JP2014208390A - Cmp polishing liquid, storage liquid and polishing method - Google Patents
Cmp polishing liquid, storage liquid and polishing method Download PDFInfo
- Publication number
- JP2014208390A JP2014208390A JP2013127538A JP2013127538A JP2014208390A JP 2014208390 A JP2014208390 A JP 2014208390A JP 2013127538 A JP2013127538 A JP 2013127538A JP 2013127538 A JP2013127538 A JP 2013127538A JP 2014208390 A JP2014208390 A JP 2014208390A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- cmp
- liquid
- aluminum
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 354
- 239000007788 liquid Substances 0.000 title claims abstract description 181
- 238000003860 storage Methods 0.000 title claims description 36
- 238000000034 method Methods 0.000 title claims description 29
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 96
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 96
- 239000000758 substrate Substances 0.000 claims abstract description 93
- 239000000463 material Substances 0.000 claims abstract description 77
- 239000006061 abrasive grain Substances 0.000 claims abstract description 43
- 150000001413 amino acids Chemical class 0.000 claims abstract description 38
- 239000011164 primary particle Substances 0.000 claims abstract description 22
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 50
- 230000003746 surface roughness Effects 0.000 claims description 47
- 239000004471 Glycine Substances 0.000 claims description 25
- 239000002002 slurry Substances 0.000 claims description 24
- 238000007865 diluting Methods 0.000 claims description 21
- 239000007800 oxidant agent Substances 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 75
- 239000011550 stock solution Substances 0.000 description 62
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 43
- 229940024606 amino acid Drugs 0.000 description 34
- 235000001014 amino acid Nutrition 0.000 description 34
- 239000000243 solution Substances 0.000 description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 27
- 229910000838 Al alloy Inorganic materials 0.000 description 25
- 229960002449 glycine Drugs 0.000 description 24
- 238000002474 experimental method Methods 0.000 description 23
- 239000008119 colloidal silica Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 17
- 238000011156 evaluation Methods 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 239000012895 dilution Substances 0.000 description 7
- 238000010790 dilution Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 238000010979 pH adjustment Methods 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 239000007853 buffer solution Substances 0.000 description 5
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 5
- 229910018134 Al-Mg Inorganic materials 0.000 description 4
- 229910018467 Al—Mg Inorganic materials 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- 229910018131 Al-Mn Inorganic materials 0.000 description 3
- 229910018125 Al-Si Inorganic materials 0.000 description 3
- 229910018182 Al—Cu Inorganic materials 0.000 description 3
- 229910018464 Al—Mg—Si Inorganic materials 0.000 description 3
- 229910018461 Al—Mn Inorganic materials 0.000 description 3
- 229910018520 Al—Si Inorganic materials 0.000 description 3
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229960003767 alanine Drugs 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 230000003139 buffering effect Effects 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 229960002743 glutamine Drugs 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 229960001153 serine Drugs 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229960004441 tyrosine Drugs 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- YMAWOPBAYDPSLA-UHFFFAOYSA-N glycylglycine Chemical compound [NH3+]CC(=O)NCC([O-])=O YMAWOPBAYDPSLA-UHFFFAOYSA-N 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000001139 pH measurement Methods 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 2
- MLIWQXBKMZNZNF-KUHOPJCQSA-N (2e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)CC1=CC1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-KUHOPJCQSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010008488 Glycylglycine Proteins 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229910019064 Mg-Si Inorganic materials 0.000 description 1
- 229910019406 Mg—Si Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 229960003121 arginine Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- URGYLQKORWLZAQ-UHFFFAOYSA-N azanium;periodate Chemical compound [NH4+].[O-]I(=O)(=O)=O URGYLQKORWLZAQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229940043257 glycylglycine Drugs 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960004452 methionine Drugs 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229960002898 threonine Drugs 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
本発明は、アルミニウム系材料を含む基体を研磨するためのCMP用研磨液、当該研磨液を得るための貯蔵液、及び、これらを使用した研磨方法に関する。 The present invention relates to a CMP polishing liquid for polishing a substrate containing an aluminum-based material, a storage liquid for obtaining the polishing liquid, and a polishing method using these.
鉄道車両、航空機部品、自動車部品、電子機器筐体等の材質としては、耐食性又は強度等に優れるという理由から、鉄と他の金属(クロム、ニッケル等)との合金であるステンレス鋼が用いられることが多い。しかしながら、ステンレス鋼の密度は7.64〜8.06g/cm3程度であり、ステンレス鋼では、近年の材料の軽量化への要求に対応するには限界がある。 Stainless steel, which is an alloy of iron and other metals (chromium, nickel, etc.), is used as a material for railway vehicles, aircraft parts, automobile parts, electronic equipment casings, etc. because of its excellent corrosion resistance or strength. There are many cases. However, the density of stainless steel is about 7.64 to 8.06 g / cm 3 , and stainless steel has a limit to meet the recent demand for weight reduction of materials.
そのため、密度が2.64〜2.82g/cm3程度(ステンレス鋼の約1/3)であるアルミニウム系材料が代替材質として注目されている。アルミニウム系材料としては、純アルミニウム(1000系)、Al−Cu(2000系)、Al−Mn(3000系)、Al−Si(4000系)、Al−Mg(5000系)、Al−Mg−Si(6000系)、Al−Zn−Mg(7000系)等が知られている。 Therefore, an aluminum-based material having a density of about 2.64 to 2.82 g / cm 3 (about 1/3 of stainless steel) has attracted attention as an alternative material. Examples of aluminum materials include pure aluminum (1000 series), Al-Cu (2000 series), Al-Mn (3000 series), Al-Si (4000 series), Al-Mg (5000 series), and Al-Mg-Si. (6000 series), Al-Zn-Mg (7000 series), etc. are known.
前記アルミニウム系材料のうち、純アルミニウム(1000系)の強度はやや低めであるが、アルミニウム合金は、ステンレス鋼と同様に耐食性又は強度に優れることに加え、加工性等にも優れる。また、ステンレス鋼を用いた材料のほとんどが、クロムに由来するやや黒味がかった銀色を呈しているのに対し、アルミニウム合金を用いた材料は、白銀色とすることが可能であり、見た目にも明るく美しくすることができる。 Among the aluminum-based materials, the strength of pure aluminum (1000-based) is slightly low, but the aluminum alloy is excellent in workability and the like in addition to being excellent in corrosion resistance or strength like stainless steel. In addition, most materials using stainless steel have a slightly blackish silver color derived from chrome, whereas materials using aluminum alloys can be white silvery in appearance. Can also be bright and beautiful.
前記のような美しい白銀色を得るために、アルミニウム系材料の表面を充分に平滑化することが求められる場合がある。アルミニウム系材料の研磨方法としては、機械的研磨と化学的研磨が挙げられる。 In order to obtain the beautiful white silver color as described above, it may be required to sufficiently smooth the surface of the aluminum-based material. Examples of the method for polishing an aluminum-based material include mechanical polishing and chemical polishing.
機械的研磨によって仕上げたアルミニウム系材料の表面形態としては、アルミニウムの特徴の一つである金属光沢が消失しているもの(例えば、方向性のない模様があるもの、方向性のある筋模様があるもの)が多い。また、比較的平滑化が可能なバフ研磨を用いた場合であっても、充分に平滑な表面が得られるとはいえない。機械的研磨の中には、ある程度の金属光沢が得られる方法があるが、機械的研磨で得られる光沢には限界がある。このように、アルミニウム系材料の研磨において充分に平滑な表面が求められる場合、従来の機械的研磨ではその要求を満たすことが難しい。 As the surface form of aluminum-based materials finished by mechanical polishing, the metallic luster that is one of the characteristics of aluminum has disappeared (for example, there is a pattern with no directionality, a pattern with directionality) There are many). Further, even when buffing that can be relatively smoothed is used, it cannot be said that a sufficiently smooth surface is obtained. There is a method for obtaining a certain level of metallic luster in mechanical polishing, but there is a limit to the gloss that can be obtained by mechanical polishing. As described above, when a sufficiently smooth surface is required in the polishing of an aluminum-based material, it is difficult to satisfy the requirement by the conventional mechanical polishing.
一方、平滑なアルミニウム系材料の表面を得る場合には、化学的研磨が用いられることがある。化学的研磨のみによる平滑化処理は工程に時間がかかるため、前記機械的研磨による処理を施した表面に、再度、化学的研磨による処理を施すことがある。 On the other hand, chemical polishing may be used to obtain a smooth aluminum-based material surface. Since a smoothing process using only chemical polishing takes a long time, the surface subjected to the mechanical polishing process may be subjected to a chemical polishing process again.
化学的研磨方法としては、リン酸と硝酸を主成分とした研磨液又は溶剤を110℃以下に加熱し、そこへアルミニウムを浸漬する方法が知られている(例えば、下記特許文献1参照)。また、高価なリン酸を節約するため、リン酸の一部の代替として硫酸を用いることが知られている(例えば、下記特許文献2参照)。これらの研磨は、単に、アルミニウム系材料の表面を溶解させ、化学的な作用のみで表面の凸部を除去して平滑化するものであり、CMP(Chemical Mechanical Polishing:化学機械研磨)とは異なる。
As a chemical polishing method, a method is known in which a polishing liquid or solvent mainly composed of phosphoric acid and nitric acid is heated to 110 ° C. or lower and aluminum is immersed therein (see, for example,
ここで、CMPとは、機械的作用と化学的作用の両方を利用した研磨のことである。具体的には、化学的な作用でアルミニウム系材料を軟化又は溶解させながら、同時に、アルミニウム系材料と砥粒との摩擦による機械的な作用でアルミニウム系材料の表面の凸部を除去して平滑化する。 Here, CMP is polishing using both mechanical action and chemical action. Specifically, while softening or dissolving the aluminum-based material by a chemical action, at the same time, the surface of the aluminum-based material is removed by a mechanical action due to friction between the aluminum-based material and abrasive grains to smooth the surface. Turn into.
研磨面の光沢を向上させるために酢酸を添加する方法も知られており、例えばリン酸50〜80質量%、硝酸5〜20質量%、酢酸3〜20質量%を含有する液体を用いる手法が知られている(例えば、下記特許文献1参照)。研磨面の光沢を向上させるために添加する物質としては、酢酸の他に、シュウ酸、クエン酸等の有機物質も知られている(例えば、下記非特許文献1参照)。
A method of adding acetic acid to improve the gloss of the polished surface is also known. For example, a method using a liquid containing 50 to 80% by mass of phosphoric acid, 5 to 20% by mass of nitric acid, and 3 to 20% by mass of acetic acid. It is known (for example, refer to
このように、従来、充分に平滑なアルミニウム系材料の表面を得るためには、機械的研磨と化学的研磨の2ステップで研磨することが必要とされることからコストの増大が避けられないという問題があり、また、高濃度の酸を高温で用いることが必要となるため、プロセス管理が難しいという問題がある。 Thus, conventionally, in order to obtain a sufficiently smooth surface of an aluminum-based material, it has been necessary to perform polishing in two steps, mechanical polishing and chemical polishing, and thus an increase in cost is inevitable. There is a problem, and it is necessary to use a high concentration acid at a high temperature.
一方、アルミニウム系材料をCMPにより研磨することも検討されている。アルミニウム系材料を研磨するためのCMP用研磨液はいくつか知られているが(例えば、下記特許文献3参照)、その種類は豊富とはいえない。 On the other hand, polishing an aluminum-based material by CMP has also been studied. Several polishing liquids for CMP for polishing aluminum-based materials are known (for example, see Patent Document 3 below), but the types are not abundant.
特許文献3では、砥粒としてアルミナ粒子を含むCMP用研磨液が記載されている。しかしながら、アルミニウムは軟質であるため、アルミナ粒子を含有するCMP用研磨液を用いてCMPを行うと、表面粗さが増大しやすい。この表面粗さの増大は、歩留まりを著しく低下させる。これに対し、砥粒として、より軟質なコロイダルシリカは、表面粗さに有効であることが知られている(例えば、下記特許文献4、5参照)。 Patent Document 3 describes a CMP polishing liquid containing alumina particles as abrasive grains. However, since aluminum is soft, surface roughness tends to increase when CMP is performed using a CMP polishing liquid containing alumina particles. This increase in surface roughness significantly reduces the yield. On the other hand, it is known that softer colloidal silica is effective for surface roughness as abrasive grains (see, for example, Patent Documents 4 and 5 below).
