JP2014213147A - System and method for measuring walking function recovery state - Google Patents

System and method for measuring walking function recovery state Download PDF

Info

Publication number
JP2014213147A
JP2014213147A JP2013095394A JP2013095394A JP2014213147A JP 2014213147 A JP2014213147 A JP 2014213147A JP 2013095394 A JP2013095394 A JP 2013095394A JP 2013095394 A JP2013095394 A JP 2013095394A JP 2014213147 A JP2014213147 A JP 2014213147A
Authority
JP
Japan
Prior art keywords
walking
foot
output
period
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2013095394A
Other languages
Japanese (ja)
Inventor
中村 正樹
Masaki Nakamura
正樹 中村
朋二 鳥山
Tomoji Toriyama
朋二 鳥山
智 浦島
Satoshi Urashima
智 浦島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2013095394A priority Critical patent/JP2014213147A/en
Publication of JP2014213147A publication Critical patent/JP2014213147A/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Rehabilitation Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system and method for measuring walking function recovery state, capable of objectively evaluating the walking function by highly efficiently measuring the dorsiflexion and plantar flexion of a user's leg during walking.SOLUTION: The measuring system of walking function recovery state includes: a leg orthosis comprising a support, and a leg holding part journaled to the lower end and swinging according to the dorsiflexion and plantar flexion operations of the leg; a force sensor that is fitted to the support for detecting force applied to a part adjacent to a journal part according to the dorsiflexion and plantar flexion operations of the leg; and a data analysis part that receives an output of the force sensor when the user performs a plurality of steps of walking operations to analyze a recovery state of the user's walking function. The data analysis part defines timing when a sensor output X is maximized in a direction of the plantar flexion, as a sole grounding period of each step. The sensor output X is divided into respective step outputs Xn, with a period from one sole grounding period to a next sole grounding period defined as one period Tn of the walking. The system extracts data of specific phases d1-d2 during a period from a start point to a terminal point of each step output Xn.

Description

本発明は、歩行に障害のある人のリハビリテーション等に使用される歩行機能回復状況の測定システム及び測定方法に関する。   The present invention relates to a measurement system and a measurement method of a recovery function of a walking function used for rehabilitation or the like of a person with a walking disability.

従来、例えば、特許文献1に開示されているように、患者の腰から足に沿って装着される多リンク型の機構を有し、複数のセンサが各所に取り付けられた足装具を備え、センサ出力を分析して使用者の歩行能力を評価する歩行能力測定装置があった。この測定装置は、使用者の足の揺動振幅(足先が腰よりもどれくらい前後に振れるか)に着眼して評価を行うための装置である。複数のセンサは、足の裏が床面から受ける力を計測する荷重センサと、腰に対する足の前後方向の位置を計測する足位置センサであり、センサ出力から一歩毎の荷重のピーク値、第1足位置及び第2足位置を認識し、平均、分散とを変数とする歩行能力指数を算出することによって歩行能力の評価を行うことができる。   2. Description of the Related Art Conventionally, as disclosed in, for example, Patent Literature 1, a multi-link type mechanism that is worn along a foot from a patient's waist is provided, and a foot orthosis in which a plurality of sensors are attached to various places is provided. There was a walking ability measuring device for analyzing the output and evaluating the user's walking ability. This measuring apparatus is an apparatus for performing evaluation while paying attention to the swing amplitude of the user's foot (how much the foot tip swings back and forth from the waist). The plurality of sensors are a load sensor that measures the force that the sole of the foot receives from the floor and a foot position sensor that measures the position of the foot in the front-rear direction relative to the waist. The walking ability can be evaluated by recognizing the position of the first foot and the position of the second foot and calculating the walking ability index using the average and variance as variables.

特開2012−85891号公報JP 2012-85891 A

歩行機能の回復状況の評価については、従来から様々な手法が提案されているものの、現状、有効性が認知され広く普及しているものはない。   Although various methods have been proposed for evaluating the recovery status of gait function, there is no one that has been widely recognized because of its current effectiveness.

発明者が検討を行った結果、歩行周期における立脚相と遊脚相毎に、足を背屈方向に動かす力と、底屈方向に動かす力の回復状況に着眼する手法が有効であることが分かった。図6に示すように、立脚相は足が地面に付いている期間のことで、一般的には足底接地期から踵離地期までの期間のことである。遊脚相は足が地面から離れている期間のことで、一般的には指先離地期から踵接地期までの期間をいう。   As a result of the inventor's examination, it is effective to focus on the recovery status of the force to move the foot in the dorsiflexion direction and the force to move in the sole flexion direction for each stance phase and swing phase in the walking cycle. I understood. As shown in FIG. 6, the stance phase is a period in which the foot is on the ground, and is generally a period from the plantar contact period to the heel-off period. The swing phase is a period in which the foot is away from the ground, and generally refers to the period from the fingertip separation period to the heel contact period.

しかしながら、歩行中の足の背屈や底屈の力を精度よく測定できる装置が世の中になく、特許文献1の歩行能力測定装置等も、この評価手法に対応できる装置ではない。   However, there is no device in the world that can accurately measure the dorsiflexion or plantar flexion force of a foot while walking, and the walking ability measurement device of Patent Document 1 is not a device that can handle this evaluation method.

