JP2014210260A - Self-induced vibration gel containing iron complex site - Google Patents

Self-induced vibration gel containing iron complex site Download PDF

Info

Publication number
JP2014210260A
JP2014210260A JP2014076192A JP2014076192A JP2014210260A JP 2014210260 A JP2014210260 A JP 2014210260A JP 2014076192 A JP2014076192 A JP 2014076192A JP 2014076192 A JP2014076192 A JP 2014076192A JP 2014210260 A JP2014210260 A JP 2014210260A
Authority
JP
Japan
Prior art keywords
gel
self
bpy
reaction
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014076192A
Other languages
Japanese (ja)
Inventor
原 雄介
Yusuke Hara
雄介 原
藤本 賢二
Kenji Fujimoto
賢二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014076192A priority Critical patent/JP2014210260A/en
Publication of JP2014210260A publication Critical patent/JP2014210260A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive self-induced vibration gel which is self-driven by converting a Belousov-Zhabotinsky reaction (BZ reaction) directly into mechanical energy, without use of an external power source or an external controller, and does not use a rare-metal ruthenium-based complex.SOLUTION: The type of the catalyst is changed advantageously from a rare metal to a base metal by introducing an Fe(bpy)complex to the principal chain of a gel through a chemical bond by using a monomer including an iron-bipyridium (Fe(bpy)) complex, leading to substantial cost reduction and stabilization of the available amount and costs, an important problem for mass production.

Description

本発明は、鉄錯体部位を含有する自励振動ゲルに関する。   The present invention relates to a self-oscillating gel containing an iron complex moiety.

生命体は外部制御装置および外部電源に頼ることなく、生体内部で化学反応を直接的に力学的なエネルギーに変換して駆動する自律的な分子システムである。生命体のように自律的に駆動する分子システムをテイラーメイドで構築することができれば、外部電源・外部制御装置に頼ることなく駆動するシステムを人工的に構築することができる(非特許文献1、2)。このような分子システムを構築するために、リズム反応であるBelousov-Zhabotinsky(ベロウソフ・ジャボチンスキ)反応(BZ反応)(非特許文献3、4)を化学反応源とする自励振動ゲルが開発されている。自励振動ゲルは、心筋細胞のように自励的に駆動するソフトマテリアルである。BZ反応中では、金属触媒の酸化還元状態が周期的なリズムを持って振動する。自励振動ゲルはBZ反応の金属触媒を主鎖に内包しているため、金属触媒の酸化還元状態の周期的な変化にシンクロナイズしてその膨潤率(含水率)が変化する。   Living organisms are autonomous molecular systems that are driven by converting chemical reactions directly into dynamic energy inside the living body without relying on external control devices and external power sources. If a molecular system that autonomously drives like a living organism can be constructed in a tailor-made manner, a system that drives without depending on an external power supply / external control device can be artificially constructed (Non-patent Document 1, 2). In order to construct such a molecular system, a self-excited vibration gel using a Belousov-Zhabotinsky reaction (BZ reaction) (Non-Patent Documents 3 and 4) as a chemical reaction source has been developed. Yes. A self-oscillating gel is a soft material that self-excites like a cardiomyocyte. During the BZ reaction, the redox state of the metal catalyst vibrates with a periodic rhythm. Since the self-excited vibration gel contains the metal catalyst for the BZ reaction in the main chain, it synchronizes with the periodic change of the oxidation-reduction state of the metal catalyst and its swelling ratio (water content) changes.

BZ反応を駆動源とする高分子システムの研究は、1982年に石渡(信州大)らがリニアポリマーに金属触媒を共有結合することで(非特許文献5)、また1996年に吉田(東大)らが高分子鎖に化学結合を導入することでゲル化することに成功している(非特許文献6)。これら自励振動する高分子システムは、BZ反応触媒であるルテニウム−ビピリジン錯体(以下、「Ru(bpy)3」とする。)を高分子鎖に共有結合させることで達成している。ポリマー鎖内に共有結合によって導入されたRu(bpy)3部位は、酸化状態(Ru(III))と還元状態(Ru(II))でその水和構造が異なる。そのため、Ru(bpy)3部位を有する自励振動ゲルは、酸化状態で水との親和性がより高くなるため膨潤し、また還元状態では水との親和性が低くなるため収縮する。このような自励的な膨潤収縮運動をアクチュエータとして利用することも可能で、外部制御装置・外部電源を必要としないメリットを活かすこともできる(非特許文献7、8)。 Research on polymer systems using the BZ reaction as a driving source was made in 1982 by Ishiwatari (Shinshu Univ.) And others by covalently bonding a metal catalyst to a linear polymer (Non-patent Document 5), and in 1996 Yoshida (Tokyo Univ.) Have succeeded in gelation by introducing a chemical bond into a polymer chain (Non-patent Document 6). These self-excited polymer systems are achieved by covalently bonding a ruthenium-bipyridine complex (hereinafter referred to as “Ru (bpy) 3 ”) as a BZ reaction catalyst to a polymer chain. The hydration structure of the Ru (bpy) 3 site introduced into the polymer chain by a covalent bond is different between the oxidized state (Ru (III)) and the reduced state (Ru (II)). Therefore, the self-excited vibrating gel having Ru (bpy) 3 site swells because it has a higher affinity with water in the oxidized state, and contracts because it has a lower affinity with water in the reduced state. Such a self-excited swelling / shrinking motion can be used as an actuator, and the merit of not requiring an external control device or an external power source can be utilized (Non-patent Documents 7 and 8).

自励振動ゲルを用いた配列体及びその製造方法、並びに自律応答体及びその製造方法(特許文献1)、さらに自励振動ゲルを用いた配列体、自律応答体、自律応答装置、自律応答方法、及び自律応答性ゲルの配列体の製造方法(特許文献2)が公知化されている。   Array using self-excited vibration gel and manufacturing method thereof, autonomous responder and manufacturing method thereof (Patent Document 1), array using self-excited vibration gel, autonomous responder, autonomous response device, autonomous response method And a method for producing an array of autonomously responsive gels (Patent Document 2).

前田真吾、原雄介、吉田亮、橋本周司(2008)化学ロボットの実現を目指した自励振動ゲルアクチュエーターの創製, 高分子論文集, 10(65), pp.634-640.Shingo Maeda, Yusuke Hara, Ryo Yoshida, Shuji Hashimoto (2008) Creation of self-oscillating gel actuators for the realization of chemical robots, Polymer Proceedings, 10 (65), pp.634-640. 原雄介(2009)生体環境下で駆動する新規自励振動型高分子の創製と自励粘性振動の解析, 66(8), pp.289-297.Yusuke Hara (2009) Creation of a new self-excited vibration polymer driven in a biological environment and analysis of self-excited viscous vibration, 66 (8), pp.289-297. Zaikin,A.N.; Zhabotinsky,A.M. (1970). Concentration Wave propagation in two-dimensional liquid-phase self-oscillating system,Nature,225,pp.535-537.Zaikin, A.N .; Zhabotinsky, A.M. (1970). Concentration Wave propagation in two-dimensional liquid-phase self-oscillating system, Nature, 225, pp.535-537. Field,R.J.; Burger,M. (1985). Oscillations and Traveling Waves in Chemical Systems; John Wiley & Sons: New York,NY,USA.Field, R.J .; Burger, M. (1985). Oscillations and Traveling Waves in Chemical Systems; John Wiley & Sons: New York, NY, USA. Ishiwatari,T.; Kawaguchi,M.; Mitsuishi,M. (1984). Oscillatry reactions in polymer systems,Journal of Polymer Science Part A: Polymer Chemistry,22,pp. 2699-2704Ishiwatari, T .; Kawaguchi, M .; Mitsuishi, M. (1984). Oscillatry reactions in polymer systems, Journal of Polymer Science Part A: Polymer Chemistry, 22, pp. 2699-2704 Yoshida,R.; Takahashi,T.; Yamaguchi,T.; Ichijo,H. (1996). Self-oscillating gel,Journal of the American Chemical Society,118,pp.5134-5135.Yoshida, R .; Takahashi, T .; Yamaguchi, T .; Ichijo, H. (1996). Self-oscillating gel, Journal of the American Chemical Society, 118, pp. 5134-5135. R. Yoshida,T. Sakai,Y. Hara,S. Maeda,S. Hashimoto,D. Suzuki,Y. Murase: “Self-oscillating gel as novel biomimetic materials” Journal of Controlled Release,140(3),pp.186-193 (2009).R. Yoshida, T. Sakai, Y. Hara, S. Maeda, S. Hashimoto, D. Suzuki, Y. Murase: “Self-oscillating gel as novel biomimetic materials” Journal of Controlled Release, 140 (3), pp. 186-193 (2009). S. Maeda,Y. Hara,S. Nakamaru,S. Hashimoto: “Design of autonomous gel actuators” Polymers,3(1),pp.299-313 (2011).S. Maeda, Y. Hara, S. Nakamaru, S. Hashimoto: “Design of autonomous gel actuators” Polymers, 3 (1), pp.299-313 (2011).

特開2010−222465号公報JP 2010-222465 A 特開2010−58185号公報JP 2010-58185 A

外部電源・外部制御装置を用いることなくBelousov-Zhabotinsky(ベロウソフ・ジャボチンスキ)反応(BZ反応)を直接的に力学的なエネルギーに変換して自ら駆動する新規自励振動ゲルにおいて、BZ反応部位は、これまでRu系錯体のみで達成されてきた。
例えば、前記特許文献1、2には、ルテニウム錯体、セリウム錯体、マンガン錯体、又は鉄−フェナントロリン錯体が例示されてはいるものの、具体的なゲルとして記載されているものは、以下の構造を有するゲルだけであって、ルテニウム錯体以外については、具体的な記載はされていない。
In a new self-excited vibration gel that directly drives the Belousov-Zhabotinsky reaction (BZ reaction) directly into mechanical energy without using an external power supply / external control device, the BZ reaction site is Until now, this has been achieved only with Ru-based complexes.
For example, although Patent Documents 1 and 2 exemplify a ruthenium complex, a cerium complex, a manganese complex, or an iron-phenanthroline complex, what is described as a specific gel has the following structure: There is no specific description of gels other than ruthenium complexes.

Figure 2014210260
Figure 2014210260

このように、従来はBZ反応部位として、レアメタルであるRu系錯体を用いることが必須の要件であったため、コストが高く、実用化するためには大きな障害となっていた。
またレアメタルであるためRu系錯体の価格は国際的な状況にも大きな影響を受け、また入手量の確保も今後安定しないといった問題を抱えていた。そのため、自励振動ゲルを実用化するにあたり、コストおよび入手量の安定化を図ることが可能な新規自励振動ゲルの開発が望まれていた。
Thus, conventionally, since it was an essential requirement to use a Ru-based complex which is a rare metal as a BZ reaction site, the cost was high and it was a great obstacle to practical use.
In addition, since it is a rare metal, the price of the Ru-based complex is greatly affected by the international situation, and it has a problem that securing of the availability will not be stable in the future. Therefore, in order to put the self-excited vibration gel into practical use, it has been desired to develop a new self-excited vibration gel capable of stabilizing cost and availability.

本発明は、こうした現状を鑑みてなされたものであって、外部電源・外部制御装置を用いることなくBelousov-Zhabotinsky(ベロウソフ・ジャボチンスキ)反応(BZ反応)を直接的に力学的なエネルギーに変換して自ら駆動する自励振動ゲルにおいて、BZ反応部位として、レアメタルであるルテニウム系錯体を用いない安価な自励振動ゲルを提供することを目的とするものである。   The present invention has been made in view of the current situation, and directly converts the Belousov-Zhabotinsky reaction (BZ reaction) into mechanical energy without using an external power source or an external control device. An object of the present invention is to provide an inexpensive self-excited vibration gel that does not use a ruthenium complex, which is a rare metal, as a BZ reaction site.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、鉄-ビピリジン錯体(Fe(bpy)3)を含有するモノマーと高分子鎖の主鎖を形成するモノマーとを共重合することで、外部電源・外部制御装置を用いることなくBZ反応を直接的に力学的なエネルギーに変換して自ら駆動する安価な新規自励振動ゲルを達成できるという知見を得た。 As a result of intensive studies to achieve the above object, the present inventors copolymerize a monomer containing an iron-bipyridine complex (Fe (bpy) 3 ) and a monomer that forms the main chain of the polymer chain. Thus, the inventors have obtained the knowledge that an inexpensive new self-excited vibration gel that can be driven by directly converting the BZ reaction into dynamic energy without using an external power source / external control device can be achieved.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]Belousov-Zhabotinsky(ベロウソフ・ジャボチンスキ)反応を直接的に力学的なエネルギーに変換して自ら駆動することが可能な自励振動ゲルであって、
ゲルを構成する高分子主鎖に、該反応の触媒である下記の式で表される鉄-ビピリジウム錯体を含有する部位と、架橋部位を有していることを特徴とする自励振動ゲル。

Figure 2014210260
[2]ゲルを構成する高分子主鎖が、下記の式で表される構成単位を有していることを特徴とする[1]に記載の自励振動ゲル。
Figure 2014210260
[3]前記高分子ゲルの構造が、インターペネトレーションネットワーク(IPN)もしくはセミインターペネトレーションネットワーク(Semi-IPN)構造を有することを特徴とする[1]又は[2]に記載の自励振動ゲル。 The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A self-excited vibrating gel that can directly drive the Belousov-Zhabotinsky reaction by directly converting it into mechanical energy,
A self-excited vibration gel characterized in that a polymer main chain constituting the gel has a site containing an iron-bipyridinium complex represented by the following formula as a catalyst for the reaction and a crosslinking site.
Figure 2014210260
[2] The self-excited vibrating gel according to [1], wherein the polymer main chain constituting the gel has a structural unit represented by the following formula.
Figure 2014210260
[3] The self-excited vibrating gel according to [1] or [2], wherein the polymer gel has an interpenetration network (IPN) or semi-interpenetration network (Semi-IPN) structure.

本発明であるFe(bpy)3を触媒とする新規自励振動ゲルは、Belousov-Zhabotinsky(ベロウソフ・ジャボチンスキ)反応(BZ反応)を駆動源として外部電源および外部制御装置不要で駆動させることが可能である。本発明により、従来型のレアメタルであるRu系触媒を用いた自励振動ゲルよりも廉価な自励振動ゲルを合成可能にする。またRu系触媒は光の影響を受けてBZ反応が止まってしまうなどの影響があることが広く知られているが、Fe(bpy)3触媒を用いれば光の影響をほとんど受けずに安定的に自励振動を起こすことが可能となる画期的な技術である。 The novel self-excited vibrating gel using Fe (bpy) 3 as a catalyst of the present invention can be driven without the need for an external power supply and an external control device using the Belousov-Zhabotinsky reaction (BZ reaction) as a driving source. It is. The present invention makes it possible to synthesize a self-excited vibration gel that is less expensive than a self-excited vibration gel using a Ru-based catalyst that is a conventional rare metal. Ru-based catalysts are widely known to have effects such as the BZ reaction being stopped by the influence of light. However, if Fe (bpy) 3 catalyst is used, it is stable without being affected by light. This is an epoch-making technology that can cause self-excited vibration.

実施例3で得られたゲルの時空間プロットを示す図The figure which shows the space-time plot of the gel obtained in Example 3

以下、本発明の新規自励振動ゲルについて詳しく記載する。
本発明において化学反応を直接的に力学的なエネルギーに変換して駆動する自励振動ゲルは、Belousov-Zhabotinsky(ベロウソフ・ジャボチンスキ)反応(BZ反応)の触媒として機能する鉄−ビピリジウム錯体を含有する部位を、化学結合でゲルを構成する高分子鎖に有していることを特徴とする。
Hereinafter, the novel self-oscillating gel of the present invention will be described in detail.
In the present invention, a self-oscillating gel that is driven by directly converting a chemical reaction into mechanical energy contains an iron-bipyridinium complex that functions as a catalyst for the Belousov-Zhabotinsky reaction (BZ reaction). It has the site | part in the polymer chain which comprises a gel with a chemical bond, It is characterized by the above-mentioned.

具体的には、本発明の新規自励振動ゲルは、鉄−ビピリジウム錯体を含有するモノマーを用いて合成される。本発明における鉄−ビピリジウム錯体を含有するモノマーは新規な化合物であって、例えば、下記の構造を有する、
Fe(4-vinyl-4’-methyl-2,2-bipyridine)bis(2,2’-bipyridine)bis((tetrafluoroborate)
(以下、「Fe(bpy)3モノマー」という。)があげられる。
Specifically, the novel self-oscillating gel of the present invention is synthesized using a monomer containing an iron-bipyridinium complex. The monomer containing the iron-bipyridinium complex in the present invention is a novel compound having, for example, the following structure:
Fe (4-vinyl-4'-methyl-2,2-bipyridine) bis (2,2'-bipyridine) bis ((tetrafluoroborate)
(Hereinafter referred to as “Fe (bpy) 3 monomer”).

Figure 2014210260
Figure 2014210260

例示したモノマーでは、Fe(bpy)3とビニル基が直接結合しているが、本発明においては、高分子鎖に、Fe(bpy)3を含有する部位が化学結合していればよく、Fe(bpy)3以外の部位、例えば、エチレンオキサイド基などが、Fe(bpy)3とビニル基の間に結合していても、あるいは、分岐構造でぶら下がっていたりしてもよいことはいうまでもない。 In the exemplified monomer, Fe (bpy) 3 and a vinyl group are directly bonded. However, in the present invention, the site containing Fe (bpy) 3 may be chemically bonded to the polymer chain. It goes without saying that a site other than (bpy) 3 , for example, an ethylene oxide group may be bonded between Fe (bpy) 3 and a vinyl group, or may be hanging in a branched structure. Absent.

本発明の自励振動ゲルの主鎖は、該Fe(bpy)3を含有するモノマーの他、温度応答性モノマー、親水性モノマーからなり、弾性率をコントロールするために疎水性モノマーやマクロモノマーを含有していてもよい。 The main chain of the self-oscillating gel of the present invention is composed of a monomer containing the Fe (bpy) 3 , a temperature-responsive monomer, and a hydrophilic monomer. In order to control the elastic modulus, a hydrophobic monomer or a macromonomer is used. You may contain.

また、本発明で合成するゲルは、ネットワークがシングルのいわゆる通常のゲルに加え、ゲルの内部にゲルネットワークが存在するIPN構造(ダブルネットワーク構造)(J.P.Gong,Y.Katsuyama,T.Kurokawa,Y.Osada“Double Network Hydrogels with Extremely High Mechanical Strength”Advanced Materials,15(14),1155-1158(2003).参照)、又は、ゲルの内部にリニアポリマーが存在するSemi-IPN構造でもよい。この場合、Semi-IPN構造やIPN構造を持ったゲルは、アクリルアミドゲルもしくはアクリルアミドポリマーもしくはそれらを主鎖とする共重合体である方がゲルの弾性率は高く、ゲルが強靭となりやすいため、アクチュエータや人工筋肉等、使用する場面が大きく広がる。   In addition to the so-called normal gel having a single network, the gel synthesized in the present invention has an IPN structure (double network structure) in which the gel network exists inside the gel (JPGong, Y. Katsuyama, T. Kurokawa, Y Osada “Double Network Hydrogels with Extremely High Mechanical Strength” Advanced Materials, 15 (14), 1155-1158 (2003).), Or a semi-IPN structure in which a linear polymer is present inside the gel. In this case, the gel with the Semi-IPN structure or IPN structure is higher in the elastic modulus of the gel if it is an acrylamide gel or an acrylamide polymer or a copolymer having such a main chain, and the gel tends to be tough. The use scenes such as artificial muscles are greatly expanded.

本発明において、ゲルの主鎖に化学結合によって導入されるBZ反応の金属触媒である、鉄−ビピリジン(Fe(bpy)3)錯体の含有率は0.5〜10モル%、好ましくは0.5〜5モル%、さらに好ましくは1〜3モル%である。 In the present invention, the content of the iron-bipyridine (Fe (bpy) 3 ) complex, which is a metal catalyst for the BZ reaction introduced by chemical bonding into the main chain of the gel, is 0.5 to 10 mol%, preferably 0.5 to 5 mol. %, More preferably 1 to 3 mol%.

本発明で化学反応を直接的に力学的なエネルギーに変換できる自励振動ゲルの高分子鎖を構成可能な主鎖として例えば、N-イソプロピルアクリルアミド、N-エトキシエチルメタクリルアミド、N-アルキル置換(メタ)アクリルアミド誘導体のうち、N-n-プロピルアクリルアミド、N-n-プロピルメタクリルアミド、N-テトラヒドロフルフリルメタクリルアミド、N-エトキシエチルアクリルアミド、N-テトラヒドロフルフリルアクリルアミド、ビニルピロリドン、ジメチルアクリルアミド、メチルアミノプロピルアクリルアミド、ジメチルアミノプロピルアクリルアミド塩化メチル4級塩、ヒドロキシエチルアクリルアミド、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチルなどがあげられる。また水溶性をコントロールする部位としてビニルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、4-ビニルベンゼンスルホン酸、メタクリルスルホン酸などが挙げられる。これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   In the present invention, as a main chain capable of constituting a polymer chain of a self-excited vibration gel capable of directly converting a chemical reaction into mechanical energy, for example, N-isopropylacrylamide, N-ethoxyethylmethacrylamide, N-alkyl substitution ( Among the (meth) acrylamide derivatives, Nn-propylacrylamide, Nn-propylmethacrylamide, N-tetrahydrofurfurylmethacrylamide, N-ethoxyethylacrylamide, N-tetrahydrofurfurylacrylamide, vinylpyrrolidone, dimethylacrylamide, methylaminopropylacrylamide, Examples thereof include dimethylaminopropylacrylamide methyl chloride quaternary salt, hydroxyethylacrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and the like. Examples of the site for controlling water solubility include vinyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, 4-vinylbenzene sulfonic acid, and methacryl sulfonic acid. These may be used individually by 1 type and may be used in combination of 2 or more type.

本発明で化学反応を直接的に力学的なエネルギーに変換できる自励振動ゲルの製造としては、上記各モノマーを共重合したゲルを構成する高分子鎖であり、またBZ反応の触媒であるFe(bpy)3を化学的にゲルの主鎖に内包可能であれば特に限定されるものではない。重合方法としては熱や光に限定されるものではなく、ゲルが合成できれば手段を選ぶものではない。また上記のモノマーは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the present invention, a self-excited vibration gel capable of directly converting a chemical reaction into dynamic energy can be produced by a polymer chain constituting a gel obtained by copolymerizing the above monomers, and Fe that is a catalyst for a BZ reaction. There is no particular limitation as long as (bpy) 3 can be chemically encapsulated in the main chain of the gel. The polymerization method is not limited to heat or light, and means is not selected as long as a gel can be synthesized. Moreover, said monomer may be used independently and may be used in combination of 2 or more type.

ゲルの重合に使用する溶媒としては、例えば、水、メチルアルコール、エチルアルコール、イソプロピルアルコール等の低級アルコール、トルエン、シクロヘキサン、ヘキサン等の芳香族・脂肪族又は複素環式化合物、アセトン、メチルエチルケトン、テトラヒドロフランなどの各種有機溶剤が使用できる。   Solvents used for the polymerization of the gel include, for example, water, lower alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, aromatic / aliphatic or heterocyclic compounds such as toluene, cyclohexane and hexane, acetone, methyl ethyl ketone and tetrahydrofuran. Various organic solvents such as can be used.

本発明において重合時のモノマー濃度は10〜50重量%、好ましくは15〜30重量%、さらに好ましくは18〜25重量%である。モノマー濃度が低すぎるとゲルが形成されず、また高すぎるとゲルが脆くなる。   In the present invention, the monomer concentration during polymerization is 10 to 50% by weight, preferably 15 to 30% by weight, and more preferably 18 to 25% by weight. If the monomer concentration is too low, no gel is formed, and if it is too high, the gel becomes brittle.

重合開始剤としては、例えば過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩、ベンゾイルパーオキサイド等のパーオキサイド、クメンハイドロパーオキサイド等のハイドロパーオキサイド、アゾビスイソブチロニトリル等のアゾ化合物等が挙げられる。
重合開始剤濃度は、通常、使用するモノマーに対して0.1〜10モル%が好ましい。更に、分子量を規制するためにアルキルメルカプタンのような連鎖移動剤、ルイス酸化合物などの重合促進剤、リン酸、酒石酸、乳酸、クエン酸などのpH調整剤を使用してもよい。重合温度は、用いられる溶媒、重合開始剤により適宜定められるが、通常、室温〜200℃がよい。
Examples of the polymerization initiator include persulfates such as sodium persulfate and potassium persulfate, peroxides such as benzoyl peroxide, hydroperoxides such as cumene hydroperoxide, and azo compounds such as azobisisobutyronitrile. Can be mentioned.
The polymerization initiator concentration is usually preferably from 0.1 to 10 mol% based on the monomer used. Further, a chain transfer agent such as alkyl mercaptan, a polymerization accelerator such as a Lewis acid compound, and a pH adjuster such as phosphoric acid, tartaric acid, lactic acid and citric acid may be used to regulate the molecular weight. The polymerization temperature is appropriately determined depending on the solvent used and the polymerization initiator, but is usually room temperature to 200 ° C.

以下、本発明について実施例を用いて説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited to these Examples.

[実施例1:Fe(bpy)3含有モノマーの製造]
(4-メチル-4’-(2-メトキシエチル)-2,2’-ビピリジンの合成)
[Example 1: Production of Fe (bpy) 3 -containing monomer]
(Synthesis of 4-methyl-4 '-(2-methoxyethyl) -2,2'-bipyridine)

Figure 2014210260
Figure 2014210260

窒素雰囲気下、5Lの3口フラスコにジイソプロピルアミン43.25g(427mmol)とTHF 200mlを仕込み、−25℃で1.6Mn-ブチルリチウムのヘキサン溶液267ml(427mmol)を滴下した。続いて、4,4’-ジメチル-2,2’-ビピリジン75.00g(407mmol)のTHF 1.5L溶液を0℃以下で滴下した。同温度で1時間撹拌した後、クロロメトキシメタン36.05g(448mmol)を5℃以下で滴下し室温まで自然昇温させた。THF水溶液を滴下することで反応を停止させ、酢酸エチル1Lで抽出し、粗生成物を得た。精製はシリカゲルカラムクロマトグラフィーを用いた展開溶媒ジクロロメタン:メタノールの30:1〜10:1で精製し、4-メチル-4’-(2-メトキシエチル)-2,2’-ビピリジンを得た。   Under a nitrogen atmosphere, 43.25 g (427 mmol) of diisopropylamine and 200 ml of THF were charged into a 5 L three-necked flask, and 267 ml (427 mmol) of a 1.6Mn-butyllithium hexane solution was added dropwise at -25 ° C. Subsequently, a THF 1.5 L solution of 75.00 g (407 mmol) of 4,4′-dimethyl-2,2′-bipyridine was added dropwise at 0 ° C. or less. After stirring at the same temperature for 1 hour, 36.05 g (448 mmol) of chloromethoxymethane was added dropwise at 5 ° C. or lower, and the temperature was naturally raised to room temperature. The reaction was stopped by dropwise addition of an aqueous THF solution, and extracted with 1 L of ethyl acetate to obtain a crude product. Purification was performed using a developing solvent dichloromethane: methanol 30: 1 to 10: 1 using silica gel column chromatography to obtain 4-methyl-4 '-(2-methoxyethyl) -2,2'-bipyridine.

得られた化合物の分析結果を以下に示す。
NMR(CDCl3):8.60ppm(2H,d),8.40ppm(2H,s),7.02ppm(2H,d),3.70ppm(sH,t),3.24ppm(3H,s),2.72ppm(2H,t),2.37ppm(3H,s)
The analysis results of the obtained compound are shown below.
NMR (CDCl3): 8.60ppm (2H, d), 8.40ppm (2H, s), 7.02ppm (2H, d), 3.70ppm (sH, t), 3.24ppm (3H, s), 2.72ppm (2H, t), 2.37ppm (3H, s)

(4-メチル-4’-ビニル-2,2’-ビピリジン(vbpy)の合成)   (Synthesis of 4-methyl-4'-vinyl-2,2'-bipyridine (vbpy))

Figure 2014210260
Figure 2014210260

素雰囲気下、3Lの3口フラスコに上記の4-メチル-4’-(2-メトキシエチル)-2,2’-ビピリジン39.05g(173mmol)のTHF 500ml溶液を仕込み、−78℃まで冷却した。カリウムt-ブトキサイド38.83g(346mmol)のTHF 300ml溶液を40分掛けて滴下し、同温度で2時間撹拌した。−40℃まで昇温してTHF水溶液を滴下して反応を停止させた。酢酸エチルで抽出し、飽和食塩水で洗浄して粗生成物を得た。精製はシリカゲルカラムクロマトグラフィーを用いた展開溶媒ジクロロメタン:メタノール:トリエチルアミンの30:1:0.05〜10:1:0.05で精製し収率39%で4-メチル-4’-ビニル-2,2’-ビピリジンを得た。   Under an atmosphere, a 3 L three-necked flask was charged with a solution of 39.05 g (173 mmol) of 4-methyl-4 ′-(2-methoxyethyl) -2,2′-bipyridine in 500 ml of THF and cooled to −78 ° C. . A solution of 38.83 g (346 mmol) of potassium t-butoxide in 300 ml of THF was added dropwise over 40 minutes, and the mixture was stirred at the same temperature for 2 hours. The temperature was raised to −40 ° C., and an aqueous THF solution was added dropwise to stop the reaction. Extraction with ethyl acetate and washing with saturated brine gave a crude product. Purification is carried out using silica gel column chromatography in a developing solvent of dichloromethane: methanol: triethylamine 30: 1: 0.05 to 10: 1: 0.05 and 4-methyl-4'-vinyl-2,2'- in 39% yield. Bipyridine was obtained.

得られた化合物の分析結果を以下に示す。
NMR(CDCl3):8.70〜8.40ppm(4H,1m),7.25〜7.00ppm(2H,m),6.70〜6.50ppm(1H,m),5.91ppm(1H,d),5.42ppm(1H,d),2.37ppm(3H,s)
The analysis results of the obtained compound are shown below.
NMR (CDCl3): 8.70-8.40ppm (4H, 1m), 7.25-7.70ppm (2H, m), 6.70-6.50ppm (1H, m), 5.91ppm (1H, d), 5.42ppm (1H, d) 2.37ppm (3H, s)

([Fe(vbpy)(MeCN)4](BF4)2の合成)
窒素雰囲気下、3口フラスコにFe(BF4)2・6H2O3.37g(10mmol)のアセトニトリル50ml、メタノール50ml溶液を仕込み、室温で上記の4-メチル-4’-ビニル-2,2’-ビピリジン1.96g(10mmol)のジクロロメタン10ml溶液を加えた。10分間撹拌後、溶媒を留去して粗生成物を得た。アセトニトリルに溶解し不溶物をろ過後、水に滴下して結晶化させる操作を2回繰り返した。ろ過洗浄乾燥を経て、下記の[Fe(vbpy)(MeCN)4](BF4)2を得た。
(Synthesis of [Fe (vbpy) (MeCN) 4 ] (BF 4 ) 2 )
In a nitrogen atmosphere, a 3-necked flask was charged with a solution of Fe (BF 4 ) 2 · 6H 2 O (3.37 g, 10 mmol) in 50 ml of acetonitrile and 50 ml of methanol, and the above 4-methyl-4′-vinyl-2,2 ′ was added at room temperature. -A solution of 1.96 g (10 mmol) of bipyridine in 10 ml of dichloromethane was added. After stirring for 10 minutes, the solvent was distilled off to obtain a crude product. The operation of dissolving in acetonitrile and filtering insolubles, and dropping into water to cause crystallization was repeated twice. The following [Fe (vbpy) (MeCN) 4 ] (BF 4 ) 2 was obtained through filtration, washing and drying.

Figure 2014210260
Figure 2014210260

([Fe(vbpy)(bpy)2](BF4)2の合成)
窒素雰囲気下、3口フラスコに上記[Fe(vbpy)(MeCN)4](BF4)24.5g(7.6mmol)のアセトニトリル50ml溶液を仕込み、室温で2,2’-ビピリジン2.38g(15.3mmol)のジクロロメタン50ml溶液を1時間以上かけて加えた。30分間撹拌後、溶媒を留去して粗生成物を得た。アセトンに溶解し水に滴下して結晶化させた。ろ過洗浄乾燥を経て、下記の[Fe(vbpy)(bpy)2](BF4)2 (以下、「Fe(bpy)3)モノマー」とする。)を得た。
(Synthesis of [Fe (vbpy) (bpy) 2 ] (BF 4 ) 2 )
In a nitrogen atmosphere, a three-necked flask was charged with 50 ml of a solution of 4.5 g (7.6 mmol) of [Fe (vbpy) (MeCN) 4 ] (BF 4 ) 2 in acetonitrile and 2.38 g (15.3 mmol) of 2,2′-bipyridine at room temperature. ) In 50 ml of dichloromethane was added over 1 hour. After stirring for 30 minutes, the solvent was distilled off to obtain a crude product. It was dissolved in acetone and dropped into water for crystallization. After filtration, washing and drying, the following [Fe (vbpy) (bpy) 2 ] (BF 4 ) 2 (hereinafter referred to as “Fe (bpy) 3 ) monomer” is obtained. )

Figure 2014210260
元素分析、計算値(%):C,53.70;H,3.82;N,11.39
Figure 2014210260
Elemental analysis, calculated value (%): C, 53.70; H, 3.82; N, 11.39

[実施例2:(NIPAAm-co-Fe(bpy)3)gelの合成および定性分析]
N-イソプロピルアクリルアミド(NIPAAm)、実施例1で得られたFe(bpy)3モノマー、メチレンビスアクリルアミド(BIS)、アゾビスイソブチロニトリル(AIBN)をエタノールと水の混合溶媒に溶解させて、60℃で20時間加熱を行うことで、(NIPAAm-co-Fe(bpy)3)gelを行った。その後、(NIPAAm-co-Fe(bpy)3)gelはエタノールおよび水を用いて精製した。NIPAAmゲルは合成方法によって無色透明もしくは白色であることが広く知られている。(NIPAAm-co-Fe(bpy)3)gelはFe(bpy)3に由来する赤色に着色したゲルとなった。Fe(bpy)3モノマーと(NIPAAm-co-Fe(bpy)3)gelについてUV測定を行った。
[Example 2: Synthesis and qualitative analysis of (NIPAAm-co-Fe (bpy) 3 ) gel]
N-isopropylacrylamide (NIPAAm), Fe (bpy) 3 monomer obtained in Example 1, methylenebisacrylamide (BIS), azobisisobutyronitrile (AIBN) were dissolved in a mixed solvent of ethanol and water, (NIPAAm-co-Fe (bpy) 3 ) gel was performed by heating at 60 ° C. for 20 hours. Thereafter, (NIPAAm-co-Fe (bpy) 3 ) gel was purified using ethanol and water. NIPAAm gel is widely known to be colorless and transparent or white depending on the synthesis method. (NIPAAm-co-Fe (bpy) 3 ) gel became a red colored gel derived from Fe (bpy) 3 . UV measurement was performed on Fe (bpy) 3 monomer and (NIPAAm-co-Fe (bpy) 3 ) gel.

UV測定を行った結果、(NIPAAm-co-Fe(bpy)3)gelにはFe(bpy)3に由来する特性吸収波長が見られた。この特性吸収波長はNIPAAmn鎖単体では見られないピークであることから、鉄錯体由来であることは明らかである。このことにより、(NIPAAm-co-Fe(bpy)3)gel中にFe(bpy)3が共重合されていることが明らかとなった。 As a result of the UV measurement, a characteristic absorption wavelength derived from Fe (bpy) 3 was observed in (NIPAAm-co-Fe (bpy) 3 ) gel. This characteristic absorption wavelength is a peak that cannot be seen in the NIPAAmn chain alone, so it is clear that it originates from an iron complex. This revealed that Fe (bpy) 3 was copolymerized in (NIPAAm-co-Fe (bpy) 3 ) gel.

Figure 2014210260
Figure 2014210260

[実施例3:Fe(bpy)3を含有するゲルの製造]
実施例1で得られたFe(bpy)3モノマー、アクリロイルモルホリン(ACMO)、及びN,N’-メチレンビスアクリルアミドをエタノールと水の混合溶媒に溶解させ、60℃でゲルを重合した。その後、エタノールおよび水を用いてゲルを精製した。
[Example 3: Production of gel containing Fe (bpy) 3 ]
The Fe (bpy) 3 monomer obtained in Example 1, acryloylmorpholine (ACMO), and N, N′-methylenebisacrylamide were dissolved in a mixed solvent of ethanol and water, and the gel was polymerized at 60 ° C. Thereafter, the gel was purified using ethanol and water.

Figure 2014210260
Figure 2014210260

得られた上記のゲルを、マロン酸、臭素酸ナトリウム、及び硝酸を水に溶解したBZ反応液中に浸した。ゲル中でBZ反応が起こる様子をマイクロスコープで撮影した。またソフトウェアを用いて動画を解析し、時空間プロットを書いた。結果を、図1に示す。図1に示した時空間プロットにより、Fe(bpy)3を含有する新規自励振動ゲル内部でBZ反応が起きることを証明することができた。 The obtained gel was immersed in a BZ reaction solution in which malonic acid, sodium bromate, and nitric acid were dissolved in water. The appearance of the BZ reaction in the gel was photographed with a microscope. He also analyzed the video using software and wrote a spatiotemporal plot. The results are shown in FIG. The spatiotemporal plot shown in FIG. 1 proved that the BZ reaction occurred inside the new self-excited vibrating gel containing Fe (bpy) 3 .

Claims (3)

Belousov-Zhabotinsky(ベロウソフ・ジャボチンスキ)反応を直接的に力学的なエネルギーに変換して自ら駆動することが可能な自励振動ゲルであって、
ゲルを構成する高分子主鎖に、該反応の触媒である下記の式で表される鉄-ビピリジウム錯体を含有する部位と、架橋部位を有していることを特徴とする自励振動ゲル。
Figure 2014210260
A self-excited vibrating gel that can directly drive the Belousov-Zhabotinsky reaction directly into mechanical energy,
A self-excited vibration gel characterized in that a polymer main chain constituting the gel has a site containing an iron-bipyridinium complex represented by the following formula as a catalyst for the reaction and a crosslinking site.
Figure 2014210260
前記ゲルを構成する高分子主鎖が、下記の式で表される構成単位を有していることを特徴とする請求項1に記載の自励振動ゲル。
Figure 2014210260
The self-excited vibrating gel according to claim 1, wherein the polymer main chain constituting the gel has a structural unit represented by the following formula.
Figure 2014210260
前記高分子ゲルの構造が、インターペネトレーションネットワーク(IPN)もしくはセミインターペネトレーションネットワーク(Semi-IPN)構造を有することを特徴とする請求項1又は2に記載の自励振動ゲル。   The self-excited vibration gel according to claim 1 or 2, wherein the polymer gel has an interpenetration network (IPN) or semi-interpenetration network (Semi-IPN) structure.
JP2014076192A 2013-04-05 2014-04-02 Self-induced vibration gel containing iron complex site Pending JP2014210260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076192A JP2014210260A (en) 2013-04-05 2014-04-02 Self-induced vibration gel containing iron complex site

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013079538 2013-04-05
JP2013079538 2013-04-05
JP2014076192A JP2014210260A (en) 2013-04-05 2014-04-02 Self-induced vibration gel containing iron complex site

Publications (1)

Publication Number Publication Date
JP2014210260A true JP2014210260A (en) 2014-11-13

Family

ID=51930453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076192A Pending JP2014210260A (en) 2013-04-05 2014-04-02 Self-induced vibration gel containing iron complex site

Country Status (1)

Country Link
JP (1) JP2014210260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529233A (en) * 2018-06-27 2021-10-28 ユニヴァーシティ・オヴ・ニューカッスル・アポン・タイン Vibration gel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529233A (en) * 2018-06-27 2021-10-28 ユニヴァーシティ・オヴ・ニューカッスル・アポン・タイン Vibration gel
JP7455766B2 (en) 2018-06-27 2024-03-26 ユニヴァーシティ・オヴ・ニューカッスル・アポン・タイン vibrating gel

Similar Documents

Publication Publication Date Title
JP2894711B2 (en) Fluorinated polysiloxane-containing composition
IE51155B1 (en) Hydrophilic copolymers containing n-(tris(hydroxymethyl)methyl)acrylamide,processes for their preparation,aqueous gels of the copolymers and their use as ion exchangers
JP2015516998A5 (en)
US20160083356A1 (en) Functionalized 4- and 5-vinyl substituted regioisomers of 1, 2, 3-triazoles via 1, 3- dipolar cycloaddition and polymers thereof
JP2014210260A (en) Self-induced vibration gel containing iron complex site
JP2007146108A (en) Anionic surfactant containing 2 polymerizable chains and 2 hydrophilic groups and method for producing the same
US6919409B2 (en) Removal of the thiocarbonylthio or thiophosphorylthio end group of polymers and further functionalization thereof
EP2481414A1 (en) A process for the preparation of cross-linked polyallylamines or pharmaceutically acceptable salts thereof
EP2451286B1 (en) 4- and 5 substituted 1,2,3- triazole moieties with at least one remote polymerizable moiety and polymers thereof
JP2014212685A (en) Amplification method of drive displacement of soft actuator and actuator with drive displacement amplified by that method
JP4617887B2 (en) Vinyl group-containing compound and method for producing the same
JP2014210915A (en) New self-excited vibration gel without strong acid
CN109232784B (en) Azobenzene polymer and preparation method and application thereof
JP5526845B2 (en) Silicone monomer
JP4400199B2 (en) Method for purifying silicone compound and method for producing silicone agent
JP2004182724A (en) Method for producing silicone monomer
JPH0561283B2 (en)
JP4645016B2 (en) Method for producing silicone compound
CN104910056A (en) Compound, and preparation method and application thereof
JP2019044076A (en) Crosslinking agent formed of acrylamide compound, composition for water-absorbing resin containing the crosslinking agent, and water-absorbing resin
JP4013277B2 (en) Method for producing (meth) acrylic acid serine ester
JP3116365B2 (en) New organic peroxide
JP2018030917A (en) Polymer particle and method for producing the same
Inui Doctoral Dissertation (Shinshu University)
JP5111837B2 (en) Method for producing silicone monomer, method for producing intermediate thereof, and molded article thereof