JP2014212774A - Fluorescent dye - Google Patents

Fluorescent dye Download PDF

Info

Publication number
JP2014212774A
JP2014212774A JP2013095259A JP2013095259A JP2014212774A JP 2014212774 A JP2014212774 A JP 2014212774A JP 2013095259 A JP2013095259 A JP 2013095259A JP 2013095259 A JP2013095259 A JP 2013095259A JP 2014212774 A JP2014212774 A JP 2014212774A
Authority
JP
Japan
Prior art keywords
fluorescent dye
lignin
biomass
fluorescence
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013095259A
Other languages
Japanese (ja)
Other versions
JP6260947B2 (en
Inventor
一志 伊藤
Kazushi Ito
一志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefectural University
Original Assignee
Akita Prefectural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefectural University filed Critical Akita Prefectural University
Priority to JP2013095259A priority Critical patent/JP6260947B2/en
Publication of JP2014212774A publication Critical patent/JP2014212774A/en
Application granted granted Critical
Publication of JP6260947B2 publication Critical patent/JP6260947B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cheap fluorescent dye using biomass as a raw material being cheap and constantly available in a large mass, the dye fluorescing stably for a long period of time without flickering.SOLUTION: Lignin extracted from biomass by using an aqueous solution of acetic acid is used as the main component of the fluorescent dye of the invention. If desired, a mineral acid such as sulfuric acid may be used with the acetic acid aqueous solution for extraction. Since the main component lignin is a stable material, irradiation of excitation light does not cause color fading, and fluorescent light does not flicker. Further, the lignin can be stored at room temperature making its management easy. Also, because of its stability, the fluorescent dye may be micronized to enable its introduction into living cells. The fluorescent dye of the invention strongly fluoresces when irradiated with an excitation light of a wavelength around from 488 nm to 566 nm, so that it is useful as the fluorescent dye for cell observation under a fluorescence microscope.

Description

本発明は、蛍光色素に関する。さらに詳しくは、特定のリグニンを主成分とする蛍光色素に関する。   The present invention relates to a fluorescent dye. More specifically, the present invention relates to a fluorescent dye containing a specific lignin as a main component.

組織再生および病理診断において、細胞内外に発現しているタンパク質の分布および動態を評価する技術は重要である。タンパク質の評価において必要なことの一つは、対象タンパク質にマーカーを結合することである。現状では、蛍光色素をマーカーとして利用する方法が一般的である。具体的に述べると、タンパク質の分布を評価する場合には、蛍光色素標識抗体を細胞の対象タンパク質に結合させた後、蛍光顕微鏡を用いて従来から励起光として使用されている波長405、488、566、633nm付近の可視光を蛍光色素に照射して、発生する蛍光を観察する。上述の方法では、蛍光色素が波長405nmから688nm付近の励起光で蛍光を発生して、かつ蛍光が安定していることが非常に重要である。   In tissue regeneration and pathological diagnosis, a technique for evaluating the distribution and dynamics of proteins expressed inside and outside cells is important. One of the requirements in protein evaluation is to bind a marker to the protein of interest. At present, a method using a fluorescent dye as a marker is common. Specifically, when evaluating the protein distribution, after binding the fluorescent dye-labeled antibody to the target protein of the cell, the wavelengths 405, 488 conventionally used as excitation light using a fluorescence microscope, Visible light in the vicinity of 566 and 633 nm is irradiated to the fluorescent dye, and the generated fluorescence is observed. In the above-described method, it is very important that the fluorescent dye generates fluorescence with excitation light having a wavelength of about 405 nm to 688 nm and that the fluorescence is stable.

生細胞におけるタンパク質の動態を評価する場合には、蛍光色素標識抗体を生細胞に導入後、蛍光色素と結合した対象タンパク質の軌跡を、蛍光顕微鏡を用いて評価する方法がある。この方法においても、良好な評価結果を得るためには安定した蛍光特性が蛍光色素に要求される。また、細胞内に導入する蛍光色素の量を詳細に検討することも上述の評価において重要であるため、予備実験において蛍光色素は大量に使用されている。しかしながら、蛍光色素は高価であるため、その使用は使用者の負担となっている。   When evaluating the dynamics of a protein in a living cell, after introducing a fluorescent dye-labeled antibody into the living cell, there is a method for evaluating the locus of the target protein bound to the fluorescent dye using a fluorescence microscope. Even in this method, in order to obtain a good evaluation result, a stable fluorescent property is required for the fluorescent dye. In addition, since it is also important in the above-described evaluation to examine in detail the amount of fluorescent dye to be introduced into cells, a large amount of fluorescent dye is used in preliminary experiments. However, since the fluorescent dye is expensive, its use is a burden on the user.