本発明は、上記背景技術に鑑みて成されたものであり、歩行中の足の背屈や底屈の力を精度よく測定することができ、歩行機能の客観的な評価を可能にする歩行機能回復状況の測定システム及び測定方法を提供することを目的とする。   The present invention has been made in view of the above-described background art, and can accurately measure the force of dorsiflexion and plantar flexion of a foot while walking, and enables an objective evaluation of walking function. An object of the present invention is to provide a function recovery status measurement system and method.

本発明は、使用者の下腿部側方に装着される支柱、及び前記支柱の下端部に軸着された足保持部とで構成され、使用者の足の背屈及び底屈動作に応じて前記足保持部が前記軸着部を中心に揺動する脚装具と、前記支柱に取り付けられ、使用者の足の背屈及び底屈動作に応じて前記軸着部近傍の部分に加わる力を検出する力センサ部と、使用者が複数歩の歩行動作を行ったときの前記力センサ部の出力を受けて、歩行機能の回復状況の分析を行うデータ分析部とを備え
前記データ分析部は、前記センサ出力が底屈方向に最大となるタイミングを各歩の足底接地期と認定し、一つの前記足底接地期から次の前記足底接地期までを歩行の1周期として前記センサ出力を各歩出力に区分し、前記各歩出力の始点から終点までの間の特定位相のデータを抽出する歩行機能回復状況の測定システムである。
The present invention is composed of a column attached to the user's lower leg side, and a foot holding unit pivotally attached to the lower end of the column, according to the dorsiflexion and plantar flexion motion of the user's foot. The leg holding part swings around the pivot part, and the force applied to the part near the pivot part according to the dorsiflexion and bottom flexion movement of the user's foot. And a data analysis unit that receives the output of the force sensor unit when a user performs a plurality of steps of walking motion and analyzes the recovery status of the walking function. Recognizes the timing at which the sensor output is maximized in the plantar flexion direction as the plantar contact period of each step, and sets the sensor from one plantar contact period to the next plantar contact period as one cycle of walking. The output is divided into each step output, and specific phase data from the start point to the end point of each step output This is a system for measuring the recovery status of walking function to be extracted.

前記支柱は金属製であり、前記足保持部の端部に取り付けられ、前記力センサ部は歪みゲージであり、前記軸着部近傍の部分が前後方向に湾曲する弾性歪みを検出する構成が好ましい。   It is preferable that the support column is made of metal, is attached to an end portion of the foot holding unit, the force sensor unit is a strain gauge, and detects an elastic strain in which a portion in the vicinity of the shaft attachment portion is curved in the front-rear direction. .

また、本発明は、使用者の下腿部側方に装着される支柱、及び前記支柱の下端部に軸着された足保持部とで構成され、使用者の足の背屈及び底屈動作に応じて前記足保持部が前記軸着部を中心に揺動する脚装具と、前記支柱に取り付けられ、使用者の足の背屈及び底屈動作に応じて前記軸着部近傍の部分に加わる力を検出する力センサ部とを備える測定システムを使用し、
使用者が複数歩の歩行動作を行ったときの前記力センサ部のセンサ出力を分析し、前記センサ出力が底屈方向に最大となるタイミングを各歩の足底接地期と認定し、前記センサ出力を、一つの前記足底接地期から次の前記足底接地期までを1周期とする各歩出力に区分し、前記各歩出力の始点から終点までの間の特定位相のデータを抽出する歩行機能回復状況の測定方法である。
Further, the present invention is composed of a strut attached to the user's lower leg side, and a foot holding portion pivotally attached to the lower end of the strut, and the user's foot dorsiflexion and plantar flexion motion The leg holding part is attached to the support and the support so that the foot holding part swings about the pivoting part, and the leg holding part is attached to a part near the pivoting part according to the dorsiflexion and bottom flexion movements of the user's foot. Using a measurement system comprising a force sensor for detecting the applied force,
Analyzing the sensor output of the force sensor unit when the user performs a plurality of steps of walking motion, and certifying the time when the sensor output is maximized in the plantar flexion direction as the plantar contact period of each step, The output is divided into each step output having one cycle from one foot contact period to the next foot contact period, and data of a specific phase from the start point to the end point of each step output is extracted. This is a method for measuring the recovery of gait function.

前記抽出した特定位相のデータについて、複数歩分の平均値を算出することが好ましい。また、前記各歩出力の始点から終点までの期間を0〜100%とした場合に、前記特定位相のデータは55〜95%の範囲内のデータであることが好ましい。   It is preferable to calculate an average value for a plurality of steps for the extracted data of the specific phase. Further, when the period from the start point to the end point of each step output is set to 0 to 100%, the data of the specific phase is preferably data within a range of 55 to 95%.

本発明の歩行機能回復状況の測定システムによれば、脚装具として汎用の短下肢装具を使用することができ、脚装具を特別に購入したり製作したりする必要がない。また、力センサ部とデータ分析部も、一般的な歪みゲージとパソコンを使用して安価に構成することができる。したがって、病院やリハビリテーション施設等の特定の医療機関だけでなく、一般家庭にも広く普及させることができる。   According to the measurement system for recovery of walking function of the present invention, a general-purpose short leg brace can be used as a leg brace, and it is not necessary to purchase or manufacture the leg brace specially. Also, the force sensor unit and the data analysis unit can be configured at low cost using a general strain gauge and a personal computer. Therefore, it can be widely spread not only to specific medical institutions such as hospitals and rehabilitation facilities but also to general households.

