JP2014212056A - Deterioration determination device and deterioration determination method of secondary battery - Google Patents

Deterioration determination device and deterioration determination method of secondary battery Download PDF

Info

Publication number
JP2014212056A
JP2014212056A JP2013088122A JP2013088122A JP2014212056A JP 2014212056 A JP2014212056 A JP 2014212056A JP 2013088122 A JP2013088122 A JP 2013088122A JP 2013088122 A JP2013088122 A JP 2013088122A JP 2014212056 A JP2014212056 A JP 2014212056A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
deterioration
potential difference
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013088122A
Other languages
Japanese (ja)
Inventor
高橋 哲哉
Tetsuya Takahashi
哲哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2013088122A priority Critical patent/JP2014212056A/en
Publication of JP2014212056A publication Critical patent/JP2014212056A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately determine the degree of deterioration in a secondary battery without incurring an increase in the size of the secondary battery and degradation in the battery characteristics thereof.SOLUTION: A charger 1 is configured in such a manner that the degree of deterioration in a secondary battery 10 in which a positive electrode 11, a negative electrode 12 and a reference electrode 13 are stored together with an electrolytic solution in a container can be determined. The charger 1 includes: a storage section 6 for storing reference data D0 for determination that enables a mutual relationship between: degree of deterioration in the secondary battery 10; a potential difference between the positive electrode 11 and the negative electrode 12; and a potential difference between the positive electrode 11 and the reference electrode 13 to be identified; a measuring section 3 for performing a measurement processing for measuring each of a "first potential difference" between the positive electrode 11 and the negative electrode 12 and a "second potential difference" between the positive electrode 11 and the reference electrode 13; and a control section 7 for making the measuring section 3 measure the "first potential difference" and the "second potential difference" and identifying the degree of the deterioration in the second battery 10 based on the measured "first potential difference" and the measured "second potential difference" and the reference data D0 for determination.

Description

本発明は、正極、負極および参照極が電解液と共に容器体内に収容された二次電池の劣化状態を判定する二次電池の劣化判定装置および二次電池の劣化判定方法に関するものである。   The present invention relates to a secondary battery deterioration determination device and a secondary battery deterioration determination method for determining a deterioration state of a secondary battery in which a positive electrode, a negative electrode, and a reference electrode are contained in a container together with an electrolytic solution.

今日では、継ぎ足し充電を行っても電池性能が低下せず、エネルギー密度が高いことから、各種の電子機器や電気機械の電源としてリチウムイオン二次電池が広く使用されている。しかしながら、リチウムイオン二次電池においても、複数回に亘って充放電を繰り返すうちに劣化が生じて電池容量(満充電状態から放出し得る電力量)が減少する。したがって、この種の二次電池を電源として使用している電子機器や電気機械では、意図しない電源の消失を回避するために、劣化が進んだ二次電池を新しい二次電池に交換する必要がある。このため、二次電池の劣化の度合いを正確に判定する必要が生じている。   Today, lithium-ion secondary batteries are widely used as power sources for various electronic devices and electric machines because the battery performance does not deteriorate even when recharging is performed and the energy density is high. However, even in the lithium ion secondary battery, the battery capacity (the amount of electric power that can be released from the fully charged state) is reduced due to deterioration as charging and discharging are repeated a plurality of times. Therefore, in electronic devices and electric machines that use this type of secondary battery as a power source, it is necessary to replace the deteriorated secondary battery with a new secondary battery in order to avoid unintended loss of the power source. is there. For this reason, it is necessary to accurately determine the degree of deterioration of the secondary battery.

例えば、特開2012−79582号公報には、正極、負極、参照極および対極の4つの電極を備えて構成された二次電池を対象として、その劣化の程度を診断する(劣化の度合いを判定する)劣化程度診断方法が開示されている。この劣化程度診断方法では、まず、二次電池における正極を作用極として用いて、この正極と、参照極および対極との3つの電極を用いた交流インピーダンス法によって正極のインピーダンス(正極と参照極との間のインピーダンス)を測定し、測定したインピーダンスに基づいて正極の抵抗(電荷移動抵抗)を特定する。次いで、正極についての上記の処理と同様にして、負極を作用極として用いたインピーダンス測定を行い、負極の抵抗を特定する。   For example, Japanese Patent Laid-Open No. 2012-79582 diagnoses the degree of deterioration of a secondary battery that includes four electrodes, a positive electrode, a negative electrode, a reference electrode, and a counter electrode (determining the degree of deterioration). A degradation degree diagnosis method is disclosed. In this deterioration degree diagnosis method, first, using the positive electrode in the secondary battery as a working electrode, the impedance of the positive electrode (positive electrode and reference electrode) is determined by the AC impedance method using the positive electrode, the reference electrode, and the counter electrode. The impedance of the positive electrode (charge transfer resistance) is specified based on the measured impedance. Next, in the same manner as the above-described treatment for the positive electrode, impedance measurement is performed using the negative electrode as a working electrode, and the resistance of the negative electrode is specified.

続いて、特定した正極の抵抗および負極の抵抗(電荷移動抵抗)に基づき、二次電池の劣化の程度を診断する。この場合、この種の二次電池では、劣化が進行するほど正極の抵抗や負極の抵抗が大きくなる傾向がある。したがって、劣化が生じていない二次電池における正極の抵抗と、診断対象の二次電池において特定された正極の抵抗とを比較することで正極の劣化状態を診断することができると共に、劣化が生じていない二次電池における負極の抵抗と、診断対象の二次電池において特定された負極の抵抗とを比較することで負極の劣化状態を診断することができる。これにより、二次電池の劣化の程度が診断される。   Subsequently, the degree of deterioration of the secondary battery is diagnosed based on the identified positive electrode resistance and negative electrode resistance (charge transfer resistance). In this case, in this type of secondary battery, the resistance of the positive electrode and the resistance of the negative electrode tend to increase as the deterioration progresses. Therefore, it is possible to diagnose the deterioration state of the positive electrode by comparing the resistance of the positive electrode in the secondary battery that has not deteriorated with the resistance of the positive electrode specified in the secondary battery to be diagnosed, and the deterioration occurs. The deterioration state of the negative electrode can be diagnosed by comparing the resistance of the negative electrode in the non-rechargeable secondary battery with the resistance of the negative electrode specified in the secondary battery to be diagnosed. Thereby, the degree of deterioration of the secondary battery is diagnosed.

特開2012−79582号公報(第4−11頁、第1−4図)JP 2012-79582 A (page 4-11, Fig. 1-4)

ところが、従来の劣化程度診断方法には、以下の問題点が存在する。すなわち、従来の劣化程度診断方法では、正極を作用極として用いた交流インピーダンス法によって正極のインピーダンスを測定して正極の抵抗を特定すると共に、負極を作用極として用いた交流インピーダンス法によって負極のインピーダンスを測定して負極の抵抗を特定することで二次電池の劣化の程度を診断する方法が採用されている。この場合、上記の交流インピーダンス法によって測定される正極のインピーダンスや負極のインピーダンスは、参照極の大きさ(参照極の電極面積)によってその値が大きく異なり、参照極が小さい二次電池においては、劣化の程度(正極の抵抗や負極の抵抗の相異)によるインピーダンスの変化量が小さくなる。したがって、参照極が小さい二次電池においては、測定したインピーダンスに基づいて正極の抵抗や負極の抵抗を正確に特定するのが困難となる。   However, the conventional degradation degree diagnosis method has the following problems. That is, in the conventional degradation degree diagnosis method, the impedance of the positive electrode is determined by measuring the impedance of the positive electrode by the AC impedance method using the positive electrode as the working electrode, and the impedance of the negative electrode is determined by the AC impedance method using the negative electrode as the working electrode. A method of diagnosing the degree of deterioration of the secondary battery by measuring the resistance of the negative electrode and specifying the resistance of the negative electrode is employed. In this case, the positive electrode impedance and the negative electrode impedance measured by the AC impedance method are greatly different depending on the size of the reference electrode (the electrode area of the reference electrode). The amount of change in impedance due to the degree of degradation (difference in positive electrode resistance and negative electrode resistance) is reduced. Therefore, in a secondary battery with a small reference electrode, it is difficult to accurately specify the resistance of the positive electrode and the resistance of the negative electrode based on the measured impedance.