蛍光顕微鏡における細胞観察で用いられる蛍光色素としては、化学合成から製造される蛍光色素がある。そのような蛍光色素の例として、ローダミンやフルオロセインをタンパク質と結合するようにイソチオシアネートで修飾した物質が挙げられる(特許文献1、特許文献2)。しかしながら、これらの蛍光色素に長時間励起光を照射した場合、蛍光の退色が生じるため、蛍光顕微鏡で長時間安定的に観察することは困難である。特に発現量の少ないタンパク質においては、蛍光の退色によりタンパク質の発現を確認できない可能性もある。また、量子ドットを蛍光色素として用いる手法が特許文献3、4に記載されている。しかしながら、量子ドットは光の点滅を生じることがあるため、蛍光の軌跡を評価する実験では安定的な結果を得ることが容易ではない。また、従来の蛍光色素は高価であるため、その使用が制限されていることも課題の1つである。蛍光色素が高価となる要因は上述したイソチオシアネートを付加する工程を要することにある。さらに、従来の蛍光色素は低温保管する必要があり、管理において使用者の負担が大きかった。   As a fluorescent dye used for cell observation in a fluorescence microscope, there is a fluorescent dye manufactured by chemical synthesis. Examples of such fluorescent dyes include substances in which rhodamine or fluorescein is modified with isothiocyanate so as to bind to proteins (Patent Documents 1 and 2). However, when these fluorescent dyes are irradiated with excitation light for a long time, fluorescence fading occurs, and it is difficult to observe stably for a long time with a fluorescence microscope. In particular, in a protein with a small expression level, there is a possibility that the expression of the protein cannot be confirmed due to fluorescence fading. Further, Patent Documents 3 and 4 describe methods using quantum dots as fluorescent dyes. However, since quantum dots may cause flashing of light, it is not easy to obtain a stable result in an experiment for evaluating the locus of fluorescence. Another problem is that conventional fluorescent dyes are expensive and therefore limited in their use. The factor that makes fluorescent dyes expensive is that the above-described step of adding isothiocyanate is required. Furthermore, conventional fluorescent dyes must be stored at a low temperature, which places a heavy burden on the user in management.

特許4603109号公報Japanese Patent No. 4603109 特開2007528846号公報Japanese Patent Application Laid-Open No. 2007828846 米国特許第6,194,213号US Pat. No. 6,194,213 米国特許第6,306,610号US Pat. No. 6,306,610

従って、本発明の目的は、蛍光が点滅することなく長時間安定して発生し、かつ安価な蛍光色素を提供することである。   Accordingly, an object of the present invention is to provide an inexpensive fluorescent dye that is stably generated for a long time without blinking fluorescence.

上記本発明の目的を達成するために、本発明者はバイオマスに注目した。バイオマスの成分は特定の励起光が照射された場合、蛍光を発生することが知られている。その一例として、リグニンが挙げられる。リグニンは紫外線を照射することで蛍光を発生することが知られている。植物中のリグニンを評価する方法の一つとして、紫外線を植物切片に照射して、その蛍光輝度からリグニンの有無を評価する方法が報告されている。また、バイオマスからリグニンを回収する方法として、常圧酢酸パルプ化法がある(Holzforschung,49(1995)pp.343-350)。しかしながら、常圧酢酸パルプ化法で回収したリグニンの利用分野としては、従来、炭素繊維や成形物の強化剤などを考慮されているにすぎない。また、微細化した場合における利用方法は検討されていない。   In order to achieve the above object of the present invention, the present inventor paid attention to biomass. Biomass components are known to generate fluorescence when irradiated with specific excitation light. One example is lignin. Lignin is known to generate fluorescence when irradiated with ultraviolet rays. As one of methods for evaluating lignin in plants, a method has been reported in which ultraviolet rays are irradiated to plant sections and the presence or absence of lignin is evaluated from the fluorescence luminance. As a method for recovering lignin from biomass, there is an atmospheric pressure acetic acid pulping method (Holzforschung, 49 (1995) pp.343-350). However, as the application field of lignin recovered by the atmospheric pressure acetic acid pulping method, conventionally, only carbon fiber, a reinforcing agent for molded articles, and the like are considered. Moreover, the utilization method in the case of refinement | miniaturization is not examined.

本発明者は、鋭意検討した結果、意外なことに、酢酸を用いて抽出したリグニンは、可視光線により励起され蛍光を発することを見出し、本発明に到達した。リグニンが可視光、就中488から566nm付近の可視光により励起され、安定な蛍光を発生することは従来知られておらず、本発明者が初めて見出したことである。
すなわち、本発明は以下のとおりである。
As a result of intensive studies, the present inventor has surprisingly found that lignin extracted with acetic acid is excited by visible light and emits fluorescence, and has reached the present invention. It has not been known so far that lignin is excited by visible light, particularly visible light in the vicinity of 488 to 566 nm and generates stable fluorescence.
That is, the present invention is as follows.