また、本発明の測定システム及び測定方法によれば、センサ出力を歩行周期毎の各歩出力に区分して分析する際、各歩の足底接地期を始点とするので、各歩における立脚相や遊脚相等を精度よく特定することができる。したがって、歩行機能回復状況の評価に必要な各種のデータを、コンピュータの自動計算によって容易に得ることができる。例えば、特定位相を55〜95%の範囲内(遊脚相の範囲内)に設定すれば、足の背屈の力のデータが高精度に抽出され、歩行機能回復状況の評価に有効な情報を容易に得ることができる。   Further, according to the measurement system and the measurement method of the present invention, when the sensor output is divided into each step output for each walking cycle and analyzed, the foot ground contact period of each step is set as the starting point. And the swing phase can be accurately identified. Therefore, various data necessary for the evaluation of the walking function recovery status can be easily obtained by automatic computer calculation. For example, if the specific phase is set within the range of 55 to 95% (within the range of the swinging leg phase), the data on the force of dorsiflexion of the foot is extracted with high accuracy and is useful information for evaluating the recovery status of walking function Can be easily obtained.

本発明の歩行機能回復状況の測定システムの一実施形態を使用者の左脚に装着した様子を示す図である。It is a figure which shows a mode that one Embodiment of the measurement system of the walk function recovery condition of this invention was mounted | worn with the user's left leg. 本実施形態の脚装具を示す側面図(a)、力センサ部の取り付け位置を説明する図(b)である。It is a side view (a) which shows the leg orthosis of this embodiment, and is a figure (b) explaining the attachment position of a force sensor part. 本発明の歩行機能回復状況の測定方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the measuring method of the walk function recovery condition of this invention. 力センサ部のセンサ出力を示すタイムチャートである。It is a time chart which shows the sensor output of a force sensor part. 歩行の1周期における特定位相を説明する図である。It is a figure explaining the specific phase in 1 cycle of walking. 歩行の1周期における立脚相と遊脚相を説明する図である。It is a figure explaining the stance phase and the free leg phase in 1 cycle of walking.

以下、この発明の歩行機能回復状況の測定システムの一実施形態について、図1、図2に基づいて説明する。この実施形態の測定システム10は、図1に示すように、使用者Mの左脚に装着された脚装具12、力センサ部14、及び図示しないデータ分析部で構成されている。   Hereinafter, one embodiment of the measurement system for the walking function recovery status of the present invention will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the measurement system 10 according to this embodiment includes a leg brace 12 attached to the left leg of the user M, a force sensor unit 14, and a data analysis unit (not shown).

脚装具12は、図2に示すように、使用者Mの下腿部が間に収まる左右一対の支柱16と、支柱16の下端部に軸着された靴である足保持部18とで構成されている。支柱16の上端には装着ベルト16aが設けられ、一対の支柱16を下腿部に固定できるようになっている。足保持部18は、使用者Mの踝の位置で軸着され、使用者Mの足の背屈及び底屈動作に応じて軸着部16bを中心に揺動する。ここでは、足保持部18として靴を使用しているが、例えば、足型の板に足を載せて甲部をベルトで固定するサンダルのような形態でもよい。   As shown in FIG. 2, the leg orthosis 12 includes a pair of left and right struts 16 in which the lower leg portion of the user M fits, and a foot holding portion 18 that is a shoe attached to the lower end of the strut 16. Has been. A mounting belt 16a is provided at the upper end of the support column 16, so that the pair of support columns 16 can be fixed to the crus. The foot holding part 18 is pivotally attached at the position of the heel of the user M, and swings around the pivoting part 16b according to the dorsiflexion and bottom flexion motions of the user M's legs. Here, shoes are used as the foot holding portion 18, but for example, a shape such as a sandal in which a foot is placed on a foot-shaped plate and the upper portion is fixed with a belt may be used.

力センサ部14は、歪みゲージ14aとセンサ出力記録部14bとで構成されている。歪みゲージ14aは、特定方向の力を受けると自己の抵抗値が変化するシート状のセンサ素子であり、図2(b)に示すように、一対の支柱16の下端部の前後の側面に貼り付けられ、支柱16が前後方向に湾曲する弾性歪みを検出することができる。センサ出力記録部14bは、4つの歪みゲージ14aの出力端をケーブル14cで引き出し、ブリッジ回路等の増幅回路を用いて抵抗値の変化を電気信号に変換し、センサ出力Xとして記録媒体に記録する。例えば、図1に示すように、小型の収納ケースに増幅回路と記録媒体を収め、使用者Mの腰部に装着ベルトで固定される。   The force sensor unit 14 includes a strain gauge 14a and a sensor output recording unit 14b. The strain gauge 14a is a sheet-like sensor element that changes its resistance value when it receives a force in a specific direction, and is attached to the front and back side surfaces of the lower ends of the pair of columns 16 as shown in FIG. It is possible to detect an elastic strain that is attached and the support column 16 is bent in the front-rear direction. The sensor output recording unit 14b pulls out the output ends of the four strain gauges 14a with a cable 14c, converts a change in resistance value into an electrical signal using an amplifier circuit such as a bridge circuit, and records the change as a sensor output X on a recording medium. . For example, as shown in FIG. 1, the amplifier circuit and the recording medium are housed in a small housing case and fixed to the waist of the user M with a mounting belt.