しかしながら、劣化の程度を正確に診断するために参照極を大きくしたときには、充放電には直接的に寄与しない大きな参照極を電池容器内に収容している分だけ、同程度の電池容量を有する他の二次電池よりも大形化を招くこととなる。また、上記の先行技術文献に開示されている二次電池のように、シート状の正極とシート状の負極との間に参照極を配設した構成の二次電池においては、正極と負極との間に大きな参照極を配置したときに、正極および負極の間において生じる電池反応(リチウムイオンの移動)が大きな参照極によって妨げられて電池特性が悪化するおそれもある。このため、参照極を大きくすることが困難となっており、従来の劣化程度診断方法には、二次電池の劣化の程度を正確に診断するのが困難となっているという問題点がある。   However, when the reference electrode is enlarged in order to accurately diagnose the degree of deterioration, it has the same battery capacity as the large reference electrode that does not directly contribute to charge / discharge is accommodated in the battery container. This leads to a larger size than other secondary batteries. Moreover, in a secondary battery having a configuration in which a reference electrode is disposed between a sheet-like positive electrode and a sheet-like negative electrode, as in the secondary battery disclosed in the above prior art document, the positive electrode, the negative electrode, When a large reference electrode is disposed between the two, the battery reaction (migration of lithium ions) occurring between the positive electrode and the negative electrode is hindered by the large reference electrode, and the battery characteristics may deteriorate. For this reason, it is difficult to enlarge the reference electrode, and there is a problem that it is difficult to accurately diagnose the degree of deterioration of the secondary battery in the conventional deterioration degree diagnosis method.

本発明は、かかる問題点に鑑みてなされたものであり、二次電池の大型化や電池特性の悪化を招くことなく、その劣化の度合いを正確に判定し得る二次電池の劣化判定装置、および二次電池の劣化判定方法を提供することを主目的とする。   The present invention has been made in view of such problems, and a secondary battery deterioration determination device capable of accurately determining the degree of deterioration without incurring an increase in the size of a secondary battery or deterioration in battery characteristics. And it aims at providing the degradation determination method of a secondary battery.

上記目的を達成すべく、請求項1記載の二次電池の劣化判定装置は、正極、負極および参照極が電解液と共に容器体内に収容されて構成された二次電池を対象として劣化の度合いを判定可能に構成された二次電池の劣化判定装置であって、前記二次電池の劣化の度合い、前記正極および前記負極の間の電位差、並びに前記正極および前記参照極の間の電位差の相互関係を特定可能な劣化判定用情報を記憶する記憶部と、前記正極および前記負極の間の第1の電位差、並びに前記正極および前記参照極の間の第2の電位差をそれぞれ測定する測定処理を実行する測定部と、前記測定部を制御して前記測定処理を実行させて判定対象の前記二次電池における前記第1の電位差および前記第2の電位差をそれぞれ測定させると共に、測定された当該第1の電位差および当該第2の電位差と前記記憶部に記憶されている前記劣化判定用情報とに基づいて前記判定対象の二次電池の劣化の度合いを特定する処理部とを備えている。   In order to achieve the above-mentioned object, the secondary battery deterioration determination device according to claim 1 has a degree of deterioration for a secondary battery configured such that a positive electrode, a negative electrode, and a reference electrode are housed in a container together with an electrolyte. A secondary battery deterioration determination device configured to be capable of determination, wherein the secondary battery has a degree of deterioration, a potential difference between the positive electrode and the negative electrode, and a potential difference between the positive electrode and the reference electrode. A storage unit that stores deterioration determination information that can specify the first potential difference, and a first potential difference between the positive electrode and the negative electrode, and a measurement process that measures a second potential difference between the positive electrode and the reference electrode And measuring the first potential difference and the second potential difference in the secondary battery to be determined by controlling the measurement unit to execute the measurement process, and measuring the measured potential And a processing unit for identifying the degree of deterioration of the secondary battery of the determination target based on the first potential difference and the said deterioration determining information stored in the storage unit and the second potential difference.

また、請求項2記載の二次電池の劣化判定方法は、正極、負極および参照極が電解液と共に容器体内に収容されて構成された二次電池を対象として劣化の度合いを判定する二次電池の劣化判定方法であって、前記二次電池の劣化の度合い、前記正極および前記負極の間の電位差、並びに前記正極および前記参照極の間の電位差の相互関係を特定可能な劣化判定用情報を取得すると共に、判定対象の前記二次電池における前記正極および前記負極の間の第1の電位差、並びに前記正極および前記参照極の間の第2の電位差をそれぞれ測定する測定処理を実行し、測定した前記第1の電位差および前記第2の電位差と前記劣化判定用情報とに基づき、前記判定対象の二次電池の劣化の度合いを特定する。   The secondary battery deterioration determination method according to claim 2 is a secondary battery for determining a degree of deterioration for a secondary battery configured such that a positive electrode, a negative electrode, and a reference electrode are housed in a container together with an electrolyte. Deterioration determination information, the deterioration determination information capable of specifying the degree of deterioration of the secondary battery, the potential difference between the positive electrode and the negative electrode, and the potential difference between the positive electrode and the reference electrode. And performing a measurement process for measuring a first potential difference between the positive electrode and the negative electrode and a second potential difference between the positive electrode and the reference electrode in the secondary battery to be determined, Based on the first potential difference, the second potential difference, and the deterioration determination information, the degree of deterioration of the determination target secondary battery is specified.

請求項1記載の二次電池の劣化判定装置、および請求項2記載の二次電池の劣化判定方法では、判定対象の二次電池における正極および負極の間の第1の電位差と、正極および参照極の間の第2の電位差とをそれぞれ測定する測定処理を実行し、測定された第1の電位差および第2の電位差と、二次電池の劣化の度合い、正極および負極の間の電位差、並びに正極および参照極の間の電位差の相互関係を特定可能な劣化判定用情報とに基づき、判定対象の二次電池の劣化の度合いを特定する。   In the secondary battery deterioration determination apparatus according to claim 1 and the secondary battery deterioration determination method according to claim 2, the first potential difference between the positive electrode and the negative electrode in the secondary battery to be determined, the positive electrode, and the reference A measurement process for measuring each of the second potential difference between the electrodes, the measured first potential difference and the second potential difference, the degree of deterioration of the secondary battery, the potential difference between the positive electrode and the negative electrode, and The degree of deterioration of the determination target secondary battery is specified based on the deterioration determination information that can specify the correlation between the potential difference between the positive electrode and the reference electrode.

したがって、請求項1記載の二次電池の劣化判定装置、および請求項2記載の二次電池の劣化判定方法によれば、正極電位を測定し得る必要十分な大きさの参照極を備えた二次電池である限り、正極電位および電池電圧を測定することで、その測定結果と劣化判定用情報とに基づき、その二次電池の劣化の度合いを正確に判定することができる。このため、この劣化判定装置および劣化判定方法によれば、劣化の度合いを正確に判定するために大きな参照極を搭載する必要がなくなることから、劣化の度合いを正確に測定することができるだけでなく、電池特性が良好で十分に小型化された二次電池を提供することが可能となる。   Therefore, according to the deterioration determination device for a secondary battery according to claim 1 and the deterioration determination method for a secondary battery according to claim 2, the secondary battery including a reference electrode having a sufficiently large reference electrode capable of measuring the positive electrode potential is provided. As long as the battery is a secondary battery, by measuring the positive electrode potential and the battery voltage, the degree of deterioration of the secondary battery can be accurately determined based on the measurement result and the information for deterioration determination. For this reason, according to the deterioration determination device and the deterioration determination method, it is not necessary to mount a large reference electrode in order to accurately determine the degree of deterioration, so that the degree of deterioration can be accurately measured. Thus, it is possible to provide a secondary battery having good battery characteristics and being sufficiently miniaturized.