1.バイオマスから酢酸水溶液を用いて抽出したリグニンを主成分とし、波長488から566nm付近の励起光で蛍光を発する蛍光色素。
2.バイオマスが、加水分解によりホロセルロースを一部分解した残渣である前記1の蛍光色素。
3.リグニンがバイオマスから酢酸水溶液と鉱酸を用いて抽出したものである前記1又は2の蛍光色素。
4.リグニンの融点及び熱分解温度が100℃以上である前記1、2又は3の蛍光色素。
5.リグニンの平均粒径が10から100nm付近である前記1〜4のいずれか1項の蛍光色素。
6.タンパク質の蛍光色素標識用である前記1〜5のいずれか1項の蛍光色素。
7.リグニンと抗体が結合してなる前記6の蛍光色素。
1. A fluorescent dye that contains lignin extracted from biomass using an aqueous acetic acid solution as a main component and emits fluorescence with excitation light having a wavelength of about 488 to 566 nm.
2. The fluorescent dye according to 1 above, wherein the biomass is a residue obtained by partially decomposing holocellulose by hydrolysis.
3. The fluorescent dye according to 1 or 2 above, wherein lignin is extracted from biomass using an aqueous acetic acid solution and a mineral acid.
4). The fluorescent dye according to 1, 2 or 3, wherein the melting point and thermal decomposition temperature of lignin are 100 ° C or higher.
5. 5. The fluorescent dye according to any one of 1 to 4 above, wherein the average particle size of lignin is in the vicinity of 10 to 100 nm.
6). 6. The fluorescent dye according to any one of 1 to 5 above, which is used for labeling a fluorescent dye of a protein.
7). 6. The fluorescent dye according to 6 above, wherein lignin and an antibody are combined.

本発明の蛍光色素は、波長488から566nm付近の励起光を照射した場合に蛍光を発生し、市販のリグニンに比べて、その蛍光強度は高くなっていることが特徴である。また、本発明の蛍光色素の主成分であるリグニンは安定な物質であるため、励起光の照射による退色が生じず、かつ光の点滅も生じない。さらに、常温でも保管できるため管理が簡易的である。また、安定性があるから生細胞内へ導入できる微細化も可能である。
さらに、本発明の蛍光色素の原料はバイオマスであるため、安価で大量に安定的に入手することが可能である。また、リグニンはタンパク質を吸着する特性を有しているので、細胞観察用の蛍光色素として活用する場合に、対象タンパク質と結合させるための化学修飾が必要でない。以上のことから安価な蛍光色素を製造することが可能となる。
The fluorescent dye of the present invention is characterized in that it emits fluorescence when irradiated with excitation light having a wavelength of about 488 to 566 nm, and its fluorescence intensity is higher than that of commercially available lignin. In addition, since lignin, which is the main component of the fluorescent dye of the present invention, is a stable substance, fading due to irradiation with excitation light does not occur and light does not blink. Furthermore, management is simple because it can be stored at room temperature. In addition, since it is stable, it can be miniaturized so that it can be introduced into living cells.
Furthermore, since the raw material of the fluorescent dye of the present invention is biomass, it can be stably obtained in a large amount at a low cost. In addition, since lignin has the property of adsorbing proteins, when it is used as a fluorescent dye for cell observation, chemical modification for binding to the target protein is not necessary. From the above, it becomes possible to produce an inexpensive fluorescent dye.

本発明の蛍光色素粒子における製造方法と使用方法のフローチャートである。It is a flowchart of the manufacturing method and the usage method in the fluorescent dye particle of this invention. 本発明の酢酸で回収したリグニンの蛍光特性についての試験結果を示す画像である。It is an image which shows the test result about the fluorescence characteristic of lignin collect | recovered with the acetic acid of this invention. クラソンリグニンの蛍光特性についての試験結果を示す画像である。It is an image which shows the test result about the fluorescence characteristic of a clason lignin. 酢酸セルロースの蛍光特性についての試験結果を示す画像である。It is an image which shows the test result about the fluorescence characteristic of a cellulose acetate.

以下に本発明を詳細に説明する。
蛍光色素は、重量減少率5%と定義した場合における熱分解温度が100℃以上とする物質であることが好ましい。その理由として100℃以下では微細化する際の処理において熱分解する可能性があるからである。また、100℃以下で融点を有しない物質であることも同様の理由から好ましい。さらにセルラーゼなどのタンパク質に吸着する特性を有している物質であることが要求される。リグニンはかかる点において、好ましい物質である。
The present invention is described in detail below.
The fluorescent dye is preferably a substance having a thermal decomposition temperature of 100 ° C. or higher when the weight reduction rate is defined as 5%. The reason is that if the temperature is 100 ° C. or lower, there is a possibility of thermal decomposition in the process of miniaturization. It is also preferable for the same reason that the substance does not have a melting point at 100 ° C. or lower. Furthermore, it is required to be a substance having the property of adsorbing to proteins such as cellulase. Lignin is a preferred material in this respect.