図示しないデータ分析部は、例えばパーソナルコンピュータ等で構成され、力センサ部14に記録されたセンサ出力Xを読み込んでデータ分析を行い、使用者Mの歩行動作についての分析、評価を行う。詳しくは、後の測定方法の説明の中で述べる。   A data analysis unit (not shown) is configured by, for example, a personal computer, reads the sensor output X recorded in the force sensor unit 14 and performs data analysis, and analyzes and evaluates the walking motion of the user M. Details will be described later in the description of the measurement method.

測定システム10の場合、センサ出力Xを力センサ部14に記録し、事後的にデータ分析部で分析を行う構成であるが、歩行中にセンサ出力Xを無線送信し、データ分析部でリアルタイムに分析できる構成にしてもよい。   In the case of the measurement system 10, the sensor output X is recorded in the force sensor unit 14 and then analyzed by the data analysis unit. However, the sensor output X is wirelessly transmitted during walking, and the data analysis unit performs real-time analysis. You may make it the structure which can be analyzed.

次に、本発明の歩行機能回復状況の測定方法の一実施形態について、図3〜図5に基づいて説明する。発明者は、歩行中の足の背屈の力に着眼して歩行機能回復状況を評価する手法の検討を行ってきた。この実施形態に係る測定方法は、脚装具12を付けて歩行動作(歩数=n歩)を行い、歩行中に足の背屈及び底屈動作に応じて支柱16に作用する力を測定する方法である。具体的には、センサ出力Xを受けたデータ分析部が、図3に示すステップS11〜S14の処理を行う。   Next, one embodiment of the method for measuring the walking function recovery status of the present invention will be described with reference to FIGS. The inventor has studied a technique for evaluating the recovery of walking function by focusing on the dorsiflexion force of the foot while walking. The measurement method according to this embodiment is a method of performing a walking motion (number of steps = n steps) with the leg brace 12 and measuring the force acting on the support column 16 according to the dorsiflexion and plantar flexion motion of the foot during walking. It is. Specifically, the data analysis unit that has received the sensor output X performs the processing of steps S11 to S14 shown in FIG.

センサ出力Xは、図4に示すように、略ノコギリ波状の繰り返し波形となる。ここでは、背屈方向の力が正の電圧、底屈方向の力が負の電圧として検出される。図6に示す歩行動作との関係は、センサ出力Xが底屈方向に最大となるタイミングが足底接地期、その後センサ出力Xが背屈方向に最大となるタイミングが踵離地期、その後センサ出力Xが無くなる(ゼロ付近に戻る)タイミングが指先離地期、その後センサ出力Xが底屈方向に上昇し始めるタイミングが踵接地期である。また、立脚相Rは、足底接地期の後、センサ出力Xが底屈方向から背屈方向に切り替わってから踵離地期までの期間であり、遊脚相Yは、指先離地期から足底接地期までの期間である。   As shown in FIG. 4, the sensor output X has a repetitive waveform having a substantially sawtooth waveform. Here, the force in the dorsiflexion direction is detected as a positive voltage, and the force in the bottom flexion direction is detected as a negative voltage. The relationship with the walking motion shown in FIG. 6 is that the timing at which the sensor output X is maximum in the plantar flexion direction is the foot ground contact period, and the timing at which the sensor output X is maximum in the dorsiflexion direction is the detached ground period, and then the sensor The timing at which the output X disappears (returns to near zero) is the fingertip separation period, and the timing at which the sensor output X starts to rise in the buckling direction is the saddle contact period. In addition, the stance phase R is a period from the sensor contact X to the dorsiflexion direction after the plantar contact period until the heel-off period, and the swing phase Y is from the fingertip release period. This is the period until the plantar contact period.

データ分析部は、ステップS11,S12で、センサ出力Xを1歩目からn歩目までの各歩出力X1〜Xnに区分する処理を行う。1歩目からn歩目までの各歩の周期T1〜Tnは、大きくは違わないが一定時間ではないので、まずステップS11で、1歩当たりの平均周期Tを算出する。平均周期Tは、例えばn歩の総時間をnで割り算して求めてもよいし、自己相関関数を適用する等して厳密に算出してもよい。次にステップS12で、センサ出力Xから1歩毎の各歩出力X1〜Xnを切り出す。このとき、図4に示すように、センサ出力Xが底屈方向に最大となるタイミング、すなわち足底接地期を各歩の始点にする。この理由は、後で説明する。また、各歩周期T1〜Tnと平均周期Tとの差t1〜tnが、基準値α以下(αは平均周期Tよりも十分小さい値)になるようにする。   In steps S11 and S12, the data analysis unit performs a process of dividing the sensor output X into each step output X1 to Xn from the first step to the n-th step. The period T1 to Tn of each step from the first step to the n-th step is not greatly different but is not a fixed time. First, in step S11, an average cycle T per step is calculated. The average period T may be obtained, for example, by dividing the total time of n steps by n, or may be strictly calculated by applying an autocorrelation function. Next, in step S12, each step output X1 to Xn for each step is cut out from the sensor output X. At this time, as shown in FIG. 4, the timing at which the sensor output X becomes maximum in the plantar bending direction, that is, the plantar contact period is set as the starting point of each step. The reason for this will be described later. Further, the difference t1 to tn between each step period T1 to Tn and the average period T is set to be equal to or less than the reference value α (α is a value sufficiently smaller than the average period T).