しかしながら、表面粗さの低減は、未だ充分であるとはいえない。 However, the reduction in surface roughness is still not sufficient.
本発明は、前記問題点に鑑みなされたものであり、アルミニウム系材料を含む基体を平滑に研磨することができるCMP用研磨液、当該研磨液を得るための貯蔵液、及び、これらを使用した研磨方法を提供することを目的とする。 The present invention has been made in view of the above problems, and used a polishing liquid for CMP capable of smoothly polishing a substrate containing an aluminum-based material, a storage liquid for obtaining the polishing liquid, and these. An object is to provide a polishing method.
本発明に係るCMP用研磨液は、アルミニウム系材料を含む基体を研磨するためのCMP用研磨液であって、砥粒、アミノ酸及び液状媒体を含有し、砥粒の一次粒径が150nm以下であり、CMP用研磨液のpHが7.5〜11.5である。 The CMP polishing liquid according to the present invention is a CMP polishing liquid for polishing a substrate containing an aluminum-based material, contains abrasive grains, amino acids and a liquid medium, and has a primary grain size of 150 nm or less. Yes, the polishing slurry for CMP has a pH of 7.5 to 11.5.
本発明に係るCMP用研磨液によれば、アルミニウム系材料を含む基体を平滑に研磨する(すなわち表面粗さを小さくする)ことができる。 According to the CMP polishing liquid of the present invention, a substrate containing an aluminum-based material can be polished smoothly (that is, the surface roughness can be reduced).
ところで、アルミニウム系材料のうちアルミニウム合金は、強度を高めるために、アルミニウムに異種元素が添加されている。本発明者らは、アルミニウムに加えて異種元素を含む部分が、アルミニウムからなる部分と比較して研磨で除去されにくいためにアルミニウム合金の表面に凸部として残存しやすいことを確認した。そのため、純アルミニウムを研磨対象とする従来のCMP用研磨液を用いた場合、アルミニウムからなる部分が充分研磨されたとしても、異種元素を含む部分が凸部として残存してしまうため充分に平滑な表面を得ることが困難であることが見いだされた。 By the way, among aluminum-based materials, an aluminum alloy has a different element added to aluminum in order to increase the strength. The inventors of the present invention have confirmed that portions containing different elements in addition to aluminum are more likely to remain as protrusions on the surface of the aluminum alloy because they are less likely to be removed by polishing than portions made of aluminum. Therefore, when using a conventional CMP polishing liquid for polishing pure aluminum, even if a portion made of aluminum is sufficiently polished, a portion containing a different element remains as a convex portion and is sufficiently smooth. It has been found that it is difficult to obtain a surface.
これに対し、本発明に係るCMP用研磨液によれば、アルミニウム合金の表面のうち、アルミニウムからなる部分と、アルミニウムに加えて異種元素を含む部分とを同等に平坦に研磨することができるため、アルミニウム合金を含む基体を平滑に研磨することができる。 On the other hand, according to the polishing slurry for CMP according to the present invention, a portion made of aluminum and a portion containing a different element in addition to aluminum can be equally evenly polished on the surface of the aluminum alloy. The substrate containing the aluminum alloy can be polished smoothly.
また、本発明者らは、できるだけ短時間に表面粗さを低減するためには、研磨速度が高い方がよいことを見いだした。研磨速度が高いことにより、全体の作業時間が短くなる(スループットが向上する)という効果もある。しかしながら、本発明者らは、どのような砥粒を用いたとしても、良好な表面粗さを有しながら研磨速度も高くすること、すなわち、表面粗さと研磨速度とを両立することが難しいというトレードオフの問題があることを見いだした。本発明者らは、例えば、研磨速度と表面粗さを両立する観点から、研磨速度を大きくするために砥粒の粒径を大きくすると、表面粗さが悪化してしまう傾向があり、逆に、砥粒の粒径を小さくすると、表面粗さが向上するものの研磨速度が低下してしまう傾向があることを見いだした。 The inventors have also found that a higher polishing rate is better in order to reduce the surface roughness in as short a time as possible. The high polishing rate also has the effect of shortening the overall work time (improving throughput). However, the present inventors say that whatever abrasive grains are used, it is difficult to increase the polishing rate while having a good surface roughness, that is, to achieve both the surface roughness and the polishing rate. I found a trade-off problem. For example, from the viewpoint of achieving both a polishing rate and a surface roughness, the present inventors tend to deteriorate the surface roughness when the grain size of the abrasive grains is increased in order to increase the polishing rate. It has been found that when the grain size of the abrasive grains is reduced, the polishing rate tends to decrease although the surface roughness is improved.
これに対し、本発明に係るCMP用研磨液によれば、アルミニウム系材料を含む基体を高速且つ平滑に研磨することができる。また、本発明に係るCMP用研磨液によれば、アルミニウム合金を含む基体を高速且つ平滑に研磨することができる。さらに、本発明によれば、アルミニウム合金等のアルミニウム系材料を含む基体を高速に研磨でき、平滑な表面を有する基体を簡便且つ効率的に得ることができる。 On the other hand, according to the polishing slurry for CMP according to the present invention, a substrate containing an aluminum-based material can be polished smoothly at high speed. Moreover, according to the polishing slurry for CMP according to the present invention, a substrate containing an aluminum alloy can be polished smoothly at high speed. Furthermore, according to the present invention, a substrate containing an aluminum-based material such as an aluminum alloy can be polished at high speed, and a substrate having a smooth surface can be obtained simply and efficiently.
砥粒の一次粒径は50nm以上であることが好ましい。これにより、アルミニウム系材料を含む基体を更に高速に研磨することができると共に、研磨後に基体表面のスクラッチが無くなりやすい。 The primary particle size of the abrasive grains is preferably 50 nm or more. As a result, the substrate containing the aluminum-based material can be polished at a higher speed, and scratches on the substrate surface tend to be eliminated after polishing.
本発明に係るCMP用研磨液は、酸化剤を更に含有することが好ましい。これにより、アルミニウム系材料を含む基体を更に高速且つ平滑に研磨することができる。 The CMP polishing liquid according to the present invention preferably further contains an oxidizing agent. As a result, the substrate containing the aluminum-based material can be polished more rapidly and smoothly.
アミノ酸はグリシンを含むことが好ましい。これにより、アルミニウム系材料を含む基体を更に高速且つ平滑に研磨することができる。 Preferably the amino acid comprises glycine. As a result, the substrate containing the aluminum-based material can be polished more rapidly and smoothly.
アミノ酸の含有量は0.10質量%以上であることが好ましい。これにより、アルミニウム系材料を含む基体を更に高速且つ平滑に研磨することができる。 The amino acid content is preferably 0.10% by mass or more. As a result, the substrate containing the aluminum-based material can be polished more rapidly and smoothly.
本発明に係るCMP用研磨液は、表面粗さ(Ra)が10nm以上である基体を、表面粗さ(Ra)が3.5nm未満となるように研磨するために用いられてもよい。 The polishing slurry for CMP according to the present invention may be used for polishing a substrate having a surface roughness (Ra) of 10 nm or more so that the surface roughness (Ra) is less than 3.5 nm.
本発明に係る貯蔵液は、前記CMP用研磨液を得るための貯蔵液であって、液状媒体で希釈することにより前記CMP用研磨液が得られる。このような貯蔵液によれば、CMP用研磨液の貯蔵、運搬、保管等に係るコストを低減できる。 The storage liquid according to the present invention is a storage liquid for obtaining the CMP polishing liquid, and the CMP polishing liquid can be obtained by diluting with a liquid medium. According to such a storage liquid, the cost related to storage, transportation, storage, etc. of the polishing liquid for CMP can be reduced.
本発明に係る研磨方法の一態様は、前記CMP用研磨液を用いて、アルミニウム系材料を含む基体を研磨する工程を備える。このような研磨方法によれば、アルミニウム系材料を含む基体を高速且つ平滑に研磨することができると共に、アルミニウム系材料を含む基体を簡便且つ効率的に研磨することができる。 One aspect of the polishing method according to the present invention includes a step of polishing a substrate containing an aluminum-based material using the CMP polishing liquid. According to such a polishing method, a substrate containing an aluminum-based material can be polished smoothly at high speed, and a substrate containing an aluminum-based material can be polished easily and efficiently.
本発明に係る研磨方法の他の一態様は、前記貯蔵液を液状媒体で希釈することにより得られるCMP用研磨液を用いて、アルミニウム系材料を含む基体を研磨する工程を備える。このような研磨方法によれば、CMP用研磨液の貯蔵、運搬、保管等に係るコストを抑制できるため総合的な製造コストを低減できると共に、アルミニウム系材料を含む基体を高速且つ平滑に研磨することができる。 Another aspect of the polishing method according to the present invention includes a step of polishing a substrate containing an aluminum-based material using a CMP polishing liquid obtained by diluting the storage liquid with a liquid medium. According to such a polishing method, the cost for storing, transporting, storing and the like of the polishing liquid for CMP can be suppressed, so that the overall manufacturing cost can be reduced and the substrate containing the aluminum-based material can be polished smoothly at high speed. be able to.
本発明に係る研磨方法において、基体の研磨前における表面粗さ(Ra)が10nm以上であり、基体の研磨後における表面粗さ(Ra)が3.5nm未満であってもよい。 In the polishing method according to the present invention, the surface roughness (Ra) before polishing of the substrate may be 10 nm or more, and the surface roughness (Ra) after polishing of the substrate may be less than 3.5 nm.
本発明によれば、アルミニウム系材料を含む基体を平滑に研磨することができるCMP用研磨液、当該研磨液を得るための貯蔵液、及び、これらを使用した研磨方法を提供することができる。また、本発明によれば、アルミニウム系材料を含む基体を高速且つ平滑に研磨することができるCMP用研磨液、当該研磨液を得るための貯蔵液、及び、これらを使用した研磨方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the polishing liquid for CMP which can grind | polish the base | substrate containing an aluminum-type material smoothly, the storage liquid for obtaining the said polishing liquid, and the grinding | polishing method using these can be provided. In addition, according to the present invention, there are provided a polishing liquid for CMP capable of polishing a substrate containing an aluminum-based material at high speed and smoothly, a storage liquid for obtaining the polishing liquid, and a polishing method using these. be able to.
従来のアルミニウム用研磨液は、純アルミニウムのみを研磨対象としたものであり、アルミニウム合金を研磨するためのものではなく、アルミニウム合金の研磨に適したCMP用研磨液は知られていない。これに対し、本発明によれば、アルミニウム合金を含む基体を高速且つ平滑に研磨することができる。また、本発明によれば、アルミニウム合金等のアルミニウム系材料を含む基体を高速に研磨でき、平滑な表面を有する基体を簡便且つ効率的に得ることができる。 The conventional aluminum polishing liquid is intended for polishing only pure aluminum and is not for polishing an aluminum alloy, and no CMP polishing liquid suitable for polishing an aluminum alloy is known. On the other hand, according to the present invention, a substrate containing an aluminum alloy can be polished at high speed and smoothly. Further, according to the present invention, a substrate containing an aluminum-based material such as an aluminum alloy can be polished at high speed, and a substrate having a smooth surface can be obtained simply and efficiently.
以下、本発明の実施形態について説明する。但し、本発明は下記実施形態に何ら限定されるものではない。 Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiment.
[CMP用研磨液]
本実施形態に係るCMP用研磨液(アルミニウム用研磨液)は、アルミニウム系材料を含む基体を研磨するための研磨液である。本実施形態に係るCMP用研磨液は、砥粒、アミノ酸及び液状媒体を含有し、砥粒の一次粒径は150nm以下であり、CMP用研磨液のpHは7.5〜11.5である。
[CMP polishing liquid]
The CMP polishing liquid (aluminum polishing liquid) according to this embodiment is a polishing liquid for polishing a substrate containing an aluminum-based material. The CMP polishing liquid according to this embodiment contains abrasive grains, amino acids, and a liquid medium, the primary particle diameter of the abrasive grains is 150 nm or less, and the pH of the CMP polishing liquid is 7.5 to 11.5. .
