iron and about 70% of aluminum The application of is being studied actively. Various members for automobiles are required to have high rigidity and strength characteristics as well as weight reduction, and often have a three-dimensional complicated shape. Therefore, the RTM method capable of dealing with complicated shapes using high-rigidity and high-strength carbon fibers as continuous fibers is a promising forming method. The RTM method is to close the mold after placing the reinforcing fiber base in the mold, inject the resin from the resin injection port, impregnate the reinforcing fiber, harden the resin, open the mold and take out the molded product This is a method for obtaining a fiber-reinforced composite material. Here, productivity is a major issue for the spread of carbon fiber composite materials in automobiles, which becomes a barrier and is only slightly adopted in some luxury cars.

ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法、RTM法では、成形加工性の観点で2液型エポキシ樹脂組成物が用いられることが多い。2液型エポキシ樹脂組成物とは、エポキシ樹脂を主成分として含む主剤液と硬化剤を主成分として含む硬化剤液とから構成され、使用直前に主剤液と硬化剤液の2液を混合して得られるエポキシ樹脂組成物のことである。それに対し主剤、硬化剤を含めすべての成分が1つに混合されたエポキシ樹脂組成物を1液型エポキシ樹脂組成物という。1液型エポキシ樹脂組成物の場合、保管中にも硬化反応が進行するため冷凍保管が必要となる。また、硬化剤成分は反応性の低い固形状のものを選択する場合が多く、強化繊維に1液型エポキシ樹脂組成物を含浸させるためにはプレスロールなどを使用して高い圧力で押し込まなくてはならない。2液型エポキシ樹脂組成物では、主剤液および硬化剤液とも液状のものとすることで、該主剤液と該硬化剤液とを混合した混合物も低粘度な液状とすることができ、強化繊維へ含浸させることが容易になる。また主剤液と硬化剤液とを別々に保管するため、保管条件に特に制限なく長期保管も可能である。   In the hand lay-up method, filament winding method, pultrusion method, and RTM method, a two-component epoxy resin composition is often used from the viewpoint of moldability. The two-pack type epoxy resin composition is composed of a main agent liquid containing an epoxy resin as a main component and a hardener liquid containing a curing agent as a main component, and two liquids of the main agent liquid and the hardener liquid are mixed immediately before use. It is the epoxy resin composition obtained by this. On the other hand, an epoxy resin composition in which all components including a main agent and a curing agent are mixed together is called a one-pack type epoxy resin composition. In the case of a one-pack type epoxy resin composition, since the curing reaction proceeds during storage, frozen storage is required. In addition, a solid component having low reactivity is often selected as the curing agent component, and in order to impregnate the reinforcing fiber with the one-pack type epoxy resin composition, it is not necessary to use a press roll or the like at high pressure. Must not. In the two-pack type epoxy resin composition, both the main agent liquid and the curing agent liquid are liquid, so that the mixture obtained by mixing the main agent liquid and the curing agent liquid can also be made into a low-viscosity liquid, and the reinforcing fiber It becomes easy to impregnate. Further, since the main agent liquid and the curing agent liquid are stored separately, long-term storage is possible without any particular limitation on the storage conditions.

例えばこのRTM法において、前記したような高いレベルでの生産性を実現するためには、単に樹脂の硬化時間が短いというばかりでなく、次に挙げる4つの条件を一挙に満たすものであることが具体的に求められる。1つ目に、樹脂原料の混合調製作業の際、2液がいずれも低粘度かつ粘度レベルが近く、混合作業性に優れること。2つ目に、混合調製後の樹脂組成物が低温保持下では長時間粘度の上昇が抑えられ安定であること。3つ目に、強化繊維基材への樹脂注入工程の際、樹脂組成物が低粘度であり、かつ注入工程の間、粘度の上昇が抑えられることで含浸性に優れること。4つ目に、100℃付近の低温領域で十分な高速硬化ができることで、成形設備を簡素化でき、副資材等の耐熱性も不要となりコスト低減に繋がると共に、硬化温度と常温との温度差に由来する熱収縮を低減できることで、成形品の表面平滑性が優れること。5つ目に、成形後の脱型工程の際、樹脂が硬化により十分な剛性に到達しており、歪みを生じることが無くスムーズに脱型でき、更に塗装工程を経ても歪みや変形を生じることなく、成形品に高い寸法精度が得られることである。   For example, in this RTM method, in order to realize the productivity at a high level as described above, not only the curing time of the resin is short, but also the following four conditions must be satisfied at once. Specifically required. First, when mixing and preparing resin raw materials, the two liquids are both low in viscosity and close to the viscosity level, so that mixing workability is excellent. Secondly, the resin composition after mixing and preparation should be stable in that the increase in viscosity is suppressed for a long time when kept at a low temperature. Third, the resin composition has a low viscosity during the resin injecting step to the reinforcing fiber base, and the impregnation property is excellent by suppressing an increase in viscosity during the injecting step. Fourth, sufficient high-speed curing in the low temperature region around 100 ° C can simplify the molding equipment, eliminate the need for heat resistance of secondary materials, etc., and reduce costs, and the temperature difference between the curing temperature and room temperature. The surface smoothness of the molded product is excellent by being able to reduce the heat shrinkage derived from the. Fifth, during the demolding process after molding, the resin has reached sufficient rigidity due to curing, can be smoothly demolded without causing distortion, and further undergoes distortion and deformation even after the painting process. It is that high dimensional accuracy can be obtained in the molded product without any problem.

これらの課題に対し、硬化剤に酸無水物とフェノールノボラックを組み合わせて用いることで、ホルマリンの発生が抑えられ、かつ剛性に優れる成形品が得られることから建材向けシートモールディングコンパウンド材料として好適なエポキシ樹脂組成物が開示されている(特許文献1)。しかし、この材料は低温領域での十分な高速硬化性を有するものではなかった。   In response to these problems, the use of a combination of an acid anhydride and phenol novolac as a curing agent suppresses the generation of formalin and provides a molded product having excellent rigidity, and is therefore suitable as a sheet molding compound material for building materials. A resin composition is disclosed (Patent Document 1). However, this material does not have sufficient rapid curability in a low temperature region.

さらに、硬化剤に酸無水物、触媒に有機リン化合物を組み合わせたエポキシ樹脂組成物を用いることで、100℃付近の一定温度条件における、低粘度保持時間と硬化時間のバランスに優れたエポキシ樹脂組成物が開示されている(特許文献2)。しかし、高速硬化性が十分ではないこと、また脱型時における樹脂の剛性が十分でなく、寸法精度が低下する場合があることが問題となっていた。   Furthermore, by using an epoxy resin composition in which an acid anhydride is combined as a curing agent and an organic phosphorus compound is combined as a catalyst, an epoxy resin composition having an excellent balance between low viscosity retention time and curing time under a constant temperature condition around 100 ° C The thing is disclosed (patent document 2). However, there has been a problem that high-speed curability is not sufficient, and the rigidity of the resin at the time of demolding is not sufficient, and the dimensional accuracy may be lowered.

また、硬化剤にフェノール硬化剤、触媒補助材にカルボン酸無水物を少量組み合わせたエポキシ樹脂組成物を用いることで、高耐熱性と高靭性、銅箔への高接着性を一度に達成した電材向けエポキシ樹脂組成物が開示されているが(特許文献3)、これも十分な高速硬化性を有しておらず、また溶媒を必要としており、成形品用途には適さなかった。   In addition, by using an epoxy resin composition that combines a phenol curing agent as a curing agent and a small amount of carboxylic acid anhydride as a catalyst auxiliary material, an electrical material that has achieved high heat resistance, high toughness, and high adhesion to copper foil at once. An epoxy resin composition is disclosed (Patent Document 3), but this also does not have sufficient high-speed curability, requires a solvent, and is not suitable for use as a molded product.

このように、RTM成形などをハイサイクル(1つの成形サイクルに要する時間を短くして一定の時間内で実行する成形サイクルを多くする)にでき、高いレベルでの生産性を実現するに必要な全ての要求を兼ね備えた2液型エポキシ樹脂組成物は、これまで存在しなかった。   In this way, RTM molding or the like can be made into a high cycle (shortening the time required for one molding cycle and increasing the molding cycle to be executed within a certain period of time), which is necessary for realizing a high level of productivity. There has never been a two-pack type epoxy resin composition that has all the requirements.

特開2002−12649号公報JP 2002-12649 A 国際公開2007/125759号パンフレットInternational Publication No. 2007/125759 Pamphlet 特表2009−521566号公報Special table 2009-521666

本発明の目的は、かかる従来技術の欠点を改良し、樹脂調製時の作業性に優れ、樹脂組成物の低温での粘度安定性に優れ、強化繊維への注入時に低粘度を保持し含浸性に優れ、かつ成形時に短時間で硬化し、寸法精度が高い繊維強化複合材料を与える2液型エポキシ樹脂組成物、硬化剤液およびそれを用いた繊維強化複合材料を提供することにある。   The object of the present invention is to improve the disadvantages of the prior art, to improve the workability during resin preparation, to improve the viscosity stability at low temperatures of the resin composition, and to maintain the low viscosity when injected into the reinforcing fiber and impregnation Another object of the present invention is to provide a two-pack type epoxy resin composition, a curing agent liquid, and a fiber reinforced composite material using the same, which give a fiber reinforced composite material that is excellent in the above-described properties and is cured in a short time during molding.

上記課題を解決するため、本発明の繊維強化複合材料用2液型エポキシ樹脂組成物は次の構成を有する。すなわち、次の[A]〜[D]の成分を含み、かつ成分[C]に該当する化合物の少なくとも一種の化合物の酸解離定数pKaが10.2以上13以下であり、かつ成分[D]が常温で液状もしくは融点が130℃以下の固体状である、繊維強化複合材料用2液型エポキシ樹脂組成物である。
[A]エポキシ樹脂
[B]酸無水物
[C]ヒドロキシフェニル構造を有する化合物
[D]有機リン化合物またはイミダゾール誘導体
In order to solve the above problems, the two-pack type epoxy resin composition for fiber-reinforced composite material of the present invention has the following configuration. That is, the acid dissociation constant pKa of at least one of the compounds corresponding to the component [C], which includes the following components [A] to [D], is 10.2 to 13, and the component [D] Is a two-pack type epoxy resin composition for fiber-reinforced composite materials which is liquid at normal temperature or solid with a melting point of 130 ° C. or lower.
[A] epoxy resin [B] acid anhydride [C] compound having hydroxyphenyl structure [D] organophosphorus compound or imidazole derivative

かかる繊維強化複合材料用2液型樹脂組成物は、成分[C]が、ヒドロキシフェニル構造の炭素原子上に電子供与性の置換基を持つ化合物であることが好ましい。   In such a two-component resin composition for fiber-reinforced composite materials, component [C] is preferably a compound having an electron-donating substituent on a carbon atom of a hydroxyphenyl structure.

かかる繊維強化複合材料用2液型樹脂組成物は、成分[B]と成分[C]の質量配合比が99:1〜65:35であることが好ましい。   In such a two-component resin composition for fiber-reinforced composite material, the mass blending ratio of component [B] and component [C] is preferably 99: 1 to 65:35.

かかる繊維強化複合材料用2液型樹脂組成物は、成分[A]がビスフェノールA型エポキシ樹脂であることが好ましい。   In such a two-component resin composition for fiber-reinforced composite material, component [A] is preferably a bisphenol A type epoxy resin.

かかる繊維強化複合材料用2液型樹脂組成物は、成分[B]が脂環式構造を有する酸無水物であることが好ましい。   In such a two-component resin composition for fiber-reinforced composite materials, component [B] is preferably an acid anhydride having an alicyclic structure.

かかる繊維強化複合材料用2液型樹脂組成物は、定温保持下での誘電測定で求められるキュアインデックスが、10%および90%となる時間をそれぞれt10、t90(単位:分)としたとき、t10、t90が、0.5≦t10≦4、0.5≦t90≦9、および1<t90/t10≦2.5を満たす特定温度Tを有することが好ましい。   Such a two-component resin composition for fiber-reinforced composite material has a cure index determined by dielectric measurement under constant temperature holding of 10% and 90%, respectively, when the times are t10 and t90 (unit: minutes), It is preferable that t10 and t90 have a specific temperature T that satisfies 0.5 ≦ t10 ≦ 4, 0.5 ≦ t90 ≦ 9, and 1 <t90 / t10 ≦ 2.5.

かかる繊維強化複合材料用2液型樹脂組成物は、25℃における粘度が0.1〜2.5Pa・sであることが好ましい。   Such a two-component resin composition for fiber-reinforced composite materials preferably has a viscosity at 25 ° C. of 0.1 to 2.5 Pa · s.