次に、ステップS13で、切り出した各歩出力X1〜Xnについて統計処理を行い、各歩出力X1〜Xnの重ね合わせの平均である平均各歩出力X(ave)を得る。重ね合わせるときは、図5に示すように、各歩の始点を基準にして重ね合わせる。各歩周期T1〜Tnは(T±α)の範囲で異なるので、図5に示すように、始点から平均周期Tまでを0〜100%と表わすと、平均各歩出力X(ave)の100%付近(例えば、95〜100%)のデータは、信頼性が低いとして無視する。   Next, in step S13, statistical processing is performed on the extracted step outputs X1 to Xn to obtain an average step output X (ave) that is an average of superposition of the step outputs X1 to Xn. When superposing, as shown in FIG. 5, the superposition is performed with reference to the starting point of each step. Since each step period T1 to Tn is different in the range of (T ± α), as shown in FIG. 5, if the range from the start point to the average period T is expressed as 0 to 100%, the average step output X (ave) is 100. Data in the vicinity of% (for example, 95 to 100%) is ignored because the reliability is low.

次に、ステップS14で、平均各歩出力X(ave)の始点から終点まで期間における特定位相d1〜d2の範囲について、平均値Vを算出する。本実施形態の測定方法は、足を背屈の力に着眼して歩行機能回復状況の評価を行うことを目的としているので、遊脚相Yのデータに着眼するのが合理的と言える。遊脚相Yは、足を背屈方向に動かす期間であって、しかも足の背屈の力以外の力が発生しない期間(地面からの反発力を受けない期間)であり、足の背屈の力を容易に抽出することができるからである。   Next, in step S14, an average value V is calculated for a range of specific phases d1 to d2 in a period from the start point to the end point of each average step output X (ave). The measurement method of the present embodiment aims to evaluate the recovery of the walking function by focusing on the dorsiflexion force of the foot, so it can be said that it is reasonable to focus on the data of the swing phase Y. The swing phase Y is a period in which the foot is moved in the dorsiflexion direction and a force other than the force of the dorsiflexion of the foot is not generated (a period in which the repulsive force from the ground is not received). This is because the power of can be easily extracted.

n歩の歩行動作を測定したセンサ出力Xは、1歩目からn歩目まで、各歩でデータがばらつくので、各歩における遊脚相Yをいかに正確に特定するかが問題となる。発明者が検討した結果、センサ出力Xを各歩出力X1〜Xnに区分するとき、各歩の始点を足底接地期とすることによって、遊脚相Yがほぼ一律に55〜95%の位相になることが分かった。そこで、図5に示すように、特定位相d1〜d2を遊脚相Yの中ほどの期間である70〜80%に設定し、平均各歩出力X(ave)の位相70〜80%の期間の平均値Vを算出している。これによって、1歩目からn歩目までの足の背屈の力の平均値Vを精度よく算出することができる。特定位相d1〜d2の幅は変更することができ、例えば、遊脚相Yにおける平均各歩出力X(ave)のデータの増減が小さいときは、特定位相の幅をもっと狭くしても構わない。反対に、データの増減が大きいときは、特定位相の幅を広めにするとよい。   The sensor output X obtained by measuring the walking motion of n steps varies in data from each step from the first step to the nth step, so how to accurately specify the swing phase Y at each step becomes a problem. As a result of the inventor's study, when the sensor output X is divided into the step outputs X1 to Xn, the free leg phase Y is almost uniformly 55 to 95% by setting the start point of each step as the ground contact period. I found out that Therefore, as shown in FIG. 5, the specific phases d1 to d2 are set to 70 to 80% which is the middle period of the swing phase Y, and the period of the phase 70 to 80% of the average step output X (ave) is set. The average value V is calculated. Thus, the average value V of the dorsiflexion force of the foot from the first step to the n-th step can be calculated with high accuracy. The width of the specific phases d1 to d2 can be changed. For example, when the increase / decrease in the data of the average step output X (ave) in the swing phase Y is small, the width of the specific phase may be further narrowed. . On the other hand, when the increase / decrease in data is large, the specific phase should be wide.

なお、足の背屈の力以外の力も抽出したい場合は、特定位相を55〜95%以外の範囲に設定することができる。上記のように、各歩出力X1〜Xnの始点を足底接地期にすることによって、立脚相R等の位相(範囲)についても一定の精度で特定できるからである。ただし、55〜95%以外の範囲のデータは、足の背屈又は底屈の力に地面からの反発力が加わっている点を考慮してデータ分析を行う必要がある。   If a force other than the dorsiflexion force of the foot is to be extracted, the specific phase can be set to a range other than 55 to 95%. This is because the phase (range) of the stance phase R and the like can be specified with a certain degree of accuracy by setting the start point of each of the step outputs X1 to Xn as the ground contact period as described above. However, data in a range other than 55 to 95% needs to be analyzed in consideration of the fact that the repulsive force from the ground is added to the force of dorsiflexion or plantar flexion of the foot.

