JP2014212148A - Solar cell panel - Google Patents

Solar cell panel Download PDF

Info

Publication number
JP2014212148A
JP2014212148A JP2013086259A JP2013086259A JP2014212148A JP 2014212148 A JP2014212148 A JP 2014212148A JP 2013086259 A JP2013086259 A JP 2013086259A JP 2013086259 A JP2013086259 A JP 2013086259A JP 2014212148 A JP2014212148 A JP 2014212148A
Authority
JP
Japan
Prior art keywords
solar cell
solar
shield
series
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013086259A
Other languages
Japanese (ja)
Inventor
なつき 浅野
Natsuki Asano
なつき 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013086259A priority Critical patent/JP2014212148A/en
Publication of JP2014212148A publication Critical patent/JP2014212148A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that the series number of solar cell arrays and a mounting layout must be reviewed in a design of the conventional solar cell panel at every time when design condition such as radiation environment is different.SOLUTION: Solar battery cells are prepared on which shields such as glass having different thickness are mounted. A solar cell array is created in which these solar battery cells having different shield thickness are connected in series based on a predetermined mounting ratio. The mounting ratio is determined on the basis of output voltage at the end of design life in an assumed dose of total radiation exposure. As a result, reduction and optimization of the series number of the solar cell arrays can be achieved, and cost of a solar cell panel can be reduced.

Description

本発明は太陽電池パネルに関するものである。特に人工衛星や宇宙船などの宇宙航行体に搭載され、放射線による太陽電池セルの電圧の劣化を考慮する必要のある太陽電池パネルに関するものである。 The present invention relates to a solar cell panel. In particular, the present invention relates to a solar battery panel that is mounted on a spacecraft such as an artificial satellite or a spacecraft and needs to take into account the deterioration of the voltage of the solar battery cell due to radiation.

これまで太陽電池パネルを搭載した数多くの宇宙船が宇宙空間に打ち上げられてきたが、宇宙船が高機能化するにつれて、大電力の供給が可能な太陽電池パネルが必要となり、太陽電池パネルを構成する太陽電池アレイの太陽電池セルの直列数、および太陽電池アレイの並列数は増加する傾向にある。 Many spaceships equipped with solar panels have been launched in outer space, but as spacecraft become more sophisticated, solar panels that can supply large amounts of power are required, making up solar panels. The number of solar cells in series and the number of parallel arrays of solar cells tend to increase.

宇宙環境における太陽電池セルの電圧劣化の要因として、太陽電池セルに入射する放射線が挙げられる。従来、放射線による太陽電池セルの電圧劣化を緩和する対策として、太陽電池セルをガラス等のシールドで保護する方法が知られている(例えば、特許文献1参照)。 As a factor of the voltage deterioration of the solar battery cell in the space environment, radiation incident on the solar battery cell can be cited. Conventionally, a method of protecting a solar battery cell with a shield such as glass is known as a measure for alleviating voltage degradation of the solar battery cell due to radiation (see, for example, Patent Document 1).

特開2010−21350号公報JP 2010-21350 A

従来、太陽電池パネルの放射線環境等の設計条件が変更された場合の対処法としては、(1)太陽電池アレイの直列数および実装レイアウトの見直し、(2)太陽電池の上に実装しているガラス等のシールド厚の変更、が挙げられる。(1)の太陽電池アレイの直列数および実装レイアウトの見直しにおいては、太陽電池枚数の増加によるコストの増加、また場合によってはパネル枚数の増加による大幅なコスト/重量の増加が生じるという課題があった。また、(2)の太陽電池の上に実装しているガラス等のシールド厚の変更においては、前提として宇宙船および人工衛星に使用される太陽電池パネルは高い信頼性が求められるため、その宇宙船および人工衛星が晒される環境を模擬した検証/認定試験に合格したものしか宇宙船および人工衛星に搭載できないが、ガラス等のシールド厚の変更は再度の検証/認定試験が必要となり、太陽電池パネルのコストや製造計画に大きな影響を与えるという課題があった。 Conventionally, as a countermeasure when the design conditions such as the radiation environment of the solar cell panel are changed, (1) reviewing the series number and mounting layout of the solar cell array, and (2) mounting on the solar cell. Change of shield thickness of glass or the like. In the review of the number of solar cell arrays in series and mounting layout in (1), there is a problem that an increase in cost due to an increase in the number of solar cells and, in some cases, a significant increase in cost / weight due to an increase in the number of panels. It was. In addition, in (2) changing the shield thickness of glass or the like mounted on a solar cell, solar cell panels used for spacecraft and satellites are required to have high reliability. Only those that have passed verification / certification tests simulating the environment to which ships and satellites are exposed can be mounted on spacecrafts and satellites, but changing the shield thickness of glass, etc. requires a second verification / certification test. There was a problem of having a large impact on panel costs and manufacturing plans.