充電器1および二次電池10の構成を示す構成図である。2 is a configuration diagram showing configurations of a charger 1 and a secondary battery 10. FIG. 劣化が生じていない二次電池10、電池容量が10%低下した状態の二次電池10、および電池容量が20%低下した状態の二次電池10についての、正極11および負極12の間の電位差(電池電圧)と、正極11および参照極13の間の電位差との関係について説明するための説明図である。Potential difference between the positive electrode 11 and the negative electrode 12 for the secondary battery 10 that has not deteriorated, the secondary battery 10 in which the battery capacity has been reduced by 10%, and the secondary battery 10 in which the battery capacity has been reduced by 20%. It is explanatory drawing for demonstrating the relationship between (battery voltage) and the electrical potential difference between the positive electrode 11 and the reference electrode 13. FIG. 劣化が生じていない二次電池10、電池容量が10%低下した状態の二次電池10、および電池容量が20%低下した状態の二次電池10についての、正極11および負極12の間の電位差(電池電圧)と、正極11および参照極13の間の電位差との関係について説明するための他の説明図である。Potential difference between the positive electrode 11 and the negative electrode 12 for the secondary battery 10 that has not deteriorated, the secondary battery 10 in which the battery capacity has been reduced by 10%, and the secondary battery 10 in which the battery capacity has been reduced by 20%. FIG. 10 is another explanatory diagram for explaining a relationship between (battery voltage) and a potential difference between the positive electrode 11 and the reference electrode 13.

以下、二次電池の劣化判定装置、および二次電池の劣化判定方法の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of a secondary battery deterioration determination device and a secondary battery deterioration determination method will be described with reference to the accompanying drawings.

図1に示す充電器1は、後述する「二次電池の劣化判定方法」に従って二次電池10の劣化の程度を判定可能に構成された「二次電池の劣化判定装置」の一例であって、電源部2、測定部3、操作部4、表示部5、記憶部6および制御部7を備えて構成されている。この場合、二次電池10は、「二次電池」の一例であるリチウムイオン二次電池であって、正極11、負極12および参照極13の3つの電極が電解液と共に電池容器内に収容されて構成されている。   The charger 1 shown in FIG. 1 is an example of a “secondary battery deterioration determination device” configured to be able to determine the degree of deterioration of the secondary battery 10 according to a “secondary battery deterioration determination method” described later. , Power supply unit 2, measurement unit 3, operation unit 4, display unit 5, storage unit 6, and control unit 7. In this case, the secondary battery 10 is a lithium ion secondary battery that is an example of a “secondary battery”, and the three electrodes of the positive electrode 11, the negative electrode 12, and the reference electrode 13 are accommodated in the battery container together with the electrolyte. Configured.

具体的には、正極11は、一例として、コバルト、ニッケルおよびマンガンなどの遷移金属のリチウム含有酸化物やカーボンなどの導電助材と結着剤とを混合した塗液を、アルミニウムやアルミニウム合金等の金属(導体)で構成された支持体の表面に塗布して硬化させることで電極層が形成されて、全体としてシート状に形成されている。また、負極12は、粒状(鱗片状、繊維状、球状、疑似球状、塊状および粉状)のグラファイト(黒鉛)や非晶質炭素などと結着剤とを混合した塗液を、銅やニッケル等の金属(導体)で構成された支持体の表面に塗布して硬化させることで電極層が形成されて、全体としてシート状に形成されている。さらに、参照極13は、ニッケルやステンレス鋼等の金属(導体)で構成された支持体の表面に、リチウム、またはリチウム合金などを分散させた塗液を塗布して硬化させることで電極層が形成されて、全体としてシート状に形成されている。なお、二次電池10の内部構造については、一例として、従来の劣化程度診断方法における診断対象の二次電池と同様のため、図示および詳細な説明を省略する。   Specifically, the positive electrode 11 includes, as an example, a coating liquid obtained by mixing a conductive additive such as a lithium-containing oxide of transition metals such as cobalt, nickel, and manganese, carbon, and a binder with aluminum, an aluminum alloy, or the like. The electrode layer is formed by applying and curing on the surface of the support composed of the metal (conductor), and is formed into a sheet shape as a whole. The negative electrode 12 is made of a coating liquid obtained by mixing granular (scale-like, fibrous, spherical, pseudo-spherical, massive and powdery) graphite (graphite), amorphous carbon, and the like with a binder. An electrode layer is formed by applying and curing on the surface of a support made of a metal (conductor) such as a metal sheet, and is formed into a sheet shape as a whole. Further, the reference electrode 13 has an electrode layer formed by applying a coating liquid in which lithium or a lithium alloy is dispersed on the surface of a support made of a metal (conductor) such as nickel or stainless steel and curing the coating liquid. As a whole, it is formed into a sheet shape. As an example, the internal structure of the secondary battery 10 is the same as that of the secondary battery to be diagnosed in the conventional degradation degree diagnosis method, and thus illustration and detailed description thereof are omitted.

この場合、発明者は、この種の二次電池において、劣化が進むほど(電池容量が減少するほど)、正極11と参照極13との間の電位差、すなわち、参照極13に対する正極11の電位(参照極13が、リチウム、またはリチウム合金等で形成された電極層を備えている本例においては、「Li/Li」を基準とする電位:以下、「正極電位」ともいう)が高くなる現象が生じるのを見いだした。 In this case, the inventor has found that the potential difference between the positive electrode 11 and the reference electrode 13, that is, the potential of the positive electrode 11 with respect to the reference electrode 13, as the deterioration progresses (the battery capacity decreases). (In the present example in which the reference electrode 13 includes an electrode layer formed of lithium, a lithium alloy, or the like, the potential based on “Li + / Li: hereinafter, also referred to as“ positive electrode potential ”) is high. I found that this phenomenon occurs.

具体的には、図2,3に示すように、例えば、正極11と負極12との間の電位差(すなわち、電池電圧)が3.0Vのときの正極電位に着目したときに、劣化が生じていない電池容量100%の二次電池10(以下、「容量100%の二次電池10」ともいう)では、正極電位が3.4918Vであるのに対し、劣化が生じて満充電状態における電池容量が10%減少した二次電池10(以下、「容量90%の二次電池10」ともいう)では、正極電位が3.7518Vで、劣化が生じて満充電状態における電池容量が20%減少した二次電池10(以下、「容量80%の二次電池10」ともいう)では、正極電位が3.7952Vとなるのが確認された。同様にして、電池電圧が4.0Vのときの正極電位に着目したときに、容量100%の二次電池10では、正極電位が4.0648Vであるのに対し、容量90%の二次電池10では、正極電位が4.0700Vで、容量80%の二次電池10では、正極電位が4.0872Vとなるのが確認された。   Specifically, as shown in FIGS. 2 and 3, for example, when the potential difference between the positive electrode 11 and the negative electrode 12 (that is, the battery voltage) is 3.0 V, the deterioration occurs. In the secondary battery 10 having a battery capacity of 100% (hereinafter also referred to as “secondary battery 10 having a capacity of 100%”), the positive electrode potential is 3.4918 V, whereas the battery is in a fully charged state due to deterioration. In the secondary battery 10 whose capacity is reduced by 10% (hereinafter also referred to as “secondary battery 10 having a capacity of 90%”), the positive electrode potential is 3.7518 V, and the battery capacity in the fully charged state is reduced by 20% due to deterioration. In the secondary battery 10 (hereinafter, also referred to as “secondary battery 10 having a capacity of 80%”), the positive electrode potential was confirmed to be 3.7952V. Similarly, when focusing on the positive electrode potential when the battery voltage is 4.0 V, the secondary battery 10 with a capacity of 100% has a positive electrode potential of 4.0648 V, whereas the secondary battery with a capacity of 90%. 10, the positive electrode potential was 4.0700 V, and in the secondary battery 10 having a capacity of 80%, it was confirmed that the positive electrode potential was 4.0872 V.