以上説明したように、歩行機能回復状況の測定システム10によれば、脚装具12として汎用の短下肢装具を使用することができるので、脚装具12を特別に購入したり製作したりする必要がない。また、力センサ部14とデータ分析部も、一般的な歪みゲージ14a等とパソコンを使用して安価に構成することができる。したがって、病院やリハビリテーション施設等の特定の医療機関だけでなく、一般家庭にも広く普及させることができる。   As described above, according to the measurement system 10 for recovery of walking function, since a general-purpose short leg device can be used as the leg device 12, it is necessary to purchase or manufacture the leg device 12 specially. Absent. Further, the force sensor unit 14 and the data analysis unit can also be configured at low cost by using a general strain gauge 14a and the like and a personal computer. Therefore, it can be widely spread not only to specific medical institutions such as hospitals and rehabilitation facilities but also to general households.

また、本発明の測定システム10及び測定方法によれば、センサ出力Xを各歩出力X1〜Xnに区分する際、各歩の足底接地期を始点とするので、各歩における遊脚相や立脚相等を精度よく特定することができる。したがって、歩行機能回復状況の評価に必要な各種のデータを、コンピュータの自動計算によって容易に得ることができる。特に、特定位相を55〜95%の範囲内(遊脚相Yの範囲内)に設定することによって、足の背屈の力のデータが高精度に抽出され、歩行機能回復状況の評価に有効な情報を容易に得ることができる。   In addition, according to the measurement system 10 and the measurement method of the present invention, when the sensor output X is divided into the respective step outputs X1 to Xn, since the foot ground contact period of each step is a starting point, It is possible to accurately identify the stance phase and the like. Therefore, various data necessary for the evaluation of the walking function recovery status can be easily obtained by automatic computer calculation. In particular, by setting the specific phase within the range of 55 to 95% (within the range of the swinging leg phase Y), the data on the dorsiflexion force of the foot is extracted with high accuracy, which is effective for evaluating the recovery of walking function Information can be easily obtained.

なお、本発明の歩行機能回復状況の測定システム及び測定方法は、上記実施形態に限定されるものではない。例えば、力センサ部は、使用者の足の背屈及び底屈動作に応じて軸着部近傍の部分に加わる力を検出することができればよく、歪みゲージの数や取付方法を変更してもよいし、歪みゲージ以外の力検出素子を使用しても構わない。   In addition, the measurement system and measurement method of the walking function recovery condition of this invention are not limited to the said embodiment. For example, the force sensor unit only needs to be able to detect the force applied to the portion in the vicinity of the shaft attachment part according to the dorsiflexion and plantar flexion movements of the user's foot, and even if the number of strain gauges and the mounting method are changed. Alternatively, a force detection element other than a strain gauge may be used.

また、上記のデータ分析部では、図3で説明したように、各歩出力X1〜Xnの重ね合わせの平均各歩出力X(ave)を求め、その特定位相d1〜d2における平均値Vを算出することによって複数歩の平均値Vを算出する処理を行っているが、これは処理方法の一例に過ぎない。例えば、各歩出力X1〜Xn毎に特定位相d1〜d2における各歩平均値V1〜Vnを個別に算出すれば、その後、これらの相加平均を求めて1歩目からn歩目までの平均値Vを求めたり、1歩目からn歩目に至るまでの各歩平均値V1〜Vnの変化を見たりすることができる。また、センサ出力Xを各歩出力X1〜Xnに区分する手法についても、始点をセンサ出力Xが底屈方向に最大となる足底接地期とする点を除いて、ステップS11,S12と異なる手法を用いてもよい。   In addition, as described with reference to FIG. 3, the data analysis unit obtains the average step output X (ave) of the superposition of the step outputs X1 to Xn, and calculates the average value V in the specific phases d1 to d2. By doing so, the process of calculating the average value V of a plurality of steps is performed, but this is only an example of a processing method. For example, if the step average values V1 to Vn in the specific phases d1 to d2 are individually calculated for each step output X1 to Xn, then the arithmetic average is obtained and the average from the first step to the nth step is obtained. A value V can be obtained, and changes in the step average values V1 to Vn from the first step to the nth step can be observed. The method of dividing the sensor output X into the step outputs X1 to Xn is also a method different from steps S11 and S12, except that the starting point is the plantar contact period in which the sensor output X is maximum in the plantar flexion direction. May be used.

さらに、歩行機能回復状況の評価又は判定をしやすくするため、データ分析部で使用者のデータと健常者のデータを比較したり、比較結果をグラフ等で表示したりするようにしてもよい。   Furthermore, in order to facilitate the evaluation or determination of the walking function recovery status, the data analysis unit may compare the user data with the healthy person data, or display the comparison result in a graph or the like.