かかる繊維強化複合材料用2液型樹脂組成物は、成分[A]からなる主剤液と成分[B]、[C]、[D]からなる硬化剤液とを混合してなるものであることが好ましい。   Such a two-component resin composition for fiber-reinforced composite material is obtained by mixing a main agent liquid composed of component [A] and a curing agent liquid composed of components [B], [C], and [D]. Is preferred.

かかる繊維強化複合材料用2液型樹脂組成物は、硬化剤液の25℃における粘度が0.05〜1.8Pa・sであることが好ましい。   Such a two-component resin composition for fiber-reinforced composite materials preferably has a viscosity of 0.05 to 1.8 Pa · s at 25 ° C. of the curing agent solution.

また、上記課題を解決するため、本発明の繊維強化複合材料は次の構成を有する。すなわち、前記した繊維強化複合材料用2液型エポキシ樹脂組成物と強化繊維を組み合わせ、硬化してなる繊維強化複合材料である。   Moreover, in order to solve the said subject, the fiber reinforced composite material of this invention has the following structure. That is, it is a fiber-reinforced composite material obtained by combining and curing the above-described two-component epoxy resin composition for fiber-reinforced composite material and reinforcing fibers.

かかる繊維強化複合材料は、強化繊維が炭素繊維であることが好ましい。   In such a fiber-reinforced composite material, the reinforcing fiber is preferably a carbon fiber.

本発明によれば、樹脂調製時の作業性に優れ、樹脂組成物の低温での粘度安定性に優れ、強化繊維への注入時に低粘度を保持し含浸性に優れ、かつ成形時に短時間で硬化し、寸法精度が高い繊維複合材料を高い生産性で提供することが可能になる。   According to the present invention, the workability at the time of resin preparation is excellent, the viscosity stability of the resin composition at low temperature is excellent, the low viscosity is maintained at the time of injection into the reinforcing fiber, the impregnation is excellent, and the molding time is short. It becomes possible to provide a fiber composite material which is cured and has high dimensional accuracy with high productivity.

以下に、本発明の望ましい実施の形態について、説明する。
まず、本発明に係るエポキシ樹脂組成物について説明する。
The preferred embodiments of the present invention will be described below.
First, the epoxy resin composition according to the present invention will be described.

本発明に係るエポキシ樹脂組成物は、次の[A]〜[D]の成分を含み、かつ成分[C]に該当する化合物の少なくとも一種の化合物の酸解離定数pKaが10.2以上13以下であり、かつ成分[D]が常温で液状もしくは融点が130℃以下の固体状である、繊維強化複合材料用2液型エポキシ樹脂組成物である。
[A]エポキシ樹脂
[B]酸無水物
[C]ヒドロキシフェニル構造を有する化合物
[D]有機リン化合物またはイミダゾール誘導体
The epoxy resin composition according to the present invention includes the following components [A] to [D], and the acid dissociation constant pKa of at least one compound corresponding to the component [C] is 10.2 or more and 13 or less. And the component [D] is a liquid at a normal temperature or a solid having a melting point of 130 ° C. or lower and is a two-pack type epoxy resin composition for fiber-reinforced composite materials.
[A] epoxy resin [B] acid anhydride [C] compound having hydroxyphenyl structure [D] organophosphorus compound or imidazole derivative

本発明における成分[A]はエポキシ樹脂である。エポキシ樹脂とは、一分子内に2個以上のエポキシ基を有する化合物を意味する。   Component [A] in the present invention is an epoxy resin. An epoxy resin means a compound having two or more epoxy groups in one molecule.

本発明における成分[A]の具体例としては、水酸基を複数有するフェノールから得られる芳香族グリシジルエーテル、水酸基を複数有するアルコールから得られる脂肪族グリシジルエーテル、アミンから得られるグリシジルアミン、オキシラン環を有するエポキシ樹脂、カルボキシル基を複数有するカルボン酸から得られるグリシジルエステルなどが挙げられる。   Specific examples of the component [A] in the present invention include an aromatic glycidyl ether obtained from a phenol having a plurality of hydroxyl groups, an aliphatic glycidyl ether obtained from an alcohol having a plurality of hydroxyl groups, a glycidyl amine obtained from an amine, and an oxirane ring. Examples thereof include epoxy resins and glycidyl esters obtained from carboxylic acids having a plurality of carboxyl groups.

本発明における成分[A]として用いることができる芳香族グリシジルエーテルの例としては、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビスフェノールADのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテル等のビスフェノールから得られるジグリシジルエーテル、フェノールやアルキルフェノール等から得られるノボラックのポリグリシジルエーテル、レゾルシノールのジグリシジルエーテル、ヒドロキノンのジグリシジルエーテル、4,4’−ジヒドロキシビフェニルのジグリシジルエーテル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニルのジグリシジルエーテル、1,6−ジヒドロキシナフタレンのジグリシジルエーテル、9,9’−ビス(4−ヒドロキシフェニル)フルオレンのジグリシジルエーテル、トリス(p−ヒドロキシフェニル)メタンのトリグリシジルエーテル、テトラキス(p−ヒドロキシフェニル)エタンのテトラグリシジルエーテル、ビスフェノールAのジグリシジルエーテルと2官能イソシアネートを反応させて得られるオキサゾリドン骨格を有するジグリシジルエーテルなどが挙げられる。   Examples of the aromatic glycidyl ether that can be used as the component [A] in the present invention include diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl ether of bisphenol AD, diglycidyl ether of bisphenol S, etc. Diglycidyl ether obtained from bisphenol, polyglycidyl ether of novolak obtained from phenol or alkylphenol, diglycidyl ether of resorcinol, diglycidyl ether of hydroquinone, diglycidyl ether of 4,4'-dihydroxybiphenyl, 4,4'- Diglycidyl ether of dihydroxy-3,3 ′, 5,5′-tetramethylbiphenyl, diglycidyl ether of 1,6-dihydroxynaphthalene, 9,9′-bis Reacting diglycidyl ether of 4-hydroxyphenyl) fluorene, triglycidyl ether of tris (p-hydroxyphenyl) methane, tetraglycidyl ether of tetrakis (p-hydroxyphenyl) ethane, diglycidyl ether of bisphenol A and bifunctional isocyanate And diglycidyl ether having an oxazolidone skeleton obtained in the above manner.

本発明における成分[A]として用いることができる脂肪族グリシジルエーテルの例としては、エチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、1,4−ブタンジオールのジグリシジルエーテル、1,6−ヘキサンジオールのジグリシジルエーテル、ネオペンチルグリコールのジグリシジルエーテル、シクロヘキサンジメタノールのジグリシジルエーテル、グリセリンのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールエタンのジグリシジルエーテル、トリメチロールエタンのトリグリシジルエーテル、トリメチロールプロパンのジグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ペンタエリスリトールのテトラグリシジルエーテル、ドデカヒドロビスフェノールAのジグリシジルエーテル、ドデカヒドロビスフェノールFのジグリシジルエーテルなどが挙げられる。   Examples of the aliphatic glycidyl ether that can be used as the component [A] in the present invention include diglycidyl ether of ethylene glycol, diglycidyl ether of propylene glycol, diglycidyl ether of 1,4-butanediol, 1,6- Diglycidyl ether of hexanediol, diglycidyl ether of neopentyl glycol, diglycidyl ether of cyclohexanedimethanol, diglycidyl ether of glycerin, triglycidyl ether of glycerin, diglycidyl ether of trimethylolethane, triglycidyl ether of trimethylolethane , Diglycidyl ether of trimethylolpropane, triglycidyl ether of trimethylolpropane, tetraglycidyl ether of pentaerythritol, Diglycidyl ethers of mosquito hydro bisphenol A, diglycidyl ethers of dodeca hydro bisphenol F and the like.

本発明における成分[A]として用いることができるグリシジルアミンの例としては、ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジルアミノフェノール、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルキシリレンジアミンや、これらのハロゲン、アルキル置換体、水添品などが挙げられる。   Examples of the glycidylamine that can be used as the component [A] in the present invention include diglycidylaniline, diglycidyltoluidine, triglycidylaminophenol, tetraglycidyldiaminodiphenylmethane, tetraglycidylxylylenediamine, and halogen and alkyl substitution thereof. Body and hydrogenated products.

本発明における成分[A]として用いることができるオキシラン環を有するエポキシ樹脂の例としては、ビニルシクロヘキセンジオキシド、ジペンテンジオキシド、3,4−エポキシシクロヘキサンカルボン酸3,4−エポキシキクロヘキシルメチル、アジピン酸ビス(3,4−エポキシキクロヘキシルメチル)、ジシクロペンタジエンジオキシド、ビス(2,3−エポキシシクロペンチル)エーテル、4−ビニルシクロヘキセンジオキシドのオリゴマーなどが挙げられる。   Examples of the epoxy resin having an oxirane ring that can be used as the component [A] in the present invention include vinylcyclohexene dioxide, dipentene dioxide, 3,4-epoxycyclohexanecarboxylic acid 3,4-epoxycyclohexylmethyl, and adipine. Examples include acid bis (3,4-epoxycyclohexylmethyl), dicyclopentadiene dioxide, bis (2,3-epoxycyclopentyl) ether, oligomer of 4-vinylcyclohexene dioxide, and the like.

本発明における成分[A]として用いることができるグリシジルエステルの例としては、フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル等が挙げられる。   Examples of the glycidyl ester that can be used as the component [A] in the present invention include diglycidyl phthalate, diglycidyl terephthalate, diglycidyl hexahydrophthalate, and diglycidyl dimer.

中でも、ビスフェノール化合物のジグリシジルエーテル、すなわちビスフェノール型エポキシ樹脂、特にビスフェノールA型エポキシ樹脂は、樹脂組成物の粘度と、得られる樹脂硬化物の耐熱性や、弾性率等の力学物性とのバランスに優れることから、本発明における成分[A]として好ましく用いられる。かかる成分[A]は、全エポキシ樹脂中に60〜100質量%含まれることが望ましく、特に80〜100質量%含まれることが望ましい。   Among them, diglycidyl ether of a bisphenol compound, that is, a bisphenol type epoxy resin, particularly a bisphenol A type epoxy resin, balances the viscosity of the resin composition with the heat resistance of the resulting cured resin and mechanical properties such as elastic modulus. Since it is excellent, it is preferably used as the component [A] in the present invention. The component [A] is desirably contained in the total epoxy resin in an amount of 60 to 100% by mass, and particularly desirably 80 to 100% by mass.

かかるビスフェノールA型エポキシ樹脂は、繰り返し単位数が0〜0.2の範囲内にあることが好ましく、0〜0.1の範囲内にあることがより好ましい。かかる繰り返し単位数は、次の[化1]で通常表されるビスフェノールA型エポキシ樹脂の化学構造式におけるnに対応する。かかる繰り返し単位数が0.2を上回る場合、エポキシ樹脂組成物の粘度が上昇し強化繊維への含浸性が悪化するとともに、得られる繊維強化複合材料の耐熱性が不十分となる場合がある。   Such a bisphenol A type epoxy resin preferably has a repeating unit number in the range of 0 to 0.2, and more preferably in the range of 0 to 0.1. The number of repeating units corresponds to n in the chemical structural formula of the bisphenol A type epoxy resin usually represented by the following [Chemical Formula 1]. When the number of repeating units exceeds 0.2, the viscosity of the epoxy resin composition increases and the impregnation property to the reinforcing fibers is deteriorated, and the heat resistance of the obtained fiber-reinforced composite material may be insufficient.

Figure 2014214169
Figure 2014214169

かかるビスフェノールA型エポキシ樹脂は、そのエポキシ当量が170〜220の範囲内にあることが好ましく、170〜195の範囲内にあることがより好ましい。かかるエポキシ当量は、通常、上記繰り返し単位数が大きいほど大きくなり、小さいほど小さくなるという関係にある。かかるエポキシ当量が170を下回る場合、低分子量の不純物が含まれていることがあり、成形時の揮発による表面品位の悪化に繋がる場合がある。また、かかるエポキシ当量が220を上回る場合、エポキシ樹脂組成物の粘度が上昇し強化繊維への含浸性が悪化するとともに、得られる繊維強化複合材料の剛性が不十分となる場合がある。   The bisphenol A type epoxy resin preferably has an epoxy equivalent in the range of 170 to 220, and more preferably in the range of 170 to 195. Such an epoxy equivalent generally has a relationship such that it increases as the number of repeating units increases and decreases as it decreases. When the epoxy equivalent is less than 170, low molecular weight impurities may be contained, which may lead to deterioration of the surface quality due to volatilization during molding. Moreover, when this epoxy equivalent exceeds 220, while the viscosity of an epoxy resin composition rises and the impregnation property to a reinforced fiber deteriorates, the rigidity of the fiber reinforced composite material obtained may become inadequate.