本発明の蛍光色素は、バイオマスから酢酸水溶液と必要に応じて鉱酸を用いて抽出したリグニンを主成分とする。この蛍光色素は、蛍光顕微鏡に一般に使用する波長488nm付近から566nm付近の励起光を照射することで、強い蛍光を発する。   The fluorescent dye of the present invention is mainly composed of lignin extracted from biomass using an acetic acid aqueous solution and, if necessary, a mineral acid. This fluorescent dye emits strong fluorescence when irradiated with excitation light having a wavelength of about 488 nm to about 566 nm generally used in a fluorescence microscope.

本発明の原料として使用するバイオマスとは、一般的には、再生可能な、生物由来の有機性資源で化石資源を除いたものと定義される。より具体的には、草本系バイオマスと木質系バイオマスがある。草本系バイオマスでは、例えば、稲わら、麦わら、竹、籾殻、麦柄などを用いることができる。また木質系バイオマスでは、例えば、針葉樹であるスギ、マツ、ヒノキなどを用いることができる。さらに上記バイオマスのホロセルロースを水熱処理や酵素糖化処理などにより加水分解した際に排出される残渣であっても、リグニンを含む残渣であれば本発明に使用することができる。また、粉砕などの機械的処理を施したバイオマスであっても使用することが可能である。   Biomass used as a raw material of the present invention is generally defined as a renewable, organic organic resource excluding fossil resources. More specifically, there are herbaceous biomass and woody biomass. In the herbaceous biomass, for example, rice straw, straw, bamboo, rice husk, wheat pattern and the like can be used. In woody biomass, for example, coniferous trees such as cedar, pine, and cypress can be used. Furthermore, even if it is a residue discharged | emitted when the holocellulose of the said biomass is hydrolyzed by hydrothermal treatment, an enzyme saccharification process, etc., if it is a residue containing a lignin, it can be used for this invention. Further, even biomass that has been subjected to mechanical treatment such as pulverization can be used.

本発明の蛍光色素の製造方法について、図1に基づき説明する。
(ステップS101)
蛍光色素の製造は、まずバイオマスから酢酸水溶液を用いてリグニンを抽出する。酢酸水溶液の濃度は、特に制限はないが、通常40〜90体積%、好ましくは80〜90体積%である。また塩酸や硫酸などの鉱酸を酢酸水溶液に添加することで抽出を円滑に進めることができるが、短時間による抽出を必要としない場合は必ずしもその必要はない。鉱酸を添加する場合は、その濃度は、通常0.1〜1.0体積%、好ましくは0.1〜0.5体積%である。
抽出は、常温でも可能であるが、好ましくは加熱することで、より速やかにリグニンを抽出でき、好ましい。通常抽出圧力は大気圧である。抽出時間は、鉱酸を使用しない場合は、通常12〜48時間、好ましくは24〜48時間、使用する場合は通常1〜12時間、好ましくは3〜6時間である。
The method for producing the fluorescent dye of the present invention will be described with reference to FIG.
(Step S101)
In the production of a fluorescent dye, lignin is first extracted from biomass using an aqueous acetic acid solution. The concentration of the acetic acid aqueous solution is not particularly limited, but is usually 40 to 90% by volume, preferably 80 to 90% by volume. Extraction can be smoothly carried out by adding a mineral acid such as hydrochloric acid or sulfuric acid to an aqueous acetic acid solution, but this is not always necessary when extraction in a short time is not required. When adding a mineral acid, the density | concentration is 0.1-1.0 volume% normally, Preferably it is 0.1-0.5 volume%.
Extraction is possible even at room temperature, but it is preferable because lignin can be extracted more quickly by heating. Usually, the extraction pressure is atmospheric pressure. The extraction time is usually 12 to 48 hours, preferably 24 to 48 hours when no mineral acid is used, and usually 1 to 12 hours, preferably 3 to 6 hours when used.