このような現象は、複数回に亘って充放電を繰り返すことにより、負極12の表面に金属リチウムが析出したり、電解液中(例えば負極12の界面)に化学反応によってSEI(Solid Electrolyte Interface )が形成されたりして(充放電に起因する不可逆反応)、正極11、電解液および負極12の間で移動可能なリチウムイオンの量が減少し、これに起因して、正極11の活物質中に取り込まれるイオンの量が減少して正極電位が高くなると考えられる。したがって、後述するように、この充電器1による劣化判定方法では、参照極13に対する正極11の電位を測定して基準値と比較することによって二次電池10の劣化の度合いを判定する。   Such a phenomenon is caused by repeating charging and discharging a plurality of times, whereby metallic lithium is deposited on the surface of the negative electrode 12, or SEI (Solid Electrolyte Interface) is caused by a chemical reaction in the electrolyte (for example, the interface of the negative electrode 12). Is formed (irreversible reaction due to charging / discharging), and the amount of lithium ions that can move between the positive electrode 11, the electrolytic solution, and the negative electrode 12 is reduced. It is considered that the positive electrode potential is increased by reducing the amount of ions taken into the substrate. Therefore, as will be described later, in the deterioration determination method using the charger 1, the degree of deterioration of the secondary battery 10 is determined by measuring the potential of the positive electrode 11 with respect to the reference electrode 13 and comparing it with a reference value.

一方、電源部2は、充電処理に際して、制御部7の制御に従い、二次電池10の正極11および負極12の間に充電電圧を印加する。測定部3は、「測定部」の一例であって、電圧測定回路および接続切替え部(図示せず)を備え、制御部7の制御に従って二次電池10の正極11および負極12の間の電位差(電池電圧:「第1の電位差」の一例)を測定して測定値DV1を出力すると共に、二次電池10の正極11および参照極13の間の電位差(正極電位:「第2の電位差」の一例)を測定して測定値DV2を出力する。また、測定部3は、充電処理に際して、上記の両電位差に加えて、二次電池10の負極12および参照極13の間の電位差(負極電位)を測定して測定値DV3を出力する。この場合、上記の接続切替え部は、制御部7の制御に従い、電圧測定回路における高電位側接続部に対する正極11の接断と、電圧測定回路における低電位側接続部に対する負極12の接断と、高電位側接続部および低電位側接続部のいずれかに対する参照極13の接続とを切り替える。   On the other hand, the power supply unit 2 applies a charging voltage between the positive electrode 11 and the negative electrode 12 of the secondary battery 10 according to the control of the control unit 7 during the charging process. The measurement unit 3 is an example of a “measurement unit” and includes a voltage measurement circuit and a connection switching unit (not shown), and a potential difference between the positive electrode 11 and the negative electrode 12 of the secondary battery 10 according to the control of the control unit 7. (Battery voltage: an example of “first potential difference”) is measured and a measured value DV1 is output, and a potential difference between the positive electrode 11 and the reference electrode 13 of the secondary battery 10 (positive electrode potential: “second potential difference”) ) Is measured and a measured value DV2 is output. In addition, during the charging process, the measurement unit 3 measures a potential difference (negative electrode potential) between the negative electrode 12 and the reference electrode 13 of the secondary battery 10 in addition to the above-described potential difference, and outputs a measured value DV3. In this case, according to the control of the control unit 7, the connection switching unit described above connects and disconnects the positive electrode 11 to the high potential side connection unit in the voltage measurement circuit, and disconnects the negative electrode 12 from the low potential side connection unit in the voltage measurement circuit. The connection of the reference electrode 13 to either the high potential side connection portion or the low potential side connection portion is switched.

操作部4は、充電処理を開始/停止させる充電処理開始/停止スイッチや、劣化状態判定処理を開始/停止させる判定処理開始/停止スイッチを備え、スイッチ操作に応じて制御部7に操作信号を出力する。表示部5は、制御部7の制御に従い、充電処理中である旨のメッセージ(図示せず)や、劣化状態判定処理の判定結果(図示せず)を表示する。記憶部6は、「記憶部」の一例であって、二次電池10の劣化の度合い(具体的には、「電池容量」)、電池電圧、および正極電位の相互関係を特定可能な判定用基準データD0(「劣化判定用情報」の一例)を記憶する。この場合、この判定用基準データD0については、一例として、容量100%の二次電池10、容量90%の二次電池10、および容量80%の二次電池10を対象とする測定処理を実行して予め取得しておく。   The operation unit 4 includes a charge process start / stop switch for starting / stopping the charge process and a determination process start / stop switch for starting / stopping the deterioration state determination process, and sends an operation signal to the control unit 7 according to the switch operation. Output. The display unit 5 displays a message indicating that the charging process is in progress (not shown) and the determination result of the deterioration state determination process (not shown) under the control of the control unit 7. The storage unit 6 is an example of a “storage unit”, and is used for determination that can specify the correlation between the degree of deterioration of the secondary battery 10 (specifically, “battery capacity”), the battery voltage, and the positive electrode potential. Reference data D0 (an example of “degradation determination information”) is stored. In this case, for the determination reference data D0, as an example, measurement processing for the secondary battery 10 having a capacity of 100%, the secondary battery 10 having a capacity of 90%, and the secondary battery 10 having a capacity of 80% is executed. In advance.

具体的には、一例として、図2,3に示すように、容量100%の二次電池10を対象として、「電池電圧(正極11および負極12の間の電位差)」が、3.0V、3.2V、3.4V、3.6V、3.8V、4.0Vおよび4.2Vの各電圧値のときの「正極電位(正極11および参照極13の間の電位差)を測定すると共に、測定された各「正極電位」に基づき、「電池電圧」の上記の各電圧値の間を補完処理して、図2に実線で示す「各電池電圧毎の正極電位」を求める。同様にして、容量90%の二次電池10についても図2に一点鎖線で示す「各電池電圧毎の正極電位」を求めると共に、容量80%の二次電池10についても図2に二点鎖線で示す「各電池電圧毎の正極電位」を求める。次いで、各二次電池10についての「各電池電圧毎の正極電位」に基づき、判定用基準データD0を生成する。   Specifically, as an example, as shown in FIGS. 2 and 3, for a secondary battery 10 having a capacity of 100%, the “battery voltage (potential difference between the positive electrode 11 and the negative electrode 12)” is 3.0 V, “When measuring the positive electrode potential (potential difference between the positive electrode 11 and the reference electrode 13) at each voltage value of 3.2V, 3.4V, 3.6V, 3.8V, 4.0V and 4.2V, Based on each measured “positive electrode potential”, the above-described voltage values of “battery voltage” are complemented to obtain “positive electrode potential for each battery voltage” indicated by a solid line in FIG. Similarly, for the secondary battery 10 having a capacity of 90%, the “positive electrode potential for each battery voltage” shown by the one-dot chain line in FIG. 2 is obtained, and for the secondary battery 10 having the capacity of 80%, the two-dot chain line in FIG. The “positive electrode potential for each battery voltage” is obtained. Next, determination reference data D0 is generated based on the “positive electrode potential for each battery voltage” for each secondary battery 10.