本発明における成分[B]は酸無水物、具体的にはカルボン酸無水物であり、より具体的には、エポキシ樹脂のエポキシ基と反応可能なカルボン酸無水物基を一分子中に1個以上有する化合物を指し、エポキシ樹脂の硬化剤として作用する。   Component [B] in the present invention is an acid anhydride, specifically a carboxylic acid anhydride, and more specifically, one carboxylic acid anhydride group capable of reacting with an epoxy group of an epoxy resin per molecule. It refers to a compound having the above and acts as a curing agent for epoxy resin.

本発明における成分[B]は、フタル酸無水物のように、芳香環を有するが脂環式構造を持たない酸無水物であっても良いし、無水コハク酸のように、芳香環、脂環式構造のいずれも持たない酸無水物であっても良いが、低粘度な液状で取り扱いやすく、また硬化物の耐熱性や機械的物性の観点で、脂環式構造を有する酸無水物が用いられることが有効であり、中でもシクロアルカン環またはシクロアルケン環を有するものが好ましい。このような脂環式構造を有する酸無水物の具体例としては、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルジヒドロナジック酸無水物、1,2,4,5−シクロペンタンテトラカルボン酸二無水物、1,2,3,6−テトラヒドロフタル酸無水物、メチル−1,2,3,6−テトラヒドロフタル酸無水物、ナジック酸無水物、メチルナジック酸無水物、ビシクロ[2,2,2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−3−メチル−1,2,5,6−テトラヒドロフタル酸無水物などが挙げられる。中でも、ヘキサヒドロフタル酸無水物、テトラヒドロフタル酸無水物、ナジック酸無水物およびそれらのアルキル置換タイプより選ばれるものは、樹脂組成物の粘度と、得られる樹脂硬化物の耐熱性や、弾性率等の力学物性とのバランスに優れることから、本発明における成分[B]として好ましく用いられる。なお、成分[B]として、脂環式構造を有する酸無水物を用いる場合であっても、本発明に係るエポキシ樹脂組成物には、脂環式構造を持たない酸無水物を含んでいても良い。   Component [B] in the present invention may be an acid anhydride having an aromatic ring but not having an alicyclic structure such as phthalic anhydride, or an aromatic ring or fatty acid such as succinic anhydride. An acid anhydride having no cyclic structure may be used, but an acid anhydride having an alicyclic structure may be used from the viewpoint of heat resistance and mechanical properties of a cured product, since it is a low-viscosity liquid and easy to handle. It is effective to be used, and among them, those having a cycloalkane ring or a cycloalkene ring are preferable. Specific examples of the acid anhydride having such an alicyclic structure include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyldihydronadic acid anhydride, 1,2,4,5-cyclopentane. Tetracarboxylic dianhydride, 1,2,3,6-tetrahydrophthalic anhydride, methyl-1,2,3,6-tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, bicyclo [ 2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -3-methyl-1,2 , 5,6-tetrahydrophthalic anhydride. Among them, those selected from hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride and their alkyl-substituted types are the viscosity of the resin composition, the heat resistance of the resulting cured resin, and the elastic modulus. Therefore, it is preferably used as component [B] in the present invention. Even when an acid anhydride having an alicyclic structure is used as the component [B], the epoxy resin composition according to the present invention contains an acid anhydride having no alicyclic structure. Also good.

本発明における成分[C]は、ヒドロキシフェニル構造を有する化合物であり、具体的には、その化合物の化学構造内に[化2]に示すフェノールを含む構造を有し、エポキシ樹脂の硬化剤として作用する。   Component [C] in the present invention is a compound having a hydroxyphenyl structure. Specifically, the compound [C] has a structure containing phenol represented by [Chemical Formula 2] in the chemical structure of the compound, and serves as a curing agent for an epoxy resin. Works.

Figure 2014214169
Figure 2014214169

この成分[C]は、後に述べるRTM用樹脂組成物に求められる特性の観点から、成分[C]に該当する化合物のうち、少なくとも一種の化合物は、その酸解離定数pKaが10.2以上13以下である必要がある(以下、酸解離定数pKaが10.2以上13以下である成分[C]を、成分[C*]と称することもある)。成分[C]の酸解離定数pKaは、希薄水溶液条件下で、Ka=[H3O+][B−]/[BH](ここで[H3O+]は水素イオン濃度、[BH]は成分[C]の濃度、[B−]は成分[C]がプロトンを放出した共役塩基の濃度を表す)を測定し、pKa=−logKaに従い求める。pKaの測定方法は、例えばpHメーターを用いて水素イオン濃度を測定し、該当物質の濃度と水素イオン濃度から算出することができる。   This component [C] has an acid dissociation constant pKa of 10.2 or more among compounds corresponding to the component [C] from the viewpoint of the characteristics required for the resin composition for RTM described later. (Hereinafter, the component [C] having an acid dissociation constant pKa of 10.2 or more and 13 or less may be referred to as a component [C *]). The acid dissociation constant pKa of the component [C] is Ka = [H3O +] [B −] / [BH] (wherein [H3O +] is the hydrogen ion concentration and [BH] is the component [C] The concentration [B-] represents the concentration of the conjugate base from which the component [C] has released a proton), and is determined according to pKa = -logKa. The measurement method of pKa can be calculated from the concentration of the relevant substance and the hydrogen ion concentration by measuring the hydrogen ion concentration using, for example, a pH meter.

成分[C]として、単一の化合物を用いても、複数の化合物を用いても良く、単一の化合物を用いる場合には、その化合物の酸解離定数pKaが10.2以上13以下である必要があり、複数の化合物を用いる場合には、少なくとも一種の化合物は、その酸解離定数pKaが10.2以上13以下であることが必要である。   As the component [C], a single compound or a plurality of compounds may be used. When a single compound is used, the acid dissociation constant pKa of the compound is 10.2 or more and 13 or less. When a plurality of compounds are used, it is necessary that at least one compound has an acid dissociation constant pKa of 10.2 or more and 13 or less.

成分[C]に該当する化合物として酸解離定数pKaが10.2未満であるもののみを用いた場合、理由は詳細不明であるが、樹脂組成物の40℃程度の低温での粘度安定性が著しく低下し、増粘する。成分[C]に該当する化合物を用いなかったり、成分[C]に該当する化合物として酸解離定数pKaが13よりも大きいもののみを用いたりした場合、低粘度を保持する時間を長く保ちつつ硬化完了までの時間を短縮できるという、RTM用樹脂組成物に求められる特性が発現しない。   When only the compound having an acid dissociation constant pKa of less than 10.2 is used as the compound corresponding to component [C], the reason is unknown, but the viscosity stability of the resin composition at a low temperature of about 40 ° C. Remarkably decreases and thickens. When a compound corresponding to component [C] is not used or only a compound corresponding to component [C] having an acid dissociation constant pKa greater than 13 is used, curing is performed while maintaining a low viscosity for a long time. The property required for the resin composition for RTM that the time to completion can be shortened does not appear.

成分[C]は、調製の容易さ、低温での粘度安定性の観点から、通常は低分子量化合物である。ここでいう低分子量化合物とは分子量が1000以下である化合物を意味する。   Component [C] is usually a low molecular weight compound from the viewpoint of ease of preparation and viscosity stability at low temperatures. The low molecular weight compound here means a compound having a molecular weight of 1000 or less.

本発明における成分[C]としては、ヒドロキシフェニル構造を有する化合物であって、酸解離定数pKaが10.2以上13以下である化合物を少なくとも一種用いれば良いが、ヒドロキシフェニル構造の炭素原子上に電子供与性の置換基があると、ベンゼン環中の電子密度が上昇し水酸基の酸素原子における非共有電子対の電子密度も上昇するため、酸性度は低下し、酸解離定数pKaは増加するので、単一の化合物で酸解離定数pKaが10.2以上13以下となりやすい。電子供与性の置換基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基などのアルキル基、水酸基、メトキシ基、アミノ基、フェニル基などが挙げられる。これらの置換基をヒドロキシフェニル構造中のベンゼン環上に持つ成分[C]の例としては、o−クレゾール(pKa=10.28、分子量108.14)、2,4−ジメチルフェノール(pKa=10.6、分子量122.16)、2,6−ジメチルフェノール(pKa=10.59、分子量122.16)、o−エチルフェノール(pKa=10.2、分子量122.16)、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン(pKa=10.8、分子量284.39)、4,4’−メチレンビス(2,6−ジメチルフェノール)(pKa=10.8、分子量256.34)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)(pKa=11.6、分子量424.66)、4−アミノフェノール(pKa=10.3、分子量109.13)、p−メトキシフェノール(pKa=10.2、分子量124.14)、4−tert−オクチルフェノール(pKa=10.33、分子量206.32)などが挙げられる。   As the component [C] in the present invention, a compound having a hydroxyphenyl structure and having an acid dissociation constant pKa of 10.2 or more and 13 or less may be used. When there is an electron donating substituent, the electron density in the benzene ring increases and the electron density of the lone pair in the oxygen atom of the hydroxyl group also increases, so the acidity decreases and the acid dissociation constant pKa increases. In a single compound, the acid dissociation constant pKa tends to be 10.2 or more and 13 or less. Examples of electron donating substituents include alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, hydroxyl, methoxy Group, amino group, phenyl group and the like. Examples of the component [C] having these substituents on the benzene ring in the hydroxyphenyl structure include o-cresol (pKa = 10.28, molecular weight 108.14), 2,4-dimethylphenol (pKa = 10 .6, molecular weight 122.16), 2,6-dimethylphenol (pKa = 10.59, molecular weight 122.16), o-ethylphenol (pKa = 10.2, molecular weight 122.16), 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane (pKa = 10.8, molecular weight 284.39), 4,4′-methylenebis (2,6-dimethylphenol) (pKa = 10.8, molecular weight 256. 34), 4,4′-methylenebis (2,6-di-tert-butylphenol) (pKa = 11.6, molecular weight 424.66), 4-aminophenone (PKa = 10.3, molecular weight 109.13), p-methoxyphenol (pKa = 10.2, molecular weight 124.14), 4-tert-octylphenol (pKa = 10.33, molecular weight 206.32) and the like. It is done.

また、これらヒドロキシフェニル構造の炭素原子上に電子供与性の置換基を持つ成分[C]のうち、置換基がアルキル基である化合物は取り扱いやすさや硬化物の機械的物性の観点から好ましい。さらに[化3]のように、この置換基のアルキル基が水酸基に対しオルト位にあると、アルキル基自体が水酸基の解離に対し立体障害となり、pKaは増加し、樹脂組成物の取り扱いやすさや粘度安定性の観点から好ましい。   Of these components [C] having an electron-donating substituent on the carbon atom of the hydroxyphenyl structure, a compound in which the substituent is an alkyl group is preferable from the viewpoint of ease of handling and mechanical properties of the cured product. Further, as in [Chemical Formula 3], when the alkyl group of this substituent is ortho to the hydroxyl group, the alkyl group itself becomes a steric hindrance to the dissociation of the hydroxyl group, the pKa increases, and the resin composition is easy to handle. It is preferable from the viewpoint of viscosity stability.

Figure 2014214169
Figure 2014214169

本発明における硬化剤として、成分[B]に成分[C*]を併用することにより、驚くべきことに、低温での粘度安定性に優れながら、成形温度下では低粘度を保持する時間を長く保ちつつ硬化完了までの時間を短縮できるという、RTM用樹脂組成物に求められる特性が発現する。この理由は詳細不明であるが、成分[C*]が硬化剤としてのみならず、成分[B]に対する触媒としても機能しているためと考えられる。併せて、成分[B]と成分[C*]の混合時、両者の反応によるゲル化等は起こらず、貯蔵安定性にも優れ、混合により硬化剤液が適度に増粘され、成分[A]との混合が容易となる傾向にある。   Surprisingly, by using the component [C *] in combination with the component [B] as the curing agent in the present invention, it is surprisingly possible to maintain a low viscosity at a molding temperature while being excellent in viscosity stability at a low temperature. The characteristic requested | required of the resin composition for RTM that the time to completion of hardening can be shortened maintaining is expressed. Although the reason for this is unknown, it is considered that the component [C *] functions not only as a curing agent but also as a catalyst for the component [B]. At the same time, when the component [B] and the component [C *] are mixed, gelation or the like due to the reaction between them does not occur, the storage stability is excellent, and the curing agent liquid is appropriately thickened by mixing. ] Tends to be easy to mix.