また、従来の太陽電池パネルの設計では、設計上必要となる太陽電池アレイの直列数が整数でない場合に少数点以下を切り上げた直列数を実装しなければならず、切り上げた数×太陽電池アレイの並列数分だけ、材料コストが余計に必要となるという課題があった。 Further, in the conventional solar cell panel design, when the number of series of solar cell arrays required for the design is not an integer, the number of series rounded up to the nearest decimal point must be mounted. There was a problem that extra material costs were required for the number of parallel lines.

この発明は係る問題を解決するためになされたものであり、放射線による電圧劣化を考慮する必要のある太陽電池パネルにおいて、コストの低減が可能な太陽電池パネルを提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a solar cell panel capable of reducing cost in a solar cell panel that needs to consider voltage degradation due to radiation.

この発明に係る太陽電池パネルは、宇宙航行体に搭載され、インターコネクタを用いて太陽電池セルを直列接続した複数の太陽電池アレイからなる太陽電池パネルであって、
前記太陽電池アレイは、受光面側に、厚さの異なる複数のシールドを各々備えた太陽電池セルを、所定の比率で接続するようにした。
A solar battery panel according to the present invention is a solar battery panel that is mounted on a spacecraft and includes a plurality of solar battery arrays in which solar battery cells are connected in series using an interconnector,
In the solar cell array, solar cells each having a plurality of shields having different thicknesses are connected to the light receiving surface side at a predetermined ratio.

この発明によれば、放射線環境等の設計条件が異なる太陽電池パネルに対して、太陽電池アレイを構成する太陽電池セルの実装数を削減することができる。太陽電池セルの実装数を削減することにより、コストの削減が可能になる。 According to the present invention, it is possible to reduce the number of mounted solar cells constituting the solar cell array with respect to solar cell panels having different design conditions such as radiation environment. By reducing the number of mounted solar cells, the cost can be reduced.

この発明の実施の形態1に係る太陽電池パネルを構成する太陽電池アレイの側面図である。It is a side view of the solar cell array which comprises the solar cell panel which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る太陽電池パネルの太陽電池アレイを構成する各太陽電池セルの電圧-電流特性図である。It is a voltage-current characteristic view of each solar battery cell constituting the solar battery array of the solar battery panel according to Embodiment 1 of the present invention. 従来の太陽電池パネルを構成する太陽電池アレイの側面図である。It is a side view of the solar cell array which comprises the conventional solar cell panel. 従来の直列段数を増加させて放射線被爆量増加に対応する太陽電池パネルの側面図である。It is a side view of the solar cell panel corresponding to the radiation exposure dose increase by increasing the conventional serial stage number. 従来の太陽電池セル上のガラス等のシールドを厚くして、予測放射線被爆量増加に対応する太陽電池パネルの側面図である。It is a side view of a solar cell panel corresponding to an increase in predicted radiation exposure by thickening a shield such as glass on a conventional solar cell.

実施の形態1.
図1は実施の形態1に係る太陽電池パネルを構成する太陽電池アレイの側面図である。図1において太陽電池セル1同士はインターコネクタ3で接続されており、太陽電池セル1の受光面側にはガラス等のシールド2が配置されている。
太陽電池セル1の直列数はN個であり、直列接続された各々の太陽電池セル1は添え字により区分される(11〜1N)。同様に、各々の太陽電池セル1(11〜1N)の受光面側に配置されたシールド2は、太陽電池セルに付された添え字により各々区分される(21〜2N)。
Embodiment 1 FIG.
1 is a side view of a solar cell array constituting the solar cell panel according to Embodiment 1. FIG. In FIG. 1, solar cells 1 are connected to each other by an interconnector 3, and a shield 2 such as glass is disposed on the light receiving surface side of the solar cells 1.
The number of solar cells 1 in series is N, and each of the solar cells 1 connected in series is classified by a subscript (1 1 to 1 N ). Similarly, the shield 2 arranged on the light receiving surface side of each solar cell 1 (1 1 to 1 N ) is divided by a subscript attached to the solar cell (2 1 to 2 N ).

図3は従来の太陽電池パネルを構成する太陽電池アレイの側面図である。太陽電池セル1同士はインターコネクタ3で接続されており、太陽電池セル1の受光面側には、ガラス等のシールド2が配置されている。
太陽電池セル1の直列数はN個であり、直列接続された各々の太陽電池セル1には添え字11〜1Nが付されている。
FIG. 3 is a side view of a solar cell array constituting a conventional solar cell panel. The solar cells 1 are connected to each other by an interconnector 3, and a shield 2 such as glass is disposed on the light receiving surface side of the solar cells 1.
Serial number of the solar cell 1 is N pieces, the solar cell 1 of each connected in series are denoted by the subscript 1 1 to 1 N.

従来の太陽電池パネルでは、図3に示すように太陽電池パネル上の全ての太陽電池セル(11〜1N)に対して、同じ厚さAのシールド2が実装されていた。
これに対して、実施の形態1に係る太陽電池パネルでは、太陽電池セル(11〜1N)に対して2種類の厚さA、Bのシールド2が配置される。
図1の例では、厚さBのシールド2(21〜2k)が実装されたK個の太陽電池セル(11〜1K)と、厚さAのシールド2(2k+1〜2N)が実装された(N−K)個の太陽電池セル(1k+1〜1N )が直列に接続されて、太陽電池アレイが構成される。
In the conventional solar cell panel, the shield 2 having the same thickness A is mounted on all the solar cells ( 11 to 1 N ) on the solar cell panel as shown in FIG.
On the other hand, in the solar cell panel according to Embodiment 1, two types of shields 2 having thicknesses A and B are arranged for the solar cells (1 1 to 1 N ).
In the example of FIG. 1, K solar cells (1 1 to 1 K ) on which a shield 2 (2 1 to 2 k ) having a thickness B is mounted, and a shield 2 (2 k + 1 to 2N ) mounted (NK) solar cells (1 k + 1 to 1 N ) are connected in series to form a solar cell array.

ここで、宇宙船および人工衛星の設計寿命末期での放射線総被曝量がΦの場合を考える。
図2は、厚さAのシールド2を実装した太陽電池の放射線総被爆量Φの場合の電圧−電流特性と、厚さBのシールド2を実装した太陽電池の放射線総被爆量Φの場合の電圧−電流特性を示した図である。
Here, consider the case where the total radiation exposure at the end of the design life of spacecraft and satellites is Φ.
FIG. 2 shows the voltage-current characteristic in the case of the total radiation exposure Φ of the solar cell mounted with the shield 2 having the thickness A, and the case of the total radiation exposure Φ of the solar cell mounted with the shield 2 of the thickness B. It is the figure which showed the voltage-current characteristic.

厚さAのガラス等のシールド2(21〜2N)を実装した太陽電池アレイの設計寿命末期における最大出力電圧VAstは、厚さAのガラス等のシールド2(21〜2N)を実装した太陽電池セル1(11〜1N )の最大出力電圧をVApmax、所要とされる衛星の動作電圧をVL、Nを整数、sを0以下の少数とすると、0以下の少数sの有無により以下の2通りの状況が考えられる。 The maximum output voltage VAst in the thickness design life end of a solar array that implements the shield 2 (2 1 to 2 N) of glass or the like of A, the glass of thickness A shield 2 (2 1 to 2 N) The maximum output voltage of the mounted solar cell 1 (1 1 to 1 N ) is VApmax, the required operating voltage of the satellite is VL, N is an integer, and s is a decimal number of 0 or less. The following two situations can be considered depending on the presence or absence.

Figure 2014212148
Figure 2014212148

Figure 2014212148
Figure 2014212148

パターン1は、所要とされる衛星の動作電圧VLを満たすために、実装する太陽電池アレイの直列数を(N+1)とする必要があることを示す。
太陽電池パネルを構成する太陽電池アレイの並列数をMとすると、(1−s)×M枚の太陽電池セルが余分に必要となる。
Pattern 1 indicates that the number of solar cell arrays to be mounted needs to be (N + 1) in order to satisfy the required satellite operating voltage VL.
When the parallel number of the solar battery arrays constituting the solar battery panel is M, (1−s) × M solar battery cells are required.

ここで、本実施の形態では、 Here, in this embodiment,

Figure 2014212148
Figure 2014212148

を満たす厚さBのシールド2を選定し、厚さAのシールド(例えばガラス)を実装した太陽電池セルと、厚さBのシールド(例えばガラス)を所定の比率で直列接続した太陽電池アレイを新たに設ける。このとき、所定の比率で直列接続した太陽電池アレイの出力電圧は、 A solar cell array in which a shield B having a thickness B satisfying the above condition is selected and a solar battery cell mounted with a shield having a thickness A (for example, glass) and a shield having a thickness B (for example, glass) are connected in series at a predetermined ratio Newly provided. At this time, the output voltage of the solar cell array connected in series at a predetermined ratio is

Figure 2014212148
Figure 2014212148

となる。このように厚さAのシールド2を実装した太陽電池の直列数(N−k)と、厚さBのシールド2を実装した太陽電池の直列数kの比率を調整することで、(1−s)×M(枚)の太陽電池セルのコストを削減することができる。 It becomes. Thus, by adjusting the ratio of the number of series solar cells (N−k) on which the shield 2 of thickness A is mounted and the number of series solar cells k on which the shield 2 of thickness B is mounted, (1− s) The cost of M solar cells can be reduced.

なお、上記の説明では、厚さの異なる2種類のシールドを用いた太陽電池セルについて説明したが、シールドの厚さは2種類に限定されるものではなく、3以上の厚さの種類のシールドを用いて太陽電池アレイを構成するようにしてもよい。 In the above description, solar cells using two types of shields having different thicknesses have been described. However, the thickness of the shield is not limited to two types, and three or more types of shields are used. You may make it comprise a solar cell array using.

次に、宇宙船および人工衛星の設計寿命末期での放射線総被曝量がΦ+ΔΦとなった場合を考える。
式(1)、式(2)で示したパターン1、パターン2のどちらの場合も、VApmaxは、
Next, consider the case where the total radiation exposure at the end of the design life of spacecraft and satellites becomes Φ + ΔΦ.
In both cases of pattern 1 and pattern 2 shown in equations (1) and (2), VApmax is

Figure 2014212148
Figure 2014212148

となる。ここで、 It becomes. here,

Figure 2014212148
Figure 2014212148

を満たすためには、 To meet

Figure 2014212148
Figure 2014212148

となり、太陽電池アレイの並列数をMとすると、n×M枚以上の太陽電池が追加で必要となる。
ここで、
Thus, when the number of parallel solar cell arrays is M, n × M or more solar cells are additionally required.
here,

Figure 2014212148
Figure 2014212148

を満たす厚さBのシールド2を選定すれば If you select a shield 2 of thickness B that satisfies

Figure 2014212148
Figure 2014212148

となり、図1のように厚さAのガラス等のシールド2を実装した太陽電池の直列数(N-k)と、厚さBのガラス等のシールド2を実装した太陽電池の直列数kの比率を調整することで、n×M枚以上の太陽電池の増加を回避することができる。 As shown in FIG. 1, the ratio of the series number (Nk) of solar cells on which a shield 2 such as glass of thickness A is mounted and the number k of series of solar cells on which shield 2 such as glass of thickness B is mounted. By adjusting, an increase in n × M or more solar cells can be avoided.

なお、図4は、従来の直列段数を増加させて放射線被爆量増加に対応する太陽電池パネルの側面図であるが、太陽電池アレイの直列数が増加するため、この方法ではコストの増加が生じていた。また、図5は、従来の太陽電池セル上に実装しているガラス等のシールド厚の変更を示したものであるが、この方法ではコストや製造計画に大きな影響を与えていた。 FIG. 4 is a side view of a conventional solar cell panel corresponding to an increase in radiation exposure by increasing the number of series stages, but this method increases the cost because the number of series of solar cell arrays increases. It was. FIG. 5 shows a change in the shield thickness of glass or the like mounted on a conventional solar battery cell, but this method has a great influence on the cost and the production plan.

このように、実施の形態1によれば、2種類の厚さのガラス等のシールドを実装した太陽電池パネルの認定試験が完了すれば、その実装比率を変化させることによって、放射線環境等の設計条件が異なる太陽電池パネルに対して、太陽電池アレイ直列数の削減/最適化を図ることができる。太陽電池セルの実装数を削減/最適化することにより、コストの削減が可能になる。 As described above, according to the first embodiment, when the qualification test of the solar cell panel in which the shields of two kinds of glass or the like are mounted is completed, the mounting ratio is changed to change the design of the radiation environment or the like It is possible to reduce / optimize the number of solar cell arrays in series for solar cell panels with different conditions. Costs can be reduced by reducing / optimizing the number of solar cells.

1 太陽電池セル、2 ガラス等のシールド、3 インターコネクタ。 1 solar cell, 2 glass shield, 3 interconnector.