10 歩行機能回復状況の測定システム
12 脚装具
14 力センサ部
14a 歪みゲージ
16 支柱
16b 軸着部
18 足保持部
M 使用者
DESCRIPTION OF SYMBOLS 10 Measuring system 12 for recovery of walking function Leg orthosis 14 Force sensor unit 14a Strain gauge 16 Strut 16b Axis mounting part 18 Foot holding part M User

Claims (5)

使用者の下腿部側方に装着される支柱、及び前記支柱の下端部に軸着された足保持部とで構成され、使用者の足の背屈及び底屈動作に応じて前記足保持部が前記軸着部を中心に揺動する脚装具と、
前記支柱に取り付けられ、使用者の足の背屈及び底屈動作に応じて前記軸着部近傍の部分に加わる力を検出する力センサ部と、
使用者が複数歩の歩行動作を行ったときの前記力センサ部の出力を受けて、歩行機能の回復状況の分析を行うデータ分析部とを備え
前記データ分析部は、前記センサ出力が底屈方向に最大となるタイミングを各歩の足底接地期と認定し、一つの前記足底接地期から次の前記足底接地期までを歩行の1周期として前記センサ出力を各歩出力に区分し、前記各歩出力の始点から終点までの間の特定位相のデータを抽出することを特徴とする歩行機能回復状況の測定システム。
It consists of a strut attached to the user's lower leg side, and a foot holding part pivotally attached to the lower end of the strut, and holds the foot according to the dorsiflexion and plantar flexion movements of the user's foot A leg brace that swings about the pivoted portion;
A force sensor unit that is attached to the support column and detects a force applied to a portion in the vicinity of the shaft attachment part according to the dorsiflexion and bottom flexion motions of the user's foot,
A data analysis unit that receives an output of the force sensor unit when a user performs a walking motion of a plurality of steps and analyzes a recovery state of the walking function, and the data analysis unit has a sensor output that is The maximum timing in the direction is recognized as the plantar contact period of each step, and the sensor output is divided into each step output with one cycle from the plantar contact period to the next plantar contact period as one cycle of walking. A system for measuring the recovery of walking function, wherein data of a specific phase from the start point to the end point of each step output is extracted.
前記支柱は金属製であり、前記足保持部の端部に取り付けられ、
前記力センサ部は歪みゲージであり、前記軸着部近傍の部分が前後方向に湾曲する弾性歪みを検出する請求項1記載の歩行機能回復状況の測定システム。
The support column is made of metal, and is attached to an end of the foot holding unit,
The walking force recovery state measurement system according to claim 1, wherein the force sensor unit is a strain gauge, and detects an elastic strain in which a portion in the vicinity of the shaft attachment portion curves in the front-rear direction.
使用者の下腿部側方に装着される支柱、及び前記支柱の下端部に軸着された足保持部とで構成され、使用者の足の背屈及び底屈動作に応じて前記足保持部が前記軸着部を中心に揺動する脚装具と、前記支柱に取り付けられ、使用者の足の背屈及び底屈動作に応じて前記軸着部近傍の部分に加わる力を検出する力センサ部とを備える測定システムを使用し、
使用者が複数歩の歩行動作を行ったときの前記力センサ部のセンサ出力を分析し、前記センサ出力が底屈方向に最大となるタイミングを各歩の足底接地期と認定し、
前記センサ出力を、一つの前記足底接地期から次の前記足底接地期までを1周期とする各歩出力に区分し、前記各歩出力の始点から終点までの間の特定位相のデータを抽出することを特徴とする歩行機能回復状況の測定方法。
It consists of a strut that is worn on the side of the user's lower leg, and a foot holder that is pivotally attached to the lower end of the strut. A leg brace that swings around the pivot part and a force that is attached to the column and detects the force applied to the part near the pivot part according to the dorsiflexion and bottom flexion movements of the user's foot Using a measuring system with a sensor part,
Analyzing the sensor output of the force sensor unit when the user performs a walking action of multiple steps, certifying the timing at which the sensor output is maximized in the plantar flexion direction as the sole contact period of each step,
The sensor output is divided into each step output having one cycle from one foot contact period to the next foot contact period, and data of a specific phase from the start point to the end point of each step output is obtained. A method for measuring the recovery of gait function, characterized by extracting.
前記抽出した特定位相のデータについて、複数歩分の平均値を算出する請求項3記載の歩行機能回復状況の測定方法。   The method for measuring a walking function recovery status according to claim 3, wherein an average value for a plurality of steps is calculated for the extracted data of the specific phase. 前記各歩出力の始点から終点までの期間を0〜100%とした場合に、前記特定位相のデータは55〜95%の範囲内のデータである請求項3又は4記載の歩行機能回復状況の測定方法。
5. The walking function recovery status according to claim 3 or 4, wherein the data of the specific phase is data within a range of 55 to 95% when a period from a start point to an end point of each step output is set to 0 to 100%. Measuring method.
JP2013095394A 2013-04-30 2013-04-30 System and method for measuring walking function recovery state Ceased JP2014213147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095394A JP2014213147A (en) 2013-04-30 2013-04-30 System and method for measuring walking function recovery state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095394A JP2014213147A (en) 2013-04-30 2013-04-30 System and method for measuring walking function recovery state

Publications (1)

Publication Number Publication Date
JP2014213147A true JP2014213147A (en) 2014-11-17