(砥粒)
本実施形態に係るCMP用研磨液は、砥粒を含有する。砥粒としては、フュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素);フュームドアルミナ、コロイダルアルミナ等のアルミナ(酸化アルミニウム);焼成セリア、コロイダルセリア等のセリア(酸化セリウム);ジルコニア(酸化ジルコニウム)などが挙げられる。中でも、アルミニウム系材料に対する高い研磨速度と、表面の平滑化の両立を図りやすい観点から、シリカが好ましく、コロイダルシリカがより好ましい。また、CMP用研磨液は、一種又は二種以上の砥粒を含むことができる。
(Abrasive grains)
The CMP polishing liquid according to this embodiment contains abrasive grains. As the abrasive grains, silica (silicon oxide) such as fumed silica and colloidal silica; alumina (aluminum oxide) such as fumed alumina and colloidal alumina; ceria (cerium oxide) such as calcined ceria and colloidal ceria; zirconia (zirconium oxide) ) And the like. Among these, silica is preferable and colloidal silica is more preferable from the viewpoint of easily achieving both a high polishing rate for an aluminum-based material and smoothing of the surface. In addition, the CMP polishing liquid may contain one kind or two or more kinds of abrasive grains.
砥粒の一次粒径は、アルミニウム系材料を含む基体を平滑に研磨する観点から、150nm以下である。砥粒の一次粒径が150nmを超えると、アルミニウム系材料に対する研磨速度は速いが、一次粒径が大きいために表面平滑性が一定以上向上しない。砥粒の一次粒径は、アルミニウム系材料を含む基体を更に平滑に研磨する観点から、130nm以下が好ましく、120nm以下がより好ましく、100nm以下が更に好ましく、90nm以下が特に好ましい。砥粒の一次粒径は、アルミニウム系材料に対する研磨速度が向上しやすくなり、研磨後に基体表面のスクラッチが無くなりやすく、鏡面を実現するまでの時間を短縮できる観点から、50nm以上が好ましく、60nm以上がより好ましく、70nm以上が更に好ましい。 The primary particle size of the abrasive grains is 150 nm or less from the viewpoint of smoothly polishing a substrate containing an aluminum-based material. When the primary particle size of the abrasive grains exceeds 150 nm, the polishing rate for the aluminum-based material is fast, but the surface smoothness does not improve more than a certain degree because the primary particle size is large. The primary particle size of the abrasive grains is preferably 130 nm or less, more preferably 120 nm or less, still more preferably 100 nm or less, and particularly preferably 90 nm or less from the viewpoint of further smoothly polishing a substrate containing an aluminum-based material. The primary particle diameter of the abrasive grains is preferably 50 nm or more, from the viewpoint that the polishing rate for the aluminum-based material is easily improved, scratches on the substrate surface are easily lost after polishing, and the time until the mirror surface is realized can be shortened. Is more preferable, and 70 nm or more is still more preferable.
砥粒の一次粒径は、粒子を走査型電子顕微鏡(SEM)で観測して得られたSEM画像から測定することができる。具体的には例えば、粒子のSEM画像から粒子を無作為に複数個(例えば20個)選び出す。選び出した粒子について、SEMで表示される縮尺を基準に粒径を測定する。粒径は、粒子の最大径を有する長径の当該最大径と、当該長径に直交する短径の長さとの積の平方根(二軸平均粒径)として求めることができる。得られた測定値の平均値を粒子の一次粒径とする。 The primary particle size of the abrasive grains can be measured from an SEM image obtained by observing the particles with a scanning electron microscope (SEM). Specifically, for example, a plurality of particles (for example, 20 particles) are randomly selected from the SEM image of the particles. About the selected particle | grains, a particle size is measured on the basis of the reduced scale displayed by SEM. The particle diameter can be obtained as the square root (biaxial average particle diameter) of the product of the maximum diameter of the major axis having the maximum diameter of the particle and the length of the minor axis orthogonal to the major axis. The average value of the measured values obtained is taken as the primary particle size of the particles.
具体的には例えば、測定対象の砥粒を含む液体を適量容器に量り取る。次に、パターン配線付きウエハを2cm四方(2cm×2cm)に切って得られたチップを容器中の液体に約30秒間浸す。そして、純水の入った容器にチップを移して約30秒間すすいだ後、チップを窒素ブロー乾燥する。その後、SEM観察用の試料台にチップを載せ、加速電圧10kVで適切な倍率(例えば20万倍)にて粒子を観察すると共に、画像を撮影する。得られた画像から任意の複数個(例えば20個)の粒子を選択する。 Specifically, for example, an appropriate amount of liquid containing abrasive grains to be measured is weighed into a container. Next, the chip obtained by cutting the wafer with pattern wiring into 2 cm square (2 cm × 2 cm) is immersed in the liquid in the container for about 30 seconds. Then, after transferring the chip to a container containing pure water and rinsing for about 30 seconds, the chip is blown with nitrogen. Thereafter, the chip is placed on a sample stage for SEM observation, and the particles are observed at an appropriate magnification (for example, 200,000 times) at an acceleration voltage of 10 kV and an image is taken. Arbitrary plural (for example, 20) particles are selected from the obtained image.
選択した粒子が例えば図1に示すような形状である場合、粒子1に外接する長方形(外接長方形)2を、長方形2の長径の長さXが最も長くなるように導く。そして、長方形2の長径の長さX、及び、長径に直交する短径の長さYに基づき、二軸平均粒径(√(X×Y))を各粒子について算出する。選択した複数個(例えば20個)の粒子に対してこの作業を実施し、得られた値の平均値を一次粒径とする。
For example, when the selected particle has a shape as shown in FIG. 1, the
砥粒の含有量は、研磨液が砥粒を含まない場合の研磨速度に対して有意差がある研磨速度を達成しやすい観点から、CMP用研磨液の全質量を基準として、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が更に好ましく、7質量%以上が特に好ましく、8質量%以上が極めて好ましい。砥粒の含有量は、含有量に応じた研磨速度の向上効果が得られやすい観点から、40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下が更に好ましく、20質量%以下が特に好ましい。 The content of the abrasive grains is 1% by mass or more based on the total mass of the polishing liquid for CMP from the viewpoint of easily achieving a polishing speed having a significant difference from the polishing speed when the polishing liquid does not contain abrasive grains. Is preferably 3% by mass or more, more preferably 5% by mass or more, particularly preferably 7% by mass or more, and extremely preferably 8% by mass or more. The content of the abrasive is preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 30% by mass or less, and further preferably 20% by mass from the viewpoint of easily obtaining an effect of improving the polishing rate according to the content. The following are particularly preferred:
(アミノ酸)
本実施形態に係るCMP用研磨液は、アミノ酸を含有する。アミノ酸は、アルミニウム系材料(例えばアルミニウム合金)の凹凸を効果的に解消し、また、研磨速度を向上させる効果がある。アミノ酸が凹凸を効果的に解消し、また、研磨速度を向上させる理由は明らかではないが、本発明者は以下のように推察している。すなわち、アミノ酸がアルミニウム系材料の表面に結合し保護層が形成される。この時、凸部に結合したアミノ酸は研磨パッド(研磨布)の荷重によって除去される。一方、凹部に結合したアミノ酸は除去されず、凹部は保護され続ける。これらにより、凹凸が効果的に解消されると推察される。
(amino acid)
The CMP polishing liquid according to this embodiment contains an amino acid. An amino acid effectively eliminates unevenness of an aluminum-based material (for example, an aluminum alloy) and has an effect of improving the polishing rate. The reason why the amino acid effectively eliminates unevenness and improves the polishing rate is not clear, but the present inventor presumes as follows. That is, amino acids are bonded to the surface of the aluminum-based material to form a protective layer. At this time, the amino acid bonded to the convex portion is removed by the load of the polishing pad (polishing cloth). On the other hand, the amino acids bound to the recesses are not removed, and the recesses continue to be protected. It is assumed that the unevenness is effectively eliminated by these.
また、本実施形態に係るCMP用研磨液のpHは7.5〜11.5のアルカリ性であり、アミノ酸はpHに対する緩衝作用がある。アルミニウム系材料(例えばアルミニウム合金)の研磨中に生成する酸性成分の影響により研磨中の研磨液のpHが中性に変動する傾向がある。そして、アルミニウム系材料の研磨速度は、研磨液のpHが中性になるにつれて遅くなる傾向がある。しかしながら、CMP用研磨液がアミノ酸を含むことにより、当該アミノ酸の緩衝作用によってpHの変動を防げるため、アルミニウム系材料(例えばアルミニウム合金)に対する研磨速度を向上できると推察される。 Moreover, the pH of the polishing slurry for CMP according to this embodiment is alkaline of 7.5 to 11.5, and amino acids have a buffering effect on pH. The pH of the polishing liquid during polishing tends to change to neutral due to the influence of acidic components generated during polishing of an aluminum-based material (for example, an aluminum alloy). And the grinding | polishing speed | rate of aluminum type material tends to become slow as the pH of polishing liquid becomes neutral. However, when the CMP polishing liquid contains an amino acid, it is presumed that the polishing rate for an aluminum-based material (for example, an aluminum alloy) can be improved because the pH fluctuation can be prevented by the buffering action of the amino acid.
アミノ酸としては、例えば、グリシン、アラニン、セリン、チロシン、アルギニン、グリシルグリシン、グルタミン、グルタミン酸、アスパラギン、アスパラギン酸、ヒスチジン、ロイシン、イソロイシン、リシン、メチオニン、フェニルアラニン、プロリン、トレオニン、トリプトファン及びバリンからなる群より選ばれる少なくとも一種が挙げられ、中でも、アルミニウム系材料の研磨速度及び平滑性に更に優れる観点から、グリシン、アラニン、セリン、チロシン及びグルタミンからなる群より選ばれる少なくとも一種が好ましく、グリシンがより好ましい。アミノ酸は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。 Examples of amino acids include glycine, alanine, serine, tyrosine, arginine, glycylglycine, glutamine, glutamic acid, asparagine, aspartic acid, histidine, leucine, isoleucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan and valine. At least one selected from the group can be mentioned, and among them, from the viewpoint of further improving the polishing rate and smoothness of the aluminum-based material, at least one selected from the group consisting of glycine, alanine, serine, tyrosine and glutamine is preferable, and glycine is more preferable preferable. An amino acid may be used individually by 1 type, and 2 or more types may be mixed and used for it.
アミノ酸の含有量は、アルミニウム系材料(例えばアルミニウム合金)の凹凸を更に効果的に解消し、また、研磨速度を更に向上させる観点から、CMP用研磨液の全質量を基準として、0.10質量%以上が好ましく、0.20質量%以上がより好ましく、0.30質量%以上が更に好ましく、0.50質量%以上が特に好ましく、0.70質量%以上が極めて好ましい。アミノ酸の含有量は、研磨液のゲル化を防ぎつつ、アルミニウム系材料に対する研磨速度及び平滑性を更に向上させる観点から、CMP用研磨液の全質量を基準として、5.00質量%以下が好ましく、4.00質量%以下がより好ましく、3.00質量%以下が更に好ましい。 The content of the amino acid is 0.10 mass based on the total mass of the polishing slurry for CMP from the viewpoint of more effectively eliminating the unevenness of the aluminum-based material (for example, aluminum alloy) and further improving the polishing rate. % Or more, more preferably 0.20 mass% or more, still more preferably 0.30 mass% or more, particularly preferably 0.50 mass% or more, and very preferably 0.70 mass% or more. The content of the amino acid is preferably 5.00% by mass or less based on the total mass of the polishing liquid for CMP, from the viewpoint of further improving the polishing rate and smoothness for the aluminum-based material while preventing the polishing liquid from gelling. 4.00 mass% or less is more preferable, and 3.00 mass% or less is still more preferable.
