JP2014211370A - Method of estimating position of acoustic source - Google Patents
Method of estimating position of acoustic source Download PDFInfo
- Publication number
- JP2014211370A JP2014211370A JP2013087991A JP2013087991A JP2014211370A JP 2014211370 A JP2014211370 A JP 2014211370A JP 2013087991 A JP2013087991 A JP 2013087991A JP 2013087991 A JP2013087991 A JP 2013087991A JP 2014211370 A JP2014211370 A JP 2014211370A
- Authority
- JP
- Japan
- Prior art keywords
- sound
- sound source
- source
- acoustic
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
本発明は、音響探査の分野で音圧レベル観測点の数が限られていても音源の位置を高い尤度で推定することを可能とする技術に関する。 The present invention relates to a technique capable of estimating the position of a sound source with high likelihood even if the number of sound pressure level observation points is limited in the field of acoustic exploration.
従来 音響探査の分野では機械装置等が発する騒音の音源位置推定には、指向性を有するマイクロフォン等の複数の音響センサを複数入力チャネルを具備する受信装置に接続して、各指向性センサから得られた音圧信号を入力とする信号波形演算処理を行うことにより最尤度位置の推定が行われてきた。 Conventionally, in the field of acoustic exploration, sound source position estimation of noise emitted by mechanical devices is obtained from each directional sensor by connecting a plurality of acoustic sensors such as microphones with directivity to a receiving device having a plurality of input channels. The maximum likelihood position has been estimated by performing signal waveform calculation processing using the received sound pressure signal as an input.
無指向性音響センサを単独で受信装置に接続して用いる場合、一つの観測点からの測定では方角の探知を行うことは出来ないが、音源の音響出力が既知の場合については移動して複数の観測点から得られる音圧レベル測定値を伝播損モデルに当てはめて距離を逆算し、各々の観測点の位置と共に多元の連立方程式を立式して最小二乗法等の算法を用いて解を得ることにより音源の位置推定を行なうことは可能である。 When an omnidirectional acoustic sensor is connected to a receiving device alone, it is impossible to detect the direction by measurement from one observation point. The sound pressure level measurement value obtained from each observation point is applied to the propagation loss model, the distance is calculated backward, and a multi-dimensional simultaneous equation is formed together with the position of each observation point, and the solution is calculated using a method such as the least square method. It is possible to estimate the position of the sound source.
指向性音響センサを同時に複数用いる方法をとる装置は方向探知を行うことを前提としているため探査対象によっては音源探査を行う装置全体が構造的規模が大きくなりがちであり、音響探査活動における軽便性を確保することが困難である。 Devices that use multiple directional acoustic sensors at the same time are premised on direction detection, so depending on the search target, the entire sound source search device tends to be structurally large. It is difficult to ensure.
無指向性音響センサの単独使用による軽便性重視の音響探査では、音源の音響出力が未知であると音圧レベル測定から距離を算出することができないため多元連立方程式の立式が出来ず、最小二乗法等の算法による位置推定演算は行えない。一般に音源の音響出力は音響探査活動を実施する側には未知であることが多い。 In acoustic exploration with an emphasis on lightness by using an omnidirectional acoustic sensor alone, if the sound output of the sound source is unknown, the distance cannot be calculated from the sound pressure level measurement, so the multi-dimensional simultaneous equations cannot be formulated and the minimum Position estimation calculation by a method such as the square method cannot be performed. In general, the sound output of a sound source is often unknown to the side performing acoustic exploration activities.
位置推定すべき対象音源を明確に含む2次元画像を撮影し原点を定め、また撮影画像に対して半自由空間音場の矩形閉領域として格子を適用して画像上で分割し、音波観測点の相対位置が判別できる手だてを講じる。音波受信機には無指向性音響センサを単独使用で接続する。複数の音波観測点から収集される音圧レベル測定値および画像上で判定した相対位置の情報からなるデータ系列を作成する。 Take a two-dimensional image that clearly contains the target sound source to be located, determine the origin, apply a grid as a rectangular closed region of the semi-free space sound field to the captured image, and divide it on the image, Take measures to determine the relative position of. An omnidirectional acoustic sensor is connected to the acoustic wave receiver alone. A data series composed of sound pressure level measurement values collected from a plurality of sound wave observation points and relative position information determined on the image is created.
作成したデータ系列を用いて上述で適用したすべての格子点について評価値を演算して求める。評価値が小さいほど音源の位置する確率が高いとして、確率分布状態が示せるよう各点に色を決めて画像上に重ねて表示する。 Using the created data series, evaluation values are calculated for all the grid points applied above. As the evaluation value is smaller, the probability that the sound source is located is higher, and the color is determined for each point so that the probability distribution state can be shown and displayed on the image.
本発明は、半自由空間音場における音源から発せられる音波を受信する信号受信機に軽便性に富んだ単一の無指向性音響センサを接続して、方向探知は行わずかつ音源の音響出力が未知であっても少ない観測点データで音源位置推定が高尤度で行える画像表示機能を含む装置である。 The present invention connects a single omnidirectional acoustic sensor with excellent convenience to a signal receiver that receives sound waves emitted from a sound source in a semi-free space sound field, does not perform direction detection, and outputs sound from the sound source. This is a device including an image display function that can perform sound source position estimation with a high likelihood with a small number of observation point data even if is unknown.
また音響出力以外で、点状の地点からエネルギーが放射される現象についてそのエネルギー強度を無指向性で測定する手段とその観測点の位置情報取得手段を講じることにより、本発明の方式はエネルギー発射源位置推定にも適用することが可能である。 In addition to the acoustic output, the method of the present invention can be used to measure the energy intensity of a phenomenon in which energy is radiated from a point-like point, and the position information acquisition means for the observation point. It can also be applied to source position estimation.
位置情報の構成が水平面内の縦横方向のみの場合は2次元空間での適用であるが、「高度」の情報も得られる測量系である場合は、本発明は3次元空間でのエネルギー発射源位置推定に適用することが可能である。 When the configuration of the position information is only in the vertical and horizontal directions in the horizontal plane, it is applied in a two-dimensional space. However, in the case of a surveying system that can also obtain “altitude” information, the present invention provides an energy emission source in a three-dimensional space. It can be applied to position estimation.
位置推定の対象となる閉領域を撮影画像上で格子に分割する。すべての格子点について、評価値Sを求める。Sの値が小さいほど発射源のある確率が高いとして、各点の色を決めて表示する。評価値Sは、図1に示す本発明を適用した装置の03中央演算処理装置上で実行するプログラムにおいて以下の算法を適用して求める。
位置推定の対象となる音源からの音圧レベル測定値は音源と観測点の距離のR乗に反比例するものとし、音源の座標を(X, Y)、1単位距離離れた点での音圧をP、観測点の座標を(x, y)、測定値をpとすると以下の式が成り立つ。
ここで、音源の音響出力が一定であれば、どの測定点(x, y)においてもPは同じ値となる。これは自由伝搬空間の場合に成り立つが、現実の空間ではまずあり得ない。そこで、以下の式によってPの値のばらつき(標準偏差)Sを求め、その値が小さいほど(X, Y)に発射源がある確率が高いと評価する。
N点で測定を行い、i番目(i=0, 1, 2,…, N-1)の観測点の座標を(xi, yi)、音圧レベルをpiとすると
と 導出され、評価値Sが求まる。図3は観測点数が9の場合で画像上に評価値に基づいた色を重ねて表示する例である。
The closed region that is the target of position estimation is divided into grids on the captured image. Evaluation values S are obtained for all grid points. The smaller the value of S, the higher the probability that there is a launch source, and the color of each point is determined and displayed. The evaluation value S is obtained by applying the following calculation method in a program executed on the 03 central processing unit of the device to which the present invention is applied as shown in FIG.
The sound pressure level measurement value from the sound source for position estimation is assumed to be inversely proportional to the R-th power of the distance between the sound source and the observation point, and the sound pressure at the point 1 unit away from the sound source coordinates is (X, Y). Where P is the coordinates of the observation point (x, y), and p is the measured value.
Here, if the sound output of the sound source is constant, P has the same value at any measurement point (x, y). This is true for free-propagation spaces, but is unlikely in real space. Therefore, the variation (standard deviation) S of the value of P is obtained by the following formula, and the smaller the value, the higher the probability that there is a launch source at (X, Y).
Measured at N points, the coordinates of the i-th (i = 0, 1, 2, ..., N-1) observation point are (xi, yi) and the sound pressure level is pi
And the evaluation value S is obtained. FIG. 3 shows an example in which the number of observation points is 9 and the color based on the evaluation value is displayed on the image in an overlapping manner.
01 信号増幅部
02 信号測定部
03 中央演算処理装置
04 画像表示部
05 映像撮影用カメラ
06 映像信号変換部
07 外部記憶装置
08 無指向性音響センサ
01 Signal amplifier
02 Signal measurement unit
03 Central processing unit
04 Image display
05 Video camera
06 Video signal converter
07 External storage device
08 Omnidirectional acoustic sensor
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013087991A JP2014211370A (en) | 2013-04-19 | 2013-04-19 | Method of estimating position of acoustic source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013087991A JP2014211370A (en) | 2013-04-19 | 2013-04-19 | Method of estimating position of acoustic source |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014211370A true JP2014211370A (en) | 2014-11-13 |
Family
ID=51931227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013087991A Pending JP2014211370A (en) | 2013-04-19 | 2013-04-19 | Method of estimating position of acoustic source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014211370A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113418512A (en) * | 2021-07-22 | 2021-09-21 | 中国海洋大学 | Wave direction measuring method based on differential pressure method |
-
2013
- 2013-04-19 JP JP2013087991A patent/JP2014211370A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113418512A (en) * | 2021-07-22 | 2021-09-21 | 中国海洋大学 | Wave direction measuring method based on differential pressure method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170115376A1 (en) | Method for effectively estimating three-dimensional location by using trilateration in wireless network, and recording medium in which program is recorded for carrying out same | |
Álvarez et al. | CDMA-based acoustic local positioning system for portable devices with multipath cancellation | |
CN113702909B (en) | Sound source localization analysis solution calculation method and device based on arrival time difference of sound signals | |
JP5853489B2 (en) | Target motion estimation system and method | |
JP2011015050A (en) | Array for beam forming, and sound source exploration/measurement system using the same | |
RU2507531C1 (en) | Method for passive determination of coordinates of radiation sources | |
Pertilä et al. | Closed-form self-localization of asynchronous microphone arrays | |
CN104501938A (en) | Method for measuring underwater sound source low frequency radiation sound power in rectangular reverberation water tank arranged in air | |
JP6617613B2 (en) | Noise source search system | |
WO2018191425A1 (en) | Wideband acoustic positioning with precision calibration and joint parameter estimation | |
Saqib et al. | A framework for spatial map generation using acoustic echoes for robotic platforms | |
CN105954653B (en) | Method and system for locating breakdown point of GIS (gas insulated switchgear) field voltage withstand test | |
RU2305297C2 (en) | Device with correlation shaper of directivity characteristics for detection of signals and determination of direction to their source | |
JP2014211370A (en) | Method of estimating position of acoustic source | |
Nishihara et al. | Position detection of small objects in indoor environments using coded acoustic signal | |
Urazghildiiev et al. | Maximum likelihood estimators and Cramér–Rao bound for estimating azimuth and elevation angles using compact arrays | |
Su et al. | Acoustic imaging using a 64-node microphone array and beamformer system | |
KR101480834B1 (en) | Target motion analysis method using target classification and ray tracing of underwater sound energy | |
Vargas et al. | Impact of microphone array configurations on robust indirect 3D acoustic source localization | |
JP2015161659A (en) | Sound source direction estimation device and display device of image for sound source estimation | |
Bao et al. | Improving the accuracy of beamforming method for moving acoustic source localization in far-field | |
KR102180229B1 (en) | Apparatus for Estimating Sound Source Localization and Robot Having The Same | |
JP2013002896A (en) | Position estimation method of radio wave shooting source | |
CN102435866A (en) | Method for quickly identifying interference of ground object during archaeological detection of ground penetrating radar | |
KR101212317B1 (en) | Apparatus for marker having beacon and method for displaying sound source location |