Family

ID=51939467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095394A Ceased JP2014213147A (en) 2013-04-30 2013-04-30 System and method for measuring walking function recovery state

Country Status (1)

Country Link
JP (1) JP2014213147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139669A (en) * 2014-01-30 2015-08-03 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Moving motion analysis apparatus, method, system, and program
JP2017196231A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Walking training device and state determination method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292162A (en) * 1986-06-12 1987-12-18 株式会社共和電業 Muscle force training and measuring apparatus
JP3041358U (en) * 1996-10-18 1997-09-19 春生 児玉 Lower limb orthosis
JP2005237762A (en) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology Exercise device
JP2006326185A (en) * 2005-05-30 2006-12-07 Ritsumeikan Ankle foot orthosis
US20070073514A1 (en) * 2005-09-26 2007-03-29 Aisin Seiki Kabushiki Kaisha Walking analyzer
JP2007125368A (en) * 2005-09-26 2007-05-24 Aisin Seiki Co Ltd Walking analyzer and walking analyzing method
JP2011206289A (en) * 2010-03-30 2011-10-20 Toyota Motor Corp Walking support device
JP2013052159A (en) * 2011-09-05 2013-03-21 Okayama Univ Walking assistance device
WO2013041101A1 (en) * 2011-09-22 2013-03-28 Region Nordjylland, Aalborg Sygehus Stretch sensor device
US20130303947A1 (en) * 2011-01-17 2013-11-14 Didier Gamet Spasticity measuring device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292162A (en) * 1986-06-12 1987-12-18 株式会社共和電業 Muscle force training and measuring apparatus
JP3041358U (en) * 1996-10-18 1997-09-19 春生 児玉 Lower limb orthosis
JP2005237762A (en) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology Exercise device
JP2006326185A (en) * 2005-05-30 2006-12-07 Ritsumeikan Ankle foot orthosis
US20070073514A1 (en) * 2005-09-26 2007-03-29 Aisin Seiki Kabushiki Kaisha Walking analyzer
JP2007125368A (en) * 2005-09-26 2007-05-24 Aisin Seiki Co Ltd Walking analyzer and walking analyzing method
JP2011206289A (en) * 2010-03-30 2011-10-20 Toyota Motor Corp Walking support device
US20130303947A1 (en) * 2011-01-17 2013-11-14 Didier Gamet Spasticity measuring device
JP2013052159A (en) * 2011-09-05 2013-03-21 Okayama Univ Walking assistance device
WO2013041101A1 (en) * 2011-09-22 2013-03-28 Region Nordjylland, Aalborg Sygehus Stretch sensor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
菊池 武士 他: ""制御型短下肢装具のための制御モデルの提案"", ロボティクス・メカトロニクス講演会’12 講演論文集, JPN6017005023, 27 May 2012 (2012-05-27), pages 1 - 1, ISSN: 0003500554 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139669A (en) * 2014-01-30 2015-08-03 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Moving motion analysis apparatus, method, system, and program
JP2017196231A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Walking training device and state determination method

Similar Documents

Publication Publication Date Title
Jarchi et al. A review on accelerometry-based gait analysis and emerging clinical applications
Hundza et al. Accurate and reliable gait cycle detection in Parkinson's disease
EP3205269B1 (en) System and method for analyzing gait and postural balance of a person
Lee et al. Portable activity monitoring system for temporal parameters of gait cycles
KR102010898B1 (en) System and method for Gait analysis
JP4915263B2 (en) Motor function improvement menu proposal system from walking ability and motor function improvement menu proposal method from walking ability
JP6881451B2 (en) Walking state judgment device, walking state judgment system, walking state judgment method and program
Gouwanda et al. A low cost alternative to monitor human gait temporal parameters–wearable wireless gyroscope
KR101648270B1 (en) Shoe module for detecting walking phase, method, gait analysis system and active walking assist device using the same
Furrer et al. Validation of a smartphone-based measurement tool for the quantification of level walking
JP2010005033A (en) Walking motion analyzer
JP4696677B2 (en) Muscle strength measuring device
Polk et al. Limb dominance, foot orientation and functional asymmetry during walking gait
JP2017202236A (en) Gait analysis method and gait analysis device
Alwan et al. Basic walker-assisted gait characteristics derived from forces and moments exerted on the walker's handles: results on normal subjects
Ryu et al. Estimation of unmeasured ground reaction force data based on the oscillatory characteristics of the center of mass during human walking
JP2004358229A (en) Physical motion analyzing apparatus and physical motion analyzing system
KR20200129286A (en) A method and apparatus for detecting walking factor with portion acceleration sensor
JP2015202141A (en) Method for evaluating gait
Chandel et al. Pi-sole: A low-cost solution for gait monitoring using off-the-shelf piezoelectric sensors and imu
JP7289246B2 (en) Lower-limb muscle strength evaluation method, lower-limb muscle strength evaluation program, lower-limb muscle strength evaluation device, and lower-limb muscle strength evaluation system
Alahakone et al. Smart wearable device for real time gait event detection during running
JP2020120807A (en) Fall risk evaluation device, fall risk evaluation method and fall risk evaluation program
JP2014213147A (en) System and method for measuring walking function recovery state
JP2005342254A (en) Walking period detecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20170627