(酸化剤)
本実施形態に係るCMP用研磨液は、酸化剤を更に含有することが好ましい。従来のCMP用研磨液を用いると、例えばAl−Mg−Si系合金(6000系合金)の一種であるA6063合金を研磨した際、比較的大きな凹凸が生じる。この凹凸は、合金表面において、Mg、Si、Fe等の元素が周辺のアルミニウム部分(固溶相)に比べ多く含まれた部分(不純物析出相)の研磨速度が、固溶相の研磨速度に比べ遅いことによって生じると考えられる。一方、本実施形態に係るCMP用研磨液が酸化剤を含有すると、凹凸の小さな研磨後表面が得られやすく、合金の研磨速度も向上しやすい。この原因は明確ではないが、合金表面における固溶相と不純物析出相の両方に酸化剤が同程度に作用するためと推察される。
(Oxidant)
The CMP polishing liquid according to this embodiment preferably further contains an oxidizing agent. When a conventional CMP polishing liquid is used, for example, when an A6063 alloy, which is a kind of Al—Mg—Si alloy (6000 alloy), is polished, relatively large irregularities are generated. This unevenness is because the polishing rate of the portion (impurity precipitated phase) containing more elements such as Mg, Si, Fe, etc. on the alloy surface than the surrounding aluminum portion (solid solution phase) becomes the polishing rate of the solid solution phase. It is thought that it is caused by being slower. On the other hand, when the polishing slurry for CMP according to this embodiment contains an oxidizing agent, a polished surface with small irregularities can be easily obtained, and the polishing rate of the alloy can be easily improved. The cause of this is not clear, but it is presumed that the oxidizing agent acts on both the solid solution phase and the impurity precipitation phase on the alloy surface to the same extent.
酸化剤としては、例えば、過酸化水素、過硫酸塩(例えば過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム)、硝酸、過ヨウ素酸塩(例えば過ヨウ素酸アンモニウム、過ヨウ素酸ナトリウム、過ヨウ素酸カリウム)、次亜塩素酸及びオゾン水からなる群より選ばれる少なくとも一種が挙げられ、中でも、過酸化水素が好ましい。酸化剤は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。過酸化水素は、通常、過酸化水素水として入手できるため、CMP用研磨液の希釈液として使用することができる。 Examples of the oxidizing agent include hydrogen peroxide, persulfate (eg, ammonium persulfate, sodium persulfate, potassium persulfate), nitric acid, periodate (eg, ammonium periodate, sodium periodate, potassium periodate). ), At least one selected from the group consisting of hypochlorous acid and ozone water. Among them, hydrogen peroxide is preferable. An oxidizing agent may be used individually by 1 type, and 2 or more types may be mixed and used for it. Since hydrogen peroxide is usually available as hydrogen peroxide water, it can be used as a diluent for CMP polishing liquid.
酸化剤の含有量は、アルミニウム系材料(例えばアルミニウム合金)の表面の凹凸を更に効果的に解消する観点、及び、アルミニウム系材料(例えばアルミニウム合金)の酸化が不充分となって研磨速度が低下することを防ぎやすくなる観点から、CMP用研磨液の全質量を基準として、0.01質量%以上が好ましい。また、アルミニウム系材料(例えばアルミニウム合金)に対するより高い研磨速度が得られやすい観点から、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.10質量%以上が特に好ましく、0.20質量%以上が極めて好ましい。酸化剤の含有量は、被研磨面に荒れ又はスクラッチが生じることを防ぎやすくなる観点から、CMP用研磨液の全質量を基準として、50質量%以下が好ましく、30質量%以下がより好ましく、10質量%以下が更に好ましい。なお、酸化剤として過酸化水素水を使用する場合、過酸化水素が最終的に前記範囲になるように換算して過酸化水素水を配合する。 The content of the oxidizing agent is effective in eliminating unevenness on the surface of the aluminum-based material (for example, aluminum alloy), and the polishing rate is lowered due to insufficient oxidation of the aluminum-based material (for example, aluminum alloy). From the viewpoint of making it easier to prevent this, 0.01% by mass or more is preferable based on the total mass of the polishing slurry for CMP. Further, from the viewpoint of easily obtaining a higher polishing rate for an aluminum-based material (for example, an aluminum alloy), 0.02% by mass or more is more preferable, 0.05% by mass or more is further preferable, and 0.10% by mass or more is particularly preferable. Preferably, 0.20 mass% or more is very preferable. The content of the oxidizing agent is preferably 50% by mass or less, more preferably 30% by mass or less, based on the total mass of the polishing slurry for CMP, from the viewpoint of easily preventing the surface to be polished from being rough or scratched. 10 mass% or less is still more preferable. In addition, when using hydrogen peroxide water as an oxidizing agent, it converts so that hydrogen peroxide may finally become the said range, and mix | blends hydrogen peroxide water.
(液状媒体)
本実施形態に係るCMP用研磨液における液状媒体は、特に制限はないが、脱イオン水、超純水等の水が好ましい。液状媒体の含有量は、他の構成成分の含有量を除いた研磨液の残部でよく、特に限定されない。
(Liquid medium)
The liquid medium in the CMP polishing liquid according to this embodiment is not particularly limited, but water such as deionized water or ultrapure water is preferable. The content of the liquid medium may be the remainder of the polishing liquid excluding the content of other components and is not particularly limited.
(pH)
本実施形態に係るCMP用研磨液のpHは、7.5〜11.5である。なお、pHは液温25℃におけるpHと定義する。pHが7.5以上であることにより、表面粗さを小さくし、且つ、アルミニウム系材料に対する研磨速度を向上させることができると共に、研磨後にスクラッチが残存することを抑制しやすくなる。同様の観点から、pHは、8.0以上が好ましく、8.5以上がより好ましく、9.0以上が更に好ましく、9.3以上が特に好ましく、9.5以上が極めて好ましい。pHが高い方がアルミニウム系材料(例えばアルミニウム合金)の研磨速度に優れる傾向があるが、一方で、pHが高すぎると、表面粗さが増大する傾向がある。したがって、小さい表面粗さと高い研磨速度とを両立する観点から、pHは、11.5以下であり、11.0以下が好ましく、10.5以下がより好ましく、10.3以下が更に好ましい。
(PH)
The pH of the CMP polishing liquid according to this embodiment is 7.5 to 11.5. The pH is defined as the pH at a liquid temperature of 25 ° C. When the pH is 7.5 or more, the surface roughness can be reduced, and the polishing rate for the aluminum-based material can be improved, and the remaining of the scratches after the polishing can be easily suppressed. From the same viewpoint, the pH is preferably 8.0 or more, more preferably 8.5 or more, still more preferably 9.0 or more, particularly preferably 9.3 or more, and extremely preferably 9.5 or more. The higher the pH, the better the polishing rate of the aluminum-based material (for example, aluminum alloy). On the other hand, when the pH is too high, the surface roughness tends to increase. Therefore, from the viewpoint of achieving both a small surface roughness and a high polishing rate, the pH is 11.5 or less, preferably 11.0 or less, more preferably 10.5 or less, and still more preferably 10.3 or less.
CMP用研磨液のpHは、硫酸、塩酸、硝酸、リン酸等の酸成分、又は、アンモニア、水酸化ナトリウム、水酸化カリウム、TMAH(水酸化テトラメチルアンモニウム)、イミダゾール等のアルカリ成分によって調整可能である。また、pHを安定化させるため、CMP用研磨液に緩衝液を添加してもよい。このような緩衝液としては、例えば、酢酸塩緩衝液及びフタル酸塩緩衝液が挙げられる。なお、pH7.5〜11.5の領域においては、グリシンが緩衝作用を有しており好適である。 The pH of the polishing liquid for CMP can be adjusted by acid components such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, or alkali components such as ammonia, sodium hydroxide, potassium hydroxide, TMAH (tetramethylammonium hydroxide), and imidazole. It is. In order to stabilize the pH, a buffer solution may be added to the CMP polishing solution. Examples of such a buffer include an acetate buffer and a phthalate buffer. In the region of pH 7.5 to 11.5, glycine has a buffering action and is suitable.
CMP用研磨液のpHは、pHメーター(例えば、電気化学計器株式会社製、型番:PHL−40)で測定することができる。pHの測定値としては、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、ホウ酸塩pH緩衝液 pH:9.18(25℃))を用いて、3点校正した後、電極をCMP用研磨液に入れて、2分以上経過して安定した後の値を採用することができる。 The pH of the polishing slurry for CMP can be measured with a pH meter (for example, model number: PHL-40, manufactured by Electrochemical Instrument Co., Ltd.). As pH measurement values, standard buffer solution (phthalate pH buffer solution pH: 4.01 (25 ° C), neutral phosphate pH buffer solution pH: 6.86 (25 ° C), borate pH buffer solution After calibrating three points using the liquid pH: 9.18 (25 ° C.), the value after the electrode is put into the CMP polishing liquid and stabilized for 2 minutes or more can be adopted.
本実施形態に係るCMP用研磨液は、界面活性剤等を更に含有することができる。 The CMP polishing liquid according to the present embodiment can further contain a surfactant and the like.
[貯蔵液]
本実施形態に係るCMP用研磨液は、貯蔵、運搬、保管等に係るコストを抑制する観点から、使用時に水等の液状媒体で希釈されて使用される貯蔵液として保管することができる。本実施形態に係る貯蔵液は、CMP用研磨液を得るための貯蔵液であり、液状媒体で希釈する(例えば、質量基準で2倍以上に希釈する)ことによりCMP用研磨液が得られる。本実施形態では、研磨の直前に液状媒体で貯蔵液を希釈してCMP用研磨液を調製してもよい。また、プラテン(研磨定盤)上に貯蔵液と液状媒体を供給し、プラテン上でCMP用研磨液を調製してもよい。
[Stock solution]
The CMP polishing liquid according to the present embodiment can be stored as a storage liquid that is diluted with a liquid medium such as water at the time of use from the viewpoint of suppressing costs related to storage, transportation, storage, and the like. The storage liquid according to the present embodiment is a storage liquid for obtaining a CMP polishing liquid, and the CMP polishing liquid is obtained by diluting with a liquid medium (for example, diluting twice or more on a mass basis). In the present embodiment, a CMP polishing liquid may be prepared by diluting a storage liquid with a liquid medium immediately before polishing. Further, a storage liquid and a liquid medium may be supplied on a platen (polishing surface plate) to prepare a CMP polishing liquid on the platen.
貯蔵液の希釈倍率(質量基準)の下限としては、倍率が高いほど貯蔵、運搬、保管等に係るコストの抑制効果が高い観点から、2倍以上が好ましく、3倍以上がより好ましい。また、希釈倍率の上限としては、特に制限はないが、10倍以下が好ましく、7倍以下がより好ましく、5倍以下が更に好ましい。このような希釈倍率の上限値である場合、貯蔵液に含まれる砥粒又は酸化剤等の含有量が高くなり過ぎることが抑制され、保管中の貯蔵液の安定性を維持しやすい傾向がある。なお、希釈倍率がd倍であるとき、貯蔵液中の砥粒及び酸化剤等の各含有量は、CMP用研磨液中の砥粒及び酸化剤等の各含有量のd倍である。 The lower limit of the dilution ratio (mass basis) of the stock solution is preferably 2 times or more and more preferably 3 times or more from the viewpoint that the higher the magnification is, the higher the cost suppressing effect relating to storage, transportation, storage and the like. The upper limit of the dilution rate is not particularly limited, but is preferably 10 times or less, more preferably 7 times or less, and still more preferably 5 times or less. When it is such an upper limit value of the dilution rate, it is suppressed that the content of abrasive grains or oxidizing agents contained in the storage liquid becomes too high, and the stability of the storage liquid during storage tends to be easily maintained. . When the dilution rate is d times, the contents of the abrasive grains and the oxidizing agent in the storage liquid are d times the respective contents of the abrasive grains and the oxidizing agent in the CMP polishing liquid.
[アルミニウム系材料を含む基体]
本実施形態に係るCMP用研磨液は、少なくともアルミニウム系材料を含む基体(例えば基板)のCMPに適している。アルミニウム系材料としては、純アルミニウム(1000系);Al−Cu(2000系)、Al−Mn(3000系)、Al−Si(4000系)、Al−Mg(5000系)、Al−Mg−Si(6000系)、Al−Zn−Mg(7000系)等のアルミニウム合金などが挙げられる。なお、純アルミニウムとは、意図的に異種元素を添加していないアルミニウムをいう。これらのアルミニウム系材料の名称は、日本工業規格(JIS)又は国際アルミニウム合金名に準じるものである。
[Substrate containing aluminum-based material]
The CMP polishing liquid according to this embodiment is suitable for CMP of a substrate (for example, a substrate) containing at least an aluminum-based material. As aluminum-based materials, pure aluminum (1000 series); Al-Cu (2000 series), Al-Mn (3000 series), Al-Si (4000 series), Al-Mg (5000 series), Al-Mg-Si (6000 series), Al-Zn-Mg (7000 series) and other aluminum alloys. Pure aluminum refers to aluminum to which a different element is not intentionally added. The names of these aluminum-based materials conform to Japanese Industrial Standards (JIS) or international aluminum alloy names.
本実施形態に係るCMP用研磨液は、純アルミニウムよりも硬い部分を有するアルミニウム合金の研磨に適している。純アルミニウムよりも硬い部分を有するアルミニウム系合金の具体例としては、Al−Cu(2000系)、Al−Mn(3000系)、Al−Si(4000系)、Al−Mg(5000系)、Al−Mg−Si(6000系)、Al−Zn−Mg(7000系)等が挙げられる。これらの中でも、本実施形態に係るCMP用研磨液の特性を活かしやすい観点から、Al−Mg−Si(A6063系)又はAl−Mg(A5052)等のアルミニウム合金が好ましい。 The CMP polishing liquid according to this embodiment is suitable for polishing an aluminum alloy having a portion harder than pure aluminum. Specific examples of the aluminum-based alloy having a portion harder than pure aluminum include Al-Cu (2000 series), Al-Mn (3000 series), Al-Si (4000 series), Al-Mg (5000 series), Al -Mg-Si (6000 series), Al-Zn-Mg (7000 series), etc. are mentioned. Among these, an aluminum alloy such as Al—Mg—Si (A6063) or Al—Mg (A5052) is preferable from the viewpoint of easily utilizing the characteristics of the polishing slurry for CMP according to the present embodiment.
アルミニウム系材料を含む基体としては、特に制限はないが、半導体基板等の基板、航空機部品、自動車部品等の部品、鉄道車両等の車両、電子機器、携帯型電子機器等の筐体などが挙げられる。本実施形態に係るCMP用研磨液を用いたCMPによれば、前記アルミニウム系材料(例えばアルミニウム合金)を含む基体の表面を充分に平滑に研磨することができる。このような研磨によって、美しい白銀色を呈する基体の表面が得られる。また、このような表面に塗装等の着色処理を行った場合も、美しい外観となる。したがって、本実施形態に係るCMP用研磨液は、美しい外観が要求される基体(例えば筐体)の研磨に特に好適である。本実施形態に係るCMP用研磨液は、例えば、研磨前における表面粗さ(Ra)が10nm以上である基体を、研磨後における表面粗さ(Ra)が3.5nm未満となるように研磨するために用いられてもよい。基体の表面粗さ(Ra)は、平滑な表面が得やすくなる観点から、研磨前において50nm以下であることが好ましく、30nm以下であることがより好ましく、20nm以下であることが更に好ましい。 The substrate containing an aluminum-based material is not particularly limited, and examples thereof include substrates such as semiconductor substrates, aircraft parts, parts such as automobile parts, vehicles such as railway vehicles, housings such as electronic devices and portable electronic devices. It is done. According to the CMP using the CMP polishing liquid according to the present embodiment, the surface of the substrate containing the aluminum-based material (for example, aluminum alloy) can be polished sufficiently smoothly. By such polishing, a surface of a substrate exhibiting a beautiful white silver color is obtained. Further, when such a surface is subjected to a coloring treatment such as painting, a beautiful appearance is obtained. Therefore, the CMP polishing liquid according to this embodiment is particularly suitable for polishing a substrate (for example, a casing) that requires a beautiful appearance. The CMP polishing liquid according to the present embodiment polishes, for example, a substrate having a surface roughness (Ra) of 10 nm or more before polishing so that the surface roughness (Ra) after polishing is less than 3.5 nm. May be used for From the viewpoint of easily obtaining a smooth surface, the surface roughness (Ra) of the substrate is preferably 50 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less before polishing.
[研磨方法]
本実施形態に係る研磨方法は、CMP用研磨液を用いて、アルミニウム系材料を含む基体を研磨する研磨工程を備えていてもよく、貯蔵液を液状媒体で希釈する(例えば質量基準で2倍以上に希釈する)ことにより得られるCMP用研磨液を用いて、アルミニウム系材料を含む基体を研磨する研磨工程を備えていてもよい。研磨工程において、基体の研磨前における表面粗さ(Ra)は例えば10nm以上であり、基体の研磨後における表面粗さ(Ra)は例えば3.5nm未満である。すなわち、研磨工程は、例えば、CMP用研磨液を用いて、10nm以上の表面粗さ(Ra)を有する基体を研磨して、3.5nm未満の表面粗さ(Ra)を有する基体を得る工程であってもよい。基体の表面粗さ(Ra)は、平滑な表面を得やすくなる観点から、研磨前において50nm以下であることが好ましく、30nm以下であることがより好ましく、20nm以下であることが更に好ましい。
[Polishing method]
The polishing method according to the present embodiment may include a polishing step of polishing a substrate containing an aluminum-based material using a CMP polishing liquid, and dilute the storage liquid with a liquid medium (for example, twice on a mass basis). A polishing step for polishing a substrate containing an aluminum-based material using a polishing slurry for CMP obtained by diluting as described above may be provided. In the polishing step, the surface roughness (Ra) before polishing of the substrate is, for example, 10 nm or more, and the surface roughness (Ra) after polishing of the substrate is, for example, less than 3.5 nm. That is, in the polishing step, for example, a substrate having a surface roughness (Ra) of 10 nm or more is polished by using a CMP polishing liquid to obtain a substrate having a surface roughness (Ra) of less than 3.5 nm. It may be. From the viewpoint of easily obtaining a smooth surface, the surface roughness (Ra) of the substrate is preferably 50 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less before polishing.
本実施形態に係る研磨方法では、公知の研磨装置を広く用いることができる。研磨装置としては、例えば、基体を保持するホルダーと、研磨パッドを貼り付けたプラテンとを有する一般的な研磨装置が挙げられる。プラテンには、例えば、プラテンの回転数を変更するためのモータ等が取り付けられていてもよい。 In the polishing method according to this embodiment, a known polishing apparatus can be widely used. Examples of the polishing apparatus include a general polishing apparatus having a holder for holding a substrate and a platen to which a polishing pad is attached. For example, a motor or the like for changing the rotation speed of the platen may be attached to the platen.
研磨パッドとしては、特に限定されないが、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が挙げられる。これらの研磨パッドの表面には、CMP用研磨液が溜まるような溝が形成されていることが好ましい。基体の研磨条件に制限はないが、基体の飛び出しを防止しやすい観点から、プラテンの回転数は200min−1以下であることが好ましい。研磨後の基体表面におけるスクラッチの発生を抑制しやすい観点から、研磨荷重は34.5kPa(5psi)以下であることが好ましい。 Although it does not specifically limit as a polishing pad, A general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. are mentioned. It is preferable that a groove is formed on the surface of these polishing pads so that the polishing liquid for CMP is accumulated. The polishing conditions for the substrate are not limited, but the platen rotation speed is preferably 200 min −1 or less from the viewpoint of easily preventing the substrate from popping out. The polishing load is preferably 34.5 kPa (5 psi) or less from the viewpoint of easily suppressing the occurrence of scratches on the substrate surface after polishing.
本実施形態に係る研磨方法では、例えば、プラテンに貼り付けられた研磨パッドに、アルミニウム系材料を含む基体を押圧した状態で、CMP用研磨液を基体と研磨パッドとの間にポンプ等により供給しながら、基体とプラテンとを相対的に動かす。これらの操作により、基体表面に対する化学機械研磨を行う。CMP用研磨液を研磨装置に供給する方法は、研磨の間、CMP用研磨液を研磨パッドに連続的に供給できるものであれば、特に限定されない。CMP用研磨液の供給量に制限はないが、研磨パッドの表面が常にCMP用研磨液で覆われていることが好ましい。貯蔵液と、水等の液状媒体とを基体と研磨パッドとの間に供給し、プラテン上で貯蔵液を希釈(例えば質量基準で2倍以上に希釈)しながら研磨を行ってもよい。 In the polishing method according to the present embodiment, for example, a CMP polishing liquid is supplied between the substrate and the polishing pad by a pump or the like in a state where the substrate including the aluminum-based material is pressed against the polishing pad attached to the platen. While moving the base and the platen relatively. By these operations, chemical mechanical polishing is performed on the substrate surface. The method for supplying the CMP polishing liquid to the polishing apparatus is not particularly limited as long as the CMP polishing liquid can be continuously supplied to the polishing pad during polishing. The supply amount of the polishing liquid for CMP is not limited, but it is preferable that the surface of the polishing pad is always covered with the polishing liquid for CMP. Polishing may be performed while supplying a storage liquid and a liquid medium such as water between the substrate and the polishing pad, and diluting the storage liquid on the platen (for example, diluting it twice or more on a mass basis).
研磨終了後の基体は、水、エタノール、イソプロピルアルコール等で洗浄後、基体上に付着した液滴(例えば水滴)をスピンドライヤ等により払い落としてから乾燥させることが好ましい。 The substrate after polishing is preferably washed with water, ethanol, isopropyl alcohol or the like, and then dried after removing droplets (for example, water droplets) adhering to the substrate with a spin dryer or the like.
以下、実施例により本発明を更に詳しく説明するが、本発明の技術思想を逸脱しない限り、本発明はこれらの実施例に制限されるものではない。なお、pHの測定は、電気化学計器株式会社製、型番:PHL−40を用いて行った。 EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not restrict | limited to these Examples, unless it deviates from the technical idea of this invention. In addition, the measurement of pH was performed using the electrochemical instrument company make, model number: PHL-40.
<実験1:砥粒の一次粒径の影響>
(実施例1)
脱イオン水にコロイダルシリカAの水分散液を添加した後、アミノ酸であるグリシンと、30質量%過酸化水素水を添加し、実施例1のCMP用研磨液1に対応する貯蔵液1を作製した。貯蔵液1の調製工程では、貯蔵液1の全質量を基準として、コロイダルシリカAの含有量を30質量%、グリシンの含有量を2.00質量%、過酸化水素の含有量を0.60質量%(30質量%過酸化水素水換算で2.00質量%)に調整して貯蔵液1を調製した。
<Experiment 1: Effect of primary particle size of abrasive grains>
Example 1
After adding an aqueous dispersion of colloidal silica A to deionized water, glycine, which is an amino acid, and 30% by mass hydrogen peroxide water are added to produce a
貯蔵液1を水で2倍に希釈する(貯蔵液を、貯蔵液と同質量の脱イオン水と混合し、希釈前の2倍の質量とすることをいう。以下同じ。)ことによってCMP用研磨液1を調製した。すなわち、CMP用研磨液1の全質量を基準として、コロイダルシリカAの含有量は15質量%、グリシンの含有量は1.00質量%、過酸化水素の含有量は0.30質量%であった。最後に、研磨液1のpHを水酸化カリウム(48質量%水酸化カリウム水溶液。以下同じ。)で10.0に調整した。なお、pH調整に必要な水酸化カリウムの量は微量であったため、CMP用研磨液における各成分の含有量は変化しなかった。以下、実施例2〜6及び比較例1においても同様であった。
For the CMP, the
(実施例2)
実施例2では、砥粒としてコロイダルシリカBを添加したこと以外は実施例1と同様に実験を行い、貯蔵液2及び研磨液2を作製した。研磨液2のpHは水酸化カリウムで10.0に調整した。
(Example 2)
In Example 2, an experiment was performed in the same manner as in Example 1 except that colloidal silica B was added as abrasive grains, and a
(実施例3)
実施例3では、砥粒としてコロイダルシリカCを添加したこと以外は実施例1と同様に実験を行い、貯蔵液3及び研磨液3を作製した。研磨液3のpHは水酸化カリウムで10.0に調整した。
Example 3
In Example 3, an experiment was performed in the same manner as in Example 1 except that colloidal silica C was added as abrasive grains, and a stock solution 3 and a polishing solution 3 were produced. The pH of the polishing liquid 3 was adjusted to 10.0 with potassium hydroxide.