本発明における成分[B]と成分[C*]の質量混合比[B]:[C*]は、99:1〜65:35であることが好ましく、99:1〜81:19であることがより好ましい。[B]:[C*]が99:1よりも[B]が多い場合、硬化に要する時間が長くなり生産性が低下する場合がある。一方、[B]:[C*]が65:35よりも[C*]が多い場合、硬化物の耐熱性が低下する場合がある。   The mass mixing ratio [B]: [C *] of the component [B] and the component [C *] in the present invention is preferably 99: 1 to 65:35, and is 99: 1 to 81:19. Is more preferable. When [B]: [C *] is more than 99: 1, the time required for curing may become longer and productivity may be reduced. On the other hand, when [B]: [C *] is more than 65:35, the heat resistance of the cured product may decrease.

本発明における成分[B]と成分[C*]の配合量は、成分[B]中の酸無水物基数と成分[C*]中の水酸基数の合計(H)と成分[A]を含む全エポキシ樹脂中のエポキシ基総数(E)の比、H/E比が0.8〜1.1の範囲を満たす配合量であることが好ましく、0.85〜1.05の範囲を満たす配合量であることがより好ましく、0.9〜1.0の範囲を満たす配合量であることがより好ましい。H/E比が0.8を下回る場合、過剰に存在するエポキシ樹脂同士の重合が進み、硬化物の物性の低下を招く。H/E比が1.1を上回る場合、過剰に存在する硬化剤成分のために系の反応点の濃度が減少し、反応速度が低下し、十分な高速硬化性を発揮できなくなる。   The blending amount of component [B] and component [C *] in the present invention includes the total number of acid anhydride groups in component [B], the total number of hydroxyl groups in component [C *] (H), and component [A]. The ratio of the total number of epoxy groups (E) in all epoxy resins, the H / E ratio is preferably a blending amount satisfying the range of 0.8 to 1.1, and the blending satisfying the range of 0.85 to 1.05 The amount is more preferable, and the blending amount satisfying the range of 0.9 to 1.0 is more preferable. When the H / E ratio is less than 0.8, the polymerization between the excessively existing epoxy resins proceeds and the physical properties of the cured product are deteriorated. When the H / E ratio exceeds 1.1, the concentration of the reaction point of the system decreases due to the excessive curing agent component, the reaction rate decreases, and sufficient high-speed curability cannot be exhibited.

本発明に係るエポキシ樹脂組成物は、成分[D]として、有機リン化合物またはイミダゾール誘導体を含有することが必要であり、これは速硬化性発現のための硬化促進剤として作用する。この成分[D]は、取扱性や成形温度領域での高速硬化性の観点から融点が130℃以下であることが必要であり、中でも常温で液状、若しくは融点が90℃以下であることが好ましい。有機リン化合物やイミダゾール誘導体は、詳細な機構は定かではないが、エポキシ樹脂組成物の硬化反応初期において反応の進行が抑えられ、低粘度を維持する時間が長くなる一方で、硬化反応中後期での反応速度が十分に速く硬化時間を短縮できることから、本発明における硬化促進剤として好ましく用いられる。本発明における成分[D]の配合量は、成分[A]を含む全エポキシ樹脂100質量部に対し5〜25質量部であることが好ましく、10〜20質量部であることがより好ましい。成分[D]が5質量部よりも少ない場合、硬化に要する時間が長くなり十分な高速硬化性を発揮できないことが多い。一方、成分[D]が25質量部よりも多い場合、低粘度を維持する時間が短くなり、強化繊維への含浸が困難となることが多い。   The epoxy resin composition according to the present invention needs to contain an organophosphorus compound or an imidazole derivative as component [D], which acts as a curing accelerator for rapid curing. This component [D] needs to have a melting point of 130 ° C. or lower from the viewpoint of handling properties and high-speed curability in the molding temperature range, and is preferably liquid at room temperature or has a melting point of 90 ° C. or lower. . Although the detailed mechanism of the organophosphorus compound and imidazole derivative is not clear, the progress of the reaction is suppressed at the early stage of the curing reaction of the epoxy resin composition, and the time for maintaining the low viscosity becomes longer. Since the reaction rate is sufficiently high and the curing time can be shortened, it is preferably used as a curing accelerator in the present invention. The compounding amount of the component [D] in the present invention is preferably 5 to 25 parts by mass, more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the total epoxy resin including the component [A]. When the amount of the component [D] is less than 5 parts by mass, the time required for curing becomes long and sufficient high-speed curability cannot be exhibited in many cases. On the other hand, when the amount of the component [D] is more than 25 parts by mass, the time for maintaining the low viscosity is shortened and it is often difficult to impregnate the reinforcing fibers.

本発明における有機リン化合物の具体例としては、トリブチルホスフィン(常温で液状)、トリオクチルホスフィン(常温で液状)、トリシクロヘキシルホスフィン(融点82℃)、トリフェニルホスフィン(融点80℃)、トリベンジルホスフィン(融点99℃)、トリ−o−トリルホスフィン(融点124℃)、トリ−m−トリルホスフィン(融点98℃)、ジフェニルシクロヘキシルホスフィン(融点60℃)、1,3−ビス(ジフェニルホスフィノ)プロパン(融点64℃)などが挙げられる。   Specific examples of the organic phosphorus compound in the present invention include tributylphosphine (liquid at normal temperature), trioctylphosphine (liquid at normal temperature), tricyclohexylphosphine (melting point 82 ° C.), triphenylphosphine (melting point 80 ° C.), tribenzylphosphine. (Melting point 99 ° C), tri-o-tolylphosphine (melting point 124 ° C), tri-m-tolylphosphine (melting point 98 ° C), diphenylcyclohexylphosphine (melting point 60 ° C), 1,3-bis (diphenylphosphino) propane (Melting point 64 ° C.).

本発明におけるイミダゾール誘導体の具体例としては、イミダゾール(融点89℃)、2−エチルイミダゾール(融点80℃)、2−ウンデシルイミダゾール(融点72℃)、2−ヘプタデシルイミダゾール(融点89℃)、1,2−ジメチルイミダゾール(常温で液状)、2−エチル−4−メチルイミダゾール(常温で液状)、1−ベンジル−2−フェニルイミダゾール(常温で液状)、1−ベンジル−2−メチルイミダゾール(常温で液状)、1−シアノエチル−2−メチルイミダゾール(常温で液状)、などが挙げられる。
本発明に係るエポキシ樹脂組成物は、25℃における粘度が0.1〜2.5Pa・sであることが好ましく、0.1〜2.0Pa・sであることがより好ましい。粘度を2.5Pa・s以下とすることにより、成形温度における粘度を低くでき、強化繊維基材への注入時間が短くなり、未含浸の原因を防ぐことができるからである。また、粘度を0.1Pa・s以上とすることにより、成形温度での粘度が低くなりすぎず、強化繊維基材への注入時に空気を巻き込んで生じるピットを防ぐことができ、含浸が不均一になって生じる未含浸領域の発生を防ぐことができるからである。
Specific examples of the imidazole derivative in the present invention include imidazole (melting point 89 ° C), 2-ethylimidazole (melting point 80 ° C), 2-undecylimidazole (melting point 72 ° C), 2-heptadecylimidazole (melting point 89 ° C), 1,2-dimethylimidazole (liquid at room temperature), 2-ethyl-4-methylimidazole (liquid at room temperature), 1-benzyl-2-phenylimidazole (liquid at room temperature), 1-benzyl-2-methylimidazole (room temperature) And 1-cyanoethyl-2-methylimidazole (liquid at room temperature).
The epoxy resin composition according to the present invention preferably has a viscosity at 25 ° C. of 0.1 to 2.5 Pa · s, and more preferably 0.1 to 2.0 Pa · s. This is because by setting the viscosity to 2.5 Pa · s or less, the viscosity at the molding temperature can be lowered, the injection time into the reinforcing fiber base is shortened, and the cause of non-impregnation can be prevented. In addition, by setting the viscosity to 0.1 Pa · s or more, the viscosity at the molding temperature does not become too low, and pits that are generated by entraining air when injected into the reinforcing fiber base can be prevented, and the impregnation is uneven. This is because it is possible to prevent the occurrence of the unimpregnated region.

本発明における粘度は、たとえば、ISO 2884−1(1999)における円錐−平板型回転粘度計を使用した測定方法に基づき、エポキシ樹脂組成物の調製直後の粘度を測定することで求められる。測定装置としては、たとえば、東機産業(株)製のTVE−33H型などを挙げることができる。   The viscosity in this invention is calculated | required by measuring the viscosity immediately after preparation of an epoxy resin composition based on the measuring method using the cone-plate type rotational viscometer in ISO 2884-1 (1999), for example. Examples of the measuring device include TVE-33H type manufactured by Toki Sangyo Co., Ltd.

本発明に係るエポキシ樹脂組成物は、定温保持下での誘電測定で求められるキュアインデックスが、10%および90%となる時間をそれぞれ、t10、t90としたとき、t10、t90が次の3つの関係式を満たす特定温度Tを有することが好ましい。
0.5≦t10≦4・・・・・(式1)
0.5≦t90≦9・・・・・(式2)
1<t90/t10≦2.5・・・(式3)
(ここで、t10は、温度Tにおける測定開始からキュアインデックスが10%に到達するまでの時間(分)を表し、t90は、測定開始からキュアインデックスが90%に到達する時間(分)を表す。)。
In the epoxy resin composition according to the present invention, when the time when the cure index obtained by dielectric measurement under constant temperature holding is 10% and 90% is t10 and t90, respectively, t10 and t90 are the following three. It is preferable to have a specific temperature T that satisfies the relational expression.
0.5 ≦ t10 ≦ 4 (Formula 1)
0.5 ≦ t90 ≦ 9 (Formula 2)
1 <t90 / t10 ≦ 2.5 (Expression 3)
(Here, t10 represents the time (minutes) from the start of measurement at the temperature T until the cure index reaches 10%, and t90 represents the time (minutes) from the start of measurement to the cure index reaching 90%. .)

誘電測定は、粘度や弾性率との一義的な対応はとれないが、低粘度液体から高弾性率非晶質固体まで変化する熱硬化性樹脂の硬化プロファイルを求めるのに有益である。誘電測定では、熱硬化性樹脂に高周波電界を印加して測定される複素誘電率から計算されるイオン粘度(等価抵抗率)の時間変化から硬化プロファイルを求める。   Dielectric measurement cannot be uniquely associated with viscosity and elastic modulus, but is useful for obtaining a curing profile of a thermosetting resin that changes from a low viscosity liquid to a high elastic modulus amorphous solid. In the dielectric measurement, a curing profile is obtained from a change over time in ion viscosity (equivalent resistivity) calculated from a complex dielectric constant measured by applying a high-frequency electric field to a thermosetting resin.

誘電測定装置としては、例えば、Holometrix−Micromet社製のMDE−10キュアモニターが使用できる。測定方法としては、まず、TMS−1インチ型センサーを下面に埋め込んだプログラマブルミニプレスMP2000の下面に内径32mm、厚さ3mmのバイトン製Oリングを設置し、プレスの温度を所定の温度Tに設定する。次に、Oリングの内側にエポキシ樹脂組成物を注ぎ、プレスを閉じ、樹脂組成物のイオン粘度の時間変化を追跡する。誘電測定は、1、10、100、1000、及び10000Hzの各周波数で行い、装置付属のソフトウェア(ユーメトリック)を用いて、周波数非依存のイオン粘度の対数Log(σ)を得る。   As the dielectric measurement device, for example, an MDE-10 cure monitor manufactured by Holometrix-Micromet can be used. As a measuring method, first, a Viton O-ring with an inner diameter of 32 mm and a thickness of 3 mm is installed on the lower surface of the programmable mini press MP2000 with a TMS-1 inch type sensor embedded in the lower surface, and the press temperature is set to a predetermined temperature T. To do. Next, the epoxy resin composition is poured inside the O-ring, the press is closed, and the time change of the ionic viscosity of the resin composition is followed. Dielectric measurement is performed at frequencies of 1, 10, 100, 1000, and 10000 Hz, and the logarithm Log (σ) of ion viscosity independent of frequency is obtained by using software (Umetric) attached to the apparatus.