ついで、リグニンの抽出液と残渣物を、公知のろ過装置等で分離して、抽出液を回収する。回収した抽出液は、減圧濃縮等により濃縮する。その際、100〜118℃付近で加熱することが好ましい。濃縮した液に蒸留水を添加後、析出したリグニンを分離回収する。回収は公知のろ過装置等で行うことができる。回収したリグニンは、減圧乾燥等で乾燥する。
このようにして得られるリグニンは粉末である。また、乾燥前に粒径が、100nm以下であれば、そのまま本発明の蛍光色素として使用できる。
Subsequently, the extract of lignin and the residue are separated by a known filtration device or the like, and the extract is recovered. The recovered extract is concentrated by vacuum concentration or the like. In that case, it is preferable to heat at about 100-118 degreeC. After adding distilled water to the concentrated liquid, the precipitated lignin is separated and recovered. The recovery can be performed with a known filtration device or the like. The recovered lignin is dried by drying under reduced pressure or the like.
The lignin thus obtained is a powder. Further, if the particle size is 100 nm or less before drying, it can be used as it is as the fluorescent dye of the present invention.

(ステップS102)
上記のごとくしてステップS101において得られたリグニンは、十分に微細であれば蛍光色素として用いることが可能であるが、必要に応じてさらに微細化して、使用することができる。例えば、リグニンの微細化には粉砕処理を用いる。粉砕処理を行う場合には、公知の湿式の回転ボールミルやビーズミルなどを用いることができる。微細化したリグニンは、公知の方法で乾燥する。このようにして得られるリグニンの平均粒径は、好ましくは10〜100nm、より好ましくは10〜20nmである。
(Step S102)
The lignin obtained in step S101 as described above can be used as a fluorescent dye if it is sufficiently fine, but can be further refined and used as necessary. For example, a pulverization process is used to refine lignin. When the pulverization is performed, a known wet rotating ball mill or bead mill can be used. The refined lignin is dried by a known method. The average particle size of the lignin thus obtained is preferably 10 to 100 nm, more preferably 10 to 20 nm.

(ステップS103)
本発明の蛍光色素は、タンパク質の検出用として用いる場合は、抗体と結合した複合体であることが好ましい。抗体(以下、一次抗体)としては目的とするタンパク質と結合するものを選択する。複合体の形成は、蒸留水やリン酸緩衝液中でリグニンと一次抗体を混合することにより行う。リグニンと一次抗体の結合を強固にする場合には、一次抗体のアミノ基とシランカップリング剤やグルタルアルデヒドにリグニンを浸した後、リグニンを乾燥する。その後、蒸留水やリン酸緩衝液などの液中で一次抗体のアミノ基とリグニンを結合させる。
(Step S103)
When the fluorescent dye of the present invention is used for protein detection, it is preferably a complex bound to an antibody. As an antibody (hereinafter referred to as a primary antibody), one that binds to the target protein is selected. The complex is formed by mixing lignin and the primary antibody in distilled water or phosphate buffer. In order to strengthen the binding between the lignin and the primary antibody, the lignin is dried after immersing the lignin in the amino group of the primary antibody and the silane coupling agent or glutaraldehyde. Thereafter, the amino group of the primary antibody and lignin are bound in a solution such as distilled water or phosphate buffer.

細胞膜に微細な穴を形成した生細胞に導入する場合、細胞膜の処理は界面活性剤やエレクトロポレーション法を用いて行う。また、マイクロインジェクション法により細胞内に上述の複合体を直接注入しても良い。
ホルマリンやパラホルムアルデヒドリン酸緩衝液などで固定した細胞に上述の複合体を導入する場合には、まず、界面活性剤を用いて細胞膜を処理する。その後、上述の複合体を導入する。
When introducing into living cells in which fine holes are formed in the cell membrane, the cell membrane is treated using a surfactant or electroporation. Further, the above-described complex may be directly injected into the cell by a microinjection method.
When the complex described above is introduced into cells fixed with formalin, paraformaldehyde phosphate buffer, or the like, the cell membrane is first treated with a surfactant. Thereafter, the above-described complex is introduced.

以上の工程後、リグニンが結合した抗体は細胞の対象タンパク質に結合する。その後、蛍光顕微鏡を用い、波長488〜566nmの可視光を照射して蛍光を発生させて、細胞内の蛍光色素を観察することにより、細胞内のタンパク質を観察できる。
また、リグニンが結合した抗体を細胞に導入する前に、Bovine serum albumin (BSA)を添加しておくことにより、上述の観察がより鮮明となる。
細胞膜外で発現しているタンパク質を観察する場合には、一次抗体と結合したリグニンを培養中の生細胞およびホルマリンやパラホルムアルデヒドなどで固定した細胞に添加することで,対象タンパク質を標識する。その後、蛍光顕微鏡で観察することで細胞膜がいのタンパク質を観察することができる。
After the above steps, the lignin-bound antibody binds to the target protein of the cell. Thereafter, the intracellular protein can be observed by irradiating visible light having a wavelength of 488 to 566 nm with a fluorescence microscope to generate fluorescence and observing the intracellular fluorescent dye.
In addition, the above observation becomes clearer by adding Bovine serum albumin (BSA) before introducing the lignin-bound antibody into the cells.
When observing a protein expressed outside the cell membrane, the target protein is labeled by adding lignin bound to the primary antibody to living cells in culture and cells fixed with formalin or paraformaldehyde. Thereafter, the protein with a cell membrane can be observed by observing with a fluorescence microscope.