なお、この判定用基準データD0については、充電器1において生成することもできるが、本例では、一例として、二次電池10の製造者(または、充電器1の製造者)が図示しない測定装置を用いて測定した測定結果に基づいて予め生成した判定用基準データD0が記憶部6に記憶されているものとする。また、本例では、「二次電池の劣化判定装置」および「二次電池の劣化判定方法」についての理解を容易とするために、上記の3種類の二次電池10を対象として求めた「各電池電圧毎の正極電位」を判定用基準データD0として使用するが、上記の3種類の二次電池10に加えて、例えば、容量95%の二次電池10、および容量85%の二次電池10を対象として求めた「各電池電圧毎の正極電位」を加味して判定用基準データD0を生成することもできる。   The determination reference data D0 can also be generated in the charger 1, but in this example, as an example, the measurement (not shown) by the manufacturer of the secondary battery 10 (or the manufacturer of the charger 1). It is assumed that determination reference data D0 generated in advance based on the measurement result measured using the apparatus is stored in the storage unit 6. Further, in this example, in order to facilitate understanding of the “secondary battery deterioration determination device” and the “secondary battery deterioration determination method”, the three types of secondary batteries 10 described above were obtained. “Positive electrode potential for each battery voltage” is used as the determination reference data D0. In addition to the three types of secondary batteries 10 described above, for example, the secondary battery 10 having a capacity of 95% and the secondary battery having a capacity of 85% are used. The determination reference data D0 can be generated in consideration of the “positive electrode potential for each battery voltage” obtained for the battery 10.

制御部7は、充電器1を総括的に制御する。具体的には、制御部7は、充電処理に際して、電源部2を制御して二次電池10の正極11および負極12の間に充電電圧を印加させる。また、制御部7は、充電処理に際して、一例として、測定部3を制御して負極12および参照極13の間の電位差(負極電位)を測定させ、測定された電位差(測定値DV3)が、予め規定された下限値を下回ることのないように、電源部2による充電電圧の印加を制御することで過充電の発生を回避する。さらに、制御部7は、充電処理に際して、測定部3を制御して正極11および負極12の間の電位差(電池電圧)を測定させ、測定された電圧値(測定値DV1)に基づき、充電処理の進行度合い(満充電状態となったか否か)を特定すると共に、測定値DV1が予め規定された満充電状態となったとき、および測定値DV3が上記の下限値まで低下したとき(過充電が生じたとき)に、電源部2を制御して充電電圧の印加を停止させる。   The control unit 7 controls the charger 1 as a whole. Specifically, the control unit 7 controls the power supply unit 2 to apply a charging voltage between the positive electrode 11 and the negative electrode 12 of the secondary battery 10 during the charging process. In addition, the control unit 7 controls the measurement unit 3 to measure the potential difference (negative electrode potential) between the negative electrode 12 and the reference electrode 13 during the charging process, and the measured potential difference (measured value DV3) The occurrence of overcharging is avoided by controlling the application of the charging voltage by the power supply unit 2 so as not to fall below a predetermined lower limit value. Furthermore, the control unit 7 controls the measurement unit 3 to measure the potential difference (battery voltage) between the positive electrode 11 and the negative electrode 12 during the charging process, and the charging process is performed based on the measured voltage value (measured value DV1). When the measured value DV1 becomes a fully charged state defined in advance and the measured value DV3 falls to the above lower limit value (overcharge) The power supply unit 2 is controlled to stop the application of the charging voltage.

また、制御部7は、「処理部」に相当し、二次電池10を対象とする劣化判定処理を実行する。具体的には、一例として、操作部4の操作によって劣化判定処理の開始を指示されたときに、制御部7は、測定部3を制御して測定処理を実行させて判定対象の二次電池10における正極11および負極12の間の電位差(電池電圧:測定値DV1)と、正極11および参照極13の間の電位差(正極電位:測定値DV2)とをそれぞれ測定させる。また、制御部7は、測定部3によって測定された測定値DV1,DV2と、記憶部6に記憶されている判定用基準データD0とに基づき、判定対象の二次電池10の劣化の度合いを特定する。   The control unit 7 corresponds to a “processing unit” and executes a deterioration determination process for the secondary battery 10. Specifically, as an example, when the start of the deterioration determination process is instructed by the operation of the operation unit 4, the control unit 7 controls the measurement unit 3 to execute the measurement process to determine the secondary battery to be determined. 10, the potential difference between the positive electrode 11 and the negative electrode 12 (battery voltage: measured value DV1) and the potential difference between the positive electrode 11 and the reference electrode 13 (positive electrode potential: measured value DV2) are measured. Further, the control unit 7 determines the degree of deterioration of the secondary battery 10 to be determined based on the measured values DV1 and DV2 measured by the measuring unit 3 and the determination reference data D0 stored in the storage unit 6. Identify.

この充電器1によって二次電池10の劣化の度合いを判定するには、図1に示すように、まず、判定対象の二次電池10における正極端子、負極端子および参照極端子を測定部3の接続切替え部に接続する。次いで、操作部4の判定処理開始/停止スイッチを操作する。この際に、制御部7は、操作部4からの操作信号に従い、まず、測定部3を制御し、正極11および負極12の間の電位差(電池電圧)と、正極11および参照極13の間の電位差(正極電位)とをそれぞれ測定させる。   In order to determine the degree of deterioration of the secondary battery 10 by the charger 1, first, as shown in FIG. 1, the positive terminal, the negative terminal, and the reference electrode terminal in the secondary battery 10 to be determined are determined by the measuring unit 3. Connect to the connection switching unit. Next, the determination process start / stop switch of the operation unit 4 is operated. At this time, the control unit 7 first controls the measurement unit 3 according to the operation signal from the operation unit 4, and controls the potential difference (battery voltage) between the positive electrode 11 and the negative electrode 12 and the positive electrode 11 and the reference electrode 13. The potential difference (positive electrode potential) is measured.

この際に、測定部3では、まず、接続切替え部が、電圧測定回路の高電位側接続部に正極11を接続し、かつ電圧測定回路の低電位側接続部に負極12を接続すると共に、参照極13がいずれの接続部にも接続されていない状態に切り替える。次いで、電圧測定回路が正極11(高電位側接続部)と負極12(低電位側接続部)との間の電位差(電池電圧)を測定し、測定した電池電圧を示す測定値DV1を制御部7に出力する。続いて、接続切替え部が、高電位側接続部に正極11を接続させた状態を維持しつつ、低電位側接続部に参照極13を接続すると共に、負極12がいずれの接続部にも接続されていない状態に切り替える。次いで、電圧測定回路が正極11(高電位側接続部)と参照極13(低電位側接続部)との間の電位差(正極電位)を測定し、測定した電池電圧を示す測定値DV2を制御部7に出力する。   At this time, in the measurement unit 3, first, the connection switching unit connects the positive electrode 11 to the high potential side connection unit of the voltage measurement circuit and connects the negative electrode 12 to the low potential side connection unit of the voltage measurement circuit, The reference electrode 13 is switched to a state where it is not connected to any connection part. Next, the voltage measurement circuit measures the potential difference (battery voltage) between the positive electrode 11 (high potential side connection portion) and the negative electrode 12 (low potential side connection portion), and the measured value DV1 indicating the measured battery voltage is controlled by the control unit. 7 is output. Subsequently, while the connection switching unit maintains the state in which the positive electrode 11 is connected to the high potential side connection unit, the reference electrode 13 is connected to the low potential side connection unit, and the negative electrode 12 is connected to any connection unit. Switch to a state that is not done. Next, the voltage measurement circuit measures the potential difference (positive electrode potential) between the positive electrode 11 (high potential side connection portion) and the reference electrode 13 (low potential side connection portion), and controls the measured value DV2 indicating the measured battery voltage. Output to unit 7.

次いで、制御部7は、測定部3から出力された測定値DV1,DV2と、記憶部6から読み出した判定用基準データD0とに基づき、測定部3に接続されている判定対象の二次電池10の劣化の度合いを判定する。   Next, the control unit 7 determines the secondary battery to be determined connected to the measurement unit 3 based on the measurement values DV1 and DV2 output from the measurement unit 3 and the determination reference data D0 read from the storage unit 6. A degree of degradation of 10 is determined.

この際に、一例として、測定部3から出力された測定値DV1(電池電圧)が3.3Vで、測定値DV2(正極電位)が3.75Vであったとき(測定値DV1,DV2が図2に示す点Aの値であったとき)には、制御部7は、両測定値DV1,DV2と判定用基準データD0とに基づき、判定対象の二次電池10が約90%の電池容量となった状態(電池容量が約10%減少した劣化状態)であると判定(特定)し、その判定結果(一例として、「この電池は、10%ほど電池容量が減少しています」とのメッセージ)を表示部5に表示させる(図示せず)。具体的には、この例では、測定値DV1が3.3Vで測定値DV2が3.75Vである点Aと、二次電池10が90%の電池容量となった状態(電池容量が10%減少した劣化状態)の判定用基準データD0とが相互に関連する。このため、制御部7は、この点Aに対応する二次電池10の状態が約90%の電池容量となった状態であると特定する。   At this time, as an example, when the measured value DV1 (battery voltage) output from the measuring unit 3 is 3.3V and the measured value DV2 (positive electrode potential) is 3.75V (the measured values DV1 and DV2 are shown in the figure). 2), the control unit 7 determines that the determination target secondary battery 10 has a battery capacity of about 90% based on both the measured values DV1 and DV2 and the determination reference data D0. It is determined (identified) that it is in a state (deteriorated state in which the battery capacity has decreased by about 10%), and the result of the determination (as an example, “This battery has a battery capacity decreased by about 10%”) Message) is displayed on the display unit 5 (not shown). Specifically, in this example, the measured value DV1 is 3.3V and the measured value DV2 is 3.75V, and the secondary battery 10 has a battery capacity of 90% (the battery capacity is 10%). The reference data D0 for determination (decreased deterioration state) are related to each other. For this reason, the control part 7 specifies that the state of the secondary battery 10 corresponding to this point A is a state in which the battery capacity is about 90%.

また、他の一例として、測定部3から出力された測定値DV1(電池電圧)が3.1Vで、測定値DV2(正極電位)が3.65Vであったとき(測定値DV1,DV2が図2に示す点Bの値であったとき)には、制御部7は、両測定値DV1,DV2と判定用基準データD0とに基づき、判定対象の二次電池10が容量100%の状態(劣化が生じていない状態)と容量90%の状態(電池容量が10%未満の範囲内で劣化した状態)との間であると判定(特定)し、その判定結果(一例として、「この電池は、5%ほど電池容量が減少しています」とのメッセージ)を表示部5に表示させる(図示せず)。具体的には、この例では、測定値DV1が3.1Vで測定値DV2が3.65Vである点Bと、電池容量が100%の状態の判定用基準データD0、および二次電池10が90%の電池容量となった状態の判定用基準データD0とが相互に関連する。このため、制御部7は、この点Bに対応する二次電池10の状態が、劣化が生じていない状態と、90%の電池容量となった状態との中間の劣化状態、すなわち、約95%の電池容量となった状態であると特定する。   As another example, when the measured value DV1 (battery voltage) output from the measuring unit 3 is 3.1V and the measured value DV2 (positive electrode potential) is 3.65V (the measured values DV1 and DV2 are shown in the figure). 2), the control unit 7 determines that the determination target secondary battery 10 has a capacity of 100% (based on both the measurement values DV1 and DV2 and the determination reference data D0). It is determined (identified) to be between a state in which no deterioration has occurred and a state in which the capacity is 90% (a state in which the battery capacity has deteriorated within a range of less than 10%). Is displayed on the display unit 5 (not shown). Specifically, in this example, the point B where the measured value DV1 is 3.1V and the measured value DV2 is 3.65V, the determination reference data D0 when the battery capacity is 100%, and the secondary battery 10 are The reference data D0 for determination in a state where the battery capacity is 90% are related to each other. Therefore, the control unit 7 determines that the state of the secondary battery 10 corresponding to this point B is an intermediate deterioration state between the state where no deterioration has occurred and the state where the battery capacity is 90%, that is, about 95. % Battery capacity is specified.

また、さらに他の一例として、測定部3から出力された測定値DV1(電池電圧)が3.4Vで、測定値DV2(正極電位)が3.80Vであったとき(測定値DV1,DV2が図2に示す点Cの値であったとき)には、制御部7は、両測定値DV1,DV2と判定用基準データD0とに基づき、判定対象の二次電池10が容量80%の状態(電池容量が20%減少した劣化状態)であると判定(特定)し、その判定結果(一例として、「この電池は、20%ほど電池容量が減少しています」とのメッセージ)を表示部5に表示させる(図示せず)。具体的には、この例では、測定値DV1が3.4Vで測定値DV2が3.80Vである点Cと、二次電池10が80%の電池容量となった状態(電池容量が20%減少した劣化状態)の判定用基準データD0とが相互に関連する。このため、制御部7は、この点Cに対応する二次電池10の状態が約80%の電池容量となった状態であると特定する。   As still another example, when the measured value DV1 (battery voltage) output from the measuring unit 3 is 3.4V and the measured value DV2 (positive electrode potential) is 3.80V (the measured values DV1 and DV2 are 2), the control unit 7 determines that the determination target secondary battery 10 has a capacity of 80% based on the measured values DV1 and DV2 and the determination reference data D0. (Deteriorated state when battery capacity is reduced by 20%) is determined (specified), and the result of the determination (for example, “This battery is about 20% less battery capacity” message) is displayed 5 (not shown). Specifically, in this example, the measured value DV1 is 3.4V and the measured value DV2 is 3.80V, and the secondary battery 10 has a battery capacity of 80% (the battery capacity is 20%). The reference data D0 for determination (decreased deterioration state) are related to each other. For this reason, the control part 7 specifies that the state of the secondary battery 10 corresponding to this point C is a state in which the battery capacity is about 80%.

なお、図2,3に示すように、二次電池10の劣化の度合いに応じた正極電位の上昇は、電池電圧が低電圧の状態のときほど顕著な差が生じることが確認された。したがって、二次電池10の通常使用状態における電池電圧の下限値(両図に示す特性の二次電池10においては、例えば3.0V)と、電池電圧の上限値(満充電状態の電池電圧、両図に示す特性の二次電池10においては、例えば4.2V)との中間の電圧以下の電池電圧において上記の劣化判定処理を実行することにより、判定対象の二次電池10の劣化の度合いを一層正確に判定することが可能となる。これにより、劣化判定処理が完了する。   As shown in FIGS. 2 and 3, it was confirmed that the increase in the positive electrode potential according to the degree of deterioration of the secondary battery 10 is more noticeable as the battery voltage is lower. Therefore, the lower limit value of the battery voltage in the normal use state of the secondary battery 10 (for example, 3.0 V in the secondary battery 10 having the characteristics shown in both figures) and the upper limit value of the battery voltage (the battery voltage in the fully charged state, In the secondary battery 10 having the characteristics shown in both figures, the degree of deterioration of the determination-target secondary battery 10 by executing the above-described deterioration determination process at a battery voltage equal to or lower than an intermediate voltage of 4.2 V, for example. Can be determined more accurately. Thereby, the deterioration determination process is completed.

この場合、図2,3に示すように、容量100%の二次電池10(劣化が生じていない二次電池10)では、電池電圧が4.2Vの状態から3.0Vの状態となるまで、各電池電圧毎に正極電位が大きく変化する。したがって、容量100%の二次電池10においては、電池電圧が4.2Vの状態から3.0Vの状態となるまで正極11の活物質中から電解液中に十分な量のイオンが放出されることが判る。   In this case, as shown in FIGS. 2 and 3, in the secondary battery 10 having a capacity of 100% (secondary battery 10 without deterioration), the battery voltage is changed from 4.2V to 3.0V. The positive electrode potential changes greatly for each battery voltage. Therefore, in the secondary battery 10 having a capacity of 100%, a sufficient amount of ions are released from the active material of the positive electrode 11 into the electrolytic solution until the battery voltage is changed from 4.2 V to 3.0 V. I understand that.

一方、容量90%の二次電池10(劣化が生じて電池容量が10%減少した二次電池10)では、電池電圧が4.2Vの状態から3.6V程度の状態となるまで、各電池電圧毎に正極電位が大きく変化するものの、電池電圧が3.6Vを下回ると、各電池電圧毎の正極電位の低下量が少なくなる。したがって、容量90%の二次電池10においては、電池電圧が4.2Vの状態から3.6V程度の状態となるまでは、正極11の活物質中から電解液中に十分な量のイオンが放出されるものの、電池電圧が3.6Vを下回ったときには、正極11の活物質中に十分な量のイオンが残存していないことに起因して、電解液中に十分な量のイオンを放出できない状態、すなわち、十分な量の電力を供給できない状態となることが判る。   On the other hand, in the secondary battery 10 having a capacity of 90% (the secondary battery 10 having a battery capacity reduced by 10% due to deterioration), each battery is changed from a state of 4.2V to a state of about 3.6V. Although the positive electrode potential changes greatly for each voltage, when the battery voltage falls below 3.6 V, the amount of decrease in the positive electrode potential for each battery voltage decreases. Therefore, in the secondary battery 10 having a capacity of 90%, a sufficient amount of ions from the active material of the positive electrode 11 to the electrolyte solution until the battery voltage is changed from 4.2 V to about 3.6 V. Although released, when the battery voltage falls below 3.6 V, a sufficient amount of ions are released into the electrolyte due to the fact that a sufficient amount of ions do not remain in the active material of the positive electrode 11. It can be seen that it is impossible to supply a sufficient amount of power.

また、容量80%の二次電池10(劣化が生じて電池容量が20%減少した二次電池10)では、電池電圧が4.2Vの状態から3.6V程度の状態となるまで、各電池電圧毎に正極電位が大きく変化するものの、電池電圧が3.6Vを下回ると、各電池電圧毎の正極電位が殆ど変化しなくなる。したがって、容量80%の二次電池10においては、電池電圧が4.2Vの状態から3.6V程度の状態となるまでは、正極11の活物質中から電解液中に十分な量のイオンが放出されるものの、電池電圧が3.6Vを下回ったときには、正極11の活物質中に放出可能なイオンが殆ど残存していない状態、すなわち、極く少量の電力しか供給できない状態となることが判る。   Further, in the secondary battery 10 having a capacity of 80% (the secondary battery 10 having a battery capacity reduced by 20% due to deterioration), each battery is changed from a state of 4.2V to a state of about 3.6V. Although the positive electrode potential changes greatly for each voltage, when the battery voltage falls below 3.6 V, the positive electrode potential for each battery voltage hardly changes. Therefore, in the secondary battery 10 having a capacity of 80%, a sufficient amount of ions are contained in the electrolyte from the active material of the positive electrode 11 until the battery voltage is changed from 4.2 V to about 3.6 V. Although released, when the battery voltage falls below 3.6 V, there are almost no releasable ions remaining in the active material of the positive electrode 11, that is, a state where only a very small amount of power can be supplied. I understand.

したがって、充電器1による判定結果(本例では、表示部5に表示された判定結果)を見た利用者は、一例として、判定対象の二次電池10が容量80%まで劣化していると判定されたときに、その二次電池10を新しい二次電池10に交換して電子機器等に搭載する。これにより、二次電池10を電源として使用している電子機器において意図しない電源消失が生じる事態が回避される。   Therefore, a user who has seen the determination result by the charger 1 (in this example, the determination result displayed on the display unit 5), as an example, indicates that the determination-target secondary battery 10 has deteriorated to a capacity of 80%. When the determination is made, the secondary battery 10 is replaced with a new secondary battery 10 and mounted on an electronic device or the like. Thereby, the situation where the power loss which is not intended in the electronic device which uses the secondary battery 10 as a power supply arises is avoided.

このように、この充電器1、および充電器1による劣化判定方法では、判定対象の二次電池10における正極11および負極12の間の電位差(電池電圧:測定値DV1:第1の電位差)と、正極11および参照極13の間の電位差(正極電位:測定値DV2:第2の電位差)とをそれぞれ測定する測定処理を実行し、測定された測定値DV1,DV2と、二次電池10の劣化の度合い(電池容量)、正極11および負極12の間の電位差(電池電圧)、並びに正極11および参照極13の間の電位差(正極電位)の相互関係を特定可能な判定用基準データD0とに基づき、判定対象の二次電池10の劣化の度合いを特定する。   As described above, in the charger 1 and the deterioration determination method using the charger 1, the potential difference between the positive electrode 11 and the negative electrode 12 (battery voltage: measured value DV1: first potential difference) in the secondary battery 10 to be determined is , A measurement process for measuring the potential difference between the positive electrode 11 and the reference electrode 13 (positive electrode potential: measured value DV2: second potential difference) is performed, and the measured values DV1, DV2 measured and the secondary battery 10 Determination standard data D0 that can specify the degree of deterioration (battery capacity), the potential difference between the positive electrode 11 and the negative electrode 12 (battery voltage), and the potential difference between the positive electrode 11 and the reference electrode 13 (positive electrode potential). Based on the above, the degree of deterioration of the secondary battery 10 to be determined is specified.

したがって、この充電器1、および充電器1による二次電池の劣化判定方法によれば、正極電位を測定し得る必要十分な大きさの「参照極」を備えた「二次電池」である限り、正極電位および電池電圧を測定することで、その測定結果と判定用基準データD0とに基づき、その「二次電池」の劣化の度合いを正確に判定することができる。このため、この充電器1、および充電器1による二次電池の劣化判定方法によれば、劣化の度合いを正確に判定するために大きな「参照極」を搭載する必要がなくなることから、劣化の度合いを正確に測定することができるだけでなく、電池特性が良好で十分に小型化された「二次電池」を提供することが可能となる。   Therefore, according to the charger 1 and the method for determining the deterioration of the secondary battery by the charger 1, as long as it is a “secondary battery” having a “reference electrode” having a necessary and sufficient size capable of measuring the positive electrode potential. By measuring the positive electrode potential and the battery voltage, the degree of deterioration of the “secondary battery” can be accurately determined based on the measurement result and the determination reference data D0. Therefore, according to the charger 1 and the secondary battery deterioration determination method using the charger 1, it is not necessary to mount a large “reference electrode” to accurately determine the degree of deterioration. It is possible not only to measure the degree accurately, but also to provide a “secondary battery” having good battery characteristics and being sufficiently miniaturized.

なお、「二次電池の劣化判定装置」の構成、および「二次電池の劣化判定方法」は、上記の充電器1の構成、および充電器1による劣化判定方法に限定されない。例えば、「リチウムイオン二次電池」を対象として、その劣化の度合いを判定する構成・方法について説明したが、例えば、「カルシウムイオン二次電池」や「アルミニウムイオン二次電池」等の各種の「二次電池」を対象とする場合にも、上記の例と同様の構成・方法によって、その劣化の度合いを判定することができる。また、「二次電池の劣化判定装置」を「充電器」に適用した構成を例に挙げて説明したが、このような構成に代えて、充電処理を実行するための構成要素を備えていない装置において「二次電池の劣化判定方法」を実行して、判定対象の「二次電池」の劣化の度合いを判定させることもできる。   The configuration of the “secondary battery deterioration determination device” and the “secondary battery deterioration determination method” are not limited to the configuration of the charger 1 and the deterioration determination method by the charger 1. For example, for the “lithium ion secondary battery”, the configuration / method for determining the degree of deterioration has been described. For example, various “such as“ calcium ion secondary battery ”and“ aluminum ion secondary battery ” Even when a “secondary battery” is targeted, the degree of deterioration can be determined by the same configuration and method as in the above example. In addition, the configuration in which the “secondary battery deterioration determination device” is applied to the “charger” has been described as an example, but instead of such a configuration, a component for executing the charging process is not provided. The “secondary battery deterioration determination method” may be executed in the apparatus to determine the degree of deterioration of the determination target “secondary battery”.