硬化所要時間tにおけるキュアインデックスは(式4)で求められ、キュアインデックスが10%に達する時間をt10、90%に達する時間をt90とした。
キュアインデックス={log(αt)−log(αmin)}/{log(αmax)−log(αmin)}×100・・・(式4)
キュアインデックス:(単位:%)
αt:時間tにおけるイオン粘度(単位:Ω・cm)
αmin:イオン粘度の最小値(単位:Ω・cm)
αmax:イオン粘度の最大値(単位:Ω・cm)。
The cure index at the time required for curing t was determined by (Equation 4), and the time for the cure index to reach 10% was t10, and the time for the cure index to reach 90% was t90.
Cure index = {log (αt) −log (αmin)} / {log (αmax) −log (αmin)} × 100 (Equation 4)
Cure index: (Unit:%)
αt: Ionic viscosity at time t (unit: Ω · cm)
αmin: minimum value of ion viscosity (unit: Ω · cm)
αmax: Maximum value of ion viscosity (unit: Ω · cm).

誘電測定によるイオン粘度の追跡は硬化反応が速くても比較的容易である。さらにイオン粘度は、ゲル化以降も測定が可能であり、硬化の進行とともに増加し、硬化完了に伴って飽和するという性質をもつため、初期の粘度変化だけではなく硬化反応の進行を追跡するためにも用いることができる。上記のようにイオン粘度の対数を、最小値が0%になり、飽和値(最大値)が100%になるように規格化した数値をキュアインデックスといい、熱硬化性樹脂の硬化プロファイルを記述するために用いられる。初期の粘度上昇の速さに関わる指標としてキュアインデックスが10%に到達する時間を用い、硬化時間に関わる指標としてキュアインデックスが90%に到達する時間を用いると、初期の粘度上昇が小さく、短時間で硬化できるために好ましい条件を記述することができる。   Tracking the ionic viscosity by dielectric measurement is relatively easy even if the curing reaction is fast. In addition, the ionic viscosity can be measured after gelation, and it increases with the progress of curing and saturates as the curing is completed. Therefore, not only the initial viscosity change but also the progress of the curing reaction is tracked. Can also be used. The value obtained by standardizing the logarithm of the ionic viscosity so that the minimum value is 0% and the saturation value (maximum value) is 100% is called the cure index, and describes the curing profile of the thermosetting resin. Used to do. If the time for the cure index to reach 10% is used as an index related to the speed of the initial viscosity increase, and the time for the cure index to reach 90% is used as an index related to the curing time, the initial viscosity increase is small and short. Preferred conditions can be described because they can be cured in time.

本発明における上記3つの関係式の意味を要約すると、特定温度Tにおいてエポキシ樹脂組成物の流動が可能となる時間(流動可能時間)に比例するt10が0.5分以上4分以下(式1)、エポキシ樹脂組成物の硬化がほぼ完了し、脱型が可能となる時間(脱型可能時間)に比例するt90が0.5分以上9分以下(式2)、エポキシ樹脂組成物の脱型可能時間と流動可能時間の比が1より大きく2.5以下(式3)、となる。すなわち、上記範囲の中ではt10が大きい場合、エポキシ樹脂組成物は強化繊維基材に含浸しやすく、t90は小さい場合、エポキシ樹脂組成物の硬化が速いことを意味するので、t90/t10は1より大きく2.5以下の範囲において小さい方がより好ましい。   To summarize the meaning of the above three relational expressions in the present invention, t10 proportional to the time (flowable time) at which the epoxy resin composition can flow at a specific temperature T is 0.5 minutes or more and 4 minutes or less (Formula 1). ), The curing of the epoxy resin composition is almost completed and the time t90 proportional to the time when the mold can be removed (demoldable time) is 0.5 minutes or more and 9 minutes or less (Formula 2). The ratio of moldable time and flowable time is greater than 1 and not more than 2.5 (Equation 3). That is, in the above range, when t10 is large, the epoxy resin composition is easily impregnated into the reinforcing fiber base, and when t90 is small, it means that the epoxy resin composition is cured quickly. Therefore, t90 / t10 is 1 The smaller one is more preferable in the range of 2.5 or less.

なお、後述する成形温度とのバランスを考慮すると、エポキシ樹脂組成物の成形温度(加熱硬化温度)、すなわち、前記特定温度Tは90〜130℃の範囲であることが好ましい。特定温度Tの範囲を90〜130℃とすることにより、硬化に要する時間を短縮するのと同時に、脱型後の熱収縮を緩和させることにより、表面品位の良好な繊維強化複合材料を得ることができる。   In consideration of the balance with the molding temperature described later, the molding temperature (heat curing temperature) of the epoxy resin composition, that is, the specific temperature T is preferably in the range of 90 to 130 ° C. By setting the range of the specific temperature T to 90 to 130 ° C., the time required for curing can be shortened, and at the same time, the thermal shrinkage after demolding can be relaxed to obtain a fiber-reinforced composite material with good surface quality. Can do.

本発明の2液型エポキシ樹脂組成物は、まず、成分[A]であるエポキシ樹脂を主成分として含む主剤液と、成分[B]と成分[C]の硬化剤を主成分として含む硬化剤液とを前記した配合量で配合しておき、使用直前に前記した配合量となるように主剤液と硬化剤液を混合して得られる。前記した成分[D]は主剤液、硬化剤液のどちらに配合しても良いが、硬化剤液に含まれることがより好ましい。他の配合成分は主剤液、硬化剤液のどちらに配合しても良く、あらかじめどちらかあるいは両方に混合して使用できる。   The two-pack type epoxy resin composition of the present invention first comprises a main agent liquid containing the epoxy resin as component [A] as a main component, and a curing agent containing the curing agents as components [B] and [C] as main components. It is obtained by mixing the liquid with the above-mentioned mixing amount and mixing the main agent liquid and the curing agent liquid so that the above-mentioned mixing amount is obtained immediately before use. The component [D] described above may be blended in either the main agent solution or the curing agent solution, but is more preferably contained in the curing agent solution. Other ingredients may be formulated into either base material liquid, the sclerosant liquid may be used in admixture with either or both advance.

本発明の繊維強化複合材料用硬化剤液は、成分[B]、[C]、[D]からなることが好ましい。この繊維強化複合材料用硬化剤液の25℃における粘度は0.05〜1.8Pa・sであることが好ましく、0.05〜0.7Pa・sであることがより好ましい。硬化剤液の粘度を1.8Pa・s以下とすることにより、成形温度における樹脂組成物の粘度を低くでき、強化繊維基材への注入時間が短くなり、未含浸の原因を防ぐことができるからである。また、硬化剤液の粘度を0.05Pa・s以上とすることにより、成形温度での樹脂組成物の粘度が低くなりすぎず、強化繊維基材への注入時に空気を巻き込んで生じるピットを防ぐことができ、含浸が不均一になって生じる未含浸領域の発生を防ぐことができるからである。   It is preferable that the hardening | curing agent liquid for fiber reinforced composite materials of this invention consists of component [B], [C], [D]. The viscosity of the fiber reinforced composite material curing agent solution at 25 ° C. is preferably 0.05 to 1.8 Pa · s, and more preferably 0.05 to 0.7 Pa · s. By setting the viscosity of the curing agent liquid to 1.8 Pa · s or less, the viscosity of the resin composition at the molding temperature can be lowered, the injection time into the reinforcing fiber base can be shortened, and the cause of unimpregnation can be prevented. Because. Moreover, by setting the viscosity of the curing agent liquid to 0.05 Pa · s or more, the viscosity of the resin composition at the molding temperature does not become too low, and pits generated by entraining air when injected into the reinforcing fiber base are prevented. This is because generation of an unimpregnated region caused by uneven impregnation can be prevented.

主剤液と硬化剤液は、混合前に、別々に加温しておくのが良く、成形型への注入など、使用の直前にミキサーを用いて混合してエポキシ樹脂組成物を得るのが、樹脂の可使時間の点から好ましい。   The main agent liquid and the curing agent liquid should be heated separately before mixing, and mixing with a mixer immediately before use, such as pouring into a mold, to obtain an epoxy resin composition, It is preferable from the viewpoint of the pot life of the resin.

本発明の2液型エポキシ樹脂組成物と強化繊維を組み合わせ、硬化して本発明の繊維強化複合材料が得られる。本発明の繊維強化複合材料の成形方法は特に限定されるものではないが、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法、RTM(Resin Transfer Molding:樹脂注入成形)法などの、2液型樹脂を用いる成形方法が好適に用いられる。これらのうち、生産性や成形体の形状自由度といった観点で、特にRTM成形法が好適に用いられる。RTM成形法とは、成形型内に配置した強化繊維基材に樹脂を注入し硬化して強化繊維複合材料を得るものである。   The two-component epoxy resin composition of the present invention and the reinforcing fiber are combined and cured to obtain the fiber-reinforced composite material of the present invention. The molding method of the fiber reinforced composite material of the present invention is not particularly limited, but a two-component type such as a hand lay-up method, a filament winding method, a pultrusion method, an RTM (Resin Transfer Molding) method, or the like. A molding method using a resin is preferably used. Among these, the RTM molding method is particularly preferably used from the viewpoints of productivity and the shape freedom of the molded body. In the RTM molding method, a reinforcing fiber composite material is obtained by injecting a resin into a reinforcing fiber base disposed in a mold and curing the resin.

かかるRTM成形法を例に、本発明の繊維強化複合材料を製造する方法について説明する。まず、前記したようにして、本発明に係るエポキシ樹脂組成物を得る。本発明の繊維強化複合材料は、加温した前記エポキシ樹脂組成物を、特定温度Tに加熱した成形型内に配置した強化繊維基材に注入し、含浸させ、該成形型内で硬化することにより製造されることが好ましい。   Taking the RTM molding method as an example, a method for producing the fiber-reinforced composite material of the present invention will be described. First, as described above, the epoxy resin composition according to the present invention is obtained. In the fiber-reinforced composite material of the present invention, the heated epoxy resin composition is injected into a reinforcing fiber base disposed in a mold heated to a specific temperature T, impregnated, and cured in the mold. Preferably, it is manufactured by.

エポキシ樹脂組成物を加温する温度は、強化繊維基材への含浸性の点から、エポキシ樹脂組成物の初期粘度と粘度上昇の関係から決められ、30〜70℃が好ましく、より好ましくは50〜60℃である。   The temperature at which the epoxy resin composition is heated is determined from the relationship between the initial viscosity of the epoxy resin composition and the increase in viscosity from the viewpoint of impregnation into the reinforcing fiber substrate, and is preferably 30 to 70 ° C., more preferably 50 ~ 60 ° C.

また、かかる繊維強化複合材料の製造方法においては、成形型に複数の注入口を有するものを用い、エポキシ樹脂組成物を複数の注入口から同時に、または時間差を設けて順次注入するなど、得ようとする繊維強化複合材料に応じて適切な条件を選ぶことが、様々な形状や大きさの成形体に対応できる自由度が得られるために好ましい。かかる注入口の数や形状に制限はないが、短時間での注入を可能にするために注入口は多い程良く、その配置は、成形品の形状に応じて樹脂の流動長を短くできる位置が好ましい。   In addition, in the method for producing such a fiber reinforced composite material, a mold having a plurality of injection ports is used, and the epoxy resin composition is injected from a plurality of injection ports simultaneously or sequentially with a time difference. It is preferable to select appropriate conditions according to the fiber-reinforced composite material to obtain flexibility in adapting to molded bodies having various shapes and sizes. The number and shape of such injection ports are not limited, but in order to enable injection in a short time, it is better that there are more injection ports, and the arrangement is a position where the flow length of the resin can be shortened according to the shape of the molded product. Is preferred.

エポキシ樹脂組成物の注入圧力は、通常0.1〜1.0MPaで、型内を真空吸引して樹脂組成物を注入するVaRTM(Vacuum Assist Resin Transfer Molding)法も用いることができるが、注入時間と設備の経済性の点から0.1〜0.6MPaが好ましい。また、加圧注入を行う場合でも、樹脂組成物を注入する前に型内を真空に吸引しておくと、ボイドの発生が抑えられ好ましい。   The injection pressure of the epoxy resin composition is usually 0.1 to 1.0 MPa, and VaRTM (Vacuum Assist Resin Transfer Molding) method of injecting the resin composition by vacuum suction in the mold can be used. And from the point of economical efficiency of equipment, 0.1-0.6 MPa is preferable. Even when pressure injection is performed, it is preferable to suck the inside of the mold in vacuum before injecting the resin composition, because generation of voids is suppressed.

本発明の繊維強化複合材料において、強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維等が好適に用いられる。中でも、軽量でありながら、強度や、弾性率等の力学物性が優れる繊維強化複合材料が得られるという理由から、炭素繊維が好適に用いられる。   In the fiber-reinforced composite material of the present invention, glass fibers, aramid fibers, carbon fibers, boron fibers, and the like are preferably used as the reinforcing fibers. Among these, carbon fiber is preferably used because it is lightweight and a fiber-reinforced composite material having excellent mechanical properties such as strength and elastic modulus can be obtained.

強化繊維は、短繊維、連続繊維いずれであってもよく、両者を併用してもよい。高Vfの繊維強化複合材料を得るためには、連続繊維が好ましい。   The reinforcing fiber may be either a short fiber or a continuous fiber, or both may be used in combination. In order to obtain a high Vf fiber-reinforced composite material, continuous fibers are preferred.

本発明の繊維強化複合材料では、強化繊維はストランドの形態で用いられることもあるが、強化繊維をマット、織物、ニット、ブレイド、一方向シート等の形態に加工した強化繊維基材が好適に用いられる。中でも、高Vfの繊維強化複合材料が得やすく、かつ取扱い性に優れた織物が好適に用いられる。   In the fiber reinforced composite material of the present invention, the reinforcing fiber may be used in the form of a strand, but a reinforcing fiber base material obtained by processing the reinforcing fiber into a form such as a mat, a woven fabric, a knit, a braid, or a unidirectional sheet is preferable. Used. Among them, a woven fabric which is easy to obtain a high Vf fiber-reinforced composite material and excellent in handleability is preferably used.

織物の見かけ体積に対する、強化繊維の正味の体積の比を織物の充填率とする。織物の充填率は、目付W(単位:g/m)、厚みt(単位:mm)、強化繊維の密度ρf(単位:g/cm)からW/(1000t・ρf)の式により求められる。織物の目付と厚みはJIS R 7602(1995)に準拠して求められる。織物の充填率が高い方が高Vfの繊維強化複合材料を得やすいため、織物の充填率は、0.10〜0.85、好ましくは0.40〜0.85、より好ましくは0.50〜0.85の範囲内であることが好ましい。 The ratio of the net volume of the reinforcing fibers to the apparent volume of the fabric is defined as the fabric filling rate. The filling rate of the woven fabric is obtained from the weight per unit area W (unit: g / m 2 ), the thickness t (unit: mm), and the density ρf (unit: g / cm 3 ) of the reinforcing fiber by the formula of W / (1000 t · ρf). It is done. The fabric weight and thickness are determined in accordance with JIS R 7602 (1995). The higher the woven fabric filling rate, the easier it is to obtain a fiber reinforced composite material having a high Vf. Therefore, the woven fabric filling rate is 0.10 to 0.85, preferably 0.40 to 0.85, more preferably 0.50. It is preferable to be within a range of ˜0.85.

本発明の繊維強化複合材料が高い比強度、あるいは比弾性率をもつためには、その繊維体積含有率Vfが、40〜85%、好ましくは45〜85%の範囲内であることが好ましい。なお、ここで言う、繊維強化複合材料の繊維体積含有率Vfとは、ASTM D3171(1999)に準拠して、以下により定義され、測定される値であり、強化繊維基材に対してエポキシ樹脂組成物を注入、硬化した後の状態でのものをいう。すなわち、繊維強化複合材料の繊維体積含有率Vfの測定は、繊維強化複合材料の厚みhから、下記式を用いて表すことができる。
繊維体積含有率Vf(%)=(Af×N)/(ρf×h)/10 ・・・(式5)
Af:繊維基材1枚・1m当たりの重量(g/m
N:繊維基材の積層枚数(枚)
ρf:強化繊維の密度(g/cm
h:繊維強化複合材料(試験片)の厚み(mm)。
In order for the fiber-reinforced composite material of the present invention to have a high specific strength or specific elastic modulus, the fiber volume content Vf is preferably in the range of 40 to 85%, preferably 45 to 85%. In addition, the fiber volume content Vf of a fiber reinforced composite material said here is a value defined and measured by the following based on ASTM D3171 (1999), and is an epoxy resin with respect to a reinforced fiber base material. It refers to the state after the composition is injected and cured. That is, the measurement of the fiber volume content Vf of the fiber reinforced composite material can be expressed by the following formula from the thickness h of the fiber reinforced composite material.
Fiber volume content Vf (%) = (Af × N) / (ρf × h) / 10 (Formula 5)
Af: fiber base material one · 1 m 2 per weight (g / m 2)
N: Number of laminated fiber substrates (sheets)
ρf: density of reinforcing fiber (g / cm 3 )
h: Thickness (mm) of the fiber reinforced composite material (test piece).

なお、繊維基材1枚・1m当たりの重量Afや、繊維基材の積層枚数N、強化繊維の密度ρfが明らかでない場合は、JIS K 7075(1991)に基づく燃焼法もしくは硝酸分解法、硫酸分解法のいずれかにより、繊維強化複合材料の繊維体積含有率を測定する。この場合に用いる強化繊維の密度は、JIS R 7603(1999)に基づき測定した値を用いる。 In addition, when the weight Af per fiber substrate / m 2 , the number N of laminated fiber substrates, and the density ρf of reinforcing fibers are not clear, a combustion method or a nitric acid decomposition method based on JIS K 7075 (1991), The fiber volume content of the fiber reinforced composite material is measured by any of the sulfuric acid decomposition methods. As the density of the reinforcing fiber used in this case, a value measured based on JIS R 7603 (1999) is used.

具体的な繊維強化複合材料の厚みhの測定方法としては、繊維強化複合材料の厚みを正しく測定できる方法であれば、特に限定されるものではないが、JIS K 7072(1991)に記載されているように、JIS B 7502(1994)に規定のマイクロメーターまたはこれと同等以上の精度をもつもので測定することが好ましい。繊維強化複合材料が複雑な形状をしていて、測定ができない場合には、繊維強化複合材料からサンプル(測定用としてのある程度の形と大きさを有しているサンプル)を切り出して、測定してもよい。   A specific method for measuring the thickness h of the fiber-reinforced composite material is not particularly limited as long as the thickness of the fiber-reinforced composite material can be measured correctly, but is described in JIS K 7072 (1991). As described above, it is preferable to measure with a micrometer as defined in JIS B 7502 (1994) or with a precision equivalent to or better than this. If the fiber reinforced composite material has a complicated shape and cannot be measured, cut out a sample (a sample with a certain shape and size for measurement) from the fiber reinforced composite material and measure it. May be.

本発明の繊維強化複合材料の好ましい形態の一つとして、単板が挙げられる。また、別の好ましい形態として、単板状の繊維強化複合材料がコア材の両面に配置されたサンドイッチ構造体や単板状の構造体に周囲を覆われた中空構造体、単板状の繊維強化複合材料がコア材の片面に配置されたいわゆるカナッペ構造体などが挙げられる。   One preferred form of the fiber-reinforced composite material of the present invention is a veneer. Further, as another preferred form, a sandwich structure in which a single plate-like fiber reinforced composite material is disposed on both surfaces of the core material, a hollow structure in which the periphery is covered with a single plate-like structure, or a single plate-like fiber Examples include a so-called canapé structure in which a reinforced composite material is disposed on one side of a core material.

サンドイッチ構造体、カナッペ構造体のコア材としては、アルミニウムやアラミドからなるハニカムコアや、ポリウレタン、ポリスチレン、ポリアミド、ポリイミド、ポリ塩化ビニル、フェノール樹脂、アクリル樹脂、エポキシ樹脂等のフォームコア、バルサなどの木材等が挙げられる。中でも、コア材としては、軽量の繊維強化複合材料が得られるという理由から、フォームコアが好適に用いられる。   Core materials for sandwich and canapé structures include honeycomb cores made of aluminum or aramid, foam cores such as polyurethane, polystyrene, polyamide, polyimide, polyvinyl chloride, phenol resin, acrylic resin, epoxy resin, balsa, etc. Examples include wood. Among them, a foam core is preferably used as the core material because a lightweight fiber-reinforced composite material can be obtained.

本発明の繊維強化複合材料は、軽量でありながら強度や弾性率等の力学特性が優れるので、航空機や宇宙衛星、産業機械、鉄道車両、船舶、自動車などの構造部材や外板などに好ましく用いられる。また、色調や表面品位、寸法精度にも優れるので、特に自動車外板用途に好ましく用いられる。   Since the fiber-reinforced composite material of the present invention is lightweight and has excellent mechanical properties such as strength and elastic modulus, it is preferably used for structural members and outer panels of aircrafts, space satellites, industrial machines, railway vehicles, ships, automobiles, etc. It is done. Moreover, since it is excellent also in a color tone, surface quality, and dimensional accuracy, it is preferably used especially for an automobile outer plate.

以下、実施例により、本発明のエポキシ樹脂組成物についてさらに詳細に説明する。   Hereinafter, the epoxy resin composition of the present invention will be described in more detail by way of examples.

〈樹脂原料〉
各実施例の樹脂組成物を得るために、以下の樹脂原料を用いた。なお、表1、2中の樹脂組成物の含有割合の単位は、特に断らない限り「質量部」を意味する。
1.エポキシ樹脂
・“エポトート”(登録商標)YD−128(新日鉄住金化学(株)製):ビスフェノールA型エポキシ樹脂、エポキシ当量189
・“エポトート”(登録商標)YDF−170(新日鉄住金化学(株)製):ビスフェノールF型エポキシ樹脂、エポキシ当量170
・“セロキサイド”(登録商標)2021P((株)ダイセル製):脂環式エポキシ樹脂、エポキシ当量137
2.酸無水物
・HN−5500(日立化成(株)製):メチルヘキサヒドロフタル酸無水物
・“カヤハード”(登録商標)MCD(日本化薬(株)製):メチルナジック酸無水物
3.ヒドロキシフェニル構造を有する化合物
・4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)(東京化成工業(株)製):pKa11.6、分子量424.66
・2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン「Bis26X−A」(本州化学工業(株)製):pKa10.8、分子量284.39
・4,4’−メチレンビス(2,6−ジメチルフェノール)(東京化成工業(株)製):pKa10.8、分子量256.34
・4−アミノフェノール(東京化成工業(株)製):pKa10.3、分子量109.13
・2,6−ジ−tert−ブチル−p−クレゾール「H−BHT」(本州化学工業(株)製):pKa12.2、分子量220.35
・フェノールノボラック樹脂「H−4」(明和化成(株)製):pKa9.8
・4,4’−メチレンジフェノール「ビスフェノールF」(和光純薬工業(株)製):pKa9.6、分子量200.23
4.硬化促進剤
・トリフェニルホスフィン「TPP」(ケイ・アイ化成(株)製) 融点80℃
・トリ−o−トリルホスフィン「TOTP」(北興化学(株)製) 融点124℃
・“キュアゾール”(登録商標)12DMZ(四国化成工業(株)製):1,2−ジメチルイミダゾール 常温で液状
・“キュアゾール”(登録商標)2PZ(四国化成工業(株)製):2−フェニルイミダゾール 融点140℃
<Resin raw material>
In order to obtain the resin composition of each Example, the following resin raw materials were used. In addition, the unit of the content rate of the resin composition in Tables 1 and 2 means “part by mass” unless otherwise specified.
1. Epoxy resin “Epototo” (registered trademark) YD-128 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.): bisphenol A type epoxy resin, epoxy equivalent 189
"Epototo" (registered trademark) YDF-170 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.): bisphenol F type epoxy resin, epoxy equivalent 170
"Celoxide" (registered trademark) 2021P (manufactured by Daicel Corporation): alicyclic epoxy resin, epoxy equivalent 137
2. Acid anhydride / HN-5500 (manufactured by Hitachi Chemical Co., Ltd.): Methylhexahydrophthalic acid anhydride / “Kayahard” (registered trademark) MCD (manufactured by Nippon Kayaku Co., Ltd.): Methyl nadic acid anhydride Compound having hydroxyphenyl structure: 4,4′-methylenebis (2,6-di-tert-butylphenol) (manufactured by Tokyo Chemical Industry Co., Ltd.): pKa11.6, molecular weight 424.66
2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane “Bis26X-A” (Honshu Chemical Industry Co., Ltd.): pKa10.8, molecular weight 284.39
・ 4,4′-methylenebis (2,6-dimethylphenol) (manufactured by Tokyo Chemical Industry Co., Ltd.): pKa10.8, molecular weight 256.34
4-aminophenol (manufactured by Tokyo Chemical Industry Co., Ltd.): pKa 10.3, molecular weight 109.13
2,6-di-tert-butyl-p-cresol “H-BHT” (manufactured by Honshu Chemical Industry Co., Ltd.): pKa12.2, molecular weight 220.35
Phenol novolac resin “H-4” (manufactured by Meiwa Kasei Co., Ltd.): pKa9.8
・ 4,4′-methylenediphenol “bisphenol F” (manufactured by Wako Pure Chemical Industries, Ltd.): pKa 9.6, molecular weight 200.23
4). Curing accelerator, triphenylphosphine “TPP” (manufactured by Kei-I Kasei Co., Ltd.) Melting point 80 ° C.
・ Tri-o-tolylphosphine “TOTP” (Hokuko Chemical Co., Ltd.) Melting point: 124 ° C.
“CURESOL” (registered trademark) 12DMZ (manufactured by Shikoku Chemicals Co., Ltd.): 1,2-dimethylimidazole Liquid at room temperature “CUREZOL” (registered trademark) 2PZ (manufactured by Shikoku Chemicals Co., Ltd.): 2-phenyl Imidazole Melting point 140 ° C

〈エポキシ樹脂組成物の調製〉
表1、2に記載した配合比でエポキシ樹脂を配合し主剤液とした。表1、2に記載した配合比で、酸無水物、ヒドロキシフェニル構造を有する化合物、硬化促進剤を配合し硬化剤液とした。これら主剤液と硬化剤液とを用い、表1、2に記載した配合比で配合してエポキシ樹脂組成物を調製した。
<Preparation of epoxy resin composition>
An epoxy resin was blended at a blending ratio described in Tables 1 and 2 to obtain a main agent liquid. In the compounding ratios shown in Tables 1 and 2, acid anhydride, a compound having a hydroxyphenyl structure, and a curing accelerator were blended to obtain a curing agent solution. Using these main agent liquid and curing agent liquid, an epoxy resin composition was prepared by blending at a blending ratio described in Tables 1 and 2.