以下に、実施例、比較例で本発明を説明する。
実施例1
〔酢酸と鉱酸で抽出したリグニンの蛍光特性〕
振動式粉砕機により平均粒径25μmまで微細化したスギ微粉末をpH5.5の酢酸緩衝液に投入後,セルラーゼを添加した。その後、50℃で24時間加熱した。以上がバイオマスの糖化処理である。その後、濾過フィルターを用いて残渣を回収した。
残渣からリグニンを回収した手順は次のとおりである。容器に入った残渣40gに80体積%酢酸水溶液を400mL注ぎ、その後、0.4mLの塩酸(11.7mM)を添加した。その後、6時間、130℃で加熱してリグニンを蒸解した。吸引濾過装置を用いてリグニンが抽出した液分のみを回収後、減圧濃縮および蒸留水の添加によりリグニンを析出した。その後、凍結乾燥機により乾燥することでリグニンを回収した。回収したリグニンは粒径が約30〜60μmであった。
なお、粒径は光散乱法と走査型電顕(SEM)を適宜併用して測定した。
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
Example 1
[Fluorescence characteristics of lignin extracted with acetic acid and mineral acid]
Cellulase was added to a cedar fine powder refined to an average particle size of 25 μm by a vibration pulverizer in an acetic acid buffer having a pH of 5.5. Then, it heated at 50 degreeC for 24 hours. This is the biomass saccharification treatment. Thereafter, the residue was collected using a filtration filter.
The procedure for recovering lignin from the residue is as follows. 400 mL of an 80% by volume acetic acid aqueous solution was poured into 40 g of the residue contained in the container, and then 0.4 mL of hydrochloric acid (11.7 mM) was added. Thereafter, the lignin was digested by heating at 130 ° C. for 6 hours. After collecting only the liquid extracted from the lignin using a suction filtration device, the lignin was precipitated by concentration under reduced pressure and addition of distilled water. Then, lignin was collect | recovered by drying with a freeze dryer. The recovered lignin had a particle size of about 30-60 μm.
The particle size was measured by appropriately using a light scattering method and a scanning electron microscope (SEM).

図2は酢酸で抽出したリグニンの蛍光特性試験についての結果を示す。試験では、リグニンをスライドガラスとカバーガラスに挟み込み共焦点レーザー顕微鏡を用いて観察した。照射した励起光の波長は405、488、566、633nmである。リグニンは波長488、566、633nmの励起光(レーザー強度40%)を照射された場合、蛍光が観察された。特に波長488、566nmにおいて蛍光強度が高かった。また、最も低いレーザー強度5%においても、蛍光を確認することが可能であった。レーザー強度5%は一般の細胞観察において用いるレーザー強度である。このことから酢酸を用いて回収されたリグニンは蛍光色素の原材料として十分に使用できる。   FIG. 2 shows the results for the fluorescence property test of lignin extracted with acetic acid. In the test, lignin was sandwiched between a slide glass and a cover glass and observed using a confocal laser microscope. The wavelengths of the irradiated excitation light are 405, 488, 566, and 633 nm. When lignin was irradiated with excitation light (laser intensity 40%) having wavelengths of 488, 566, and 633 nm, fluorescence was observed. In particular, the fluorescence intensity was high at wavelengths of 488 and 566 nm. Further, it was possible to confirm fluorescence even at the lowest laser intensity of 5%. The laser intensity of 5% is a laser intensity used in general cell observation. Therefore, the lignin recovered using acetic acid can be sufficiently used as a raw material for the fluorescent dye.

実施例2
〔酢酸で抽出したリグニンの蛍光特性〕
振動式粉砕機により平均粒径25μmまで微細化したスギ微粉末をpH5.5の酢酸緩衝液に投入後、セルラーゼを添加した。その後、50℃で24時間加熱した。その後、濾過フィルターを用いて残渣を回収した。
残渣からリグニンを回収した手順は次のとおりである。容器に入った残渣40gに80体積%酢酸水溶液を400mL注ぎ、6時間、130℃で加熱してリグニンを蒸解した。吸引濾過装置を用いてリグニンが抽出した液分のみを回収後、減圧濃縮および蒸留水の添加によりリグニンを析出した。その後、凍結乾燥機により乾燥することでリグニンを回収した。回収したリグニンの特性は、実施例1と同様であった。
Example 2
[Fluorescence characteristics of lignin extracted with acetic acid]
Cellulase was added to cedar fine powder refined to an average particle size of 25 μm by a vibration pulverizer in an acetic acid buffer having a pH of 5.5. Then, it heated at 50 degreeC for 24 hours. Thereafter, the residue was collected using a filtration filter.
The procedure for recovering lignin from the residue is as follows. 400 mL of 80% by volume acetic acid aqueous solution was poured into 40 g of the residue contained in the container, and the lignin was digested by heating at 130 ° C. for 6 hours. After collecting only the liquid extracted from the lignin using a suction filtration device, the lignin was precipitated by concentration under reduced pressure and addition of distilled water. Then, lignin was collect | recovered by drying with a freeze dryer. The characteristics of the collected lignin were the same as in Example 1.