(実施例4)
実施例4では、砥粒としてコロイダルシリカDを添加したこと以外は実施例1と同様に実験を行い、貯蔵液4及び研磨液4を作製した。研磨液4のpHは水酸化カリウムで10.0に調整した。
Example 4
In Example 4, an experiment was performed in the same manner as in Example 1 except that colloidal silica D was added as abrasive grains, and a stock solution 4 and a polishing solution 4 were produced. The pH of the polishing liquid 4 was adjusted to 10.0 with potassium hydroxide.
(実施例5)
実施例5では、砥粒としてコロイダルシリカEを添加したこと以外は実施例1と同様に実験を行い、貯蔵液5及び研磨液5を作製した。研磨液5のpHは水酸化カリウムで10.0に調整した。
(Example 5)
In Example 5, an experiment was performed in the same manner as in Example 1 except that colloidal silica E was added as abrasive grains, and a stock solution 5 and a polishing solution 5 were produced. The pH of the polishing liquid 5 was adjusted to 10.0 with potassium hydroxide.
(実施例6)
実施例6では、砥粒としてコロイダルシリカFを添加したこと以外は実施例1と同様に実験を行い、貯蔵液6及び研磨液6を作製した。研磨液6のpHは水酸化カリウムで10.0に調整した。
(Example 6)
In Example 6, an experiment was performed in the same manner as in Example 1 except that colloidal silica F was added as abrasive grains, and a stock solution 6 and a polishing solution 6 were produced. The pH of the polishing liquid 6 was adjusted to 10.0 with potassium hydroxide.
(比較例1)
比較例1では、砥粒としてコロイダルシリカGを添加したこと以外は実施例1と同様に実験を行い、貯蔵液1X及び研磨液1Xを作製した。研磨液1XのpHは水酸化カリウムで10.0に調整した。
(Comparative Example 1)
In Comparative Example 1, an experiment was performed in the same manner as in Example 1 except that colloidal silica G was added as abrasive grains, and a stock solution 1X and a polishing solution 1X were produced. The pH of the polishing liquid 1X was adjusted to 10.0 with potassium hydroxide.
[砥粒の一次粒径]
コロイダルシリカA〜Gを走査型電子顕微鏡で観察し、一次粒径を測定した。評価結果を表1に示す。
[Primary particle size of abrasive grains]
Colloidal silicas A to G were observed with a scanning electron microscope, and the primary particle size was measured. The evaluation results are shown in Table 1.
[CMP方法及び研磨特性評価方法]
以下の手順で、研磨装置を用いてCMP用研磨液による基体のCMPを行った。
[CMP method and polishing characteristic evaluation method]
The substrate was subjected to CMP using a polishing liquid for CMP using the polishing apparatus according to the following procedure.
プラテンに貼り付けられた研磨パッドに下記の基体を押圧した状態で、CMP用研磨液(アルミニウム用研磨液)を前記基体と前記研磨パッドとの間にポンプにより供給しながら、前記プラテンを回転させた。これらの操作により、基体表面のCMPを行った。 While the following substrate is pressed against the polishing pad affixed to the platen, the platen is rotated while a CMP polishing solution (aluminum polishing solution) is supplied between the substrate and the polishing pad by a pump. It was. By these operations, CMP of the substrate surface was performed.
研磨する基体としては、Al−Mg−Si系合金の板であるA6063を使用した。基体のサイズは横30mm×縦30mm×厚さ5mmであった。CMP前の板の表面にはスクラッチ及び初期凹凸があった。板の表面は完全に曇っており、充分に物体を映し出すことができない状態であった。 As the substrate to be polished, A6063, which is an Al—Mg—Si alloy plate, was used. The size of the substrate was 30 mm wide × 30 mm long × 5 mm thick. There were scratches and initial irregularities on the surface of the plate before CMP. The surface of the board was completely cloudy, and the object could not be sufficiently projected.
研磨装置として、株式会社ナノファクター製の型式FACT―200を用いた。研磨パッドとして、独立気泡を有する発泡ポリウレタン樹脂(フジボウ愛媛株式会社製)を用いた。研磨条件は以下の通りであった。 As a polishing apparatus, model FACT-200 manufactured by Nano Factor Co., Ltd. was used. As the polishing pad, a foamed polyurethane resin (made by Fujibo Atago Co., Ltd.) having closed cells was used. The polishing conditions were as follows.
(研磨条件)
研磨圧力:9.0kPa(1.3psi)
プラテンの回転数:150min−1(rpm)
CMP用研磨液の流量(供給量):3mL/min
研磨時間:10min
(Polishing conditions)
Polishing pressure: 9.0 kPa (1.3 psi)
Platen rotation speed: 150 min −1 (rpm)
Flow rate (supply amount) of polishing liquid for CMP: 3 mL / min
Polishing time: 10 min
(研磨速度)
各研磨液を用いたCMP前後の基体の質量を測定することにより、研磨された質量を求めた。基体の被研磨面の面積と密度の値(基体を純アルミニウムと仮定し、密度2.70g/cm3の値を使用)を用いて、研磨された質量を膜厚に換算し、研磨速度を算出した。評価結果を表1に示す。
(Polishing speed)
The polished mass was determined by measuring the mass of the substrate before and after CMP using each polishing liquid. Using the area and density values of the surface to be polished of the substrate (assuming the substrate is pure aluminum and using a value of density 2.70 g / cm 3 ), the polished mass is converted into a film thickness, and the polishing rate is Calculated. The evaluation results are shown in Table 1.
(CMP後の基体表面の平均表面粗さ)
表面粗さをJIS B 0601:2001に準拠して評価した。各研磨液を用いたCMP後の各基体の平均表面粗さ(Ra)を、非接触表面形状測定機を用いて測定した。非接触表面形状測定機として、走査型白色干渉法を利用したZygo社のNewView7200を用い、対物レンズX10(10倍)のモードで基体中央を3点測定し、得られた値の平均値をRaとした。測定範囲は0.70mm×0.53mm、光源は白色LEDであった。なお、CMP前の基体の平均表面粗さ(Ra)は10.3nmであった。評価結果を表1に示す。
(Average surface roughness of substrate surface after CMP)
The surface roughness was evaluated according to JIS B 0601: 2001. The average surface roughness (Ra) of each substrate after CMP using each polishing liquid was measured using a non-contact surface shape measuring machine. Using Zygo's NewView 7200 using scanning white interferometry as a non-contact surface shape measuring machine, the center of the substrate was measured at three points in the mode of the objective lens X10 (10 times), and the average value of the obtained values was Ra It was. The measurement range was 0.70 mm × 0.53 mm, and the light source was a white LED. The average surface roughness (Ra) of the substrate before CMP was 10.3 nm. The evaluation results are shown in Table 1.
(CMP後の基体表面の残存スクラッチ)
各研磨液を用いたCMP後の基体表面を目視で観察し、基体表面に残存するスクラッチについて評価した。スクラッチの数が0個である(全く無い)場合を「A」と評価し、スクラッチが1〜5個残っている場合を「B」と評価し、スクラッチの数が5個を超過する場合を「C」と評価した。評価結果を表1に示す。
(Remaining scratches on the substrate surface after CMP)
The surface of the substrate after CMP using each polishing liquid was visually observed, and scratches remaining on the surface of the substrate were evaluated. The case where the number of scratches is 0 (nothing at all) is evaluated as “A”, the case where 1 to 5 scratches remain is evaluated as “B”, and the number of scratches exceeds 5 Evaluated as “C”. The evaluation results are shown in Table 1.
[評価結果]
表1から明らかなように、一次粒径が150nm以下である砥粒を用いることで研磨速度及び研磨後の基体の平均表面粗さ(Ra)は良好であった。また、一次粒径が50〜150nmである砥粒を用いることで、特に優れた研磨速度が得られた。一方、一次粒径が150nmを超えた砥粒を用いると、平均表面粗さ(Ra)が不良である結果が得られた。砥粒の一次粒径が大きく、研磨速度が大きいほど、研磨後に残存するスクラッチの数が少なくなる結果が得られた。
[Evaluation results]
As is clear from Table 1, the polishing rate and the average surface roughness (Ra) of the substrate after polishing were good by using abrasive grains having a primary particle size of 150 nm or less. A particularly excellent polishing rate was obtained by using abrasive grains having a primary particle size of 50 to 150 nm. On the other hand, when an abrasive grain having a primary particle size exceeding 150 nm was used, a result that the average surface roughness (Ra) was poor was obtained. As the primary particle size of the abrasive grains was larger and the polishing rate was higher, the number of scratches remaining after polishing was reduced.
以上の結果より、一次粒径が150nm以下である砥粒を用いることで、アルミニウム系材料を含む基体の表面を高速且つ平滑に研磨できるCMP用研磨液が得られることが確認された。 From the above results, it was confirmed that by using abrasive grains having a primary particle size of 150 nm or less, a polishing slurry for CMP capable of polishing the surface of a substrate containing an aluminum-based material at high speed and smoothly can be obtained.
<実験2:アミノ酸の種類の影響>
(実施例7)
脱イオン水にコロイダルシリカCの水分散液を添加した後、アミノ酸であるグリシンと、30質量%過酸化水素水を添加し、実施例7のCMP用研磨液7に対応する貯蔵液7を作製した。貯蔵液7の調製工程では、貯蔵液7の全質量を基準として、コロイダルシリカCの含有量を30質量%、グリシンの含有量を0.50質量%、過酸化水素の含有量を0.60質量%(30質量%過酸化水素水換算で2.00質量%)に調整して貯蔵液7を調製した。
<Experiment 2: Effect of amino acid type>
(Example 7)
After adding an aqueous dispersion of colloidal silica C to deionized water, glycine, which is an amino acid, and 30% by mass hydrogen peroxide are added to produce a stock solution 7 corresponding to the polishing slurry 7 for CMP of Example 7. did. In the preparation process of the stock solution 7, based on the total mass of the stock solution 7, the content of colloidal silica C is 30% by mass, the content of glycine is 0.50% by mass, and the content of hydrogen peroxide is 0.60. The stock solution 7 was prepared by adjusting to mass% (2.00 mass% in terms of 30 mass% hydrogen peroxide solution).
貯蔵液7を水で2倍に希釈することによってCMP用研磨液7を調製した。すなわち、CMP用研磨液7の全質量を基準として、コロイダルシリカCの含有量は15質量%、グリシンの含有量は0.25質量%、過酸化水素の含有量は0.30質量%であった。最後に、研磨液7のpHを水酸化カリウムで10.0に調整した。なお、pH調整に必要な水酸化カリウムの量は微量であったため、CMP用研磨液における各成分の含有量は変化しなかった。以下、実施例8〜11及び比較例2においても同様であった。 A polishing liquid 7 for CMP was prepared by diluting the storage liquid 7 with water twice. That is, based on the total mass of the polishing slurry 7 for CMP, the colloidal silica C content was 15 mass%, the glycine content was 0.25 mass%, and the hydrogen peroxide content was 0.30 mass%. It was. Finally, the pH of the polishing liquid 7 was adjusted to 10.0 with potassium hydroxide. Since the amount of potassium hydroxide necessary for pH adjustment was very small, the content of each component in the CMP polishing liquid did not change. The same applies to Examples 8 to 11 and Comparative Example 2 below.
(実施例8)
実施例8では、アミノ酸としてアラニンを添加したこと以外は実施例7と同様に実験を行い、貯蔵液8及び研磨液8を作製した。研磨液8のpHは水酸化カリウムで10.0に調整した。
(Example 8)
In Example 8, an experiment was performed in the same manner as in Example 7 except that alanine was added as an amino acid, and a stock solution 8 and a polishing solution 8 were produced. The pH of the polishing liquid 8 was adjusted to 10.0 with potassium hydroxide.
(実施例9)
実施例9では、アミノ酸としてセリンを添加したこと以外は実施例7と同様に実験を行い、貯蔵液9及び研磨液9を作製した。研磨液9のpHは水酸化カリウムで10.0に調整した。
Example 9
In Example 9, an experiment was performed in the same manner as in Example 7 except that serine was added as an amino acid, and a stock solution 9 and a polishing solution 9 were produced. The pH of the polishing liquid 9 was adjusted to 10.0 with potassium hydroxide.
(実施例10)
実施例10では、アミノ酸としてチロシンを添加したこと以外は実施例7と同様に実験を行い、貯蔵液10及び研磨液10を作製した。研磨液10のpHは水酸化カリウムで10.0に調整した。
(Example 10)
In Example 10, an experiment was performed in the same manner as in Example 7 except that tyrosine was added as an amino acid, and a stock solution 10 and a polishing solution 10 were produced. The pH of the polishing liquid 10 was adjusted to 10.0 with potassium hydroxide.
(実施例11)
実施例11では、アミノ酸としてグルタミンを添加したこと以外は実施例7と同様に実験を行い、貯蔵液11及び研磨液11を作製した。研磨液11のpHは水酸化カリウムで10.0に調整した。
(Example 11)
In Example 11, an experiment was performed in the same manner as in Example 7 except that glutamine was added as an amino acid, and a stock solution 11 and a polishing solution 11 were produced. The pH of the polishing liquid 11 was adjusted to 10.0 with potassium hydroxide.
(比較例2)
比較例2では、アミノ酸を添加しなかったこと以外は実施例7と同様に実験を行い、貯蔵液2X及び研磨液2Xを作製した。研磨液2XのpHは水酸化カリウムで10.0に調整した。
(Comparative Example 2)
In Comparative Example 2, an experiment was performed in the same manner as in Example 7 except that no amino acid was added, and a stock solution 2X and a polishing solution 2X were produced. The pH of the polishing liquid 2X was adjusted to 10.0 with potassium hydroxide.
実施例7〜11及び比較例2について、実施例1と同様に研磨速度、平均表面粗さ(Ra)及び残存スクラッチを評価した。評価結果を表2に示す。 For Examples 7 to 11 and Comparative Example 2, the polishing rate, average surface roughness (Ra), and residual scratch were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
[評価結果]
表2から明らかなように、アミノ酸を含有するCMP用研磨液を用いることで研磨速度及び研磨後の基体の平均表面粗さ(Ra)は良好であった。一方、アミノ酸を用いない場合は、平均表面粗さ(Ra)が不良である結果が得られた。研磨速度が大きいほど、研磨後に残存するスクラッチの数が少なくなる結果が得られた。
[Evaluation results]
As is apparent from Table 2, the polishing rate and the average surface roughness (Ra) of the substrate after polishing were good by using a polishing slurry for CMP containing an amino acid. On the other hand, when no amino acid was used, a result that the average surface roughness (Ra) was poor was obtained. The larger the polishing speed, the smaller the number of scratches remaining after polishing.
以上の結果より、アミノ酸を用いることで、アルミニウム系材料を含む基体の表面を高速且つ平滑に研磨できるCMP用研磨液が得られることが確認された。 From the above results, it was confirmed that a polishing liquid for CMP capable of polishing the surface of a substrate containing an aluminum-based material at high speed and smoothly can be obtained by using amino acids.
<実験3:アミノ酸の含有量の影響>
(実施例12)
脱イオン水にコロイダルシリカBの水分散液を添加した後、アミノ酸であるグリシンと、30質量%過酸化水素水を添加し、実施例12のCMP用研磨液12に対応する貯蔵液12を作製した。貯蔵液12の調製工程では、貯蔵液12の全質量を基準として、コロイダルシリカBの含有量を30質量%、グリシンの含有量を0.50質量%、過酸化水素の含有量を0.60質量%(30質量%過酸化水素水換算で2.00質量%)に調整して貯蔵液12を調製した。
<Experiment 3: Effect of Amino Acid Content>
(Example 12)
After adding an aqueous dispersion of colloidal silica B to deionized water, glycine, which is an amino acid, and 30% by mass hydrogen peroxide water are added to prepare a stock solution 12 corresponding to the polishing slurry 12 for CMP of Example 12. did. In the preparation process of the stock solution 12, the content of the colloidal silica B is 30% by mass, the content of glycine is 0.50% by mass, and the content of hydrogen peroxide is 0.60, based on the total mass of the stock solution 12. The stock solution 12 was prepared by adjusting to mass% (2.00 mass% in terms of 30 mass% hydrogen peroxide solution).
貯蔵液12を水で2倍に希釈することによってCMP用研磨液12を調製した。すなわち、CMP用研磨液12の全質量を基準として、コロイダルシリカBの含有量は15質量%、グリシンの含有量は0.25質量%、過酸化水素の含有量は0.30質量%であった。最後に、研磨液12のpHを水酸化カリウムで10.0に調整した。なお、pH調整に必要な水酸化カリウムの量は微量であったため、CMP用研磨液における各成分の含有量は変化しなかった。以下、実施例13〜15及び比較例3においても同様であった。 A polishing liquid 12 for CMP was prepared by diluting the storage liquid 12 with water twice. That is, based on the total mass of the polishing slurry 12 for CMP, the colloidal silica B content was 15 mass%, the glycine content was 0.25 mass%, and the hydrogen peroxide content was 0.30 mass%. It was. Finally, the pH of the polishing liquid 12 was adjusted to 10.0 with potassium hydroxide. Since the amount of potassium hydroxide necessary for pH adjustment was very small, the content of each component in the CMP polishing liquid did not change. The same applies to Examples 13 to 15 and Comparative Example 3 below.
(実施例13)
実施例13では、貯蔵液に含まれるグリシンの含有量を1.00質量%に調整し、貯蔵液を水で2倍に希釈して得られる研磨液中のグリシンの含有量を0.50質量%に調整したこと以外は、実施例12と同様に実験を行い、貯蔵液13及び研磨液13を作製した。研磨液13のpHは10.0に調整した。
(Example 13)
In Example 13, the content of glycine contained in the stock solution is adjusted to 1.00% by mass, and the content of glycine in the polishing solution obtained by diluting the stock solution with water twice is 0.50%. Except for adjusting to%, the experiment was performed in the same manner as in Example 12 to prepare the stock solution 13 and the polishing solution 13. The pH of the polishing liquid 13 was adjusted to 10.0.
(実施例14)
実施例14では、貯蔵液に含まれるグリシンの含有量を1.50質量%に調整し、貯蔵液を水で2倍に希釈して得られる研磨液中のグリシンの含有量を0.75質量%に調整したこと以外は、実施例12と同様に実験を行い、貯蔵液14及び研磨液14を作製した。研磨液14のpHは10.0に調整した。
(Example 14)
In Example 14, the content of glycine contained in the stock solution is adjusted to 1.50% by mass, and the content of glycine in the polishing solution obtained by diluting the stock solution with water twice is 0.75%. Except for adjusting to%, the experiment was conducted in the same manner as in Example 12 to prepare the stock solution 14 and the polishing solution 14. The pH of the polishing liquid 14 was adjusted to 10.0.
(実施例15)
実施例15では、貯蔵液に含まれるグリシンの含有量を3.00質量%に調整し、貯蔵液を水で2倍に希釈して得られる研磨液中のグリシンの含有量を1.50質量%に調整したこと以外は、実施例12と同様に実験を行い、貯蔵液15及び研磨液15を作製した。研磨液15のpHは10.0に調整した。
(Example 15)
In Example 15, the content of glycine contained in the stock solution is adjusted to 3.00% by mass, and the content of glycine in the polishing solution obtained by diluting the stock solution twice with water is 1.50% by mass. Except for adjusting to%, the experiment was conducted in the same manner as in Example 12 to prepare the stock solution 15 and the polishing solution 15. The pH of the polishing liquid 15 was adjusted to 10.0.
(比較例3)
比較例3では、グリシンを添加しなかったこと以外は、実施例12と同様に実験を行い、貯蔵液3X及び研磨液3Xを作製した。研磨液3XのpHは10.0に調整した。
(Comparative Example 3)
In Comparative Example 3, an experiment was performed in the same manner as in Example 12 except that glycine was not added, and a stock solution 3X and a polishing solution 3X were produced. The pH of the polishing liquid 3X was adjusted to 10.0.
実施例12〜15及び比較例3について、実施例1と同様に研磨速度、平均表面粗さ(Ra)及び残存スクラッチを評価した。実施例2の結果と合わせて、評価結果を表3に示す。 For Examples 12 to 15 and Comparative Example 3, the polishing rate, average surface roughness (Ra), and residual scratch were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3 together with the results of Example 2.
[評価結果]
表3から明らかなように、アミノ酸の含有量が増すに従い、研磨速度及び研磨後の基体の平均表面粗さ(Ra)は良好であった。一方、アミノ酸を用いない場合は、平均表面粗さ(Ra)が不良である結果が得られた。研磨速度が大きいほど、研磨後に残存するスクラッチの数が少なくなる結果が得られた。
[Evaluation results]
As apparent from Table 3, the polishing rate and the average surface roughness (Ra) of the substrate after polishing were good as the amino acid content increased. On the other hand, when no amino acid was used, a result that the average surface roughness (Ra) was poor was obtained. The larger the polishing speed, the smaller the number of scratches remaining after polishing.
<実験4:pHの影響>
(比較例4)
比較例4では、実施例3の貯蔵液3と同様に貯蔵液4Xを作製した。貯蔵液4Xを水で2倍に希釈した後、硫酸(98質量%硫酸水溶液。以下同じ。)でpHを7.0に調整して研磨液4Xを作製した。なお、pH調整に必要な硫酸の量は微量であったため、CMP用研磨液における各成分の含有量は変化しなかった。以下、実施例16においても同様であった。
<Experiment 4: Effect of pH>
(Comparative Example 4)
In Comparative Example 4, a stock solution 4X was prepared in the same manner as the stock solution 3 of Example 3. After diluting the stock solution 4X with water, the pH was adjusted to 7.0 with sulfuric acid (98% by mass sulfuric acid aqueous solution; the same applies hereinafter) to prepare a polishing solution 4X. Since the amount of sulfuric acid necessary for pH adjustment was very small, the content of each component in the CMP polishing liquid did not change. The same applies to Example 16 below.
(実施例16)
実施例16では、実施例3の貯蔵液3と同様に貯蔵液16を作製した。貯蔵液16を水で2倍に希釈した後、硫酸でpHを8.0に調整して研磨液16を作製した。
(Example 16)
In Example 16, the stock solution 16 was prepared in the same manner as the stock solution 3 of Example 3. After diluting the stock solution 16 with water twice, the pH was adjusted to 8.0 with sulfuric acid to prepare a polishing solution 16.
(実施例17)
実施例17では、実施例3の貯蔵液3と同様に貯蔵液17を作製した。貯蔵液17を水で2倍に希釈した後、水酸化カリウムでpHを9.0に調整して研磨液17を作製した。なお、pH調整に必要な水酸化カリウムの量は微量であったため、CMP用研磨液における各成分の含有量は変化しなかった。以下、実施例18及び比較例5においても同様であった。
(Example 17)
In Example 17, the stock solution 17 was prepared in the same manner as the stock solution 3 of Example 3. After diluting the stock solution 17 with water twice, the pH was adjusted to 9.0 with potassium hydroxide to prepare a polishing solution 17. Since the amount of potassium hydroxide necessary for pH adjustment was very small, the content of each component in the CMP polishing liquid did not change. The same applies to Example 18 and Comparative Example 5 below.
(実施例18)
実施例18では、実施例3の貯蔵液3と同様に貯蔵液18を作製した。貯蔵液18を水で2倍に希釈した後、水酸化カリウムでpHを11.0に調整して研磨液18を作製した。
(Example 18)
In Example 18, the stock solution 18 was prepared in the same manner as the stock solution 3 of Example 3. After diluting the stock solution 18 with water, the pH was adjusted to 11.0 with potassium hydroxide to prepare a polishing solution 18.
(比較例5)
比較例5では、実施例3の貯蔵液3と同様に貯蔵液5Xを作製した。貯蔵液5Xを水で2倍に希釈した後、水酸化カリウムでpHを12.0に調整して研磨液5Xを作製した。
(Comparative Example 5)
In Comparative Example 5, a stock solution 5X was prepared in the same manner as the stock solution 3 of Example 3. After diluting the stock solution 5X with water twice, the pH was adjusted to 12.0 with potassium hydroxide to prepare a polishing solution 5X.
実施例16〜18及び比較例4〜5について、実施例1と同様に研磨速度、平均表面粗さ(Ra)及び残存スクラッチを評価した。実施例3の結果と合わせて、評価結果を表4に示す。 For Examples 16 to 18 and Comparative Examples 4 to 5, the polishing rate, the average surface roughness (Ra), and the remaining scratch were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4 together with the results of Example 3.
[評価結果]
表4から明らかなように、pH7.5〜11.5のCMP用研磨液を用いることで研磨速度及び研磨後の基体の平均表面粗さ(Ra)は良好であった。一方、pHが7.5未満の場合、又は、pHが11.5を超える場合、平均表面粗さ(Ra)が不良である結果が得られた。研磨速度が大きいほど、研磨後に残存するスクラッチの数が少なくなる結果が得られた。
[Evaluation results]
As is clear from Table 4, the polishing rate and the average surface roughness (Ra) of the substrate after polishing were good by using a CMP polishing liquid having a pH of 7.5 to 11.5. On the other hand, when the pH is less than 7.5 or when the pH exceeds 11.5, a result that the average surface roughness (Ra) is poor was obtained. The larger the polishing speed, the smaller the number of scratches remaining after polishing.
以上の結果より、pHが7.5〜11.5であるCMP用研磨液を用いることで、アルミニウム系材料を含む基体の表面を高速且つ平滑に研磨できることが確認された。 From the above results, it was confirmed that the surface of the substrate containing the aluminum-based material can be polished smoothly at high speed by using a CMP polishing liquid having a pH of 7.5 to 11.5.
<実験5:酸化剤の影響>
(実施例19)
脱イオン水にコロイダルシリカBの水分散液を添加した後、アミノ酸であるグリシンと、30質量%過酸化水素水を添加し、実施例19のCMP用研磨液19に対応する貯蔵液19を作製した。貯蔵液19の調製工程では、貯蔵液19の全質量を基準として、コロイダルシリカBの含有量を30質量%、グリシンの含有量を1.50質量%、過酸化水素の含有量を0.06質量%(30質量%過酸化水素水換算で0.20質量%)に調整して貯蔵液19を調製した。
<Experiment 5: Effect of oxidizing agent>
(Example 19)
After adding an aqueous dispersion of colloidal silica B to deionized water, glycine, which is an amino acid, and 30% by mass hydrogen peroxide are added to produce a stock solution 19 corresponding to the CMP polishing solution 19 of Example 19. did. In the preparation process of the stock solution 19, the colloidal silica B content is 30% by mass, the glycine content is 1.50% by mass, and the hydrogen peroxide content is 0.06, based on the total mass of the stock solution 19. The stock solution 19 was prepared by adjusting to mass% (0.20 mass% in terms of 30 mass% hydrogen peroxide solution).
貯蔵液19を水で2倍に希釈することによってCMP用研磨液19を調製した。すなわち、CMP用研磨液19の全質量を基準として、コロイダルシリカBの含有量は15質量%、グリシンの含有量は0.75質量%、過酸化水素の含有量は0.03質量%であった。最後に、研磨液19のpHを水酸化カリウムで10.0に調整した。なお、pH調整に必要な水酸化カリウムの量は微量であったため、CMP用研磨液における各成分の含有量は変化しなかった。以下、実施例20〜22においても同様であった。 A CMP polishing liquid 19 was prepared by diluting the storage liquid 19 with water twice. That is, based on the total mass of the polishing liquid 19 for CMP, the colloidal silica B content was 15 mass%, the glycine content was 0.75 mass%, and the hydrogen peroxide content was 0.03% mass. It was. Finally, the pH of the polishing liquid 19 was adjusted to 10.0 with potassium hydroxide. Since the amount of potassium hydroxide necessary for pH adjustment was very small, the content of each component in the CMP polishing liquid did not change. The same applies to Examples 20 to 22 below.
(実施例20)
実施例20では、貯蔵液に含まれる過酸化水素の含有量を0.20質量%(30質量%過酸化水素水換算で0.67質量%)に調整し、貯蔵液を水で2倍に希釈して得られる研磨液中の過酸化水素の含有量を0.10質量%に調整したこと以外は、実施例19と同様に実験を行い、貯蔵液20及び研磨液20を作製した。研磨液20のpHは10.0に調整した。
(Example 20)
In Example 20, the content of hydrogen peroxide contained in the stock solution is adjusted to 0.20% by mass (0.67% by mass in terms of 30% by mass hydrogen peroxide solution), and the stock solution is doubled with water. Except that the content of hydrogen peroxide in the polishing liquid obtained by dilution was adjusted to 0.10% by mass, an experiment was performed in the same manner as in Example 19 to prepare the storage liquid 20 and the polishing liquid 20. The pH of the polishing liquid 20 was adjusted to 10.0.
(実施例21)
実施例21では、貯蔵液に含まれる過酸化水素の含有量を2.00質量%(30質量%過酸化水素水換算で6.67質量%)に調整し、貯蔵液を水で2倍に希釈して得られる研磨液中の過酸化水素の含有量を1.00質量%に調整したこと以外は、実施例19と同様に実験を行い、貯蔵液21及び研磨液21を作製した。研磨液21のpHは10.0に調整した。
(Example 21)
In Example 21, the content of hydrogen peroxide contained in the stock solution was adjusted to 2.00% by mass (6.67% by mass in terms of 30% by mass hydrogen peroxide solution), and the stock solution was doubled with water. Except that the content of hydrogen peroxide in the polishing liquid obtained by dilution was adjusted to 1.00% by mass, an experiment was conducted in the same manner as in Example 19 to prepare a storage liquid 21 and a polishing liquid 21. The pH of the polishing liquid 21 was adjusted to 10.0.
(実施例22)
実施例22では、過酸化水素水を添加しなかったこと以外は、実施例19と同様に実験を行い、貯蔵液22及び研磨液22を作製した。研磨液22のpHは10.0に調整した。
(Example 22)
In Example 22, an experiment was performed in the same manner as in Example 19 except that the hydrogen peroxide solution was not added, and a stock solution 22 and a polishing solution 22 were produced. The pH of the polishing liquid 22 was adjusted to 10.0.
実施例19〜22について、実施例1と同様に研磨速度、平均表面粗さ(Ra)及び残存スクラッチを評価した。実施例2の結果と合わせて、評価結果を表5に示す。 For Examples 19 to 22, the polishing rate, the average surface roughness (Ra), and the remaining scratch were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 5 together with the results of Example 2.
[評価結果]
表5から明らかなように、CMP用研磨液が酸化剤を含有することにより、酸化剤を用いない場合に比して研磨速度及び研磨後の基体の平均表面粗さ(Ra)が更に良好な結果が得られた。研磨速度が大きいほど、研磨後に残存するスクラッチの数が少なくなる結果が得られた。
[Evaluation results]
As is apparent from Table 5, the polishing slurry for CMP contains an oxidizing agent, so that the polishing rate and the average surface roughness (Ra) of the substrate after polishing are even better than when no oxidizing agent is used. Results were obtained. The larger the polishing speed, the smaller the number of scratches remaining after polishing.
以上の結果より、酸化剤を含有するCMP用研磨液を用いることで、アルミニウム系材料に異種元素が添加されている場合(本実施例ではMg(0.45〜0.9質量%)、Si(0.2〜0.6質量%))であっても、アルミニウム系材料の表面を更に高速且つ平滑に研磨できることが確認された。 From the above results, by using a CMP polishing liquid containing an oxidant, when a different element is added to the aluminum-based material (in this example, Mg (0.45 to 0.9 mass%), Si (0.2 to 0.6% by mass)), it was confirmed that the surface of the aluminum-based material can be polished more rapidly and smoothly.
本発明に係るCMP用研磨液、貯蔵液及びこれらを用いた研磨方法は、半導体基板等の基板、航空機部品、自動車部品等の部品、鉄道車両等の車両、電子機器、携帯型電子機器等の筐体などのCMPに好適である。 A polishing liquid for CMP, a storage liquid and a polishing method using these according to the present invention include a substrate such as a semiconductor substrate, an aircraft part, a part such as an automobile part, a vehicle such as a railway vehicle, an electronic device, and a portable electronic device. Suitable for CMP of a housing or the like.
1…粒子、2…外接長方形、X…長径の長さ、Y…短径の長さ。
DESCRIPTION OF
Claims (10)
砥粒、アミノ酸及び液状媒体を含有し、
前記砥粒の一次粒径が150nm以下であり、
前記CMP用研磨液のpHが7.5〜11.5である、CMP用研磨液。 A CMP polishing liquid for polishing a substrate containing an aluminum-based material,
Containing abrasive grains, amino acids and liquid medium,
The primary particle size of the abrasive grains is 150 nm or less,
A CMP polishing liquid, wherein the CMP polishing liquid has a pH of 7.5 to 11.5.
液状媒体で希釈することにより前記CMP用研磨液が得られる、貯蔵液。 A storage liquid for obtaining the CMP polishing liquid according to any one of claims 1 to 6,
A storage liquid in which the CMP polishing liquid is obtained by diluting with a liquid medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013127538A JP2014208390A (en) | 2013-03-27 | 2013-06-18 | Cmp polishing liquid, storage liquid and polishing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013066254 | 2013-03-27 | ||
JP2013066254 | 2013-03-27 | ||
JP2013127538A JP2014208390A (en) | 2013-03-27 | 2013-06-18 | Cmp polishing liquid, storage liquid and polishing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014208390A true JP2014208390A (en) | 2014-11-06 |
Family
ID=51902997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013127538A Withdrawn JP2014208390A (en) | 2013-03-27 | 2013-06-18 | Cmp polishing liquid, storage liquid and polishing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014208390A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019009439A (en) * | 2017-06-21 | 2019-01-17 | ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド | Buffered cmp polishing solution |
-
2013
- 2013-06-18 JP JP2013127538A patent/JP2014208390A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019009439A (en) * | 2017-06-21 | 2019-01-17 | ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド | Buffered cmp polishing solution |
JP7131977B2 (en) | 2017-06-21 | 2022-09-06 | ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド | buffered CMP polishing solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5176077B2 (en) | Polishing liquid for metal and polishing method using the same | |
TWI730970B (en) | Polishing method, composition for removing impurities, substrate and manufacturing method thereof | |
WO2015146282A1 (en) | Polishing composition | |
TW201422798A (en) | Polishing composition | |
JP2010153782A (en) | Polishing method for substrate | |
US9616542B2 (en) | Manufacture of synthetic quartz glass substrate | |
JP2009161371A (en) | Silica sol and manufacturing method thereof | |
KR20140110869A (en) | Method for polishing alloy material and method for producing alloy material | |
TW201430115A (en) | Polishing composition | |
JPWO2016208301A1 (en) | Polishing composition | |
TW201600591A (en) | CMP slurry compositions and methods for aluminum polishing | |
TW201425556A (en) | Polishing composition | |
TW201425557A (en) | Polishing solution for cmp, stock solution, and polishing method | |
KR20140119096A (en) | Polishing fluid for metal and polishing method | |
US20050045852A1 (en) | Particle-free polishing fluid for nickel-based coating planarization | |
JP2014208390A (en) | Cmp polishing liquid, storage liquid and polishing method | |
WO2014112418A1 (en) | Polishing solution for metal and polishing method | |
JP2015021092A (en) | Polishing liquid for cmp, storage liquid and polishing method | |
WO2014106944A1 (en) | Method for polishing alloy material and method for manufacturing alloy material | |
WO2014065029A1 (en) | Polishing solution for chemical mechanical polishing (cmp), stock solution, and polishing method | |
TWI664318B (en) | Chemical-mechanical processing slurry and methods | |
JP2015153820A (en) | Polishing liquid for cmp, stock solution and polishing method | |
JP2013158860A (en) | Polishing fluid for cmp, storage fluid, and polishing method | |
JP2015025108A (en) | Polishing liquid for stainless steel, stored liquid, and method for polishing stainless steel | |
JP2002151451A (en) | Adjustment method of abrasive speed ratio, chemical mechanical abrasive water-based dispersing member, and manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160420 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20160801 |