〈主剤液、硬化剤液、樹脂組成物の粘度の測定〉
ISO 2884−1(1994)における円錐平板型回転粘度計を使用した測定方法に準拠し、エポキシ樹脂組成物の調製直後の粘度を測定した。装置には東機産業(株)製のTVE−30H型を用いた。ここでローターは1゜34’×R24を用い、サンプル量は1cm3とした。エポキシ樹脂組成物の調製直後T1℃の粘度と、T1℃20分経過後の粘度を比較し、粘度安定性を評価した(但し、T1℃は、実施例2と実施例8では30℃、実施例15では60℃、それ以外の実施例・比較例では、40℃とした)。
<Measurement of viscosity of main agent liquid, curing agent liquid, resin composition>
The viscosity immediately after the preparation of the epoxy resin composition was measured in accordance with a measurement method using a conical plate type rotational viscometer in ISO 2884-1 (1994). A TVE-30H type manufactured by Toki Sangyo Co., Ltd. was used as the apparatus. Here, the rotor was 1 ° 34 ′ × R24, and the sample amount was 1 cm 3 . Immediately after the preparation of the epoxy resin composition, the viscosity at T1 ° C. was compared with the viscosity after 20 minutes at T1 ° C. to evaluate the viscosity stability (however, T1 ° C. was 30 ° C. in Example 2 and Example 8, In Example 15, it was set to 60 ° C., and in other examples / comparative examples, it was set to 40 ° C.).

〈誘電測定〉
樹脂の硬化を追跡するために誘電測定を行った。誘電測定装置として、Holometrix-Micromet社製のMDE−10キュアモニターを使用した。TMS−1インチ型センサーを下面に埋め込んだプログラマブルミニプレスMP2000の下面に内径32mm、厚さ3mmのバイトン製Oリングを設置し、プレスの温度をT2℃(但し、T2℃は、実施例3では110℃、実施例15では140℃、それ以外の実施例・比較例では、120℃とした)に設定し、Oリングの内側にエポキシ樹脂組成物を注ぎ、プレスを閉じ、樹脂組成物のイオン粘度の時間変化を追跡した。誘電測定は1、10、100、1000、および10000Hzの各周波数で行い、付属のソフトウェアを用いて、周波数非依存のイオン粘度の対数Log(α)を得た。
<Dielectric measurement>
Dielectric measurements were taken to follow the cure of the resin. As a dielectric measurement device, an MDE-10 cure monitor manufactured by Holometrix-Micromet was used. A Viton O-ring with an inner diameter of 32 mm and a thickness of 3 mm was installed on the lower surface of the programmable mini press MP2000 with a TMS-1 inch type sensor embedded in the lower surface, and the temperature of the press was T2 ° C (however, T2 ° C 110 ° C., 140 ° C. in Example 15 and 120 ° C. in the other examples and comparative examples), the epoxy resin composition was poured inside the O-ring, the press was closed, and the ion of the resin composition was The change in viscosity over time was followed. Dielectric measurement was performed at frequencies of 1, 10, 100, 1000, and 10000 Hz, and logarithm Log (α) of frequency independent ion viscosity was obtained using the attached software.

次に、(式4)によりキュアインデックスを求め、キュアインデックスが10%に到達する時間t10に対する、キュアインデックスが90%に到達する時間t90の比t90/t10を求めた。
キュアインデックス={log(αt)−log(αmin)}/{log(αmax)−log(αmin)}×100 ・・・(式4)
キュアインデックス:(単位:%)
αt:時間tにおけるイオン粘度(単位:Ω・cm)
αmin:イオン粘度の最小値(単位:Ω・cm)
αmax:イオン粘度の最大値(単位:Ω・cm)。
Next, the cure index was obtained by (Equation 4), and the ratio t90 / t10 of the time t90 when the cure index reached 90% with respect to the time t10 when the cure index reached 10% was obtained.
Cure index = {log (αt) −log (αmin)} / {log (αmax) −log (αmin)} × 100 (Expression 4)
Cure index: (Unit:%)
αt: Ionic viscosity at time t (unit: Ω · cm)
αmin: minimum value of ion viscosity (unit: Ω · cm)
αmax: Maximum value of ion viscosity (unit: Ω · cm).

〈樹脂硬化板の作成〉
プレス装置下面に、一辺50mmの正方形をくり抜いた、厚さ2mmの銅製スペーサーを設置し、プレスの温度を120℃に設定し、エポキシ樹脂組成物をスペーサーの内側に注ぎ、プレスを閉じた。20分後にプレスを開け、樹脂硬化板を得た。
<Creating a cured resin plate>
A copper spacer having a thickness of 2 mm, in which a square with a side of 50 mm was cut out, was placed on the lower surface of the press device, the press temperature was set to 120 ° C., the epoxy resin composition was poured inside the spacer, and the press was closed. After 20 minutes, the press was opened to obtain a cured resin plate.

〈樹脂硬化物のガラス転移温度Tg測定〉
樹脂硬化板から幅12.7mm、長さ40mmの試験片を切り出し、レオメーター(TAインスツルメンツ社製ARES)を用いてねじりDMA測定を行った。測定条件は、昇温速度5℃/分である。測定で得られた貯蔵弾性率G’の変曲点での温度をTgとした。
<Measurement of glass transition temperature Tg of cured resin>
A test piece having a width of 12.7 mm and a length of 40 mm was cut out from the cured resin plate and subjected to torsional DMA measurement using a rheometer (ARES manufactured by TA Instruments). The measurement conditions are a heating rate of 5 ° C./min. The temperature at the inflection point of the storage elastic modulus G ′ obtained by the measurement was defined as Tg.

〈繊維強化複合材料の作製〉
力学試験用の繊維強化複合材料としては、下記RTM成形法によって作製したものが用いられた。
350mm×700mm×2mmの板状キャビティーを持つ金型に、強化繊維として炭素繊維織物CO6343(炭素繊維:T300−3K、組織:平織、目付:198g/m、東レ(株)製)をキャビティー内に9枚積層し、プレス装置で型締めを行った。次に、100℃(成形温度)に保持した金型内を、真空ポンプにより、大気圧−0.1MPaに減圧し、あらかじめ50℃に加温しておいたエポキシ樹脂組成物の主剤液と硬化剤液を、樹脂注入機を用いて混合し、0.2MPaの圧力で注入した。エポキシ樹脂組成物の注入開始後20分で金型を開き、脱型して、繊維強化複合材料を得た。
<Production of fiber-reinforced composite material>
As the fiber reinforced composite material for the mechanical test, one produced by the following RTM molding method was used.
Carbon fiber woven fabric CO6343 (carbon fiber: T300-3K, organization: plain weave, basis weight: 198 g / m 2 , manufactured by Toray Industries, Inc.) is used as a reinforcing fiber in a mold having a plate-like cavity of 350 mm × 700 mm × 2 mm. Nine sheets were stacked in the tee and clamped with a press. Next, the inside of the mold held at 100 ° C. (molding temperature) is reduced to atmospheric pressure −0.1 MPa by a vacuum pump and heated to 50 ° C. in advance, and the main resin solution and curing of the epoxy resin composition The agent solution was mixed using a resin injection machine and injected at a pressure of 0.2 MPa. Twenty minutes after the start of injection of the epoxy resin composition, the mold was opened and demolded to obtain a fiber-reinforced composite material.

〈樹脂混合作業性〉
上記の繊維強化複合材料の作成の際の樹脂混合における作業性について、以下の3段階で比較評価した。硬化剤液を調製する際、スパチュラの攪拌により容易に混合するものをgood、固形成分が塊として残るもののスパチュラでしばらく攪拌して混合するもの(攪拌作業に時間を要するため実用上はgoodに劣る)をfair、スパチュラでいくら攪拌しても固形成分が残り混合しきらないものをbadとした。
<Resin mixing workability>
The workability in resin mixing during the production of the fiber reinforced composite material was compared and evaluated in the following three stages. When preparing a hardener solution, a mixture that is easily mixed by stirring with a spatula is good. A solid component that remains as a lump, but that is stirred and mixed for a while with a spatula. ) Was determined to be bad, even if it was stirred with a fair or spatula, the solid components remained and could not be mixed.

〈強化繊維への樹脂含浸性〉
上記の繊維強化複合材料の作製の際の樹脂注入工程における含浸性について、以下の3段階で比較評価した。成形品中のボイド量が1%未満と、ボイドが実質的に存在しないものをgood、成形品の外観に樹脂未含浸部分は認められないが、成形品中のボイド量が1%以上であるものをfair、成形品の外観に樹脂未含浸部分が認められるものをbadとした。
なお、成形品中のボイド量は、平滑に研磨した成形品断面を落斜型光学顕微鏡で観察し、成形品中のボイドの面積率を算出することで得られる値である。
<Resin impregnation of reinforcing fiber>
The impregnation property in the resin injection process in the production of the fiber reinforced composite material was compared and evaluated in the following three stages. If the void amount in the molded product is less than 1%, it is good that there is substantially no void, and no resin-impregnated portion is observed in the appearance of the molded product, but the void amount in the molded product is 1% or more The product was designated as fair, and the appearance of the molded product with a resin non-impregnated part as bad was designated as bad.
The amount of voids in the molded product is a value obtained by observing a smoothly polished cross-section of the molded product with a tilt-down optical microscope and calculating the area ratio of voids in the molded product.

〈繊維強化複合材料の脱型作業性〉
上記の繊維強化複合材料の作製の際の脱型工程における作業性について、以下の3段階で比較評価した。金型を開き、成形品をスパチュラで金型から引き剥がす際、抵抗なく簡単に脱型されるものをgood、抵抗はあるものの成形品が塑性変形することなく脱型できるもの(脱型作業に時間を要するため実用上はgoodに劣る)をfair、脱型困難もしくは脱型の際に成形品が塑性変形してしまうものをbadとした。
<Demolding workability of fiber reinforced composite material>
The workability in the demolding process during the production of the fiber reinforced composite material was compared and evaluated in the following three stages. When the mold is opened and the molded product is peeled off from the mold with a spatula, it is good that it can be easily demolded without resistance, but there is resistance, but the molded product can be demolded without plastic deformation (for demolding work) Fair because it takes time, it is inferior to good in practical use), and it was judged as bad if it was difficult to remove or if the molded product was plastically deformed during removal.

(実施例1〜15)
前記したようにして、エポキシ樹脂組成物を調製し、粘度測定、誘電測定を行った。また、調製したエポキシ樹脂組成物を用いて、前記したようにして樹脂硬化板、繊維強化複合材料を作成した。
(Examples 1 to 15)
As described above, an epoxy resin composition was prepared, and viscosity measurement and dielectric measurement were performed. Further, using the prepared epoxy resin composition, a cured resin plate and a fiber reinforced composite material were prepared as described above.