比較例1
〔クラソンリグニンの蛍光特性〕
市販のクラソンリグニンの蛍光特性試験についての結果を図3に示す。試験方法は実施例1と同様である。励起光の波長が405ならびに566nmの場合にクラソンリグニンは蛍光を発生することが確認された(レーザー強度40%)。しかしながら、実施例1と比較して、566nmの励起光における蛍光強度は低いことが分かった。
Comparative Example 1
[Fluorescence characteristics of clason lignin]
The result about the fluorescence characteristic test of commercially available clason lignin is shown in FIG. The test method is the same as in Example 1. It was confirmed that clason lignin generates fluorescence when the wavelength of the excitation light is 405 and 566 nm (laser intensity 40%). However, compared with Example 1, it turned out that the fluorescence intensity in excitation light of 566 nm is low.

比較例2
酢酸セルロースの蛍光特性
市販の酢酸セルロースの蛍光特性試験についての結果を図4に示す。試験方法は実施例1と同様である。酢酸セルロースは波長488、566、633nmの励起光において、蛍光を生じないことが確認された。このことから、実施例1の蛍光は、酢酸ではなく、酢酸で修飾されたリグニンに起因していることが分かった。
Comparative Example 2
Fluorescence characteristics of cellulose acetate The results of the fluorescence characteristics test of commercially available cellulose acetate are shown in FIG. The test method is the same as in Example 1. It was confirmed that cellulose acetate did not produce fluorescence in excitation light with wavelengths of 488, 566, and 633 nm. From this, it was found that the fluorescence of Example 1 was caused by lignin modified with acetic acid, not acetic acid.

本発明の蛍光色素は、波長488から566nm付近の励起光を照射した場合に強い蛍光を発生するので、蛍光顕微鏡における細胞観察用の蛍光色素として有用である。   Since the fluorescent dye of the present invention generates strong fluorescence when irradiated with excitation light having a wavelength of about 488 to 566 nm, it is useful as a fluorescent dye for cell observation in a fluorescence microscope.

Claims (7)

バイオマスから酢酸水溶液を用いて抽出したリグニンを主成分とし、波長488から566nm付近の励起光で蛍光を発する蛍光色素。   A fluorescent dye that contains lignin extracted from biomass using an aqueous acetic acid solution as a main component and emits fluorescence with excitation light having a wavelength of about 488 to 566 nm. バイオマスが、加水分解によりホロセルロースを一部分解したものである請求項1の蛍光色素。   2. The fluorescent dye according to claim 1, wherein the biomass is obtained by partially decomposing holocellulose by hydrolysis. リグニンがバイオマスから酢酸水溶液と鉱酸を用いて抽出したものである請求項1又は2の蛍光色素。   The fluorescent dye according to claim 1 or 2, wherein the lignin is extracted from biomass using an acetic acid aqueous solution and a mineral acid. リグニンの融点及び熱分解温度が100℃以上である請求項1、2又は3の蛍光色素。   The fluorescent dye according to claim 1, 2 or 3, wherein the melting point and thermal decomposition temperature of lignin are 100 ° C or higher. リグニンの平均粒径が10から100nm付近である請求項1〜4のいずれか1項の蛍光色素。   The fluorescent dye according to any one of claims 1 to 4, wherein the average particle diameter of lignin is around 10 to 100 nm. タンパク質の蛍光色素標識用である請求項1〜5のいずれか1項の蛍光色素。   The fluorescent dye according to any one of claims 1 to 5, which is used for labeling a fluorescent dye of a protein. リグニンと抗体が結合してなる請求項6の蛍光色素。

The fluorescent dye according to claim 6, wherein lignin and an antibody are combined.