1 充電器
2 電源部
3 測定部
6 記憶部
7 制御部
10 二次電池
11 正極
12 負極
13 参照極
D0 判定用基準データ
DV1〜DV3 測定値
DESCRIPTION OF SYMBOLS 1 Charger 2 Power supply part 3 Measuring part 6 Storage part 7 Control part 10 Secondary battery 11 Positive electrode 12 Negative electrode 13 Reference electrode D0 Reference data for determination DV1 to DV3 Measured value

Claims (2)

正極、負極および参照極が電解液と共に容器体内に収容されて構成された二次電池を対象として劣化の度合いを判定可能に構成された二次電池の劣化判定装置であって、
前記二次電池の劣化の度合い、前記正極および前記負極の間の電位差、並びに前記正極および前記参照極の間の電位差の相互関係を特定可能な劣化判定用情報を記憶する記憶部と、
前記正極および前記負極の間の第1の電位差、並びに前記正極および前記参照極の間の第2の電位差をそれぞれ測定する測定処理を実行する測定部と、
前記測定部を制御して前記測定処理を実行させて判定対象の前記二次電池における前記第1の電位差および前記第2の電位差をそれぞれ測定させると共に、測定された当該第1の電位差および当該第2の電位差と前記記憶部に記憶されている前記劣化判定用情報とに基づいて前記判定対象の二次電池の劣化の度合いを特定する処理部とを備えている二次電池の劣化判定装置。
A secondary battery deterioration determination device configured to be capable of determining the degree of deterioration for a secondary battery configured by accommodating a positive electrode, a negative electrode, and a reference electrode together with an electrolyte in a container body,
A storage unit that stores deterioration determination information capable of specifying the degree of deterioration of the secondary battery, the potential difference between the positive electrode and the negative electrode, and the potential difference between the positive electrode and the reference electrode;
A measurement unit that performs a measurement process for measuring a first potential difference between the positive electrode and the negative electrode, and a second potential difference between the positive electrode and the reference electrode;
The measurement unit is controlled to execute the measurement process to measure the first potential difference and the second potential difference in the determination target secondary battery, respectively, and the measured first potential difference and the second potential difference are measured. A deterioration determination device for a secondary battery, comprising: a processing unit that specifies a degree of deterioration of the determination target secondary battery based on the potential difference of 2 and the deterioration determination information stored in the storage unit.
正極、負極および参照極が電解液と共に容器体内に収容されて構成された二次電池を対象として劣化の度合いを判定する二次電池の劣化判定方法であって、
前記二次電池の劣化の度合い、前記正極および前記負極の間の電位差、並びに前記正極および前記参照極の間の電位差の相互関係を特定可能な劣化判定用情報を取得すると共に、判定対象の前記二次電池における前記正極および前記負極の間の第1の電位差、並びに前記正極および前記参照極の間の第2の電位差をそれぞれ測定する測定処理を実行し、測定した前記第1の電位差および前記第2の電位差と前記劣化判定用情報とに基づき、前記判定対象の二次電池の劣化の度合いを特定する二次電池の劣化判定方法。
A secondary battery deterioration determination method for determining the degree of deterioration for a secondary battery configured by accommodating a positive electrode, a negative electrode, and a reference electrode together with an electrolyte in a container body,
Obtaining deterioration determination information capable of specifying the degree of deterioration of the secondary battery, the potential difference between the positive electrode and the negative electrode, and the potential difference between the positive electrode and the reference electrode, and the determination target A measurement process is performed to measure a first potential difference between the positive electrode and the negative electrode and a second potential difference between the positive electrode and the reference electrode in a secondary battery, respectively, and the measured first potential difference and the measured A secondary battery deterioration determination method for specifying a degree of deterioration of the determination-target secondary battery based on a second potential difference and the deterioration determination information.
JP2013088122A 2013-04-19 2013-04-19 Deterioration determination device and deterioration determination method of secondary battery Pending JP2014212056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013088122A JP2014212056A (en) 2013-04-19 2013-04-19 Deterioration determination device and deterioration determination method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013088122A JP2014212056A (en) 2013-04-19 2013-04-19 Deterioration determination device and deterioration determination method of secondary battery

Publications (1)

Publication Number Publication Date
JP2014212056A true JP2014212056A (en) 2014-11-13

Family

ID=51931651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013088122A Pending JP2014212056A (en) 2013-04-19 2013-04-19 Deterioration determination device and deterioration determination method of secondary battery

Country Status (1)

Country Link
JP (1) JP2014212056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220279A (en) * 2015-05-14 2016-12-22 ローム株式会社 Charging controller, charging control method, and battery pack
CN110176645A (en) * 2018-02-19 2019-08-27 株式会社Lg化学 Secondary cell and battery pack including the secondary cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220279A (en) * 2015-05-14 2016-12-22 ローム株式会社 Charging controller, charging control method, and battery pack
CN110176645A (en) * 2018-02-19 2019-08-27 株式会社Lg化学 Secondary cell and battery pack including the secondary cell
US11545705B2 (en) 2018-02-19 2023-01-03 Lg Energy Solution, Ltd. Secondary battery and battery pack including the same

Similar Documents

Publication Publication Date Title
US10209320B2 (en) Method for estimating SOC-OCV profile by degradation of secondary battery
KR101453035B1 (en) Apparatus of Estimating Power of Secondary Battery including Blended Cathode Material and Method thereof
US10126367B2 (en) Detection method of LI plating, method and apparatus for charging secondary battery and secondary battery system using the same
KR101487494B1 (en) Apparatus and Method for estimating parameter for secondary battery
JP3669673B2 (en) Electrochemical element degradation detection method, remaining capacity detection method, and charger and discharge control device using the same
KR101454831B1 (en) Apparatus of Estimating Power of Secondary Battery including Blended Cathode Material and Method thereof
KR101650415B1 (en) Apparatus for estimating voltage of hybrid secondary battery and Method thereof
JP6638227B2 (en) Power storage element deterioration state estimation device, storage element deterioration state estimation method, and power storage system
CN108808130A (en) The minimized lithium plating in lithium ion battery
JP5043777B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2014509040A (en) Method for estimating the self-discharge of a lithium battery
KR20130139759A (en) Apparatus for estimating state of charge of secondary battery including blended cathode material and method thereof
JP2013213809A (en) Control device for secondary battery, charge control method and soc detection method
JP2017097997A (en) Characteristic analysis method of secondary battery, and characteristic analysis device
CN113853706B (en) Apparatus and method for controlling operation of secondary battery using relative degradation degree of electrode
JP6342612B2 (en) Secondary battery diagnostic device and secondary battery diagnostic method
JP6822465B2 (en) Deterioration judgment method and power storage system
JP2020165859A (en) Impedance measuring device for secondary batteries, secondary battery state estimating device, secondary battery system, and charing device for secondary batteries
JP5853692B2 (en) Non-aqueous electrolyte secondary battery negative charge reserve amount estimation device, negative charge reserve amount estimation method, power storage system, and assembled battery
JP2014212056A (en) Deterioration determination device and deterioration determination method of secondary battery
JP2017059430A (en) Method for control of sulfide all-solid battery
JP6973213B2 (en) Secondary battery system and secondary battery control method
JP2017150950A (en) Power storage element state estimation device and power storage element state estimation method
EP4198533A1 (en) Information processing device, information processing method, and program
CN116547831A (en) Abnormality detection method, abnormality detection device, power storage device, and computer program