表1、2に示したように、本発明のエポキシ樹脂組成物は、低温T1℃で保持しても低粘度状態を維持している。また、T2℃でのt10で表される流動可能時間が長いため、成形時における強化繊維への含浸性、充填性に優れる。さらにT2℃でのt90で表される脱型可能時間が短いため、同温度でのt90/t10の値が十分に小さくなり、繊維強化複合材料の成形において、成形時間の短縮にも効果的であることが分かる。また、樹脂硬化物のTgが成形温度(120℃)を上回るため成形品を金型から取り出す際に、変形することなく容易に脱型することが出来る。   As shown in Tables 1 and 2, the epoxy resin composition of the present invention maintains a low viscosity state even when held at a low temperature T1 ° C. Moreover, since the flowable time represented by t10 at T2 ° C. is long, the impregnation property and the filling property to the reinforcing fiber at the time of molding are excellent. Furthermore, since the demoldable time represented by t90 at T2 ° C. is short, the value of t90 / t10 at the same temperature is sufficiently small, which is effective for shortening the molding time in the molding of fiber reinforced composite materials. I understand that there is. In addition, since the Tg of the cured resin exceeds the molding temperature (120 ° C.), it can be easily removed without deformation when the molded product is taken out from the mold.

(比較例1〜4)
前記したようにして、エポキシ樹脂組成物を調製し、粘度測定、誘電測定を行った。また、調製したエポキシ樹脂組成物を用いて、前記したようにして樹脂硬化板、繊維強化複合材料を作成した。
(Comparative Examples 1-4)
As described above, an epoxy resin composition was prepared, and viscosity measurement and dielectric measurement were performed. Further, using the prepared epoxy resin composition, a cured resin plate and a fiber reinforced composite material were prepared as described above.

表1、2に示したように、本発明の範囲を外れるエポキシ樹脂組成物は満足な特性を得られていない。比較例1は、成分[D]として融点が130℃よりも高いイミダゾール誘導体を用いたため、硬化剤液の調製が困難で、実施例に比べ硬化時間が長くなっており、成形時の生産性が劣る。比較例2では、成分[C]を含まないため、実施例に比べ硬化時間が長くなっており、成形時の生産性が劣る。比較例3と4では、成分[C]に酸解離定数pKaが10.2未満のものを用いているため、低温40℃での増粘が著しく粘度安定性に劣り、これはすなわち強化繊維への含浸性が劣る。   As shown in Tables 1 and 2, an epoxy resin composition outside the scope of the present invention has not obtained satisfactory characteristics. In Comparative Example 1, since an imidazole derivative having a melting point higher than 130 ° C. was used as component [D], it was difficult to prepare a curing agent solution, and the curing time was longer than in Examples, and the productivity during molding was high. Inferior. In Comparative Example 2, since the component [C] is not included, the curing time is longer than in the Example, and the productivity at the time of molding is inferior. In Comparative Examples 3 and 4, since the component [C] having an acid dissociation constant pKa of less than 10.2 is used, thickening at a low temperature of 40 ° C. is remarkably inferior in viscosity stability. The impregnation of is poor.

以上のように、本発明のエポキシ樹脂組成物は繊維強化複合材料の成形に適しており、RTM法などにより、外観、表面品位にも優れた繊維強化複合材料を生産性良く短時間で得られる。また、本発明のエポキシ樹脂組成物は大きな形状の繊維強化複合材料の成形にも優れており、特に自動車部材への適用に好適である。   As described above, the epoxy resin composition of the present invention is suitable for molding a fiber reinforced composite material, and a fiber reinforced composite material excellent in appearance and surface quality can be obtained in a short time with high productivity by the RTM method. . In addition, the epoxy resin composition of the present invention is excellent in molding a fiber-reinforced composite material having a large shape, and is particularly suitable for application to automobile members.

Figure 2014214169
Figure 2014214169

Figure 2014214169
Figure 2014214169

本発明のエポキシ樹脂組成物は、樹脂調製時の作業性に優れ、樹脂組成物の低温での粘度安定性に優れ、成形時に短時間で硬化し、高品位の繊維強化複合材料を与えるため、RTM法などによって高品位の繊維強化複合材料を高い生産性で提供可能となる。これにより、特に自動車用途への繊維強化複合材料の適用が進み、自動車の更なる軽量化による燃費向上、地球温暖化ガス排出削減への貢献が期待できる。   The epoxy resin composition of the present invention has excellent workability during resin preparation, excellent viscosity stability at low temperatures of the resin composition, cures in a short time during molding, and gives a high-grade fiber-reinforced composite material. A high-quality fiber-reinforced composite material can be provided with high productivity by the RTM method or the like. As a result, the application of fiber-reinforced composite materials for automobiles is especially advanced, and it can be expected to contribute to the improvement of fuel economy and the reduction of greenhouse gas emissions by further reducing the weight of automobiles.

Claims (12)

次の[A]〜[D]の成分を含み、かつ成分[C]に該当する化合物の少なくとも一種の化合物の酸解離定数pKaが10.2以上13以下であり、かつ成分[D]が常温で液状もしくは融点が130℃以下の固体状である、繊維強化複合材料用2液型エポキシ樹脂組成物。
[A]エポキシ樹脂
[B]酸無水物
[C]ヒドロキシフェニル構造を有する化合物
[D]有機リン化合物またはイミダゾール誘導体
The acid dissociation constant pKa of at least one compound that includes the following components [A] to [D] and corresponds to the component [C] is 10.2 to 13, and the component [D] is normal temperature And a two-pack type epoxy resin composition for fiber-reinforced composite materials which is liquid or solid with a melting point of 130 ° C. or lower.
[A] epoxy resin [B] acid anhydride [C] compound having hydroxyphenyl structure [D] organophosphorus compound or imidazole derivative
成分[C]が、ヒドロキシフェニル構造の炭素原子上に電子供与性の置換基を持つ化合物である、請求項1に記載の繊維強化複合材料用2液型エポキシ樹脂組成物。 The two-pack type epoxy resin composition for fiber-reinforced composite materials according to claim 1, wherein component [C] is a compound having an electron-donating substituent on a carbon atom of a hydroxyphenyl structure. 成分[B]と酸解離定数pKaが10.2以上13以下である成分[C]の質量配合比が99:1〜65:35である請求項1または2に記載の繊維強化複合材料用2液型エポキシ樹脂組成物。 The fiber-reinforced composite material 2 according to claim 1 or 2, wherein the mass blending ratio of the component [B] and the component [C] having an acid dissociation constant pKa of 10.2 to 13 is 99: 1 to 65:35. Liquid epoxy resin composition. 成分[A]がビスフェノールA型エポキシ樹脂である、請求項1〜3のいずれかに記載の繊維強化複合材料用2液型エポキシ樹脂組成物。 The two-pack type epoxy resin composition for fiber-reinforced composite materials according to any one of claims 1 to 3, wherein the component [A] is a bisphenol A type epoxy resin. 成分[B]が脂環式構造を有する酸無水物である、請求項1〜4のいずれかに記載の繊維強化複合材料用2液型エポキシ樹脂組成物。 The two-pack type epoxy resin composition for fiber-reinforced composite materials according to any one of claims 1 to 4, wherein component [B] is an acid anhydride having an alicyclic structure. キュアインデックスが以下の式(a)〜(c)を満たす特定温度Tを有する、請求項1〜5のいずれかに記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
0.5≦t10≦4 (a)
0.5≦t90≦9 (b)
1<t90/t10≦2.5(c)
The two-pack type epoxy resin composition for fiber-reinforced composite materials according to any one of claims 1 to 5, wherein the cure index has a specific temperature T satisfying the following formulas (a) to (c).
0.5 ≦ t10 ≦ 4 (a)
0.5 ≦ t90 ≦ 9 (b)
1 <t90 / t10 ≦ 2.5 (c)
25℃における粘度が0.1〜2.5Pa・sである、請求項1〜6のいずれかに記載の繊維強化複合材料用2液型エポキシ樹脂組成物。 The two-pack type epoxy resin composition for fiber-reinforced composite materials according to any one of claims 1 to 6, wherein the viscosity at 25 ° C is 0.1 to 2.5 Pa · s. 成分[A]からなる主剤液と成分[B]、[C]、[D]からなる硬化剤液とを混合してなる請求項1〜7のいずれかに記載の繊維強化複合材料用2液型エポキシ樹脂組成物。 The two-component liquid for fiber-reinforced composite material according to any one of claims 1 to 7, wherein a main agent solution comprising component [A] and a curing agent solution comprising components [B], [C] and [D] are mixed. Type epoxy resin composition. 硬化剤液の25℃における粘度が0.05〜1.8Pa・sである、請求項8記載の繊維強化複合材料用2液型エポキシ樹脂組成物。 The two-pack type epoxy resin composition for fiber-reinforced composite materials according to claim 8, wherein the viscosity of the curing agent liquid at 25 ° C is 0.05 to 1.8 Pa · s. 請求項8または9に記載の繊維強化複合材料用2液型エポキシ樹脂組成物に用いられる繊維強化複合材料用硬化剤液。 The hardening | curing agent liquid for fiber reinforced composite materials used for the two-pack type epoxy resin composition for fiber reinforced composite materials of Claim 8 or 9. 請求項1〜9のいずれかに記載の繊維強化複合材料用2液型エポキシ樹脂組成物と強化繊維を組み合わせ、硬化してなる繊維強化複合材料。 A fiber-reinforced composite material obtained by combining and curing the two-component epoxy resin composition for fiber-reinforced composite material according to any one of claims 1 to 9 and a reinforcing fiber. 強化繊維が炭素繊維である請求項11記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 11, wherein the reinforcing fibers are carbon fibers.
JP2013089900A 2013-04-23 2013-04-23 Two liquid type epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material Pending JP2014214169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013089900A JP2014214169A (en) 2013-04-23 2013-04-23 Two liquid type epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013089900A JP2014214169A (en) 2013-04-23 2013-04-23 Two liquid type epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material

Publications (1)

Publication Number Publication Date
JP2014214169A true JP2014214169A (en) 2014-11-17

Family

ID=51940279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089900A Pending JP2014214169A (en) 2013-04-23 2013-04-23 Two liquid type epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP2014214169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141150A (en) * 2017-02-28 2018-09-13 三菱ケミカル株式会社 Polyfunctional epoxy resin composition, and cured product obtained by curing the polyfunctional epoxy resin composition
WO2020110528A1 (en) * 2018-11-29 2020-06-04 Dic株式会社 Two-pack curable epoxy resin composition, cured product, fiber-reinforced composite material and molded article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141150A (en) * 2017-02-28 2018-09-13 三菱ケミカル株式会社 Polyfunctional epoxy resin composition, and cured product obtained by curing the polyfunctional epoxy resin composition
WO2020110528A1 (en) * 2018-11-29 2020-06-04 Dic株式会社 Two-pack curable epoxy resin composition, cured product, fiber-reinforced composite material and molded article
JPWO2020110528A1 (en) * 2018-11-29 2021-02-15 Dic株式会社 Two-component curable epoxy resin composition, cured product, fiber-reinforced composite material and molded product
CN113166376A (en) * 2018-11-29 2021-07-23 Dic株式会社 Two-component curable epoxy resin composition, cured product, fiber-reinforced composite material, and molded article

Similar Documents

Publication Publication Date Title
JP6007794B2 (en) Two-component epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material
JP5733301B2 (en) Epoxy resin composition for molding fiber reinforced composite material RTM, fiber reinforced composite material and method for producing the same
JP5604771B2 (en) Epoxy resin composition, fiber-reinforced composite material and method for producing the same
JPWO2015046030A1 (en) Two-component epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material
JP4775520B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, CURED PRODUCT, FIBER-REINFORCED COMPOSITE MATERIAL, FIBER-REINFORCED RESIN MOLDED ARTICLE, AND METHOD FOR PRODUCING SAME
JP2008254447A (en) Manufacturing method of fiber-reinforced composite material
JP6137407B2 (en) Two-component epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material
JP2015143343A (en) Prepreg, and method of producing molded product
JP2010163573A (en) Epoxy resin composition and fiber-reinforced composite material using the same
JP2013001767A (en) Epoxy resin composition for fiber-reinforced composite material
JP2014214169A (en) Two liquid type epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material
JP2012077124A (en) Epoxy resin composition for rtm molding and fiber reinforced composite material
JP2020097694A (en) Epoxy resin composition for fiber-reinforced composite material and preform for fiber-reinforced composite material and fiber-reinforced composite material
KR20200005061A (en) Epoxy resin composition and prepreg by using the same for fiber reinforcement plastics
JP2011001442A (en) Epoxy resin composition, fiber-reinforced composite material, and manufacturing method for fiber-reinforced composite material
JP2009040933A (en) Epoxy resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
JPH03281522A (en) Production of molded article of fiber-reinforced resin
WO2018029743A1 (en) Two-part epoxy resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material
JP2006206795A (en) Epoxy resin composition, firer-reinforced composite material, and method for producing firer-reinforced composite material