JP2013095259A 2013-04-30 2013-04-30 Fluorescent dye Expired - Fee Related JP6260947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095259A JP6260947B2 (en) 2013-04-30 2013-04-30 Fluorescent dye

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095259A JP6260947B2 (en) 2013-04-30 2013-04-30 Fluorescent dye

Publications (2)

Publication Number Publication Date
JP2014212774A true JP2014212774A (en) 2014-11-17
JP6260947B2 JP6260947B2 (en) 2018-01-17

Family

ID=51939147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095259A Expired - Fee Related JP6260947B2 (en) 2013-04-30 2013-04-30 Fluorescent dye

Country Status (1)

Country Link
JP (1) JP6260947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118583A1 (en) * 2020-12-04 2022-06-09 国立大学法人京都大学 Method for isolating, from plant biomass, at least one selected from group consisting of lignin, hemicellulose, lignin-polysaccharide composite, cellulose, and hemicellulose-cellulose composite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322682A (en) * 1992-08-25 1994-11-22 Gebr Kaemmerer Projekt Agentur Gmbh Preparation of pulp by using acetic acid incorporated with formic acid
JPH08271430A (en) * 1995-03-28 1996-10-18 Aisin Seiki Co Ltd Novel fluorescent dye
JP2001208745A (en) * 2000-01-27 2001-08-03 Yamagata Public Corp For The Development Of Industry Food condition evaluating method and device therefor
JP2004131672A (en) * 2002-10-15 2004-04-30 Yamagata Public Corp For The Development Of Industry Ultraviolet absorber
JP2006112004A (en) * 2004-10-14 2006-04-27 Kansai Paint Co Ltd Method for effectively utilizing elaeis guineensis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322682A (en) * 1992-08-25 1994-11-22 Gebr Kaemmerer Projekt Agentur Gmbh Preparation of pulp by using acetic acid incorporated with formic acid
JPH08271430A (en) * 1995-03-28 1996-10-18 Aisin Seiki Co Ltd Novel fluorescent dye
JP2001208745A (en) * 2000-01-27 2001-08-03 Yamagata Public Corp For The Development Of Industry Food condition evaluating method and device therefor
JP2004131672A (en) * 2002-10-15 2004-04-30 Yamagata Public Corp For The Development Of Industry Ultraviolet absorber
JP2006112004A (en) * 2004-10-14 2006-04-27 Kansai Paint Co Ltd Method for effectively utilizing elaeis guineensis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118583A1 (en) * 2020-12-04 2022-06-09 国立大学法人京都大学 Method for isolating, from plant biomass, at least one selected from group consisting of lignin, hemicellulose, lignin-polysaccharide composite, cellulose, and hemicellulose-cellulose composite

Also Published As

Publication number Publication date
JP6260947B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
Zhang et al. Natural‐product‐derived carbon dots: from natural products to functional materials
Gupta et al. Cleaner process for extraction of sericin using infrared
Abraham et al. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre
Zhao et al. Preparation of carbon dots from waste cellulose diacetate as a sensor for tetracycline detection and fluorescence ink
Shi et al. Fluorescent carbon dots for bioimaging and biosensing applications
Zhao et al. Fluorescence enhancement of lignin-based carbon quantum dots by concentration-dependent and electron-donating substituent synergy and their cell imaging applications
CN109135738B (en) Waste tobacco stem-based nitrogen-doped carbon dots and synthesis method and application thereof
Song et al. Preparation, properties, and application of lignocellulosic‐based fluorescent carbon dots
CN108059149A (en) A kind of biomass fluorescent carbon quantum dot and preparation method thereof
CN105018082A (en) Method for preparing carbon quantum dot labeled probe for silk fibroin extracted cell development
CN107502349B (en) Preparation method of water-soluble bluish violet light carbon quantum dots
Maceda et al. Fluorescence microscopy methods for the analysis and characterization of lignin
Zhou et al. Preparation of biomass-based carbon dots with aggregation luminescence enhancement from hydrogenated rosin for biological imaging and detection of Fe3+
CN108424769B (en) Green preparation method of carbon dots for biological imaging
CN107603611A (en) One kind has Catalyzed Synthesis By Peroxidase active fluoro carbon quantum dot and preparation method thereof
Park et al. Inflated sporopollenin exine capsules obtained from thin-walled pollen
CN106433486B (en) A kind of preparation method of sturgeon fishskin gelatin
Wu et al. Pentosan-derived water-soluble carbon nano dots with substantial fluorescence: properties and application as a photosensitizer
CN107663453A (en) A kind of preparation method of lignin fluorescent carbon nano-particles
CN107840319A (en) A kind of nitrogenous carbon point and its synthetic method and its application in terms of cell marking imaging
Flores–Oña et al. Carbon nanoparticles production using solvent assisted hydrothermal carbonization
Kane et al. Evaluating the potential of culms from sugarcane and energy cane varieties grown in Argentina for second-generation ethanol production
CN110018146B (en) Method for detecting palladium ions based on fluorescent carbon quantum dots
JP6260947B2 (en) Fluorescent dye
Abu et al. Development of biomass waste-based carbon quantum dots and their potential application as non-toxic bioimaging agents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6260947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees