JP2014210235A - Method and apparatus for regenerating acid for cleaning - Google Patents

Method and apparatus for regenerating acid for cleaning Download PDF

Info

Publication number
JP2014210235A
JP2014210235A JP2013088183A JP2013088183A JP2014210235A JP 2014210235 A JP2014210235 A JP 2014210235A JP 2013088183 A JP2013088183 A JP 2013088183A JP 2013088183 A JP2013088183 A JP 2013088183A JP 2014210235 A JP2014210235 A JP 2014210235A
Authority
JP
Japan
Prior art keywords
acid
cleaning
tank
solution
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013088183A
Other languages
Japanese (ja)
Other versions
JP6139240B2 (en
Inventor
清一 村山
Seiichi Murayama
清一 村山
永森 泰彦
Yasuhiko Nagamori
泰彦 永森
卓 毛受
Taku Menju
卓 毛受
宮本真哉
Masaya Miyamoto
真哉 宮本
哲哉 峰
Tetsuya Mine
哲哉 峰
轟木 朋浩
Tomohiro Todoroki
朋浩 轟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013088183A priority Critical patent/JP6139240B2/en
Publication of JP2014210235A publication Critical patent/JP2014210235A/en
Application granted granted Critical
Publication of JP6139240B2 publication Critical patent/JP6139240B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/52Accessories; Auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/10Processing by flocculation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Processing Of Solid Wastes (AREA)
  • Environmental & Geological Engineering (AREA)
  • Urology & Nephrology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To regenerate an acid, when the acid has been used for cleaning and contains a metal component in a relatively large amount, by removing a metal component from the acid after use and, at the same time, concentrating the acid.SOLUTION: A method for regenerating an acid for cleaning includes the steps of: subjecting an object to be cleaned to acid cleaning by supplying an acid for cleaning into a cleaning tank; performing solid-liquid separation of a solid content contained in a first solution obtained by the acid cleaning, in a solid-liquid separation tank; and adsorbing and removing a first metal component contained in a second solution obtained by the solid-liquid separation by an adsorption tower having an adsorption material provided inside. Further, the method includes a step comprising: removing a second metal component contained in a third solution, obtained by the adsorbing and removing, by using an electrodialysis tank in which a plurality of cation exchange membranes capable of passing only hydrogen ions by ion exchange and a plurality of anion-exchange membranes are alternately disposed and an anode and a cathode are disposed on both sides of the membranes; and concentrating the acid contained in the third solution until the concentration of the acid becomes equal to a concentration of the acid for cleaning.

Description

本発明の実施形態は、洗浄用酸の再生方法及びその装置に関する。   Embodiments described herein relate generally to a cleaning acid regeneration method and an apparatus therefor.

各種産業プロセスなどにおける洗浄工程などに用いる酸の再生技術が研究されている。   Research has been conducted on acid regeneration technology used in cleaning processes in various industrial processes.

例えば、各種産業プロセスにおける洗浄工程では、塩酸、硫酸、フッ酸などの無機酸や、クエン酸、シュウ酸などの有機酸が用いられている。これらの用途に使用された後の廃酸は、中和処理して廃棄処分することが一般的であるが、環境への負荷が大きいことから、再生利用が望まれている。その一例として、高濃度放射性汚染の下水汚泥焼却灰から放射性セシウムを酸により除去するプロセスが知られており、そのプロセスにおける酸の再生利用も環境負荷の観点から重要な技術として認識されている。   For example, in washing processes in various industrial processes, inorganic acids such as hydrochloric acid, sulfuric acid, and hydrofluoric acid, and organic acids such as citric acid and oxalic acid are used. The waste acid after being used in these applications is generally neutralized and disposed of, but it is desired to be recycled because it has a large environmental load. As an example, a process of removing radioactive cesium from acid from sewage sludge incineration ash with high-concentration radioactive contamination is known, and acid recycling in the process is also recognized as an important technology from the viewpoint of environmental burden.

洗浄工程に使用後の酸を再生する際には、例えば当該酸を陰イオン交換樹脂(物質)に吸着させた後、アルカリの水溶液または有機系の溶剤を用いて、陰イオン交換樹脂から酸を溶離し、得られた溶液に対して蒸留または膜分離などの処理を行うことによって、濃縮された酸を得、再生するなどの方法がある。   When regenerating the acid after use in the washing step, for example, the acid is adsorbed on the anion exchange resin (substance), and then the acid is removed from the anion exchange resin using an alkaline aqueous solution or an organic solvent. There is a method in which a concentrated acid is obtained and regenerated by elution and subjecting the resulting solution to a treatment such as distillation or membrane separation.

ところが、上述のような酸の再生方法においては、有機酸を陰イオン交換樹脂から分離するために多量のアルカリの水溶液等が必要になるとともに、分離した有機酸を濃縮するために、蒸留等の多くの工程が必要になる。したがって、濃縮して再生した酸を陰イオン交換樹脂から分離回収するのに多くのコストがかかるという欠点がある。   However, in the acid regeneration method as described above, a large amount of alkaline aqueous solution or the like is required to separate the organic acid from the anion exchange resin, and distillation or the like is performed to concentrate the separated organic acid. Many processes are required. Therefore, there is a drawback that it takes much cost to separate and recover the concentrated and regenerated acid from the anion exchange resin.

かかる問題に鑑みて、特許文献1には、有機酸を吸着しかつ水分を含んだ物質(陰イオン交換樹脂)に、圧力が1MPa以上で温度が20℃以上の二酸化炭素を接触させることにより、上記有機酸を上記二酸化炭素に移行させて上記物質から分離して再生する技術が開示されている。   In view of such a problem, Patent Document 1 discloses that a substance adsorbing an organic acid and containing moisture (anion exchange resin) is brought into contact with carbon dioxide having a pressure of 1 MPa or more and a temperature of 20 ° C. or more. A technique is disclosed in which the organic acid is transferred to the carbon dioxide and separated and regenerated from the substance.

しかしながら、洗浄後の酸が比較的多量の金属成分を含む場合は、上述のような方法で酸の濃縮を行っても、濃縮された酸中には当初含まれていない比較的多量の金属成分が含まれるようになる。したがって、このような濃縮された酸を用いて再度上述のような洗浄工程を行っても、上記酸中に含まれる比較的多量の金属成分によって、当初のような洗浄工程を行うことはできず、酸洗浄の対象物を汚染してしまうなどの問題があった。   However, when the acid after washing contains a relatively large amount of metal component, a relatively large amount of metal component that is not initially included in the concentrated acid even if the acid is concentrated by the method described above. Will be included. Therefore, even if the above-described cleaning process is performed again using such concentrated acid, the initial cleaning process cannot be performed due to a relatively large amount of metal components contained in the acid. There were problems such as contaminating the object to be acid cleaned.

特開2004−089904号公報JP 2004-089904 A

本発明は、洗浄後の酸が比較的多量の金属成分を含む場合において、当該使用後の酸から金属成分を除去するとともに酸を濃縮して、当該酸を再生することを目的とする。   An object of the present invention is to regenerate the acid by removing the metal component from the used acid and concentrating the acid when the washed acid contains a relatively large amount of the metal component.

実施形態の洗浄用酸の再生方法は、洗浄槽内に洗浄用酸を供給し、洗浄対象物に対して酸洗浄を行い、第1の溶液を得る第1のステップと、前記酸洗浄によって得た第1の溶液中に含まれる固形分を固液分離槽中において固液分離し、第2の溶液を得る第2のステップとを具える。また、前記固液分離によって得た第2の溶液中に含まれる第1の金属成分を、吸着材を内部に備える吸着塔によって吸着除去し、第3の溶液を得る第3のステップと、前記吸着除去によって得た第3の溶液中に含まれる第2の金属成分を、水素イオンのみをイオン交換により透過させる複数の陽イオン交換膜及び複数の陰イオン交換膜が交互に配設され、その両側に陽極及び陰極が配設された電気透析槽によって除去するとともに、前記第3の溶液中に含まれる酸を濃縮して、当該酸の濃度を前記洗浄用酸の濃度にまで濃縮する第4のステップとを具える。   The cleaning acid regeneration method of the embodiment is obtained by supplying the cleaning acid into the cleaning tank, performing the acid cleaning on the object to be cleaned, and obtaining the first solution, and the acid cleaning. The solid content included in the first solution is subjected to solid-liquid separation in a solid-liquid separation tank to obtain a second solution. A third step of obtaining a third solution by adsorbing and removing the first metal component contained in the second solution obtained by the solid-liquid separation by an adsorption tower provided with an adsorbent; A plurality of cation exchange membranes and a plurality of anion exchange membranes that allow only hydrogen ions to permeate through the second metal component contained in the third solution obtained by adsorption removal are alternately arranged, and Fourth, the acid is removed by an electrodialysis tank provided with an anode and a cathode on both sides, and the acid contained in the third solution is concentrated to concentrate the acid concentration to the concentration of the cleaning acid. With steps.

第1の実施形態における洗浄用酸の再生装置の概略構成を示す図である。It is a figure which shows schematic structure of the reproduction | regeneration apparatus of the acid for washing | cleaning in 1st Embodiment. 図1に示す洗浄用酸の再生装置中の電気透析槽の概略構成を示す図である。It is a figure which shows schematic structure of the electrodialysis tank in the reproduction | regeneration apparatus of the acid for washing | cleaning shown in FIG. 第2の実施形態における洗浄用酸の再生装置の概略構成を示す図である。It is a figure which shows schematic structure of the reproduction | regeneration apparatus of the acid for washing | cleaning in 2nd Embodiment.

(第1の実施形態)
最初に、本実施形態で使用する洗浄用酸の再生装置について説明する。図1は、本実施形態で使用する洗浄用酸の再生装置の概略構成を示す図である。また、図2は、図1に示す酸再生装置中の電気透析槽の概略構成を示す図である。
(First embodiment)
First, the cleaning acid regenerating apparatus used in this embodiment will be described. FIG. 1 is a diagram showing a schematic configuration of a cleaning acid regenerating apparatus used in the present embodiment. Moreover, FIG. 2 is a figure which shows schematic structure of the electrodialysis tank in the acid reproduction | regeneration apparatus shown in FIG.

図1に示す酸再生装置10は、酸洗浄を行うための洗浄槽11と、その下流側に位置し、洗浄槽11で洗浄した金属成分を固液分離するための固液分離槽21と、その下流側に位置し、強酸性陽イオン交換樹脂及びキレート樹脂などの低pH(例えばpH2以下)で処理可能な吸着材32を内部に備えた吸着塔31と、吸着塔31の下流側に位置する電気透析槽41とを具える。   An acid regenerator 10 shown in FIG. 1 includes a washing tank 11 for performing acid washing, a solid-liquid separation tank 21 for separating the metal component washed in the washing tank 11 into a solid-liquid separation, and Located on the downstream side, an adsorption tower 31 provided with an adsorbent 32 that can be treated at a low pH (for example, pH 2 or less) such as a strongly acidic cation exchange resin and a chelate resin, and located on the downstream side of the adsorption tower 31 And an electrodialysis tank 41.

洗浄槽11内には加熱機構12が配設され、洗浄槽11の上方には洗浄槽11内で洗浄処理を行うための酸を供給する酸貯留槽13が配設されている。また、洗浄槽11内には、洗浄槽11内における洗浄過程にある溶液のpHを測定するpH測定器14及び温度を測定する温度計15が配設されている。   A heating mechanism 12 is disposed in the cleaning tank 11, and an acid storage tank 13 that supplies an acid for performing a cleaning process in the cleaning tank 11 is disposed above the cleaning tank 11. In the cleaning tank 11, a pH measuring device 14 for measuring the pH of the solution in the cleaning process in the cleaning tank 11 and a thermometer 15 for measuring the temperature are arranged.

pH測定器14はpH制御部16に接続されており、pH制御部16はpH測定器14で測定されたpH値を基に、酸貯留槽13に配設されたバルブ18の開度を調節し、酸貯留槽13から洗浄槽11内に供給する酸の量を調節できるようになっている。また、温度計15は温度制御部17に接続されており、温度計15で測定された温度に基づいて、同じく温度制御部17に接続された加熱機構12を制御し、洗浄槽11内での洗浄処理が効率的かつ効果的に行われるように、洗浄過程にある溶液の温度を制御する。   The pH measuring device 14 is connected to the pH control unit 16, and the pH control unit 16 adjusts the opening degree of the valve 18 disposed in the acid storage tank 13 based on the pH value measured by the pH measuring device 14. In addition, the amount of acid supplied from the acid storage tank 13 into the cleaning tank 11 can be adjusted. The thermometer 15 is connected to the temperature control unit 17, and controls the heating mechanism 12 connected to the temperature control unit 17 based on the temperature measured by the thermometer 15, so that The temperature of the solution in the cleaning process is controlled so that the cleaning process is performed efficiently and effectively.

固液分離槽21内には、洗浄槽11から供給される溶液を整流するための整流壁22が固液分離槽21の上部から底部近くまで延在するように設けられている。   A rectifying wall 22 for rectifying the solution supplied from the cleaning tank 11 is provided in the solid-liquid separation tank 21 so as to extend from the top of the solid-liquid separation tank 21 to near the bottom.

電気透析槽41には、配管44、46及びポンプ48を介して脱塩水槽42が配設されており、配管45、47及びポンプ49を介して濃縮水槽43が配設されている。   In the electrodialysis tank 41, a desalted water tank 42 is provided via pipes 44 and 46 and a pump 48, and a concentrated water tank 43 is provided via pipes 45 and 47 and a pump 49.

以下に詳述するように、脱塩水槽42は、電気透析槽41への処理過程にある酸溶液を導入するための槽として機能するものであり、電気透析槽41の脱塩室に接続され、配管44、46及びポンプ48を介して電気透析槽41に導入された洗浄後の酸溶液を、当該脱塩室内を循環させるようになっている。また、濃縮水槽43は、電気透析槽41で金属成分が除去されるとともに、濃縮された酸を取り出すための槽として機能するものであり、電気透析槽41の濃縮室に接続され、配管45,47及びポンプ49を介して電気透析槽41に導入された洗浄後の酸溶液を、当該濃縮室内を循環させるようになっている。   As will be described in detail below, the demineralized water tank 42 functions as a tank for introducing an acid solution in the process of treatment to the electrodialysis tank 41, and is connected to the desalting chamber of the electrodialysis tank 41. The washed acid solution introduced into the electrodialysis tank 41 through the pipes 44 and 46 and the pump 48 is circulated in the desalting chamber. The concentrated water tank 43 functions as a tank for removing the concentrated acid from the electrodialysis tank 41 and is connected to the concentration chamber of the electrodialysis tank 41. The washed acid solution introduced into the electrodialysis tank 41 via 47 and the pump 49 is circulated in the concentration chamber.

なお、濃縮水槽43内には予め水又は洗浄用酸と同一の酸を低濃度で含む酸溶液が充填され、電気透析槽41の濃縮槽内に閉じ込められた酸を構成する水素イオン及び陰イオンが、酸溶液中に溶解した状態で循環できるようになっている。一方、脱塩室内には、上記洗浄後の酸溶液を導入することから、濃縮水槽43のように予め水等を充填させておく必要はない。   The concentrated water tank 43 is previously filled with an acid solution containing a low concentration of water or the same acid as the cleaning acid, and hydrogen ions and anions constituting the acid confined in the concentrated tank of the electrodialysis tank 41. However, it can circulate in the state dissolved in the acid solution. On the other hand, since the acid solution after washing is introduced into the desalting chamber, it is not necessary to fill water or the like in advance like the concentrated water tank 43.

電気透析槽41は、図2に示すように、2つの水素イオンのみをイオン交換により透過させる陽イオン交換膜411と2つの陰イオン交換膜412とが交互に配設されており、その両側には陽極413及び陰極414が配設されるとともに、これら陽極413及び陰極414が電源Vに接続されるようにして構成されている。なお、電気透析槽41が、上述のような構成を採ることにより、2つの濃縮槽41Aが形成されるとともに、2つの濃縮槽41A間には1つの脱塩室41Bが形成される。   In the electrodialysis tank 41, as shown in FIG. 2, a cation exchange membrane 411 and two anion exchange membranes 412 that allow only two hydrogen ions to pass through ion exchange are alternately arranged on both sides thereof. An anode 413 and a cathode 414 are disposed, and the anode 413 and the cathode 414 are connected to a power source V. In addition, when the electrodialysis tank 41 employs the above-described configuration, two concentration tanks 41A are formed, and one desalting chamber 41B is formed between the two concentration tanks 41A.

なお、水素イオンのみをイオン交換により透過する陽イオン交換膜411は汎用のものから構成することができ、例えばHSF(旭硝子社製)などの市販のものから構成することができる。   In addition, the cation exchange membrane 411 which permeate | transmits only a hydrogen ion by ion exchange can be comprised from a general purpose, for example, can be comprised from commercially available things, such as HSF (made by Asahi Glass Co., Ltd.).

同様に、陰イオン交換膜412も汎用のものから構成することができ、例えばAMV(旭硝子社製)などの市販のものから構成することができる。   Similarly, the anion exchange membrane 412 can be made of a general-purpose material, for example, a commercially available material such as AMV (Asahi Glass Co., Ltd.).

本実施形態における洗浄用酸の再生装置10の電気透析槽41は、上述のように、2つの濃縮槽41Aが形成されるので、配管45,47は適宜分岐させ、電気透析槽41の上記2つの濃縮槽41Aに接続して、これら2つの濃縮室41A内を循環させるようにする。   In the electrodialysis tank 41 of the cleaning acid regeneration apparatus 10 in this embodiment, as described above, the two concentration tanks 41A are formed. Therefore, the pipes 45 and 47 are appropriately branched, and the above-described 2 of the electrodialysis tank 41. The two concentrating tanks 41A are connected to circulate in the two concentrating chambers 41A.

また、本実施形態では、電気透析槽41内に、2つの陽イオン交換膜411及び2つの陰イオン交換膜422を交互に配置しているが、これらイオン交換膜の数は必要に応じて任意に設定することができる。   Further, in the present embodiment, two cation exchange membranes 411 and two anion exchange membranes 422 are alternately arranged in the electrodialysis tank 41, but the number of these ion exchange membranes is arbitrary as required. Can be set to

次に、図1に示す洗浄用酸の再生装置10を用いた洗浄用酸の再生方法について説明する。   Next, a cleaning acid regeneration method using the cleaning acid regeneration apparatus 10 shown in FIG. 1 will be described.

最初に、洗浄対象物S1を、図中矢印で示すように、洗浄槽11内に導入するとともに、酸貯留槽13より所定の酸を洗浄槽11内に供給して、洗浄槽11内において洗浄対象物S1を酸により洗浄する。洗浄対象物S1としては、半導体ウエハや金属素材、放射性セシウム等の放射性物質を含む土壌や下水汚泥焼却灰、飛灰などを挙げることができる。半導体ウエハ等の洗浄は、エッチング処理、スケール及びさびの除去、酸皮膜の除去のために行う。放射性物質を含む土壌等の洗浄は、当該土壌等に含まれる放射性物質、例えば放射性セシウム等の除去のために行う。   First, the cleaning object S1 is introduced into the cleaning tank 11 as indicated by an arrow in the figure, and a predetermined acid is supplied from the acid storage tank 13 into the cleaning tank 11 to be cleaned in the cleaning tank 11. The object S1 is washed with an acid. Examples of the cleaning object S1 include semiconductor wafers, metal materials, soil containing radioactive materials such as radioactive cesium, sewage sludge incineration ash, fly ash, and the like. Cleaning of the semiconductor wafer or the like is performed for etching treatment, removal of scale and rust, and removal of the acid film. Washing of soil containing radioactive substances is performed for removing radioactive substances contained in the soil or the like, for example, radioactive cesium.

なお、上記酸としては、塩酸、硫酸、硝酸などの無機酸の他、クエン酸、シュウ酸などの有機酸を用いることができる。また、酸のpHは、上述のように洗浄対象物S1を洗浄できれば特に限定されないが、例えば2.0以下、好ましくは1.3以下、特に好ましくはpH1.2以下とすることができる。   In addition, as said acid, organic acids, such as a citric acid and an oxalic acid other than inorganic acids, such as hydrochloric acid, a sulfuric acid, and nitric acid, can be used. The pH of the acid is not particularly limited as long as the cleaning object S1 can be cleaned as described above, but can be set to, for example, 2.0 or less, preferably 1.3 or less, and particularly preferably pH 1.2 or less.

上記金属成分の種類は洗浄対象物S1に依存するが、アルミニウム、マンガン、カルシウム、マグネシウムなどの軽金属、鉄、亜鉛、鉛などの重金属を挙げることができる。   The type of the metal component depends on the object to be cleaned S1, and examples include light metals such as aluminum, manganese, calcium, and magnesium, and heavy metals such as iron, zinc, and lead.

洗浄対象物S1の洗浄過程においては、酸貯留槽13から供給した酸により、当該洗浄対象物S1の溶解物や洗浄した金属成分が溶解し、洗浄対象物S1の安定した洗浄を行うことができなくなる場合があるので、適宜pH測定器14によって洗浄槽11内のpH値を測定することが好ましい。上述したように、pH測定器14は、pH制御部16に接続されているので、洗浄槽11内における溶液のpH値が減少してきた場合には、pH制御部16より酸貯留槽13に配設されたバルブ18の開度を上昇させ、洗浄槽11内に供給する酸の量を増大させる。   In the cleaning process of the cleaning object S1, the acid supplied from the acid storage tank 13 dissolves the dissolved material and the cleaned metal component of the cleaning object S1, and the cleaning object S1 can be stably cleaned. Since it may disappear, it is preferable to measure the pH value in the washing tank 11 with the pH measuring device 14 as appropriate. As described above, since the pH measuring device 14 is connected to the pH control unit 16, when the pH value of the solution in the cleaning tank 11 decreases, the pH control unit 16 distributes it to the acid storage tank 13. The opening degree of the provided valve 18 is increased, and the amount of acid supplied into the cleaning tank 11 is increased.

洗浄槽11内における洗浄過程にある溶液は加熱装置12によって所定の温度、例えば80〜95℃に加熱することが好ましい。これによって、洗浄槽11内における洗浄対象物S1の洗浄を促進させることができる。溶液の温度は、温度計15によって測定するが、上述したように、温度計15は温度制御部17に接続されているので、当該温度制御部17で溶液の温度を適宜モニタリングして、溶液の温度が設定温度の範囲外にある場合は、温度制御部17から適宜制御信号を加熱機構12に送信して、加熱機構12による溶液の加熱度合を適宜制御する。   The solution in the cleaning process in the cleaning tank 11 is preferably heated by the heating device 12 to a predetermined temperature, for example, 80 to 95 ° C. Thereby, the cleaning of the cleaning object S1 in the cleaning tank 11 can be promoted. The temperature of the solution is measured by the thermometer 15. As described above, since the thermometer 15 is connected to the temperature control unit 17, the temperature control unit 17 appropriately monitors the temperature of the solution, and When the temperature is outside the set temperature range, a temperature control unit 17 appropriately transmits a control signal to the heating mechanism 12 to appropriately control the degree of heating of the solution by the heating mechanism 12.

なお、洗浄槽11内における洗浄に関する時間は、例えば10〜30分とすることができる。   In addition, the time regarding the washing | cleaning in the washing tank 11 can be 10 to 30 minutes, for example.

次いで、洗浄槽11で得た溶液L1を、図中矢印で示すように、固液分離槽21内に導入して、溶液L1中の上記溶解物等の起因した固形分S2を固液分離して除去する。本実施形態では、図1に示すように、凝集沈殿法によって固形分S2を固液分離槽21の底部に沈殿させて固液分離を行っているが、このような凝集沈殿法に代えて、遠心分離法などの方法によって固液分離を行うこともできる。   Next, the solution L1 obtained in the washing tank 11 is introduced into the solid-liquid separation tank 21 as indicated by an arrow in the figure, and the solid content S2 resulting from the above-described dissolved matter in the solution L1 is subjected to solid-liquid separation. To remove. In this embodiment, as shown in FIG. 1, solid content S2 is precipitated at the bottom of the solid-liquid separation tank 21 by the coagulation sedimentation method, and solid-liquid separation is performed. Solid-liquid separation can also be performed by a method such as centrifugation.

また、上述のように、固液分離槽21内には整流壁22が配設されているので、溶液L1の固液分離槽21への導入に際し、溶液L1が整流されるため、固形分S2の固液分離槽21での凝集沈殿が妨げられることがない。   As described above, since the rectifying wall 22 is provided in the solid-liquid separation tank 21, the solution L1 is rectified when the solution L1 is introduced into the solid-liquid separation tank 21, so that the solid content S2 The aggregation and precipitation in the solid-liquid separation tank 21 is not hindered.

次いで、固液分離槽21で得た固形分S2除去後の溶液L2を、図中矢印で示すように、吸着塔31に導入する。吸着塔31内には、洗浄槽11で用いた酸により、溶液L2が酸性、特にpH2以下の酸性となっていることから、上述のように、内部に強酸性陽イオン交換樹脂及びキレート樹脂などの低pH(例えばpH2以下)で処理可能な吸着材31を具えている。したがって、上記溶液L2を、図中矢印で示すように、吸着塔31内を通過させることにより、溶液L2中に含まれる洗浄槽11で洗浄した金属成分(金属イオン)を吸着して除去する。   Next, the solution L2 after removal of the solid content S2 obtained in the solid-liquid separation tank 21 is introduced into the adsorption tower 31 as indicated by an arrow in the figure. In the adsorption tower 31, the solution L2 is acidic, in particular, acidic at pH 2 or lower due to the acid used in the washing tank 11, so that a strong acidic cation exchange resin, a chelate resin, etc. are contained therein as described above. The adsorbent 31 can be processed at a low pH (for example, pH 2 or lower). Therefore, as shown by the arrow in the figure, the solution L2 is passed through the adsorption tower 31 to adsorb and remove the metal component (metal ion) washed in the washing tank 11 contained in the solution L2.

なお、吸着塔31では強酸性イオン交換樹脂を用いる場合は、主としてアルミニウム、マンガン、カルシウム、マグネシウムなどの軽金属が除去される。また、キレート樹脂を用いる場合は、主として鉄、亜鉛、鉛などの重金属が除去される。但し、土壌や下水汚泥焼却灰、飛灰から放射性物質、特に放射性セシウムを除去するような場合は、吸着塔31の前の図示しないモルデナイト型ゼオライト等のゼオライトを充填した塔により、当該ゼオライトによって放射性セシウムを吸着除去する。   In the adsorption tower 31, when a strongly acidic ion exchange resin is used, light metals such as aluminum, manganese, calcium, and magnesium are mainly removed. Further, when a chelate resin is used, heavy metals such as iron, zinc and lead are mainly removed. However, when removing radioactive substances, particularly radioactive cesium, from soil, sewage sludge incineration ash, fly ash, the zeolite is radioactively adsorbed by a tower filled with zeolite such as mordenite zeolite (not shown) in front of the adsorption tower 31. Adsorbs and removes cesium.

次いで、吸着塔31で得た溶液L2を、図中矢印で示すように、電気透析槽41内に導入する。具体的には、電気透析槽41に近接して配設された脱塩水槽42内に導入する。   Next, the solution L2 obtained in the adsorption tower 31 is introduced into the electrodialysis tank 41 as indicated by an arrow in the figure. Specifically, it is introduced into a demineralized water tank 42 disposed close to the electrodialysis tank 41.