Claims (2)

宇宙航行体に搭載され、インターコネクタを用いて太陽電池セルを直列接続した複数の太陽電池アレイからなる太陽電池パネルであって、
前記太陽電池アレイは、受光面側に、厚さの異なる複数のシールドを各々備えた太陽電池セルを、所定の比率で接続して成ることを特徴とする太陽電池パネル。
A solar battery panel comprising a plurality of solar battery arrays mounted on a spacecraft and connected in series with solar battery cells using an interconnector,
The solar cell array is formed by connecting solar cells each having a plurality of shields having different thicknesses on a light receiving surface side at a predetermined ratio.
放射線総被爆量における前記厚さの異なるシールドを備えた太陽電池セルの各々の出力電圧に基づき、前記所定の比率を決定することを特徴とする請求項1記載の太陽電池パネル。 2. The solar cell panel according to claim 1, wherein the predetermined ratio is determined based on an output voltage of each of the solar cells provided with shields having different thicknesses in a total radiation exposure amount.
JP2013086259A 2013-04-17 2013-04-17 Solar cell panel Pending JP2014212148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013086259A JP2014212148A (en) 2013-04-17 2013-04-17 Solar cell panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086259A JP2014212148A (en) 2013-04-17 2013-04-17 Solar cell panel

Publications (1)

Publication Number Publication Date
JP2014212148A true JP2014212148A (en) 2014-11-13

Family

ID=51931704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086259A Pending JP2014212148A (en) 2013-04-17 2013-04-17 Solar cell panel

Country Status (1)

Country Link
JP (1) JP2014212148A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273362A (en) * 1994-03-31 1995-10-20 Nec Corp Power supply device comprising solar battery cells
JPH11238897A (en) * 1998-02-23 1999-08-31 Canon Inc Solar cell module and manufacture thereof
JP2001088800A (en) * 1999-09-24 2001-04-03 Toshiba Corp Solar battery paddle
JP2010021350A (en) * 2008-07-10 2010-01-28 Mitsubishi Electric Corp Solar cell and solar cell panel
JP2012059764A (en) * 2010-09-06 2012-03-22 Sharp Corp Solar cell module
WO2012128342A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Solar cell panel, solar cell module and method for producing solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273362A (en) * 1994-03-31 1995-10-20 Nec Corp Power supply device comprising solar battery cells
JPH11238897A (en) * 1998-02-23 1999-08-31 Canon Inc Solar cell module and manufacture thereof
JP2001088800A (en) * 1999-09-24 2001-04-03 Toshiba Corp Solar battery paddle
JP2010021350A (en) * 2008-07-10 2010-01-28 Mitsubishi Electric Corp Solar cell and solar cell panel
JP2012059764A (en) * 2010-09-06 2012-03-22 Sharp Corp Solar cell module
WO2012128342A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Solar cell panel, solar cell module and method for producing solar cell module

Similar Documents

Publication Publication Date Title
US10461685B2 (en) Foldable photovoltaic assembly with non-perpendicular interconnection
US20210043788A1 (en) Solar cell assembly
EP3089356B1 (en) Solar cell module
MX2022003118A (en) Flat tile solar panels.
Ali et al. Analysis on inverter selection for domestic rooftop solar photovoltaic system deployment
CN203859127U (en) Self-generating display panel and portable mobile terminal employing same
JP2014212148A (en) Solar cell panel
US11569395B2 (en) Solar power generator, solar array wing, and space structure
US9722119B2 (en) Solar cell panel
Mahmood et al. The battery characteristics impact on solar systems: Performance and cost
Langenhorst et al. Freeform surface invisibility cloaking of interconnection lines in thin-film photovoltaic modules
Landis Tabulation of power-related satellite failure causes
US20150107643A1 (en) Photovoltaic module and method for producing such a module
US20130313900A1 (en) System and method of in situ solar module biasing
KR102589092B1 (en) Solar Cell Panel for Satellite
Irvine et al. Potential for further reduction in the embodied carbon in PV solar energy systems
WO2015150586A1 (en) Solar panel and method for manufacturing such a solar panel
CN107093646B (en) Photovoltaic crystalline silicon component and manufacturing method thereof
US20210151619A1 (en) Solar power generator, solar array wing, space structure, and method for manufacturing solar power generator
Lumb et al. Six-junction (6J) microscale concentrating photovoltaics (CPV) for space applications
Yunck et al. Design for a permanent Earth gravitational observatory
CN211789039U (en) Photovoltaic module and photovoltaic system
Ayala-Mató et al. Numerical evaluation of the optical-splitter system efficiency using a TCO as optical splitter
McEachen et al. Point-Focus Concentration Compact Telescoping Array: Extreme Environments Solar Power Base Phase Final Report
GB2487419A (en) Solar cell module with increased operational power output

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171017