一方、電気透析槽41内では、両側に位置する陽極413及び陰極414間に電源Vを介して直流電流または直流電圧を供給することにより電気透析を行う。溶液L2中において、酸は水素イオンと陰イオンとの形態で存在し、金属成分は主に陽イオンの形態で存在する。   On the other hand, in the electrodialysis tank 41, electrodialysis is performed by supplying a direct current or a direct voltage via the power source V between the anode 413 and the cathode 414 located on both sides. In the solution L2, the acid exists in the form of hydrogen ions and anions, and the metal component exists mainly in the form of cations.

本実施形態において、陽イオン交換膜411は、水素イオンのみをイオン交換で透過し、陰イオン及び金属イオンは透過せず、陰イオン交換膜412は、上記陰イオンのみをイオン交換によって透過させるので、濃縮槽41A内には、酸を構成する水素イオン及び陰イオンが閉じ込められ、これによって上記酸が濃縮される。一方、金属成分は陽イオン交換膜511でイオン交換を行い、脱塩室41B内に閉じ込められるようになる。   In this embodiment, the cation exchange membrane 411 transmits only hydrogen ions by ion exchange, does not transmit anions and metal ions, and the anion exchange membrane 412 transmits only the anions by ion exchange. In the concentration tank 41A, hydrogen ions and anions constituting the acid are confined, whereby the acid is concentrated. On the other hand, the metal component is ion-exchanged by the cation exchange membrane 511 and is confined in the desalting chamber 41B.

さらに、本実施形態では、電気透析槽41の脱塩室41Bに対して配管44、46及びポンプ48を介して脱塩水槽42を接続し、電気透析に伴って脱塩室41B内を循環させ、脱塩室41B内に濃縮された金属成分(金属イオン)を脱塩室から適宜取り出し貯留する。また、電気透析槽41の濃縮室41Aに対して配管45,47及びポンプ49を介して濃縮水槽43を接続し、濃縮室41A内を循環させることにより、濃縮室41A内に濃縮された酸を適宜濃縮槽41Aから取り出し貯留する。   Further, in the present embodiment, a desalting water tank 42 is connected to the desalting chamber 41B of the electrodialysis tank 41 via pipes 44 and 46 and a pump 48, and the inside of the desalting chamber 41B is circulated along with electrodialysis. The metal component (metal ions) concentrated in the desalting chamber 41B is appropriately taken out from the desalting chamber and stored. Further, the concentrated water tank 43 is connected to the concentration chamber 41A of the electrodialysis tank 41 via the pipes 45, 47 and the pump 49, and the acid concentrated in the concentration chamber 41A is circulated through the concentration chamber 41A. It is taken out from the concentration tank 41A as appropriate and stored.

ここで、濃縮室41A内に図示しないpH測定器を接続して濃縮室41AのpH値を測定できるように構成すると、濃縮室41A内の酸のpH値を目的のpH値、例えば、洗浄槽11に供給すべき酸を貯留する酸貯留槽13中の酸のpH値に達したならば、電気透析処理を終了する。以上のようにして調整された酸は、初期の酸のpH値を有しているので、酸貯留槽13に戻すことにより洗浄槽21における洗浄工程において再利用できるようになる。   Here, when a pH measuring device (not shown) is connected to the concentration chamber 41A so that the pH value of the concentration chamber 41A can be measured, the pH value of the acid in the concentration chamber 41A is set to a target pH value, for example, a washing tank. When the pH value of the acid in the acid storage tank 13 for storing the acid to be supplied to 11 is reached, the electrodialysis process is terminated. Since the acid adjusted as described above has the initial pH value of the acid, it can be reused in the cleaning process in the cleaning tank 21 by returning to the acid storage tank 13.

なお、電気透析槽41においては、溶液L2より、吸着塔31で除去しきれなかった成分が除去される。吸着塔31で強酸性陽イオン交換樹脂を使用している場合は、主として鉄、亜鉛、鉛などの重金属が除去されることになる。また、キレート樹脂を用いる場合は、主として鉄、亜鉛、鉛などの重金属が除去される。さらにゼオライトを用いる場合は、放射性セシウムが除去される。   In the electrodialysis tank 41, components that could not be removed by the adsorption tower 31 are removed from the solution L2. When a strongly acidic cation exchange resin is used in the adsorption tower 31, heavy metals such as iron, zinc and lead are mainly removed. Further, when a chelate resin is used, heavy metals such as iron, zinc and lead are mainly removed. Further, when zeolite is used, radioactive cesium is removed.

(第2の実施形態)
最初に、本実施形態で使用する洗浄用酸の再生装置について説明する。図3は、本実施形態で使用する洗浄用酸の再生装置の概略構成を示す図である。
(Second Embodiment)
First, the cleaning acid regenerating apparatus used in this embodiment will be described. FIG. 3 is a diagram showing a schematic configuration of a cleaning acid regenerator used in the present embodiment.

図3から明らかなように、本実施形態の洗浄用酸の再生装置70は、図1に示す洗浄用酸の再生装置10において、電気透析槽41の下流側に、酸容量調整槽51が配設されている点で相違し、その他の構成については同様である。したがって、以下においては、上記相違点、すなわち酸容量調整槽51を配設したことによる洗浄用酸の再生装置70の利点について説明する。   As is clear from FIG. 3, the cleaning acid regenerating apparatus 70 of the present embodiment has an acid capacity adjusting tank 51 disposed downstream of the electrodialysis tank 41 in the cleaning acid regenerating apparatus 10 shown in FIG. It differs in that it is provided, and the other configurations are the same. Therefore, in the following, the difference, that is, the advantage of the cleaning acid regenerating apparatus 70 by providing the acid capacity adjusting tank 51 will be described.

なお、その他の構成、機能及び作用効果については、図1に示す洗浄用酸の再生装置10に係る第1の実施形態の場合と同様であるので、記載を省略する。   Other configurations, functions, and operational effects are the same as those in the first embodiment related to the cleaning acid regenerator 10 shown in FIG.

図3に示すように、酸容量調整槽51の上方には追加の酸貯留槽53が配設されているとともに、容量制御部56が配設されている。容量制御部56は、酸貯留槽13内に貯留された酸の容量に応じて、追加の酸貯留槽53に配設されたバルブ58の開度を調節し、追加の酸貯留槽53から酸容量調整槽51内に供給する酸の量を調節できるようになっている。   As shown in FIG. 3, an additional acid storage tank 53 is disposed above the acid capacity adjustment tank 51, and a capacity control unit 56 is disposed. The capacity control unit 56 adjusts the opening degree of the valve 58 provided in the additional acid storage tank 53 according to the capacity of the acid stored in the acid storage tank 13, and the acid from the additional acid storage tank 53. The amount of acid supplied into the capacity adjustment tank 51 can be adjusted.

次に、図3に示す洗浄用酸の再生装置70を用いた洗浄用酸の再生方法について説明する。   Next, a cleaning acid regeneration method using the cleaning acid regeneration apparatus 70 shown in FIG. 3 will be described.

最初に、第1の実施形態で説明したように、洗浄対象物S1を洗浄槽11内に導入するとともに、酸貯留槽13より所定の酸を洗浄槽11内に供給して、洗浄槽11内において洗浄対象物S1を酸により洗浄した後、洗浄槽11で得た溶液L1を固液分離槽21内に導入して、溶液L1中の上記溶解物等の起因した固形分S2を固液分離して除去する。   First, as described in the first embodiment, the cleaning object S1 is introduced into the cleaning tank 11, and a predetermined acid is supplied from the acid storage tank 13 into the cleaning tank 11. After the cleaning object S1 is washed with an acid, the solution L1 obtained in the washing tank 11 is introduced into the solid-liquid separation tank 21, and the solid content S2 caused by the dissolved matter in the solution L1 is solid-liquid separated. And remove.

次いで、固液分離槽21で得た固形分S2除去後の溶液L2を吸着塔31に導入して、吸着塔31で強酸性イオン交換樹脂を用いる場合は、主としてアルミニウム、マンガン、カルシウム、マグネシウムなどの軽金属が除去され、キレート樹脂を用いる場合は、主として鉄、亜鉛、鉛などの重金属が除去される。但し、土壌や下水汚泥焼却灰、飛灰から放射性物質、特に放射性セシウムを除去するような場合は、吸着塔31の前の図示しないモルデナイト型ゼオライト等のゼオライトを充填した塔により、当該ゼオライトによって放射性セシウムを吸着除去する。   Next, when the solution L2 after removal of the solid content S2 obtained in the solid-liquid separation tank 21 is introduced into the adsorption tower 31 and a strong acidic ion exchange resin is used in the adsorption tower 31, mainly aluminum, manganese, calcium, magnesium, etc. In the case of using a chelate resin, mainly heavy metals such as iron, zinc and lead are removed. However, when removing radioactive substances, particularly radioactive cesium, from soil, sewage sludge incineration ash, fly ash, the zeolite is radioactively adsorbed by a tower filled with zeolite such as mordenite zeolite (not shown) in front of the adsorption tower 31. Adsorbs and removes cesium.

このようにして得た酸の濃縮液L4は、初期の酸のpH値、すなわち酸貯留槽13内に貯留された酸と同じpH値を有しているが、その容量は酸貯留槽13に貯留された酸の容量に比較して減少している。これは、例えば、固液分離槽21中において、固形分S2を凝集沈殿させた際に、固形分S2中に上記酸がある程度の割合で含まれ、さらには吸着塔31内に備えられた吸着材32にある程度の割合で吸着及び吸収されてしまうことによる。   The acid concentrate L4 thus obtained has an initial acid pH value, that is, the same pH value as the acid stored in the acid storage tank 13, but the capacity of the acid concentrate L4 is in the acid storage tank 13. Reduced compared to the volume of acid stored. This is because, for example, when the solid content S2 is agglomerated and precipitated in the solid-liquid separation tank 21, the acid is contained in the solid content S2 in a certain ratio, and further, the adsorption provided in the adsorption tower 31. This is because the material 32 is adsorbed and absorbed at a certain rate.

したがって、本実施形態では、濃縮水槽43から酸容量調整槽51に酸濃縮液L4を移送する。ここで、追加の酸貯留槽53より追加の酸を酸容量調整槽51内の酸濃縮液L4に添加し、酸容量調整槽51中に存在する酸の量を酸貯留槽13内に貯留された酸の容量と等しくする。なお、酸貯留槽13内に貯留された酸の容量は、容量制御部56内に予め記憶されているので、酸濃縮液L4に添加すべき酸の容量に応じて、容量制御部56からバルブ58に対して制御信号が送信されてバルブ58の開度が調整され、追加の酸貯留槽63から酸容量調整槽51内に添加する酸の量が適宜調節される。   Therefore, in this embodiment, the acid concentrate L4 is transferred from the concentrated water tank 43 to the acid capacity adjusting tank 51. Here, additional acid is added from the additional acid storage tank 53 to the acid concentrate L4 in the acid capacity adjustment tank 51, and the amount of acid present in the acid capacity adjustment tank 51 is stored in the acid storage tank 13. Equal to the acid capacity. In addition, since the capacity | capacitance of the acid stored in the acid storage tank 13 is previously memorize | stored in the capacity | capacitance control part 56, it is a valve | bulb from the capacity | capacitance control part 56 according to the capacity | capacitance of the acid which should be added to the acid concentrate L4. A control signal is transmitted to 58, the opening degree of the valve 58 is adjusted, and the amount of acid added from the additional acid storage tank 63 into the acid capacity adjustment tank 51 is adjusted as appropriate.

以上のようにして調整された酸は、初期の酸のpH値を有するとともに、酸貯留槽13に貯留された酸と同じ容量に調整されているので、洗浄槽21に直接戻すことができ、当初、洗浄槽11に供給した酸を、図3に示す再生装置70内を循環させて再利用できるようになる。   The acid adjusted as described above has an initial acid pH value and is adjusted to the same capacity as the acid stored in the acid storage tank 13, so it can be returned directly to the cleaning tank 21, Initially, the acid supplied to the washing tank 11 can be recycled by circulating through the regenerator 70 shown in FIG.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment was posted as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10、70 洗浄用酸の再生装置
11 洗浄槽
12 加熱機構
13 酸貯留槽
14 pH測定器
15 温度計
16 pH制御部
17 温度制御部
18 バルブ
21 固液分離槽
22 整流壁
31 吸着塔
32 吸着材
41 電気透析槽
42 脱塩水槽
43 濃縮水槽
51 pH調整槽
53 追加の酸貯留槽
56 容量制御部
58 バルブ
S1 洗浄対象物
S2 固形分
L1,L2,L3 溶液
L4 酸濃縮液
DESCRIPTION OF SYMBOLS 10, 70 Cleaning-acid regeneration apparatus 11 Cleaning tank 12 Heating mechanism 13 Acid storage tank 14 pH measuring device 15 Thermometer 16 pH control part 17 Temperature control part 18 Valve 21 Solid-liquid separation tank 22 Rectification wall 31 Adsorption tower 32 Adsorbent 41 Electrodialysis tank 42 Demineralized water tank 43 Concentrated water tank 51 pH adjustment tank 53 Additional acid storage tank 56 Volume control unit 58 Valve S1 Object to be cleaned S2 Solid content L1, L2, L3 solution L4 Acid concentrate

Claims (10)

洗浄槽内に洗浄用酸を供給し、洗浄対象物に対して酸洗浄を行い、第1の溶液を得る第1のステップと、
前記酸洗浄によって得た第1の溶液中に含まれる固形分を固液分離槽中において固液分離し、第2の溶液を得る第2のステップと、
前記固液分離によって得た第2の溶液中に含まれる第1の金属成分を、吸着材を内部に備える吸着塔によって吸着除去し、第3の溶液を得る第3のステップと、
前記吸着除去によって得た第3の溶液中に含まれる第2の金属成分を、水素イオンのみをイオン交換により透過させる複数の陽イオン交換膜及び複数の陰イオン交換膜が交互に配設され、その両側に陽極及び陰極が配設された電気透析槽によって除去するとともに、前記第3の溶液中に含まれる酸を濃縮して、当該酸の濃度を前記洗浄用酸の濃度にまで濃縮する第4のステップと、
を具えることを特徴とする、洗浄用酸の再生方法。
A first step of supplying a cleaning acid into the cleaning tank, performing an acid cleaning on the object to be cleaned, and obtaining a first solution;
A second step of obtaining a second solution by solid-liquid separation of a solid content contained in the first solution obtained by the acid washing in a solid-liquid separation tank;
A third step of obtaining a third solution by adsorbing and removing the first metal component contained in the second solution obtained by the solid-liquid separation by an adsorption tower having an adsorbent therein;
A plurality of cation exchange membranes and a plurality of anion exchange membranes that allow only the hydrogen ions to permeate through the second metal component contained in the third solution obtained by the adsorption removal are alternately disposed, First, the acid is removed by an electrodialysis tank provided with an anode and a cathode on both sides, and the acid contained in the third solution is concentrated to concentrate the acid concentration to the cleaning acid concentration. 4 steps,
A method for regenerating a cleaning acid, comprising:
前記第3の溶液中に含まれる前記酸を濃縮した後、容量調整槽において、前記酸の容量を前記洗浄用酸の容量にまで調整する第5のステップを具えることを特徴とする、請求項1に記載の洗浄用酸の再生方法。   The method further comprises a fifth step of adjusting the volume of the acid to the volume of the cleaning acid in a volume adjustment tank after the acid contained in the third solution is concentrated. Item 2. A method for regenerating a cleaning acid according to Item 1. 前記第1のステップにおいて、前記洗浄槽内における前記洗浄用酸のpH値をpH測定器で測定し、前記pH値に応じて前記洗浄槽に供給する前記洗浄用酸の量を調節することを特徴とする、請求項1又は2に記載の洗浄用酸の再生方法。   In the first step, the pH value of the cleaning acid in the cleaning tank is measured with a pH meter, and the amount of the cleaning acid supplied to the cleaning tank is adjusted according to the pH value. The method for regenerating a cleaning acid according to claim 1, wherein the cleaning acid is regenerated. 前記吸着材は、強酸性陽イオン交換樹脂及びキレート樹脂の少なくとも一方であることを特徴とする、請求項1〜3のいずれか一に記載の洗浄用酸の再生方法。   The method for regenerating a cleaning acid according to any one of claims 1 to 3, wherein the adsorbent is at least one of a strongly acidic cation exchange resin and a chelate resin. 前記洗浄対象物は放射性セシウムを含む廃棄物であり、
前記放射性セシウムは、前記吸着塔の上流側に配設された追加の塔内に充填されたゼオライトで吸着する第5のステップを含むことを特徴とする、請求項1〜4のいずれか一に記載の洗浄用酸の再生方法。
The cleaning object is a waste containing radioactive cesium,
The said radioactive cesium includes the 5th step adsorb | sucking with the zeolite with which it filled in the additional tower arrange | positioned upstream of the said adsorption tower, The any one of Claims 1-4 characterized by the above-mentioned. A method for regenerating a cleaning acid as described.
洗浄用酸を供給し、洗浄対象物に対して酸洗浄を行い、第1の溶液を得るための洗浄槽と、
前記酸洗浄によって得た第1の溶液中に含まれる固形分を固液分離し、第2の溶液を得るための固液分離槽と、
前記固液分離によって得た第2の溶液中に含まれる第1の金属成分を吸着除去し、第3の溶液を得るための、吸着材を内部に備える吸着塔と、
前記吸着除去によって得た第3の溶液中に含まれる第2の金属成分を除去するとともに、前記第3の溶液中に含まれる酸を濃縮して、当該酸の濃度を前記洗浄用酸の濃度にまで濃縮する、水素イオンのみをイオン交換により透過させる複数の陽イオン交換膜及び複数の陰イオン交換膜が交互に配設され、その両側に陽極及び陰極が配設された電気透析槽と、
を具えることを特徴とする、洗浄用酸の再生装置。
A cleaning tank for supplying a cleaning acid, performing an acid cleaning on an object to be cleaned, and obtaining a first solution;
A solid-liquid separation tank for solid-liquid separation of the solid content contained in the first solution obtained by the acid washing, and obtaining a second solution;
An adsorption tower for adsorbing and removing the first metal component contained in the second solution obtained by the solid-liquid separation and obtaining a third solution;
While removing the 2nd metal component contained in the 3rd solution obtained by the said adsorption removal, the acid contained in the said 3rd solution is concentrated, and the density | concentration of the said acid is set to the density | concentration of the said washing | cleaning acid An electrodialysis tank in which a plurality of cation exchange membranes and a plurality of anion exchange membranes that allow only hydrogen ions to permeate through ion exchange are alternately disposed, and an anode and a cathode are disposed on both sides thereof,
An apparatus for regenerating cleaning acid, comprising:
前記第3の溶液中に含まれる前記酸を濃縮した後、前記酸の容量を前記洗浄用酸の容量にまで調整する容量調整槽を具えることを特徴とする、請求項6に記載の洗浄用酸の再生装置。   The cleaning according to claim 6, further comprising a capacity adjustment tank that adjusts the capacity of the acid to the capacity of the cleaning acid after the acid contained in the third solution is concentrated. Acid regenerator. 前記洗浄槽内における前記洗浄用酸のpH値を測定し、前記pH値に応じて前記洗浄槽に供給する前記洗浄用酸の量を調節するpH測定器を具えることを特徴とする、請求項6又は7に記載の洗浄用酸の再生装置。   A pH measuring device is provided for measuring a pH value of the cleaning acid in the cleaning tank and adjusting an amount of the cleaning acid supplied to the cleaning tank according to the pH value. Item 8. The apparatus for regenerating cleaning acid according to Item 6 or 7. 前記吸着材は、強酸性陽イオン交換樹脂及びキレート樹脂の少なくとも一方であることを特徴とする、請求項6〜8のいずれか一に記載の洗浄用酸の再生装置。   9. The cleaning acid regenerating apparatus according to claim 6, wherein the adsorbent is at least one of a strongly acidic cation exchange resin and a chelate resin. 前記洗浄対象物は放射性セシウムを含む廃棄物であり、
前記吸着塔の上流側に配設され、前記放射性セシウムを吸着するゼオライトが充填された追加の塔を具えることを特徴とする、請求項6〜9のいずれか一に記載の洗浄用酸の再生装置。
The cleaning object is a waste containing radioactive cesium,
The cleaning acid according to any one of claims 6 to 9, further comprising an additional tower disposed upstream of the adsorption tower and filled with zeolite that adsorbs the radioactive cesium. Playback device.
JP2013088183A 2013-04-19 2013-04-19 Method and apparatus for regenerating cleaning acid Expired - Fee Related JP6139240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013088183A JP6139240B2 (en) 2013-04-19 2013-04-19 Method and apparatus for regenerating cleaning acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013088183A JP6139240B2 (en) 2013-04-19 2013-04-19 Method and apparatus for regenerating cleaning acid

Publications (2)

Publication Number Publication Date
JP2014210235A true JP2014210235A (en) 2014-11-13
JP6139240B2 JP6139240B2 (en) 2017-05-31

Family

ID=51930437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013088183A Expired - Fee Related JP6139240B2 (en) 2013-04-19 2013-04-19 Method and apparatus for regenerating cleaning acid

Country Status (1)

Country Link
JP (1) JP6139240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707354A (en) * 2021-08-18 2021-11-26 中国人民解放军63653部队 Comprises239Pu、90Sr and137electrochemical separation and fixation method for large-volume radioactive waste liquid of Cs

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4995956A (en) * 1989-04-06 1991-02-26 Allied-Signal Inc. Method and apparatus to control a salt stream to be treated in an electrodialytic water splitter
JPH08271692A (en) * 1995-03-28 1996-10-18 Toshiba Corp Processing method for radioactive waste liquid
JPH09887A (en) * 1996-06-17 1997-01-07 Tokuyama Corp Method for regenerating acid waste liquid
JP2001029916A (en) * 1999-07-27 2001-02-06 Takuma Co Ltd Method for treating ash
JP2002239554A (en) * 2001-02-15 2002-08-27 Fuji Photo Film Co Ltd Method and apparatus for treating acidic treatment liquid and method for producing support for lithographic printing plate
JP2003232890A (en) * 2002-02-08 2003-08-22 Mitsubishi Heavy Ind Ltd Disposal system and disposal method for used ion exchange resin, and extension equipment
JP2003260439A (en) * 2002-03-11 2003-09-16 Takuma Co Ltd Method and system for ash treatment
JP2004226989A (en) * 1996-11-21 2004-08-12 Japan Organo Co Ltd Regeneration treatment method for waste photoresist developing solution
JP2010085019A (en) * 2008-09-30 2010-04-15 Mitsubishi Heavy Industries Environment & Chemical Engineering Co Ltd Method and system of treating incineration ash
CN101844848A (en) * 2010-05-06 2010-09-29 湖州森蓝环境工程有限公司 Recycling and processing method of stainless steel acid-washing waste liquid
JP2010229449A (en) * 2009-03-26 2010-10-14 C Uyemura & Co Ltd Method of regenerating electroless plating liquid
JP2013017951A (en) * 2011-07-12 2013-01-31 Jfe Steel Corp Method and apparatus for treatment of pickling waste liquid
JP2014163842A (en) * 2013-02-26 2014-09-08 Toshiba Corp Sewage sludge incineration ash processing method and sewage sludge incineration ash processing facility
JP2014163843A (en) * 2013-02-26 2014-09-08 Toshiba Corp Cleaning acid recycling method and recycling facility
JP2014163841A (en) * 2013-02-26 2014-09-08 Toshiba Corp Sewage sludge incineration ash processing method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4995956A (en) * 1989-04-06 1991-02-26 Allied-Signal Inc. Method and apparatus to control a salt stream to be treated in an electrodialytic water splitter
JPH08271692A (en) * 1995-03-28 1996-10-18 Toshiba Corp Processing method for radioactive waste liquid
JPH09887A (en) * 1996-06-17 1997-01-07 Tokuyama Corp Method for regenerating acid waste liquid
JP2004226989A (en) * 1996-11-21 2004-08-12 Japan Organo Co Ltd Regeneration treatment method for waste photoresist developing solution
JP2001029916A (en) * 1999-07-27 2001-02-06 Takuma Co Ltd Method for treating ash
JP2002239554A (en) * 2001-02-15 2002-08-27 Fuji Photo Film Co Ltd Method and apparatus for treating acidic treatment liquid and method for producing support for lithographic printing plate
JP2003232890A (en) * 2002-02-08 2003-08-22 Mitsubishi Heavy Ind Ltd Disposal system and disposal method for used ion exchange resin, and extension equipment
JP2003260439A (en) * 2002-03-11 2003-09-16 Takuma Co Ltd Method and system for ash treatment
JP2010085019A (en) * 2008-09-30 2010-04-15 Mitsubishi Heavy Industries Environment & Chemical Engineering Co Ltd Method and system of treating incineration ash
JP2010229449A (en) * 2009-03-26 2010-10-14 C Uyemura & Co Ltd Method of regenerating electroless plating liquid
CN101844848A (en) * 2010-05-06 2010-09-29 湖州森蓝环境工程有限公司 Recycling and processing method of stainless steel acid-washing waste liquid
JP2013017951A (en) * 2011-07-12 2013-01-31 Jfe Steel Corp Method and apparatus for treatment of pickling waste liquid
JP2014163842A (en) * 2013-02-26 2014-09-08 Toshiba Corp Sewage sludge incineration ash processing method and sewage sludge incineration ash processing facility
JP2014163843A (en) * 2013-02-26 2014-09-08 Toshiba Corp Cleaning acid recycling method and recycling facility
JP2014163841A (en) * 2013-02-26 2014-09-08 Toshiba Corp Sewage sludge incineration ash processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707354A (en) * 2021-08-18 2021-11-26 中国人民解放军63653部队 Comprises239Pu、90Sr and137electrochemical separation and fixation method for large-volume radioactive waste liquid of Cs
CN113707354B (en) * 2021-08-18 2024-02-09 中国人民解放军63653部队 Containing 239 Pu、 90 Sr and 137 electrochemical separation and fixation method for large-volume radioactive waste liquid of Cs

Also Published As

Publication number Publication date
JP6139240B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5911228B2 (en) NMP purification system in electrode manufacturing process
TWI727046B (en) Water treatment method and apparatus, and method of regenerating ion exchange resin
JP6088265B2 (en) NMP purification system and NMP purification method
JP2014163843A (en) Cleaning acid recycling method and recycling facility
JP6088268B2 (en) NMP purification system
JP6088267B2 (en) NMP purification system
JP5189322B2 (en) Method for producing hydroiodic acid
JP2013018748A (en) Nmp purification system in electrode production process
JP7195649B2 (en) Acidic liquid regeneration device and regeneration method
JP6139240B2 (en) Method and apparatus for regenerating cleaning acid
JP5373067B2 (en) Amine recovery method from amine-containing wastewater
JP6088266B2 (en) NMP purification system
JP2008081791A (en) Method and apparatus for recovering phosphoric acid from phosphoric ion-containing water
JP4820266B2 (en) Etching waste liquid recycling method and recycling apparatus
JP6072458B2 (en) Membrane separation method using zeolite membrane
TW201305064A (en) Processing method for collecting waste liquid containing fluorine and apparatus thereof
CN105601012A (en) Method for treating acid-containing waste liquid by condensation and distillation purification
JP2020083870A (en) Method for purifying n-methyl-2-pyrolidone, purifier, recovery and purification method, and recovery and purification system
JP6692385B2 (en) Radioactive waste liquid treatment system
CN211660014U (en) Refining device and recovery refining system
JP6534752B1 (en) Radioactive waste liquid treatment system
JP2010201357A (en) Method of treating used adsorbent
JP2015164709A (en) tritium removal facility and tritium removal method
JP6026586B2 (en) Fluorine-containing wastewater treatment method and fluorine-containing wastewater treatment apparatus
JP2014163841A (en) Sewage sludge incineration ash processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R151 Written notification of patent or utility model registration

Ref document number: 6139240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees