JP2014207989A - Protein adsorbing material, production method thereof, and blood purifier - Google Patents

Protein adsorbing material, production method thereof, and blood purifier Download PDF

Info

Publication number
JP2014207989A
JP2014207989A JP2014071769A JP2014071769A JP2014207989A JP 2014207989 A JP2014207989 A JP 2014207989A JP 2014071769 A JP2014071769 A JP 2014071769A JP 2014071769 A JP2014071769 A JP 2014071769A JP 2014207989 A JP2014207989 A JP 2014207989A
Authority
JP
Japan
Prior art keywords
protein
adsorbing material
adsorption
microglobulin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071769A
Other languages
Japanese (ja)
Other versions
JP6291970B2 (en
Inventor
美和 徳山
Miwa Tokuyama
美和 徳山
上野 良之
Yoshiyuki Ueno
良之 上野
洋暁 藤枝
Hiroaki Fujieda
洋暁 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2014071769A priority Critical patent/JP6291970B2/en
Publication of JP2014207989A publication Critical patent/JP2014207989A/en
Application granted granted Critical
Publication of JP6291970B2 publication Critical patent/JP6291970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Cardiology (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbing material having high blood group compatibility while suppressing deterioration of protein adsorbability.SOLUTION: The protein adsorbing material satisfies the following items (a)-(c). The item (a) is that a ratio of a nitrogen atom to all atoms on the surface of the protein adsorbing material is 0.1-8 (atomic number%) when measured by an X-ray electron spectroscopy (ESCA) method. The item (b) is that the amount of the β-microglobulin to be adsorbed thereon is 0.05 μg/cmor larger. The item (c) is that the number of the blood platelets to be stuck to the surface thereof is 10 (pieces/4.3×10μm) or smaller.

Description

本発明は、高いタンパク質吸着能を持ち、かつ優れた血液適合性を示す吸着材料およびこれを内蔵してなる血液浄化器に関するものである。   The present invention relates to an adsorbing material having a high protein adsorbing ability and excellent blood compatibility, and a blood purifier incorporating the adsorbing material.

体液から物質を除去する方法として、人工腎臓に代表される体外循環など生体外へ体液を取り出し、目的物質を透析や吸着や濾過の原理により除去した後に生体内に体液を戻す血液浄化器を用いる方法がある。人体に有用なタンパク質であるアルブミンに分子量が近い中分子量以上のタンパク質は、透析や濾過の原理のみによる除去では、アルブミンも除去してしまう問題がある。一方、吸着の原理による除去では、アルブミンの損失を抑制しつつ、除去対象タンパク質を効率的に除去することができる。   As a method for removing substances from body fluids, a blood purifier is used that removes body fluids outside the body, such as extracorporeal circulation typified by an artificial kidney, and returns the body fluids to the body after removing the target substance by the principle of dialysis, adsorption or filtration There is a way. A protein having a medium molecular weight or higher, which has a molecular weight close to that of albumin, which is a protein useful for the human body, has a problem that albumin is also removed by removal only by the principle of dialysis or filtration. On the other hand, in the removal based on the principle of adsorption, the protein to be removed can be efficiently removed while suppressing the loss of albumin.

中空糸を用いてタンパク質を吸着除去する方法が特許文献1に開示されている。ここでは、基材を親水性高分子を含む水溶液と接触下、放射線照射することが記載されている。また、基材は分離膜として用いられるものであり、形状として「平膜、中空糸膜」が挙げられている。ここでは、中空糸膜が好ましいとあり、実施例等においては専ら中空糸膜が用いられており、中空糸膜の内側にのみ血液を接触させる態様のみが記載されている。タンパク質の吸着除去を効率的に行う観点から見ると、中空糸膜の内側という領域のみを使用して吸着を行っており、吸着面積は比較的小さく、その上、親水性高分子としてポリアルキレングリコールやポリビニルピロリドンを用いており、この組み合わせでは十分なタンパク質除去率が得られないものであった。   Patent Document 1 discloses a method for adsorbing and removing proteins using a hollow fiber. Here, it is described that the substrate is irradiated with radiation in contact with an aqueous solution containing a hydrophilic polymer. The substrate is used as a separation membrane, and “flat membrane, hollow fiber membrane” is mentioned as the shape. Here, a hollow fiber membrane is preferred, and in the examples and the like, a hollow fiber membrane is exclusively used, and only an embodiment in which blood is brought into contact only inside the hollow fiber membrane is described. From the standpoint of efficient protein adsorption and removal, adsorption is performed using only the area inside the hollow fiber membrane, the adsorption area is relatively small, and in addition, polyalkylene glycol as a hydrophilic polymer. And polyvinyl pyrrolidone were used, and a sufficient protein removal rate could not be obtained with this combination.

一方で、血液と接触する材料には血液適合性が重要である。材料表面に血小板等の血液凝固系物質が付着すると、材料表面が覆われ、除去対象タンパク質を十分に除去することができないため、これらの成分が付着しない材料が必要である。形状を中空糸とする吸着材料の場合、設計が良好になされなければ中空糸の内側に血液が滞留しやすく血液凝固系物質が付着しやすくなるという懸念がある。   On the other hand, blood compatibility is important for materials that come into contact with blood. If blood coagulation substances such as platelets adhere to the surface of the material, the surface of the material is covered and the protein to be removed cannot be sufficiently removed. Therefore, a material to which these components do not adhere is necessary. In the case of an adsorbing material having a hollow fiber shape, there is a concern that blood is likely to stay inside the hollow fiber and a blood coagulation substance is likely to adhere unless the design is made well.

また、特に人工腎臓の分野では、基材表面の親水化処理が血液適合性の向上に有効であることが広く知られており、例えば血液浄化用分離膜の素材として用いられるポリスルホン系ポリマーからなる分離膜に血液適合性を付与するために、分離膜を親水性高分子でコーティングする方法が特許文献2に開示されており、親水性高分子の例としてはポリビニルピロリドン,ポリエチレングリコール,ポリビニルアルコール,ポリプロピレングリコールが挙げられている。しかしこの方法をタンパク質を吸着できる材料に適用してタンパク質の吸着を主な目的とした場合、血液凝固系物質の付着抑制と除去対象タンパク質の吸着を両立することができなかった。   In particular, in the field of artificial kidneys, it is widely known that hydrophilic treatment of the substrate surface is effective for improving blood compatibility, and it is made of, for example, a polysulfone polymer used as a material for a separation membrane for blood purification. In order to impart blood compatibility to the separation membrane, a method for coating the separation membrane with a hydrophilic polymer is disclosed in Patent Document 2, and examples of the hydrophilic polymer include polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, Polypropylene glycol is mentioned. However, when this method is applied to a material capable of adsorbing proteins and the main purpose is to adsorb proteins, it has been impossible to achieve both suppression of adhesion of blood coagulation substances and adsorption of proteins to be removed.

一方で、特許文献3には、上記親水性高分子と共にエステル基含有ポリマーを分離膜の表面に局在化させて血液適合性を向上し、かつ膜性能を維持する発明が記載されており、具体的には酢酸ビニル基含有ポリマー等が挙げられている。しかしながら、基材としてタンパク質吸着材料は用いられてなく、当該材料を用いて吸着と血液適合性を両立する技術的思想の記載はない。   On the other hand, Patent Document 3 describes an invention in which an ester group-containing polymer is localized on the surface of a separation membrane together with the hydrophilic polymer to improve blood compatibility and maintain membrane performance. Specific examples include polymers containing vinyl acetate groups. However, no protein-adsorbing material is used as a base material, and there is no description of a technical idea that achieves both adsorption and blood compatibility using the material.

特開2011−183384号公報JP 2011-183384 A 特開平6−238139号JP-A-6-238139 国際公開第2009/123088号公報International Publication No. 2009/123088

本発明は、β−マイクログロブリン等のタンパク吸着能を維持しつつ、血液適合性が付与されたタンパク質吸着材料を提供することを課題とする。 An object of the present invention is to provide a protein adsorbing material to which blood compatibility is imparted while maintaining protein adsorbing ability such as β 2 -microglobulin.

前記課題を達成するため、本発明は下記の構成からなる。
1.以下の項目を満たすことを特徴とするタンパク質吸着材料。
(a)X線電子分光法(ESCA)により検出される、表面の全原子に対する窒素原子の割合が、0.1(原子数%)以上、8(原子数%)以下
(b)β−マイクログロブリン吸着量0.05μg/cm以上
(c)表面の血小板付着数が10(個/4.3×10μm)以下
2.1のタンパク質吸着材料が内蔵されてなることを特徴とする血液浄化器。
3.ポリメチルメタクリレート、ポリスチレン、ポリプロピレン、セルロース系ポリマー、二酸化ケイ素、アルミノケイ酸塩、無定形炭素から選ばれる少なくとも一つを含む基材を、ビニルピロリドンの単量体が与える繰り返し単位を含む共重合体溶液に接触させ、放射線照射して得られるタンパク質吸着材料を内蔵してなることを特徴とする血液浄化器の製造方法。
In order to achieve the above object, the present invention comprises the following constitution.
1. A protein adsorbing material characterized by satisfying the following items.
(A) The ratio of nitrogen atoms to all atoms on the surface detected by X-ray electron spectroscopy (ESCA) is 0.1 (number of atoms%) or more and 8 (number of atoms%) or less (b) β 2 − Microglobulin adsorption amount is 0.05 μg / cm 2 or more (c) The number of platelet adhesion on the surface is 10 (pieces / 4.3 × 10 3 μm 2 ) or less 2.1, and the protein adsorption material is incorporated. Blood purifier.
3. Copolymer solution containing a repeating unit provided by a monomer of vinyl pyrrolidone on a substrate containing at least one selected from polymethyl methacrylate, polystyrene, polypropylene, cellulosic polymer, silicon dioxide, aluminosilicate, and amorphous carbon A method for producing a blood purifier, comprising a protein adsorbing material obtained by contacting with water and irradiating with radiation.

上記の通り、本発明は、タンパク質の吸着に最適なサイズの細孔を持ち、かつそのサイズが均一な吸着材料に関するものであり優れたタンパク質吸着特性を維持しつつ血液適合性を劇的に向上させたことを見出したものである。ここで、基材とはタンパク質の吸着能を有する材料のことを指す。   As described above, the present invention relates to an adsorbent material having pores of an optimal size for protein adsorption and a uniform size, and dramatically improves blood compatibility while maintaining excellent protein adsorption characteristics. This is what we found. Here, the base material refers to a material having protein adsorption ability.

吸着材料表面のビニルピロリドンの単量体が与える繰り返し単位を含むポリマー(ビニルピロリドン含有ポリマー)が少なすぎると十分な血液適合性が得られず、多すぎるとタンパク質吸着能が低下してしまう。本発明は、相反すると考えられていた両特性を両立させるために最適なビニルピロリドン含有ポリマーの量を見出したものである。   If the polymer (vinylpyrrolidone-containing polymer) containing a repeating unit provided by the vinylpyrrolidone monomer on the surface of the adsorbing material is too small, sufficient blood compatibility cannot be obtained, and if it is too much, the protein adsorbing ability decreases. The present invention has found an optimal amount of a vinylpyrrolidone-containing polymer in order to achieve both properties that are considered to be contradictory.

ここで、血液適合性やそれを与える親水性ポリマー等を物質として特定して記載することは困難であるため、先ず、上記要件(a)の通り、窒素原子の量を条件化して物質としての特性を規定している。ただし、どの様な窒素原子、または窒素原子含有化合物を用いてもよいということではないので、要件(b)および(c)により上記相反すると考えられていた両特性を規定して発明を特定している。   Here, since it is difficult to specify and describe blood compatibility or hydrophilic polymer that gives it as a substance, first, as described in the above requirement (a), the amount of nitrogen atoms is conditioned as a substance. It defines the characteristics. However, since it does not mean that any nitrogen atom or nitrogen atom-containing compound may be used, the invention is specified by specifying both characteristics that were considered to be in conflict with each other according to requirements (b) and (c). ing.

窒素原子については更に、元素分析により検出されるタンパク質吸着材料を構成する全原子に対する当該窒素原子の濃度が0.0001重量%以上、1重量%以下であることが好ましい。   Regarding nitrogen atoms, it is preferable that the concentration of the nitrogen atoms with respect to all atoms constituting the protein adsorbing material detected by elemental analysis is 0.0001 wt% or more and 1 wt% or less.

また、より具体的に化合物を特定すると、上記ESCAにより検出される表面の全原子に対する窒素原子の割合、上記元素分析により検出されるタンパク質吸着材料を構成する全原子に対する窒素原子の濃度のうち少なくとも一つが、ビニルピロリドンの単量体が与える繰り返し単位を含む共重合体に由来することが好ましい。   Further, when the compound is specified more specifically, at least of the ratio of nitrogen atoms to all atoms on the surface detected by the ESCA, and the concentration of nitrogen atoms with respect to all atoms constituting the protein adsorbing material detected by the elemental analysis, One is preferably derived from a copolymer containing a repeating unit provided by a monomer of vinyl pyrrolidone.

さらにより特定すれば、上記ビニルピロリドンの単量体が与える繰り返し単位を含む共重合体が、さらにカルボン酸ビニルエステル、アクリル酸エステルおよびメタクリル酸エステル、から選ばれる少なくとも一つの単量体が与える繰り返し単位を含むことが好ましい。   More specifically, the copolymer containing the repeating unit provided by the vinyl pyrrolidone monomer is further provided by at least one monomer selected from carboxylic acid vinyl ester, acrylic acid ester and methacrylic acid ester. Preferably it contains units.

本発明により、除去対象のタンパク質の吸着除去を維持しつつ、血液適合性が付与されたタンパク質吸着材料を提供することができる。   According to the present invention, it is possible to provide a protein adsorbing material to which blood compatibility is imparted while maintaining adsorption removal of a protein to be removed.

タンパク質吸着材料の血液適合性は、血液と接触する部分の表面状態に依存し、一般的には、表面の親水性が高いほど高くなる。しかしながら、基材表面に親水化処理を行うと、血小板等の血液凝固系物質の基材への付着が抑制されると同時に、除去対象タンパク質の吸着までもが抑制されてしまうことが懸念される。   The blood compatibility of the protein-adsorbing material depends on the surface state of the portion in contact with blood, and generally increases as the surface hydrophilicity increases. However, when a hydrophilic treatment is performed on the surface of the base material, there is a concern that adhesion of blood coagulation substances such as platelets to the base material is suppressed, and at the same time, the adsorption of the protein to be removed is also suppressed. .

また、上記β−マイクログロブリン(分子量11,800)と、人体に有用なタンパク質であるアルブミン(分子量66,000)は、物質を球と仮定したときの半径(ストークス半径)が近いため、透析や濾過を原理とする分離膜による除去では、β−マイクログロブリンだけでなくアルブミンまでも除去してしまうといった問題がある。 In addition, the β 2 -microglobulin (molecular weight 11,800) and albumin (molecular weight 66,000), which is a protein useful for the human body, are close in radius when assuming that the substance is a sphere (Stokes radius). In addition, removal by a separation membrane based on the principle of filtration has a problem that not only β 2 -microglobulin but also albumin is removed.

本発明におけるβ−マイクログロブリン吸着量とは、タンパク質吸着材料を内蔵したカラムにβ−マイクログロブリン含有の牛血漿を5分間、閉鎖循環したときのβ−マイクログロブリンの濃度減少から算出される。具体的な測定手順を以下に示す。カラムおよび吸着材料を洗浄した後、抗凝固化したタンパク濃度が6.5±0.5g/dL、β−マイクログロブリン濃度が1mg/Lとなるように調整した牛血漿溶液1Lをカラムの入口から出口に流し、5分間、閉鎖循環する。循環前後の牛血漿中のβ−マイクログロブリン濃度をラテックス凝集免疫測定法を用いて測定し、次式からβ−マイクログロブリン吸着量を算出する。 The present invention in beta 2 - The microglobulin adsorption, the column having a built-in protein adsorption material beta 2 - micro globulin-containing bovine plasma 5 min, beta 2 when the closed circulation - is calculated from microglobulin concentration decreases The A specific measurement procedure is shown below. After washing the column and adsorbing material, 1 L of bovine plasma solution adjusted so that the concentration of anticoagulated protein is 6.5 ± 0.5 g / dL and the β 2 -microglobulin concentration is 1 mg / L is added to the column inlet. From the outlet to the outlet and circulate closed for 5 minutes. The β 2 -microglobulin concentration in the bovine plasma before and after circulation is measured using a latex agglutination immunoassay, and the β 2 -microglobulin adsorption amount is calculated from the following formula.

β−マイクログロブリン吸着量[μg/cm
=(循環前の牛血漿中のβ−マイクログロブリン濃度[μg/mL]−循環後の牛血漿中のβ−マイクログロブリン濃度[μg/mL])×1000[mL]/(1.6×10[cm])
十分なタンパク質吸着を行うためには、β−マイクログロブリン吸着量は0.05μg/cm以上が好ましく、0.10μg/cm以上がより好ましい。
β 2 -microglobulin adsorption amount [μg / cm 2 ]
= (Circulation before the bovine blood plasma beta 2 - microglobulin concentration [μg / mL] - bovine plasma after circulation beta 2 - microglobulin concentration [μg / mL]) × 1000 [mL] / (1.6 × 10 4 [cm 2 ])
In order to perform sufficient protein adsorption, the β 2 -microglobulin adsorption amount is preferably 0.05 μg / cm 2 or more, and more preferably 0.10 μg / cm 2 or more.

または、β−マイクログロブリンの吸着の程度をクリアランスによって測ることも可能である。測定方法の詳細は実施例にて後述する。本願発明において好ましいクリアランスの範囲は、カラムの形状、大きさ等によって変わり得るものの、30mL/min以上が好ましく、40mL/min以上がより好ましく、50mL/min以上が更に好ましく、一方で90mL/min以下が好ましい。 Alternatively, the degree of adsorption of β 2 -microglobulin can be measured by clearance. Details of the measurement method will be described later in Examples. The preferred clearance range in the present invention can vary depending on the shape, size, etc. of the column, but is preferably 30 mL / min or more, more preferably 40 mL / min or more, further preferably 50 mL / min or more, while 90 mL / min or less. Is preferred.

上記のように、タンパク質吸着材料を内蔵したカラムにおけるβ−マイクログロブリンの吸着性能を測定する他、吸着材料についてバッチ試験を行って、β−マイクログロブリンの吸着率として測定することができる。バッチ試験とは、閉鎖系で吸着材料をβ−マイクログロブリンを含有する溶液に浸漬したときのβ−マイクログロブリンの吸着率を測定する試験である。タンパク質吸着材料をβ−マイクログロブリン含有の牛血漿に加えて2時間、振とうしたときのβ−マイクログロブリンの濃度減少から算出される。具体的な測定手順は、実施例にて後述する。本発明において好ましいβ−マイクログロブリンの吸着率は、30%以上が好ましく、40%以上がより好ましく、50%以上が更に好ましい。なお、上記βーマイクログロブリン吸着量と上記吸着率の相関性は非常に高く、上記吸着量が高い程、吸着率も高い。 As described above, in addition to measuring the adsorption performance of β 2 -microglobulin in a column containing a protein adsorbing material, a batch test can be performed on the adsorbing material to measure the adsorption rate of β 2 -microglobulin. The batch test is a test for measuring the adsorption rate of β 2 -microglobulin when the adsorbing material is immersed in a solution containing β 2 -microglobulin in a closed system. It is calculated from the decrease in the concentration of β 2 -microglobulin when the protein adsorbing material is added to the bovine plasma containing β 2 -microglobulin and shaken for 2 hours. Specific measurement procedures will be described later in Examples. In the present invention, the β 2 -microglobulin adsorption rate is preferably 30% or more, more preferably 40% or more, and still more preferably 50% or more. Incidentally, the correlation of the beta 2 over microglobulin adsorbed amount and the adsorption rate is very high, as the adsorption amount is high, high adsorption rate.

本発明における表面の血小板付着数とは、吸着材料の表面に血液を4時間接触させた場合に、吸着材料の表面に付着した血小板の数である。本願発明では、タンパク質吸着除去能力の向上と共に血液適合性を確保することを目的としていることから、かかる血小板付着数が少ないことを条件として挙げている。具体的な測定手順を以下に示す。まず、吸着材料の血液に接触させる面を露出させる。人間の静脈血を採血後、直ちにヘパリンを50U/mlになるように添加し、採血後10分以内に上記吸着材料に接触させ、37℃で4時間振盪させる。その後、吸着材料を生理食塩水で洗浄し、グルタルアルデヒド生理食塩水で血液成分の固定を行い、蒸留水で洗浄する。吸着材料を常温0.5Torrにて10時間減圧乾燥し、スパッタリングによりPt−Pdの薄膜を吸着材料表面に形成させ、試料とする。走査型電子顕微鏡で吸着材料表面を倍率1500倍で観察し、4.3×10μmあたりの付着血小板数を数える。異なる10視野での付着血小板数の平均値を血小板付着数(個/4.3×10μm)とする。十分な血液適合性を得るためには、ヒト血小板付着量は10個/4.3×10μm以下であり、3個/4.3×10μm以下が好ましい。 The surface platelet adhesion number in the present invention is the number of platelets adhering to the surface of the adsorbing material when blood is brought into contact with the surface of the adsorbing material for 4 hours. In the present invention, since the purpose is to ensure blood compatibility as well as the ability to remove and adsorb proteins, it is mentioned as a condition that the number of platelet adhesion is small. A specific measurement procedure is shown below. First, the surface of the adsorbent material that comes into contact with blood is exposed. Immediately after collecting human venous blood, heparin is added to 50 U / ml, brought into contact with the adsorbent material within 10 minutes after blood collection, and shaken at 37 ° C. for 4 hours. Thereafter, the adsorbing material is washed with physiological saline, blood components are fixed with glutaraldehyde physiological saline, and washed with distilled water. The adsorbing material is dried under reduced pressure at room temperature of 0.5 Torr for 10 hours, and a thin film of Pt—Pd is formed on the adsorbing material surface by sputtering to prepare a sample. The surface of the adsorbent material is observed at a magnification of 1500 times with a scanning electron microscope, and the number of adhering platelets per 4.3 × 10 3 μm 2 is counted. The average value of the number of adhering platelets in 10 different visual fields is defined as the number of adhering platelets (pieces / 4.3 × 10 3 μm 2 ). In order to obtain sufficient blood compatibility, the human platelet adhesion amount is 10 / 4.3 × 10 3 μm 2 or less, and preferably 3 / 4.3 × 10 3 μm 2 or less.

本発明の吸着材料は、高い血液適合性を有するので、医療用基材として好適に用いることができる。本発明で用いられる医療用基材は、生体成分と接触させて用いられる用途、例えば血液浄化器に適する。ここで、血液浄化器とは、血液を体外に循環させて、血中の老廃物や有害物質を吸着除去するモジュールまたはカラムのことをいい、外毒素吸着カラムなどがある。   Since the adsorbing material of the present invention has high blood compatibility, it can be suitably used as a medical substrate. The medical base material used in the present invention is suitable for an application used in contact with a biological component, for example, a blood purifier. Here, the blood purifier refers to a module or column that circulates blood outside the body and adsorbs and removes waste and harmful substances in the blood, such as an exotoxin adsorption column.

本発明において、基材とはタンパク質の吸着能を有する材料のことを指す。基材が含有する素材はポリメチルメタクリレート、ポリスチレン、ポリエチレン、ポリプロピレンや、セルロースアセテート、セルロースジアセテート、セルローストリアセテートなどのセルロース系ポリマー、ポリカーボネート、ポリウレタン、ポリ塩化ビニル、ポリフッ化ビニリデンなどのフッ素樹脂、ポリアクリロニトリル、ポリエチレンテレフタラートなどのポリエステル、ポリアミドや、石英、シリカゲルなどに用いられる二酸化ケイ素、ゼオライトなどに用いられるアルミノケイ酸塩、炭素繊維、活性炭などに用いられる無定形炭素などが挙げられる。またはこれらの共重合体や複合材料でも構わない。中でも、ポリメチルメタクリレート、ポリスチレン、ポリプロピレン、二酸化ケイ素、アルミノケイ酸塩および無定形炭素から選ばれる少なくとも一つを含む基材は、優れた吸着性能を有することから好ましい。ポリメチルメタクリレート、ポリスチレンおよびポリプロピレンから選ばれる少なくとも一つを含む基材は、タンパク質を効率よく吸着するため、より好ましい。特にポリメチルメタクリレートでは、アイソタクチック体とシンジオタクチック体を混合し、立体複合体であるステレオコンプレックスを形成させることにより、細孔のサイズが均一な基材が得られるため好ましい。特にポリスチレンとポリプロピレンについては、芯成分がポリスチレン、鞘成分がポリスチレンとポリプロピレンからなる芯鞘複合繊維であってもよい。   In the present invention, the base material refers to a material having protein adsorption ability. The base material contains polymethyl methacrylate, polystyrene, polyethylene, polypropylene, cellulose polymers such as cellulose acetate, cellulose diacetate, and cellulose triacetate, fluororesins such as polycarbonate, polyurethane, polyvinyl chloride, polyvinylidene fluoride, poly Examples thereof include polyester such as acrylonitrile and polyethylene terephthalate, polyamide, silicon dioxide used for quartz and silica gel, aluminosilicate used for zeolite, amorphous fiber used for carbon fiber, activated carbon and the like. Alternatively, these copolymers and composite materials may be used. Among them, a substrate containing at least one selected from polymethyl methacrylate, polystyrene, polypropylene, silicon dioxide, aluminosilicate, and amorphous carbon is preferable because it has excellent adsorption performance. A substrate containing at least one selected from polymethyl methacrylate, polystyrene, and polypropylene is more preferable because it efficiently adsorbs proteins. In particular, polymethyl methacrylate is preferable because a base material having a uniform pore size can be obtained by mixing an isotactic body and a syndiotactic body to form a stereo complex which is a three-dimensional complex. In particular, for polystyrene and polypropylene, a core-sheath composite fiber in which the core component is polystyrene and the sheath component is polystyrene and polypropylene may be used.

本発明において、吸着材料の比表面積は、吸着材料の体積に対する、吸着材料が血液と接触し得る面の面積を表す。タンパク質を効率的に除去するためには、吸着材料の比表面積は大きいことが望ましいが、大きすぎると強度が低下する。以上のことから、0.0001μm/μm以上が好ましく、0.001μm/μm以上がより好ましく、0.01μm/μm以上が更に好ましく、一方で10μm/μm以下が好ましく、1μm/μm以下がより好ましく、0.1μm/μm以下が更に好ましい。 In the present invention, the specific surface area of the adsorbing material represents the area of the surface where the adsorbing material can come into contact with blood with respect to the volume of the adsorbing material. In order to efficiently remove proteins, it is desirable that the specific surface area of the adsorbent material is large, but if it is too large, the strength decreases. In view of the above, 0.0001 μm 2 / μm 3 or more is preferable, 0.001 μm 2 / μm 3 or more is more preferable, 0.01 μm 2 / μm 3 or more is more preferable, and 10 μm 2 / μm 3 or less is preferable. , more preferably 1μm 2 / μm 3 or less, more preferably 0.1μm 2 / μm 3 or less.

基材の形状としては、繊維、不織布、織物、編物、粒子、フィルム、成形品などが挙げられる。ここで、本発明における繊維とは、長手方向に連続した空洞を持たない繊維のことをいう。例えば、中実糸、海島繊維、芯鞘繊維などが挙げられる。繊維は、その繊維径を細くすることで比表面積を大きくすることができるため、好ましい。一方で、本発明における中空糸とは、長手方向に連続した空洞を有する糸のことをいう。中空糸において、内側のみに血液を接触させた場合、比表面積が小さく、効率的にタンパク質を吸着できないため、適さない。中空糸の内側と外側の両方に血液を接触させることで比表面積を大きくしても、中空糸の外側よりも内側での血液の流速が遅いため、中空糸内側が効率的に血液に接触せず、十分なタンパク質除去が行えないことがある。また中空糸の内側に血液が滞留するため、血液が凝固し、高い血液適合性が得られないことがある。このため血液適合性とタンパク質の吸着除去性能を両立させるためには、長手方向に連続した空洞を持たない繊維が好ましい。   Examples of the shape of the substrate include fibers, nonwoven fabrics, woven fabrics, knitted fabrics, particles, films, and molded articles. Here, the fiber in the present invention refers to a fiber that does not have a continuous cavity in the longitudinal direction. For example, solid yarn, sea-island fiber, core-sheath fiber and the like can be mentioned. The fiber is preferable because the specific surface area can be increased by reducing the fiber diameter. On the other hand, the hollow fiber in the present invention refers to a thread having a continuous cavity in the longitudinal direction. In the hollow fiber, when blood is brought into contact only with the inside, the specific surface area is small and the protein cannot be adsorbed efficiently, which is not suitable. Even if the specific surface area is increased by bringing blood into contact with both the inside and outside of the hollow fiber, the blood flow rate inside the hollow fiber is slower than the outside of the hollow fiber, so the inside of the hollow fiber can contact the blood efficiently. Therefore, sufficient protein removal may not be performed. Moreover, since blood stays inside the hollow fiber, the blood coagulates and high blood compatibility may not be obtained. Therefore, in order to achieve both blood compatibility and protein adsorption / removal performance, fibers that do not have a continuous cavity in the longitudinal direction are preferable.

基材を繊維とする場合、繊維径は、比表面積を大きくするために細いことが望ましいが、細すぎると吸着材料を内蔵したカラムに血液を流したときに圧力損失が大きくなるため、0.1μm以上が好ましく、1μm以上がより好ましく、10μm以上が更に好ましく、一方10mm以下が好ましく、1mm以下がより好ましく、0.5mm以下が更に好ましい。   When the base material is a fiber, the fiber diameter is desirably thin in order to increase the specific surface area. However, if the fiber diameter is too small, pressure loss increases when blood flows through the column containing the adsorption material. 1 μm or more is preferable, 1 μm or more is more preferable, 10 μm or more is further preferable, while 10 mm or less is preferable, 1 mm or less is more preferable, and 0.5 mm or less is still more preferable.

吸着材料の細孔径を測定する方法として、示差走査熱量計(DSC)が用いられる。DSCでは、吸着材料全体の細孔径を測定することができる。吸着材料を−55℃に急冷し、5℃まで0.3℃/minで昇温させて測定し、得られた曲線のピークトップ温度を融点として、次式から細孔の一次平均半径を算出する。   A differential scanning calorimeter (DSC) is used as a method for measuring the pore diameter of the adsorbing material. In DSC, the pore diameter of the entire adsorbent material can be measured. Measure the adsorbent material by quenching to -55 ° C, raising the temperature to 5 ° C at 0.3 ° C / min, and using the peak top temperature of the obtained curve as the melting point, calculate the primary average radius of the pores from the following formula To do.

細孔の一次平均半径[nm]=(33.30−0.3181×融点降下量[℃])/融点降下量[℃]
なお、上記測定方法はKazuhiko Ishikiriyama et al. ; JOURNAL OF COLLOID AND INTERFACE SCIENCE, 171, 103-111, (1995)の記載を参考としている。
Primary average radius of pores [nm] = (33.30-0.3181 × melting point drop [° C.]) / Melting point drop [° C.]
The above measurement method is based on the description of Kazuhiko Ishikiriyama et al .; JOURNAL OF COLLOID AND INTERFACE SCIENCE, 171, 103-111, (1995).

細孔径が小さすぎると、除去対象のタンパク質が中に入り込めないため、適さない。逆に細孔径が大きすぎると、単位体積当たりの細孔表面積が小さくなるため、タンパク質の吸着が効率的に行えない。β−マイクログロブリンの吸着除去を行うためには、細孔の一次平均半径は1nm以上であることが好ましく、3nm以上がより好ましく、5nm以上がさらに好ましく、一方で200nm以下が好ましく、100nm以下がより好ましく、30nm以下が更に好ましい。 If the pore size is too small, the protein to be removed cannot enter the inside, which is not suitable. On the other hand, if the pore diameter is too large, the pore surface area per unit volume becomes small, so that the protein cannot be adsorbed efficiently. In order to perform the adsorption removal of β 2 -microglobulin, the primary average radius of the pores is preferably 1 nm or more, more preferably 3 nm or more, further preferably 5 nm or more, while 200 nm or less is preferable, and 100 nm or less. Is more preferable, and 30 nm or less is still more preferable.

吸着材料の表面開孔率を測定する方法として、走査型電子顕微鏡(SEM)で観察し、画像解析を行う手法がある。SEMで倍率50,000倍で観察し、640×442pixelsの画像を、画像処理ソフト(Matrox Inspector2.2、CRI JOLANTA製)にて二値化処理し、孔が黒、構造ポリマー部分が白となった画像が得られる。次式から表面開孔率を算出する。
表面開孔率[%]=孔の総面積/総面積×100
各表面の任意の5箇所で同様の測定を行い、その平均値を求める。
As a method for measuring the surface area ratio of the adsorbing material, there is a method of observing with a scanning electron microscope (SEM) and performing image analysis. Observed with a SEM at a magnification of 50,000 times, an image of 640 × 442 pixels was binarized with image processing software (Matrox Inspector 2.2, manufactured by CRI JOLANTA), the pores were black, and the structural polymer portion became white Images are obtained. The surface area ratio is calculated from the following formula.
Surface area ratio [%] = total area of holes / total area × 100
The same measurement is performed at any five locations on each surface, and the average value is obtained.

表面開孔率が小さすぎると、血液成分が吸着材料の内部に入り込めないため、効率的な吸着を行うことができない。一方で表面開孔率が大きすぎると、強度が低下し損傷しやすくなる。そのため表面開孔率は0.1%以上が好ましく、1%以上がより好ましく、5%以上が更に好ましく、一方で95%以下が好ましく、50%以下がより好ましく、30%以下が更に好ましい。   If the surface porosity is too small, blood components cannot enter the adsorbing material, and thus efficient adsorption cannot be performed. On the other hand, if the surface area ratio is too large, the strength is lowered and damage is likely to occur. Therefore, the surface porosity is preferably 0.1% or more, more preferably 1% or more, still more preferably 5% or more, while 95% or less is preferable, 50% or less is more preferable, and 30% or less is still more preferable.

表面近傍の孔径と中心部の孔径とを比較する際は、上記DSCは用いず、材料の断面を得た上で、上記表面開孔率の測定と同様、SEMによる方法で行うことができる。ここで断面とは、吸着材料の血液に接触する面に垂直に切断することで得られる面をいう。例えば繊維の場合、長手方向に垂直に切断した面をいう。吸着材料断面の中心部分および表面近傍を観察し、画像解析を行う。表面近傍の孔径とは、基材の表面、すなわち断面における外周における孔径であり、より具体的には、表面に接する256×256pixelsの視野1での平均孔径に対する、表面に対して垂直方向に視野1と隣り合う256×256pixelsの視野2での平均孔径の比が2倍未満となる場合、視野1を完全に包括する640×442pixelsの視野を表面近傍という。しかしながら、ポリメチルメタクリレート繊維等の場合は、表面に緻密層という、孔径が非常に小さい層が存在する等の場合がある。タンパク質の吸着除去のために、細孔の径がばらつきなく最適化されていることがよい観点からすると、このような層の部分は上記「表面近傍」に含めないことが適切である。そこで、視野1での平均孔径に対する視野2の平均孔径の比が2倍以上の場合、視野2を完全に包括し、視野1を全く含まない640×442pixelsの視野を表面近傍という。   When comparing the hole diameter in the vicinity of the surface with the hole diameter in the central part, the DSC is not used, and after obtaining the cross section of the material, it can be performed by the SEM method as in the measurement of the surface open area ratio. Here, the cross section refers to a surface obtained by cutting perpendicularly to a surface of the adsorbing material that contacts blood. For example, in the case of a fiber, the surface cut | disconnected perpendicularly to the longitudinal direction is said. Observe the central part of the adsorbent material cross section and the vicinity of the surface, and perform image analysis. The pore diameter in the vicinity of the surface is a pore diameter on the surface of the base material, that is, the outer circumference in the cross section, and more specifically, a visual field perpendicular to the surface with respect to the average pore diameter in the visual field 1 of 256 × 256 pixels in contact with the surface. When the ratio of the average pore diameter in the field 2 of 256 × 256 pixels adjacent to 1 is less than twice, the field of view of 640 × 442 pixels that completely covers the field of view 1 is referred to as the vicinity of the surface. However, in the case of polymethylmethacrylate fibers and the like, there are cases where a layer having a very small pore diameter, such as a dense layer, is present on the surface. From the viewpoint that the pore diameter is optimized without variation for protein adsorption and removal, it is appropriate not to include such a layer portion in the “near surface”. Accordingly, when the ratio of the average pore diameter of the visual field 2 to the average pore diameter in the visual field 1 is twice or more, the visual field of 640 × 442 pixels that completely includes the visual field 2 and does not include the visual field 1 at all is referred to as the vicinity of the surface.

また表面における2点を結んで得られる直線のうち、長さが最長となる直線の中心を中心部分という。中心部分においても平均孔径を求める。
上記いずれの場合も、なお、孔の形状が真円でない場合も真円と仮定し、孔の面積から次式により孔径を算出する。また、上記平均孔径を算出する際は、観察された全ての孔について測定し、その平均を採る。
孔径[nm]=(孔の面積[nm]/π)1/2
吸着材料を任意の5箇所で切断した断面の中心部分および表面近傍でそれぞれ測定を行い、その平均値を求める。
Of the straight lines obtained by connecting two points on the surface, the center of the straight line having the longest length is referred to as a central portion. The average pore diameter is also determined at the central portion.
In any of the above cases, even when the shape of the hole is not a perfect circle, it is assumed that the hole is a perfect circle, and the hole diameter is calculated from the area of the hole by the following equation. Moreover, when calculating the said average hole diameter, it measures about all the holes observed and takes the average.
Pore diameter [nm] = (pore area [nm 2 ] / π) 1/2
The adsorbent material is measured at each of the central portion and the surface vicinity of the cross section obtained by cutting the adsorbing material at arbitrary five locations, and the average value is obtained.

タンパク質の吸着除去を行うためには、最適なサイズの細孔が多く存在する必要がある。サイズの大きすぎる細孔や小さすぎる細孔が存在すると、タンパク質の吸着を効率的に行うことができない。タンパク質の吸着を効率的に行うためには、吸着材料断面の表面近傍の孔径に対する中心部の孔径の比は0.5以上が好ましく、0.8以上がより好ましく、一方で1.3以下が好ましく、1.1以下がより好ましい。   In order to perform protein adsorption removal, it is necessary to have many pores of optimum size. When pores that are too large or too small exist, protein adsorption cannot be performed efficiently. In order to efficiently perform protein adsorption, the ratio of the pore diameter in the central portion to the pore diameter in the vicinity of the surface of the adsorption material cross section is preferably 0.5 or more, more preferably 0.8 or more, while 1.3 or less. Preferably, 1.1 or less is more preferable.

本発明においては、血液適合性を付与するために親水性ポリマーを用いて基材表面を処理することが好ましいが、中でも、親水性を有する共重合体を用いて基材表面を処理することが好ましい。共重合体を構成する一単量体が親水性を発現する一方で、他の構成単量体に疎水性を付与することもでき、親水−疎水のバランスを基材に与えることが可能となり、基材に高い血液適合性を付与しつつ、その基材の本来の特性であるタンパク質吸着特性を損なうことがないことを見出した。本発明における親水性共重合体処理とは、コーティング、化学反応や放射線照射によるグラフトなどにより親水性共重合体を基材の表面に導入することを指す。   In the present invention, in order to impart blood compatibility, it is preferable to treat the substrate surface with a hydrophilic polymer. Among them, treating the substrate surface with a hydrophilic copolymer is preferable. preferable. While one monomer constituting the copolymer expresses hydrophilicity, it can also impart hydrophobicity to other constituent monomers, making it possible to impart a hydrophilic-hydrophobic balance to the substrate, It has been found that the protein adsorption property, which is the original property of the base material, is not impaired while imparting high blood compatibility to the base material. The hydrophilic copolymer treatment in the present invention refers to introducing a hydrophilic copolymer onto the surface of a substrate by coating, chemical reaction, grafting by radiation irradiation, or the like.

本発明において、親水性共重合体としては、ビニルピロリドン含有ポリマー、すなわちビニルピロリドンの単量体が与える繰り返し単位を含むものが好ましく用いられ、ビニルピロリドンの単量体が与える繰り返し単位と、酢酸ビニル、メチルアクリレート、メトキシエチルアクリレート、メチルメタクリレート、エチルメタクリレート、ヒドロキシエチルメタクリレート、エチレングリコール、プロピレングリコール、ビニルアルコール、エチレンイミン、アリルアミン、ビニルアミン、アクリル酸、アクリルアミドに挙げられる少なくとも一つの単量体が与える繰り返し単位を含む共重合体や、グラフト重合体などのポリマーが挙げられる。中でもビニルピロリドンと酢酸ビニルの単量体が与える繰り返し単位を含む共重合体は、生体適合性に優れているので特に好適に用いることができる。ビニルピロリドンの単量体が与える繰り返し単位が共重合体中で占める割合が高すぎると、除去対象物質の吸着能低下は抑制されるが、血小板等の血液凝固系物質の付着抑制効果が得られない。逆にビニルピロリドンの単量体が与える繰り返し単位が共重合体中で占める割合が低すぎると、水への溶解性が低くなり、基材表面に均一にコーティングできない。血液凝固系物質の付着抑制と除去対象物質の吸着能維持を両立させるためには、最適な組成比の共重合体を用いることがよい。すなわち、ビニルピロリドンの単量体が与える繰り返し単位が共重合体中で占める割合は、0.3以上が好ましく、0.35以上がより好ましく、一方で0.7以下が好ましく、0.65以下がより好ましい。ビニルピロリドンの単量体が与える繰り返し単位が共重合体中で占める割合が1の場合、血液凝固系物質の付着抑制性とβ−マイクログロブリンの吸着除去性能を両立することができないため、適さない。 In the present invention, as the hydrophilic copolymer, a vinyl pyrrolidone-containing polymer, that is, a polymer containing a repeating unit provided by a monomer of vinyl pyrrolidone is preferably used. , Methyl acrylate, methoxyethyl acrylate, methyl methacrylate, ethyl methacrylate, hydroxyethyl methacrylate, ethylene glycol, propylene glycol, vinyl alcohol, ethyleneimine, allylamine, vinylamine, acrylic acid, repeating acrylamide gives repeat Examples thereof include a copolymer including a unit and a polymer such as a graft polymer. Among them, a copolymer containing a repeating unit provided by monomers of vinyl pyrrolidone and vinyl acetate is particularly suitable because it is excellent in biocompatibility. If the proportion of the repeating units given by the vinylpyrrolidone monomer in the copolymer is too high, the decrease in the adsorption capacity of the substance to be removed is suppressed, but the effect of suppressing the adhesion of blood coagulation substances such as platelets is obtained. Absent. On the other hand, if the proportion of the repeating units provided by the vinylpyrrolidone monomer in the copolymer is too low, the solubility in water becomes low and the substrate surface cannot be uniformly coated. In order to achieve both suppression of adhesion of the blood coagulation substance and maintenance of the adsorption ability of the substance to be removed, it is preferable to use a copolymer having an optimal composition ratio. That is, the proportion of the repeating unit provided by the vinylpyrrolidone monomer in the copolymer is preferably 0.3 or more, more preferably 0.35 or more, while 0.7 or less is preferable, and 0.65 or less. Is more preferable. When the proportion of the repeating unit provided by the monomer of vinylpyrrolidone in the copolymer is 1, it is not suitable because it is impossible to achieve both adhesion inhibitory properties of blood coagulation substances and adsorption removal performance of β 2 -microglobulin. Absent.

親水性共重合体の分子量が小さすぎると、分子運動における分子鎖の可動領域が小さく親水性が十分に得られない。また低分子量高分子は、ストークス半径が小さいため基材の細孔内にまで入り込み、目的のタンパク質の吸着サイトまで修飾してしまうため、タンパク質を効率的に吸着することができない。親水性共重合体の分子量は1000以上が好ましく、5000以上がより好ましく、10000以上がさらに好ましい。逆に分子量が大きすぎると分子鎖どうしの絡み合いや、放射線照射時における分子間の架橋反応が進行してしまい分子鎖の可動領域が小さくなるので、親水性共重合体の分子量は200万以下が好ましく、50万以下がより好ましく、10万以下がさらに好ましい。   When the molecular weight of the hydrophilic copolymer is too small, the movable region of the molecular chain in the molecular motion is small and sufficient hydrophilicity cannot be obtained. In addition, since the low molecular weight polymer has a small Stokes radius, it penetrates into the pores of the base material and modifies the target protein adsorption site, so that the protein cannot be adsorbed efficiently. The molecular weight of the hydrophilic copolymer is preferably 1000 or more, more preferably 5000 or more, and still more preferably 10,000 or more. Conversely, if the molecular weight is too large, entanglement of the molecular chains and cross-linking reaction between the molecules during radiation irradiation will proceed, and the movable region of the molecular chain will be reduced. Therefore, the molecular weight of the hydrophilic copolymer should be 2 million or less. Preferably, 500,000 or less is more preferable, and 100,000 or less is more preferable.

基材表面の親水性共重合体の量は、多すぎると除去対象タンパク質を十分に吸着除去することができず、少なすぎると血小板等の血液凝固系物質が付着してしまう。表面の親水性共重合体の量は、0.01mg/m以上が好ましく、0.1mg/m以上がより好ましく、1mg/m以上が更に好ましく、一方で10000mg/m以下が好ましく、1000mg/m以下がより好ましく、100mg/m以下が更に好ましい。 If the amount of the hydrophilic copolymer on the substrate surface is too large, the protein to be removed cannot be sufficiently adsorbed and removed, and if it is too small, blood coagulation substances such as platelets adhere. The amount of the hydrophilic copolymer the surface, preferably 0.01 mg / m 2 or more, 0.1 mg / m 2 or more, and further preferably 1 mg / m 2 or more, while the 10000 mg / m 2 or less preferably , more preferably from 1000 mg / m 2 or less, 100 mg / m 2 or less is more preferable.

吸着材料表面に存在する親水性共重合体の量を測定する方法として、X線電子分光法(ESCA)が用いられる。測定サンプルを超純水でリンスした後、室温、0.5Torrにて10時間乾燥させ、測定に供する。具体的な条件および好ましい測定装置としては、以下の通り。
測定装置: Quantera SXM
励起X線: monochromatic Al Kα1,2 線(1486.6eV)
X線径: 20μm
光電子脱出角度: 45 °(試料表面に対する検出器の傾き)
窒素原子量としては、N1sの400eV付近に現れるピークの面積から、全元素(水素原子は検出できないので、水素原子以外の全元素)に対する該ピーク面積の割合を算出し、窒素原子量(原子数%)を求める。
X-ray electron spectroscopy (ESCA) is used as a method for measuring the amount of the hydrophilic copolymer present on the surface of the adsorbing material. After rinsing the measurement sample with ultrapure water, the sample is dried at room temperature and 0.5 Torr for 10 hours and used for measurement. Specific conditions and preferred measuring devices are as follows.
Measuring device: Quantera SXM
Excitation X-ray: monochromatic Al Kα1,2 line (1486.6 eV)
X-ray diameter: 20 μm
Photoelectron escape angle: 45 ° (inclination of detector with respect to sample surface)
As the amount of nitrogen atoms, the ratio of the peak area to the total elements (all elements other than hydrogen atoms cannot be detected since hydrogen atoms cannot be detected) is calculated from the area of the peak appearing near 400 eV of N1s, and the amount of nitrogen atoms (number of atoms) Ask for.

基材表面の親水性共重合体の量は、多すぎると除去対象タンパク質の吸着能を維持することができず、少なすぎると血液凝固系物質の付着抑制効果が十分に得られない。窒素原子を含有する親水性共重合体を用いる場合には、ESCAによって検出される表面の全原子に対する窒素原子の割合は0.1(原子数%)以上であることが好ましい。一方で、8(原子数%)以下であることが好ましく、5(原子数%)以下であることがより好ましく、3(原子数%)以下であることが更に好ましく、2(原子数%)以下であることが更に好ましく、1(原子数%)以下であることが更に好ましい。   If the amount of the hydrophilic copolymer on the substrate surface is too large, the adsorption ability of the protein to be removed cannot be maintained, and if it is too small, the effect of inhibiting the adhesion of the blood coagulation substance cannot be obtained sufficiently. When using the hydrophilic copolymer containing a nitrogen atom, it is preferable that the ratio of the nitrogen atom with respect to all the atoms of the surface detected by ESCA is 0.1 (number of atoms%) or more. On the other hand, it is preferably 8 (number of atoms%) or less, more preferably 5 (number of atoms%) or less, still more preferably 3 (number of atoms%) or less, and 2 (number of atoms%). More preferably, it is more preferably 1 or less (number of atoms%) or less.

親水性共重合体は吸着材料表面に存在することで血液凝固系物質の付着を抑制する一方で、吸着材料内部に存在する量が多すぎると、吸着サイトをブロックするため除去対象物質の吸着が抑制されるため好ましくない。吸着材料表面よりも内部の方が、ネットワーク構造により形成される表面積が広いため、吸着材料全体の親水性共重合体の量を測定することにより、表面を無視でき、内部に存在する量を測定することができる。したがって吸着材料全体に存在する親水性共重合体の量が多すぎると内部にも親水性共重合体が多く存在することになり、除去対象物質の吸着量が低下する。吸着材料全体に存在する親水性共重合体の量が少なすぎると吸着材料表面の親水性共重合体の量が少なくなり、血液凝固系物質の付着を抑制できない。吸着材料全体に存在する親水性共重合体の量は、元素分析によって知ることができる。例えば窒素原子含有ポリマーの存在量は、元素分析によって検出される全元素に対する窒素原子の濃度が0.0001重量%以上が好ましく、0.001重量%以上がより好ましく、一方1重量%以下であることが好ましく、0.1重量%以下がより好ましく、0.05重量%以下が更に好ましい。   While the hydrophilic copolymer is present on the surface of the adsorbing material, it suppresses the adhesion of blood coagulation substances, while if the amount present in the adsorbing material is too large, the adsorption site is blocked and adsorption of the substance to be removed is prevented. Since it is suppressed, it is not preferable. Since the surface area formed by the network structure is larger in the interior than the surface of the adsorbent material, the surface can be ignored by measuring the amount of the hydrophilic copolymer in the entire adsorbent material, and the amount present inside is measured. can do. Therefore, if the amount of the hydrophilic copolymer present in the entire adsorbing material is too large, a large amount of the hydrophilic copolymer is also present inside, and the amount of adsorption of the substance to be removed decreases. If the amount of the hydrophilic copolymer present in the entire adsorbing material is too small, the amount of the hydrophilic copolymer on the surface of the adsorbing material decreases, and adhesion of blood coagulation substances cannot be suppressed. The amount of hydrophilic copolymer present in the entire adsorbent material can be determined by elemental analysis. For example, the abundance of the nitrogen atom-containing polymer is preferably 0.0001% by weight or more, more preferably 0.001% by weight or more, and more preferably 1% by weight or less with respect to all elements detected by elemental analysis. It is preferably 0.1% by weight or less, more preferably 0.05% by weight or less.

本発明において、放射線としてはα線、β線、γ線、X線、紫外線、電子線などが用いられる。また、血液浄化器などの医療用具は滅菌することが必要であり、近年は残留毒性の少なさや簡便さの点から、γ線や電子線を用いた放射線滅菌法が多用されている。さらには、本発明の方法を医療用基材に用いるとき、基材の滅菌と、血液適合性向上のための改質が同時に達成できることが期待でき、好ましい。また、親水性基含有共重合体等で基材表面をコーティング等する場合に、これらのポリマーの基材表面からの溶出が懸念されるが、放射線照射により架橋され不溶化し、溶出を低減する効果が考えられ、好ましい。また、特に血液浄化器は、吸着材料が水を抱液した状態である、いわゆるウェットタイプが主流となっているため、この水を親水性共重合体溶液を含む水溶液に変えるだけで、本発明の方法が簡便に使用できるため、好ましい。   In the present invention, α rays, β rays, γ rays, X rays, ultraviolet rays, electron beams and the like are used as radiation. In addition, medical devices such as blood purifiers need to be sterilized, and in recent years, radiation sterilization methods using γ rays and electron beams are frequently used from the viewpoint of low residual toxicity and simplicity. Furthermore, when the method of the present invention is used for a medical substrate, it can be expected that sterilization of the substrate and modification for improving blood compatibility can be achieved at the same time, which is preferable. In addition, when coating the surface of a substrate with a hydrophilic group-containing copolymer, etc., there is a concern about the dissolution of these polymers from the substrate surface, but the effect of reducing dissolution by crosslinking and insolubilization by irradiation with radiation. Are conceivable and preferred. In particular, blood purifiers are mainly of a so-called wet type in which the adsorbing material is in a state of immersing water. Therefore, by simply changing this water to an aqueous solution containing a hydrophilic copolymer solution, The method is preferred because it can be used conveniently.

基材の滅菌と改質を同時に行う場合は、15kGy以上の吸収線量で放射線の照射を行うことが好ましい。血液浄化用モジュール等をγ線で滅菌するには15kGy以上の吸収線量が効果的なためである。しかしながら、照射線量が100kGyを超えると、親水性共重合体の3次元架橋や崩壊などが起きるため、血液適合性が低下する。   When performing sterilization and modification of the substrate at the same time, it is preferable to perform radiation irradiation with an absorbed dose of 15 kGy or more. This is because an absorbed dose of 15 kGy or more is effective for sterilizing blood purification modules and the like with γ rays. However, when the irradiation dose exceeds 100 kGy, blood compatibility is deteriorated because three-dimensional crosslinking or collapse of the hydrophilic copolymer occurs.

本発明においては、基材をビニルピロリドン含有ポリマー等の親水性共重合体を含む水溶液と接触した後、放射線照射することにより吸着材料を製造することができる。接触させる方法としては、親水性共重合体を含む水溶液に基材を浸漬させる方法が好ましい。   In the present invention, the adsorbent material can be produced by contacting the substrate with an aqueous solution containing a hydrophilic copolymer such as a vinylpyrrolidone-containing polymer and then irradiating with radiation. As a method of contacting, a method of immersing the substrate in an aqueous solution containing a hydrophilic copolymer is preferable.

また、吸着材料のみでなく、血液回路等を含む複数の構成部材からなるシステムについて、親水性共重合体を含む水溶液を通して接触させた状態で該システムの複数の部材にわたって同時に放射線照射することにより、一度に改質することもできる。特に、該複数の部材が、それぞれ異なる素材からなる場合は、効果が大きい。これは、これまでの改質方法では、基材に対する依存性が大きいので、異なる素材からなる複数の基材を同時に改質することは困難であるのに対する特徴といえる。   Further, for a system composed of a plurality of components including not only the adsorbing material but also a blood circuit, etc., by simultaneously irradiating the plurality of members of the system in a state of contact through an aqueous solution containing a hydrophilic copolymer, It can also be modified at once. In particular, the effect is great when the plurality of members are made of different materials. This can be said to be a feature that it is difficult to modify a plurality of substrates made of different materials at the same time because the conventional modification methods are highly dependent on the substrate.

ここで、複数の構成部材から構成されているシステムとしては、ポート部、吸着材料および回路を含む血液浄化システムのようなものが挙げられる。例えば、外毒素吸着カラムなどの血液浄化器は、カテーテル、血液回路、チャンバー、モジュールの入口および出口のポート部、吸着材料など異なる素材からなる複数の部材から構成されている。本発明ではこれらの全てもしくは一部を同時に改質することが可能である。一例としては、血液浄化システムの場合は、モジュールに、モジュールの入口および出口のポート部および血液回路を接続し、血液回路から親水性ポリマー水溶液を通液して、システム全体に充填した状態で放射線照射を行えばよい。   Here, examples of the system constituted by a plurality of constituent members include a blood purification system including a port portion, an adsorbing material, and a circuit. For example, a blood purifier such as an exotoxin adsorption column is composed of a plurality of members made of different materials such as catheters, blood circuits, chambers, module inlet and outlet ports, and adsorbent materials. In the present invention, it is possible to modify all or a part of these simultaneously. For example, in the case of a blood purification system, the module inlet and outlet ports and the blood circuit are connected to the module, and a hydrophilic polymer aqueous solution is passed through the blood circuit to fill the entire system with radiation. Irradiation may be performed.

血液浄化器の製造方法としては、その用途により、種々の方法があるが、大まかな工程としては、血液浄化用の吸着材料の製造工程と、その吸着材料をモジュールに組み込むという工程にわけることができる。   There are various methods for manufacturing a blood purifier depending on its application, but the rough process can be divided into a process for manufacturing an adsorbent for blood purification and a process for incorporating the adsorbent into a module. it can.

以下に繊維内蔵カラムの製造方法についての一例を示す。   An example of a method for producing a fiber built-in column is shown below.

ポリマーを溶媒に溶かした紡糸原液を調整する。本発明において好ましい原液濃度は30重量%以下であり、より好ましくは22重量%以下で用いられる。繊維は、これらの液体等を円筒型口金から吐出し、一定距離の乾式空中部分を通した後に凝固浴に通す事により得られる。温度変化によってゲル化をおこすような原液系の場合には、乾式部分において冷風を吹き付け、ゲル化を促進させることができる。繊維径は紡糸原液の吐出量によりコントロールすることができる。   A spinning dope prepared by dissolving the polymer in a solvent is prepared. In the present invention, the concentration of the stock solution is preferably 30% by weight or less, more preferably 22% by weight or less. The fibers are obtained by discharging these liquids and the like from a cylindrical die, passing through a dry air part of a certain distance, and then passing through a coagulation bath. In the case of an undiluted solution system in which gelation is caused by temperature change, gelation can be promoted by blowing cold air in the dry part. The fiber diameter can be controlled by the discharge amount of the spinning dope.

口金から吐出された紡糸原液は凝固浴にて糸形状に凝固される。凝固浴は通常、水やアルコールなどの凝固剤、または紡糸原液を構成している溶媒との混合物からなる。通常は水を用いることができる。本発明においては、凝固浴の温度をコントロールすることにより、抱液率を変化させることができる。抱液率は紡糸原液の種類等によって影響を受け得るために、凝固浴の温度も適宜選択されるものであるが、一般に凝固浴温度を高くすることにより、抱液率を高くすることが出来る。この機序は正確には明らかではないが、原液からの脱溶媒と凝固収縮との競争反応で、高温浴では脱溶媒が速く、収縮する前に凝固固定されるからではないかと考えられる。しかしながら、凝固浴温度が高くなりすぎると、孔径が大きくなりすぎ、目的のタンパク質の吸着に適さないため、凝固浴温度は20℃以上が好ましく、30℃以上がより好ましく、40℃以上が更に好ましい。一方で、80℃以下が好ましく、60℃以下がより好ましく、50℃以下が更に好ましい。   The spinning dope discharged from the die is solidified into a yarn shape in a coagulation bath. The coagulation bath usually consists of a mixture with a coagulant such as water or alcohol, or a solvent constituting the spinning dope. Usually, water can be used. In the present invention, the liquid retention rate can be changed by controlling the temperature of the coagulation bath. Since the liquid retention rate can be affected by the type of spinning dope, etc., the temperature of the coagulation bath is also appropriately selected. In general, the liquid retention rate can be increased by increasing the coagulation bath temperature. . Although this mechanism is not exactly clear, it is thought that the solvent reaction in the high temperature bath is fast and the solvent is solidified and fixed before shrinkage due to the competitive reaction between the solvent removal from the stock solution and the solidification shrinkage. However, if the coagulation bath temperature becomes too high, the pore size becomes too large and it is not suitable for adsorption of the target protein. Therefore, the coagulation bath temperature is preferably 20 ° C or higher, more preferably 30 ° C or higher, and further preferably 40 ° C or higher. . On the other hand, 80 degrees C or less is preferable, 60 degrees C or less is more preferable, and 50 degrees C or less is still more preferable.

次いで、凝固した繊維に付着している溶媒を洗浄する工程を通過させる。繊維を洗浄する手段は特に限定されないが、多段の水を張った浴(水洗浴という)中に繊維を通過させる方法が好んで用いられる。水洗浴中の水の温度は、繊維を構成する重合体の性質に応じて決めればよい。ポリメチルメタクリレートを含む繊維である場合、30〜50℃が用いられる。   Next, a step of washing the solvent adhering to the solidified fiber is passed. The means for washing the fibers is not particularly limited, but a method of allowing the fibers to pass through a multi-staged water bath (referred to as a washing bath) is preferably used. What is necessary is just to determine the temperature of the water in a washing bath according to the property of the polymer which comprises a fiber. In the case of a fiber containing polymethyl methacrylate, 30 to 50 ° C. is used.

また、繊維は水洗浴の後に孔径を保持するために、保湿成分を付与する工程を入れても良い。ここでいう保湿成分とは、繊維の湿度を保つことが可能な成分、または、空気中にて、繊維の湿度低下を防止することが可能な成分をいう。保湿成分の代表例としてはグリセリンやその水溶液などがある。   Moreover, in order to hold | maintain a hole diameter for a fiber after a water-washing bath, you may put the process which provides a moisturizing component. The term “moisturizing component” as used herein refers to a component capable of maintaining the humidity of the fiber or a component capable of preventing a decrease in the humidity of the fiber in the air. Typical examples of moisturizing ingredients include glycerin and its aqueous solutions.

水洗や保湿成分付与の終わった後、収縮性の高い繊維の寸法安定性を高めるため、加熱した保湿成分の水溶液が満たされた浴(熱処理浴という)の工程を通過させることも可能である。熱処理浴には加熱した保湿成分の水溶液が満たされており、繊維がこの熱処理浴を通過することで、熱的な作用を受けて、収縮し、以後の工程で収縮しにくくなり、繊維構造を安定させることが出来る。このときの熱処理温度は、繊維の素材によって異なるが、ポリメチルメタクリレートを含む繊維の場合には60℃以上が好ましく、70℃以上がより好ましく、80℃以上が更に好ましい。一方で、100℃以下が好ましく、95℃以下がより好ましく、90℃以下が更に好ましい。   After completion of washing with water and applying a moisturizing component, it is possible to pass through a bath (referred to as a heat treatment bath) filled with a heated aqueous solution of the moisturizing component in order to increase the dimensional stability of highly shrinkable fibers. The heat treatment bath is filled with an aqueous solution of a heated moisturizing component, and when the fiber passes through the heat treatment bath, the fiber is subjected to a thermal action and shrinks. It can be stabilized. The heat treatment temperature at this time varies depending on the material of the fiber, but in the case of a fiber containing polymethyl methacrylate, it is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, and further preferably 80 ° C. or higher. On the other hand, 100 degrees C or less is preferable, 95 degrees C or less is more preferable, and 90 degrees C or less is still more preferable.

得られた繊維を用いて血液浄化器とする手段は特に限定されないが、一例を示すと次の通りである。   The means for using the obtained fiber as a blood purifier is not particularly limited, but an example is as follows.

まず、繊維を必要本数を束ねた後、血液浄化器用カラムの筒部分となるプラスチックケースに入れる。その後両端にはみ出した糸束を切断し、両端部をメッシュで固定、ヘッダーキャップと呼ばれる血液入り口、出口ポートを取り付けて血液浄化器用のカラムを得ることができる。   First, after bundling the required number of fibers, the fibers are put in a plastic case that becomes a cylindrical portion of a blood purifier column. Thereafter, the thread bundle protruding to both ends is cut, both ends are fixed with a mesh, and blood inlet and outlet ports called header caps are attached to obtain a column for a blood purifier.

以下実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

・ カラムの作成方法
(製造例1)
重量平均分子量が40万のsyn(シンジオタクティック)−ポリメチルメタクリレートを31.7重量部、重量平均分子量が140万のsyn−ポリメチルメタクリレートを31.7重量部、重量平均分子量が50万のiso(アイソタクティック)−ポリメチルメタクリレートを16.7重量部、パラスチレンスルホン酸ソーダを1.5mol%含む分子量30万のポリメチルメタクリレート共重合体20重量部をジメチルスルホキシド376重量部と混合し、110℃で8時間撹拌し紡糸原液を調製した。
-Column creation method (Production Example 1)
31.7 parts by weight of syn (syndiotactic) -polymethyl methacrylate having a weight average molecular weight of 400,000, 31.7 parts by weight of syn-polymethyl methacrylate having a weight average molecular weight of 1.4 million, and a weight average molecular weight of 500,000 16.7 parts by weight of iso (isotactic) -polymethyl methacrylate and 20 parts by weight of a polymethyl methacrylate copolymer having a molecular weight of 300,000 containing 1.5 mol% of parastyrene sulfonic acid soda are mixed with 376 parts by weight of dimethyl sulfoxide. The mixture was stirred at 110 ° C. for 8 hours to prepare a spinning dope.

この製膜原液を円筒型口金から吐出し、空気中を380mm通過した後、水100%、温度42℃の凝固浴中に導き繊維を得た。得られた繊維の繊維径は0.12mmであった。得られた繊維をプラスチックケースに組み込み、両端部をメッシュで固定し、有効面積1.6mの繊維カラムを作成した。
(製造例2)
36島の海島複合繊維であって、島が更に芯鞘複合によりなるものを、次の成分を用いて、紡糸速度800m/分、延伸倍率3倍の製糸条件で得た。
島の芯成分;ポリプロピレン
島の鞘成分;ポリスチレン90重量%、ポリプロピレン10重量%
海成分;5−ナトリウムスルホイソフタル酸を3重量%共重合したポリエチレンテレフタレート
複合比率(重量比率);芯:鞘:海=40:40:20
この繊維70重量%と、直径25μmのポリプロピレン繊維30重量%からなるシート状物を作製した後、開孔部が3mm角のポリエステル製ネット(厚み0.4mm、単糸径0.3mm、目付30g/m)をこれらの間に挟み、ニードルパンチすることによって三層構造の吸着担体を得た。次に、この不織布を90℃水酸化ナトリウム水溶液(3重量%)で処理して上記海成分を溶解することによって、芯鞘繊維の直径が4μmで、嵩密度が0.05g/cm(総目付210g/m)の不織布を作製した。
(製造例3)
50重量部の海成分(46重量比のPStと4重量比のPPの混合物)と50重量部の島成分(PP)とからなる海島型複合繊維(厚さ:2.6デニール、島の数:16;米国特許第4661260号明細書)を筒網状にした編地を作製した。
(製造例4)
ポリスルホン(アモコ社 Udel−P3500)16重量部、ポリビニルピロリド
ン(インターナショナルスペシャルプロダクツ社;以下ISP社と略す)K30 2重量
部、ポリビニルピロリドン(ISP社K90)2重量部をジメチルアセトアミド79部、
水1部を加熱溶解し、紡糸原液を調製した。
This film-forming stock solution was discharged from a cylindrical die, passed through 380 mm in the air, and then introduced into a coagulation bath with 100% water and a temperature of 42 ° C. to obtain a fiber. The fiber diameter of the obtained fiber was 0.12 mm. The obtained fiber was assembled in a plastic case, and both ends were fixed with a mesh to prepare a fiber column having an effective area of 1.6 m 2 .
(Production Example 2)
A sea island composite fiber of 36 islands, in which the island is further composed of a core-sheath composite, was obtained using the following components under spinning conditions of a spinning speed of 800 m / min and a draw ratio of 3 times.
Island core component; Polypropylene island sheath component: Polystyrene 90% by weight, polypropylene 10% by weight
Sea component; Polyethylene terephthalate composite ratio (weight ratio) obtained by copolymerization of 3% by weight of 5-sodiumsulfoisophthalic acid; core: sheath: sea = 40: 40: 20
After preparing a sheet-like material composed of 70% by weight of this fiber and 30% by weight of polypropylene fiber having a diameter of 25 μm, a polyester net having a 3 mm square aperture (thickness 0.4 mm, single yarn diameter 0.3 mm, basis weight 30 g) / M 2 ) is sandwiched between them and needle punched to obtain a three-layered adsorption carrier. Next, this non-woven fabric was treated with an aqueous solution of sodium hydroxide (3 wt%) at 90 ° C. to dissolve the sea component, whereby the core-sheath fiber had a diameter of 4 μm and a bulk density of 0.05 g / cm 3 (total A nonwoven fabric having a basis weight of 210 g / m 2 ) was produced.
(Production Example 3)
Sea-island composite fiber (thickness: 2.6 denier, number of islands) consisting of 50 parts by weight of sea component (mixture of 46 parts by weight of PSt and 4 parts by weight of PP) and 50 parts by weight of island component (PP) : 16; U.S. Pat. No. 4,661,260) was made into a tubular mesh.
(Production Example 4)
16 parts by weight of polysulfone (Amoco Udel-P3500), 2 parts by weight of polyvinylpyrrolidone (International Special Products; hereinafter referred to as ISP) K30, 2 parts by weight of polyvinylpyrrolidone (ISP K90), 79 parts of dimethylacetamide,
One part of water was dissolved by heating to prepare a spinning dope.

この製膜原液を円筒型口金から吐出した。吐出された製膜原液は、乾式長380mm、温度30℃、相対湿度78%RHのドライゾーン雰囲気を通過した後、水100%、温度40℃の凝固浴に導かれ、60〜75℃で90秒の水洗工程、130℃で2分の乾燥工程を通過させ、160℃のクリンプ工程を経て得られた繊維を巻き取り束とした。得られた繊維の繊維径は0.12mmであった。得られた繊維を用いて、両端部をメッシュで固定し、有効膜面積1.6mの繊維カラムを作成した。
(製造例5)
製造例1,2、比較製造例1−4と同様の方法で紡糸原液を調製した。
This film-forming stock solution was discharged from a cylindrical die. The discharged film-forming solution passes through a dry zone atmosphere having a dry length of 380 mm, a temperature of 30 ° C., and a relative humidity of 78% RH, and is then introduced into a coagulation bath of 100% water and a temperature of 40 ° C. The fiber was obtained by passing through a second water washing step, a drying step at 130 ° C. for 2 minutes, and a fiber obtained through a 160 ° C. crimping step. The fiber diameter of the obtained fiber was 0.12 mm. Using the obtained fiber, both ends were fixed with a mesh to prepare a fiber column having an effective membrane area of 1.6 m 2 .
(Production Example 5)
A spinning dope was prepared in the same manner as in Production Examples 1 and 2 and Comparative Production Example 1-4.

この製膜原液を2重管中空糸膜用口金から吐出した。内部注入気体として乾燥窒素を内側の管より吐出した。空気中を380mm通過した後、水100%の凝固浴中に導き中空糸を得た。得られた中空糸の内径は0.2mm、膜厚は0.03mmであった。得られた中空糸をプラスチックケースに組み込み、両端部をメッシュで固定し、有効膜面積1.6mの中空糸カラムを作成した。
2.用いた測定方法
(1)X線電子分光法(ESCA)測定
以下の実施例1,2、比較例4−8で作成したカラムについて測定を行った。繊維表面は3点測定した。中空糸膜の場合は片刃で半円筒状に削ぎ切り、中空糸膜の内表面を3点測定した。測定サンプルは、超純水でリンスした後、室温、0.5Torrにて10時間乾燥させた後、測定に供した。測定装置、条件としては、以下の通り。
測定装置: Quantera SXM
励起X線: monochromatic Al Kα1,2 線(1486.6eV)
X線径: 20μm
光電子脱出角度: 45 °(試料表面に対する検出器の傾き)
窒素原子量としては、N1sの400eV付近に現れるピークの面積から、全原子(水素原子は検出できないので、水素原子以外の全原子)に対する該ピーク面積の割合を算出し、窒素原子量(原子数%)を求めた。
(2)元素分析
以下の実施例1,2、比較例4−8で作成したカラムについて測定を行った。吸着材料3gを凍結乾燥させ、全自動元素分析装置varioEL(エレメンタール社)にて、試料分解路950℃、還元炉500℃、ヘリウム流量200ml/min、酸素流量20〜25ml/minで測定を行った。検出された全原子に対する窒素原子の割合を求めた。
(3)表面開孔率の測定
走査型電子顕微鏡(SEM)で吸着材料の表面を観察し、画像解析を行った。SEMで倍率50,000倍で観察し、640×442pixelsの画像を、画像処理ソフト(Matrox Inspector2.2、CRI JOLANTA製)にて二値化処理し、孔が黒、構造ポリマー部分が白となった画像を得た。次式から表面開孔率を算出した。
表面開孔率[%]=孔の総面積/総面積
各表面の5箇所で同様の測定を行い、その平均値を求めた。
(4)断面の孔径の測定
表面開孔率の測定と同様、SEMを用いた倍率50,000倍で観察する方法で、上述した方法により吸着材料断面の中心部分および表面近傍を観察し、画像解析を行った。上述の通り、孔を真円と仮定し、孔の面積から次式より孔径を算出した。
孔径[nm]=(孔の面積[nm]/π)1/2
吸着材料断面の中心および表面近傍でそれぞれ5箇所で測定を行い、その平均値を求めた。
(5)細孔径の測定
TA Instruments社製DSC Q100で吸着材料を−55℃に急冷し、5℃まで0.3℃/minで昇温させて測定し、得られた曲線のピークトップから細孔の一次平均半径を次式から算出した。
This membrane-forming stock solution was discharged from a double tube hollow fiber membrane die. Dry nitrogen was discharged from the inner tube as an internal injection gas. After passing through 380 mm in the air, the hollow fiber was obtained by being led into a 100% water coagulation bath. The hollow fiber thus obtained had an inner diameter of 0.2 mm and a film thickness of 0.03 mm. The obtained hollow fiber was assembled in a plastic case, and both ends were fixed with a mesh to produce a hollow fiber column having an effective membrane area of 1.6 m 2 .
2. Measurement Method Used (1) X-ray Electron Spectroscopy (ESCA) Measurement Columns prepared in Examples 1 and 2 and Comparative Example 4-8 below were measured. The fiber surface was measured at three points. In the case of the hollow fiber membrane, it was cut into a semicylindrical shape with a single blade, and the inner surface of the hollow fiber membrane was measured at three points. The measurement sample was rinsed with ultrapure water, dried at room temperature and 0.5 Torr for 10 hours, and then subjected to measurement. Measurement equipment and conditions are as follows.
Measuring device: Quantera SXM
Excitation X-ray: monochromatic Al Kα1,2 line (1486.6 eV)
X-ray diameter: 20 μm
Photoelectron escape angle: 45 ° (inclination of detector with respect to sample surface)
As the amount of nitrogen atoms, the ratio of the peak area to the total atoms (all atoms other than hydrogen atoms cannot be detected since hydrogen atoms cannot be detected) is calculated from the area of the peak appearing near 400 eV of N1s, and the amount of nitrogen atoms (number of atoms) Asked.
(2) Elemental analysis The columns prepared in the following Examples 1 and 2 and Comparative Example 4-8 were measured. 3 g of the adsorbent material was freeze-dried and measured with a fully automatic elemental analyzer varioEL (Elemental) at a sample decomposition path of 950 ° C., a reduction furnace of 500 ° C., a helium flow rate of 200 ml / min, and an oxygen flow rate of 20-25 ml / min. It was. The ratio of nitrogen atoms to all detected atoms was determined.
(3) Measurement of surface area ratio The surface of the adsorbent material was observed with a scanning electron microscope (SEM), and image analysis was performed. Observed with a SEM at a magnification of 50,000 times, an image of 640 × 442 pixels was binarized with image processing software (Matrox Inspector 2.2, manufactured by CRI JOLANTA), the pores were black, and the structural polymer portion became white I got an image. The surface area ratio was calculated from the following formula.
Surface open area ratio [%] = total area of holes / total area The same measurement was carried out at five locations on each surface, and the average value was obtained.
(4) Measurement of cross-sectional pore diameter Similar to the measurement of the surface open area ratio, it is a method of observing at the magnification of 50,000 times using SEM. Analysis was performed. As described above, assuming that the hole is a perfect circle, the hole diameter was calculated from the following equation using the area of the hole.
Pore diameter [nm] = (pore area [nm 2 ] / π) 1/2
Measurements were made at five locations at the center and in the vicinity of the surface of the adsorbent material, and the average value was determined.
(5) Measurement of pore diameter The DSC Q100 manufactured by TA Instruments was used to rapidly cool the adsorbent material to −55 ° C. and raise the temperature to 5 ° C. at a rate of 0.3 ° C./min. The primary average radius of the holes was calculated from the following formula.

細孔径[nm]=(33.30−0.3181×融点降下量[℃])/融点降下量[℃]Kazuhiko Ishikiriyama et al. ; JOURNAL OF COLLOID AND INTERFACE SCIENCE, 171, 103-111, (1995)
(6)ヒト血小板付着試験
18mmφのポリスチレン製の円形板に両面テープを貼り付け、両面テープ上に繊維および中空糸膜を固定した。中空糸膜の試験の場合には、貼り付けた中空糸膜を片刃で半円筒状にそぎ切り、中空糸膜の内表面を露出させた。筒状に切ったFalcon(登録商標)チューブ(18mmφ、No.2051)に該円形板を、中空糸膜を貼り付けた面が、円筒内部にくるように取り付け、パラフィルムで隙間を埋めた。この円筒管内を生理食塩水で洗浄後、生理食塩水で満たした。健常な人間の静脈血を採血後、直ちにヘパリンを50U/mlになるように添加した。前記円筒管内の生理食塩水を廃棄後、前記血液を、採血後10分以内に、円筒管内に1.0ml入れて37℃にて4時間振盪させた。その後、円筒管内を10mlの生理食塩水で洗浄し、2.5%グルタルアルデヒド生理食塩水で血液成分の固定を行い、20mlの蒸留水にて洗浄した。吸着材料を固定した円形板を常温0.5Torrにて10時間減圧乾燥し、走査型電子顕微鏡の試料台に両面テープで貼り付けた。その後、スパッタリングにより、Pt−Pdの薄膜を吸着材料表面に形成させて、試料とした。吸着材料表面をフィールドエミッション型走査型電子顕微鏡(日立社製S800)にて、倍率1500倍で試料の内表面を観察し、1視野中(4.3×10μm)の血小板付着数を数えた。異なる10視野での血小板付着数の平均値を血小板付着数(個/4.3×10μm)とした。中空糸の長手方向における端の部分には血液溜まりができやすいことから、中央付近を観察した。
(7)カラムによるβ−マイクログロブリン吸着量測定
カラムの入口と出口をシリコーンチューブで繋ぎ、入口から生理食塩水を流量200mL/minで5分間流し、繊維または中空糸およびカラム内部を洗浄した。生物学的製剤基準血液保存液A液を用いて抗凝固化した牛血漿溶液をタンパク濃度が6.5±0.5g/dL、β−マイクログロブリン濃度が1mg/Lとなるように調整した。前記牛血漿1Lをカラムの入口から出口に流し、5分間、閉鎖循環した。循環前の牛血漿中のβ−マイクログロブリン濃度および5分循環後の牛血漿中のβ−マイクログロブリン濃度をラテックス凝集免疫測定法を用いて測定し、次式からβ−マイクログロブリン吸着量を算出した。
Pore size [nm] = (33.30-0.3181 × melting point drop [° C.]) / Melting point drop [° C.] Kazuhiko Ishikiriyama et al.; JOURNAL OF COLLOID AND INTERFACE SCIENCE, 171, 103-111, (1995 )
(6) Human platelet adhesion test Double-sided tape was affixed to an 18 mmφ polystyrene circular plate, and fibers and hollow fiber membranes were fixed on the double-sided tape. In the case of the hollow fiber membrane test, the pasted hollow fiber membrane was cut into a semi-cylindrical shape with a single blade to expose the inner surface of the hollow fiber membrane. The circular plate was attached to a Falcon (registered trademark) tube (18 mmφ, No. 2051) cut into a cylindrical shape so that the surface on which the hollow fiber membrane was attached was inside the cylinder, and the gap was filled with parafilm. The cylindrical tube was washed with physiological saline and then filled with physiological saline. Immediately after collecting venous blood from a healthy human, heparin was added to 50 U / ml. After discarding the physiological saline in the cylindrical tube, within 10 minutes after blood collection, 1.0 ml of the blood was placed in the cylindrical tube and shaken at 37 ° C. for 4 hours. Thereafter, the inside of the cylindrical tube was washed with 10 ml of physiological saline, blood components were fixed with 2.5% glutaraldehyde physiological saline, and washed with 20 ml of distilled water. The circular plate on which the adsorbing material was fixed was dried under reduced pressure at room temperature of 0.5 Torr for 10 hours, and then attached to the sample stage of the scanning electron microscope with double-sided tape. Thereafter, a thin film of Pt—Pd was formed on the surface of the adsorbing material by sputtering to prepare a sample. The surface of the adsorbent material is observed with a field emission scanning electron microscope (S800 manufactured by Hitachi, Ltd.) at a magnification of 1500 times, and the number of adhering platelets in one field of view (4.3 × 10 3 μm 2 ) is determined. I counted. The average value of the number of platelet adhesion in 10 different visual fields was defined as the number of platelet adhesion (pieces / 4.3 × 10 3 μm 2 ). Since the blood pool is easily formed at the end portion in the longitudinal direction of the hollow fiber, the vicinity of the center was observed.
(7) Measurement of β 2 -microglobulin adsorption amount by column The column inlet and outlet were connected by a silicone tube, and physiological saline was flowed from the inlet at a flow rate of 200 mL / min for 5 minutes to wash the fiber or hollow fiber and the inside of the column. The bovine plasma solution anticoagulated with the biological preparation reference blood preservation solution A was adjusted so that the protein concentration was 6.5 ± 0.5 g / dL and the β 2 -microglobulin concentration was 1 mg / L. . 1 L of the bovine plasma flowed from the inlet to the outlet of the column and was circulated closed for 5 minutes. Circulation before the bovine blood plasma beta 2 - microglobulin concentration and 5 minutes bovine plasma after circulation beta 2 - micro globulin concentration was determined using a latex agglutination immunoassay, the following equation beta 2 - microglobulin adsorption The amount was calculated.

β−マイクログロブリン吸着量[μg/cm
=(循環前の牛血漿中のβ−マイクログロブリン濃度[μg/mL]−循環後の牛血漿中のβ−マイクログロブリン濃度[μg/mL])×1000[mL]/(1.6×10[cm])
(8)β−マイクログロブリンクリアランス測定
β−マイクログロブリンのクリアランス測定は日本透析医学会の定める方法(血液浄化器の性能評価法、透析会誌29(8)1231−1245、1996)に従い、流量200mL/minで実施した。比較例6では中空糸の内側のみに流して試験を行った。
(9)バッチ試験によるβ−マイクログロブリン吸着率測定
生物学的製剤基準血液保存液A液を用いて抗凝固化した牛血漿溶液をタンパク濃度が6.5±0.5g/dL、β−マイクログロブリン濃度が10mg/Lとなるように調整した。容積5mLのガラス製の容器に前記牛血漿1.2mLおよび吸着材料を加え、37℃で2時間、振とうした。吸着材料の形状が繊維の場合には、5cmに切った繊維を49本用いた。それ以外の形状を持つ吸着材料の量は、後述する。振とう前の牛血漿中のβ−マイクログロブリン濃度および2時間振とう後の牛血漿中のβ−マイクログロブリン濃度をラテックス凝集免疫測定法を用いて測定し、次式からβ−マイクログロブリン吸着率を算出した。
β 2 -microglobulin adsorption amount [μg / cm 2 ]
= (Circulation before the bovine blood plasma beta 2 - microglobulin concentration [μg / mL] - bovine plasma after circulation beta 2 - microglobulin concentration [μg / mL]) × 1000 [mL] / (1.6 × 10 4 [cm 2 ])
(8) β 2 -microglobulin clearance measurement β 2 -microglobulin clearance is measured according to the method defined by the Japanese Society for Dialysis Medicine (Performance Evaluation Method for Blood Purifier, Dialysis Society Journal 29 (8) 1231-1245, 1996). It carried out at 200 mL / min. In Comparative Example 6, the test was conducted by flowing only inside the hollow fiber.
(9) Measurement of β 2 -microglobulin adsorption rate by batch test A protein concentration of 6.5 ± 0.5 g / dL, β 2 of an anticoagulated bovine plasma solution using a biological preparation standard blood preservation solution A solution -The microglobulin concentration was adjusted to 10 mg / L. 1.2 mL of the bovine plasma and the adsorbent material were added to a glass container having a volume of 5 mL, and the mixture was shaken at 37 ° C. for 2 hours. When the shape of the adsorbing material was fiber, 49 fibers cut into 5 cm were used. The amount of the adsorbing material having other shapes will be described later. Shaking before bovine plasma of beta 2 - microglobulin concentration and 2 hours with shaking beta 2 bovine plasma after - micro globulin concentration was determined using a latex agglutination immunoassay, the following equation beta 2 - Micro The globulin adsorption rate was calculated.

β−マイクログロブリン吸着率[%]
=(振とう前の牛血漿中のβ−マイクログロブリン濃度[μg/mL]−振とう後の牛血漿中のβ−マイクログロブリン濃度[μg/mL])/振とう前の牛血漿中のβ−マイクログロブリン濃度[μg/mL]×100
(実施例1)
製造例1で製造したポリメチルメタクリレート(PMMA)を含む繊維カラムの入口側から出口側に、ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製“コリドンVA64”)0.001重量%水溶液を900mL通液し、カラム内を該水溶液で充填した。この後、該カラムをγ線照射した。γ線吸収線量は25kGyであった。該カラムについて、ESCA測定、元素分析、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、カラムによるβ−マイクログロブリン吸着試験、β−マイクログロブリンクリアランス測定、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、血小板付着抑制性とβ−マイクログロブリンの吸着除去性能が高かった。低濃度の上記親水性ポリマー溶液を用いて表面をグラフトしているが、一方で、窒素原子量の測定結果に見られるように、吸着材料表面の親水性ポリマー量が多すぎることがないため、上記ポリマーグラフトを行わない比較例4に比べβ−マイクログロブリンの吸着能を低下させずに維持できた。
(実施例2)
製造例1で製造したポリメチルメタクリレート(PMMA)を含む繊維カラムの入口側から出口側に、ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製“コリドンVA64”)0.1重量%水溶液を900mL通液し、カラム内を該水溶液で充填した。この後、該カラムをγ線照射した。γ線吸収線量は25kGyであった。該カラムについて、ESCA測定、元素分析、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、カラムによるβ−マイクログロブリン吸着試験、β−マイクログロブリンクリアランス測定、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、血小板付着抑制性とβ−マイクログロブリンの吸着除去性能が高かった。実施例1に比べ、高濃度の親水性ポリマー溶液を用いたため、吸着材料表面の親水性ポリマー量が多いが、β−マイクログロブリンの吸着能を大きく低下させるほどではない。
(実施例3)
製造例2で製造したポリスチレン(PSt)およびポリプロピレン(PP)を含む不織布を直径6mmの円形に切りとり、ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製“コリドンVA64”)0.1重量%水溶液2mLに浸漬し、γ線照射した。γ線吸収線量は25kGyであった。該不織布について、ESCA測定、元素分析、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、血小板付着抑制性とβ−マイクログロブリンの吸着除去性能が高かった。吸着材料表面の親水性ポリマー量が最適な範囲であるため、上記ポリマーグラフトを行わない下記比較例9に比べ、十分な血小板付着抑制性が得られつつ、β−マイクログロブリンの吸着能を低下させずに維持できた。
(実施例4)
製造例3で製造したポリスチレン(PSt)およびポリプロピレン(PP)を含む編物を直径6mmの円形に切りとったもの3枚を、ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製“コリドンVA64”)0.1重量%水溶液2mLに浸漬し、γ線照射した。γ線吸収線量は25kGyであった。該編物について、ESCA測定、元素分析、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、血小板付着抑制性とβ−マイクログロブリンの吸着除去性能が高かった。吸着材料表面の親水性ポリマー量が最適な範囲であるため、上記ポリマーグラフトを行わない下記比較例10に比べ、十分な血小板付着抑制性が得られつつ、β−マイクログロブリンの吸着能を低下させずに維持できた。
(実施例5)
製造例1で製造したポリメチルメタクリレート(PMMA)を含む繊維カラムの入口側から出口側に、ビニルピロリドン/酢酸ビニル(7/3)共重合体(BASF社製“コリドンVA73”)0.5重量%水溶液を900mL通液し、カラム内を該水溶液で充填した。この後、該カラムをγ線照射した。γ線吸収線量は25kGyであった。該カラムについて、ESCA測定、元素分析、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、カラムによるβ−マイクログロブリン吸着試験、β−マイクログロブリンクリアランス測定、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、実施例1に比べ血小板付着数が多く、β−マイクログロブリンの吸着除去性能は高かった。実施例1に比べ、ビニルピロリドンの単量体が与える繰り返し単位が親水性ポリマー中で占める割合が高いため、血小板付着抑制効果は低かった一方で、β−マイクログロブリンの吸着能の低下が抑制されたと考えられる。
(比較例1)
製造例1で製造したポリメチルメタクリレート(PMMA)を含む繊維カラムの入口側から出口側に、ポリビニルピロリドン(ISP社製“K90”)0.001重量%水溶液を900mL通液し、カラム内を該水溶液で充填した。この後、該カラムをγ線照射した。γ線吸収線量は25kGyであった。該カラムについて、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、カラムによるβ−マイクログロブリン吸着試験、β−マイクログロブリンクリアランス測定、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、ポリマーグラフトを行わない比較例4に比べβ−マイクログロブリンの吸着能を大きく低下させずに維持できたが、血小板付着抑制性は得られなかった。
(比較例2)
製造例1で製造したポリメチルメタクリレート(PMMA)を含む繊維カラムの入口側から出口側に、ポリエチレングリコール(日本油脂社製“マクロゴール6000”)0.001重量%水溶液を900mL通液し、カラム内を該水溶液で充填した。この後、該カラムをγ線照射した。γ線吸収線量は25kGyであった。該カラムについて、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、カラムによるβ−マイクログロブリン吸着試験、β−マイクログロブリンクリアランス測定、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、ポリマーグラフトを行わない比較例4に比べβ−マイクログロブリンの吸着能を大きく低下させずに維持できたが、血小板付着抑制性は得られなかった。
(比較例3)
製造例1で製造したポリメチルメタクリレート(PMMA)を含む繊維カラムの入口側から出口側に、ポリエチレングリコール(日本油脂社製“マクロゴール6000”)0.075重量%水溶液を900mL通液し、カラム内を該水溶液で充填した。この後、該カラムをγ線照射した。γ線吸収線量は25kGyであった。該カラムについて、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、カラムによるβ−マイクログロブリン吸着試験、β−マイクログロブリンクリアランス測定、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、比較例2よりも高濃度の親水性ポリマー溶液を用い、吸着材料表面の親水性ポリマー量が多いため、血小板付着抑制性が高かったが、β−マイクログロブリンの吸着までもが抑制された。
(比較例4)
製造例1で製造したポリメチルメタクリレート(PMMA)を含む繊維カラムの入口側から出口側に、水を900mL通液し、カラム内を水で充填した。この後、該カラムをγ線照射した。γ線吸収線量は25kGyであった。該カラムについて、ESCA測定、元素分析、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、カラムによるβ−マイクログロブリン吸着試験、β−マイクログロブリンクリアランス測定、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、吸着材料表面および吸着材料全体の窒素原子は検出されなかった。また、β−マイクログロブリンの吸着除去性能が高いが、血小板付着抑制性は得られなかった。
(比較例5)
製造例4で製造したポリスルホン(PSf)を含む繊維カラムの入口側から出口側に、ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製“コリドンVA64”)0.001重量%水溶液を900mL通液し、カラム内を該水溶液で充填した。この後、該カラムをγ線照射した。γ線吸収線量は25kGyであった。該カラムについて、ESCA測定、元素分析、表面開孔率測定、血小板付着試験、カラムによるβ−マイクログロブリン吸着試験、β−マイクログロブリンクリアランス測定、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、血小板付着抑制性は高いが、β−マイクログロブリンの吸着除去性能は低かった。吸着材料に含まれる窒素原子量が多いこと、基材がポリスルホンであること、吸着材料断面の表面近傍の孔径に対する中心部分の孔径の比が大きく細孔のサイズが均一でないことから、高いタンパク質吸着能が得られなかったと考えられる。
(比較例6)
製造例5で製造したポリメチルメタクリレート(PMMA)を含む中空糸カラムの入口側から出口側に、ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製“コリドンVA64”)0.001重量%水溶液を900mL通液し、カラム内を該水溶液で充填した。この後、該カラムをγ線照射した。γ線吸収線量は25kGyであった。該カラムについて、ESCA測定、元素分析、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、カラムによるβ−マイクログロブリン吸着試験、β−マイクログロブリンクリアランス測定、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、血小板付着抑制性は高かったが、β−マイクログロブリンの吸着除去性能は低かった。形状が中空糸である吸着材料を用いたため、中空糸の外側よりも内側での血液の流速が遅いため、中空糸内側が効率的に血液に接触せずβ−マイクログロブリンの効率的な吸着除去が行えなかったと考えられる。
(比較例7)
製造例1で製造したポリメチルメタクリレート(PMMA)を含む繊維カラムの入口側から出口側に、ビニルピロリドン/酢酸ビニル(6/4)共重合体(BASF社製“コリドンVA64”)0.5重量%水溶液を900mL通液し、カラム内を該水溶液で充填した。この後、該カラムをγ線照射した。γ線吸収線量は25kGyであった。さらに、この共重合体水溶液の通液とγ線照射を、計3回繰り返して行った。該カラムについて、ESCA測定、元素分析、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、カラムによるβ−マイクログロブリン吸着試験、β−マイクログロブリンクリアランス測定、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、血小板付着抑制性は高かったが、β−マイクログロブリンの吸着除去性能は低かった。実施例1に比べ、高濃度の親水性ポリマー溶液を用い、またポリマー溶液の通液、γ線照射を3回行ったことから、吸着材料表面の親水性ポリマー量が多すぎたため、β−マイクログロブリンの吸着能が低下したと考えられる。
(比較例8)
製造例2で製造したポリスチレン(PSt)およびポリプロピレン(PP)を含む不織布を直径6mmの円形に切りとり、水2mLに浸漬し、γ線照射した。γ線吸収線量は25kGyであった。該不織布について、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、β−マイクログロブリンの吸着除去性能が高いが、血小板付着抑制性は得られなかった。
(比較例9)
製造例3で製造したポリスチレン(PSt)およびポリプロピレン(PP)を含む編物を直径6mmの円形に切りとったもの3枚を、水2mLに浸漬し、γ線照射した。γ線吸収線量は25kGyであった。該編物について、表面開孔率測定、細孔径測定、断面の孔径の測定、血小板付着試験、バッチ試験によるβ−マイクログロブリン吸着率測定を行った。その結果、表1に示された通りであった。すなわち、β−マイクログロブリンの吸着除去性能が高いが、血小板付着抑制性は得られなかった。
β 2 -microglobulin adsorption rate [%]
= (In prior shaking bovine plasma beta 2 - microglobulin concentration [μg / mL] - β 2 bovine plasma after shaking - microglobulin concentration [μg / mL]) / shake before bovine plasma Β 2 -microglobulin concentration [μg / mL] × 100
Example 1
From the inlet side to the outlet side of the fiber column containing polymethyl methacrylate (PMMA) produced in Production Example 1, 0.001 weight by weight of vinylpyrrolidone / vinyl acetate (6/4) copolymer (“Collidon VA64” manufactured by BASF) 900 mL of a% aqueous solution was passed, and the column was filled with the aqueous solution. Thereafter, the column was irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. About this column, ESCA measurement, elemental analysis, surface pore ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, β 2 -microglobulin adsorption test by column, β 2 -microglobulin clearance measurement, batch test (Beta) 2- microglobulin adsorption rate measurement was performed. As a result, it was as shown in Table 1. That is, the platelet adhesion inhibitory property and the β 2 -microglobulin adsorption / removal performance were high. Although the surface is grafted using the above-mentioned hydrophilic polymer solution with a low concentration, on the other hand, as seen in the measurement result of the amount of nitrogen atoms, the amount of the hydrophilic polymer on the surface of the adsorbent material is not too much, so the above Compared to Comparative Example 4 in which the polymer grafting was not performed, the adsorption ability of β 2 -microglobulin could be maintained without decreasing.
(Example 2)
0.1 weight of vinyl pyrrolidone / vinyl acetate (6/4) copolymer (“Collidon VA64” manufactured by BASF) from the inlet side to the outlet side of the fiber column containing polymethyl methacrylate (PMMA) produced in Production Example 1 900 mL of a% aqueous solution was passed, and the column was filled with the aqueous solution. Thereafter, the column was irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. About this column, ESCA measurement, elemental analysis, surface pore ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, β 2 -microglobulin adsorption test by column, β 2 -microglobulin clearance measurement, batch test (Beta) 2- microglobulin adsorption rate measurement was performed. As a result, it was as shown in Table 1. That is, the platelet adhesion inhibitory property and the β 2 -microglobulin adsorption / removal performance were high. Compared to Example 1, since a hydrophilic polymer solution with a high concentration was used, the amount of hydrophilic polymer on the surface of the adsorbing material was large, but not so much that the adsorption ability of β 2 -microglobulin was greatly reduced.
Example 3
A non-woven fabric containing polystyrene (PSt) and polypropylene (PP) produced in Production Example 2 was cut into a circle having a diameter of 6 mm, and a vinylpyrrolidone / vinyl acetate (6/4) copolymer (“Collidon VA64” manufactured by BASF) was obtained. It was immersed in 2 mL of a 1% by weight aqueous solution and irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. The nonwoven fabric was subjected to ESCA measurement, elemental analysis, surface pore ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, and β 2 -microglobulin adsorption rate measurement by batch test. As a result, it was as shown in Table 1. That is, the platelet adhesion inhibitory property and the β 2 -microglobulin adsorption / removal performance were high. Since the amount of the hydrophilic polymer on the surface of the adsorbing material is in the optimum range, compared to the following Comparative Example 9 in which the polymer grafting is not performed, sufficient platelet adhesion inhibitory property is obtained and the β 2 -microglobulin adsorbing ability is reduced. It was possible to maintain without letting.
Example 4
Three pieces of a knitted fabric containing polystyrene (PSt) and polypropylene (PP) produced in Production Example 3 were cut into a circle having a diameter of 6 mm, and a vinylpyrrolidone / vinyl acetate (6/4) copolymer (BASF Co., Ltd. VA64 ″) was immersed in 2 mL of a 0.1 wt% aqueous solution and irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. The knitted fabric was subjected to ESCA measurement, elemental analysis, surface pore ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, and β 2 -microglobulin adsorption rate measurement by batch test. As a result, it was as shown in Table 1. That is, the platelet adhesion inhibitory property and the β 2 -microglobulin adsorption / removal performance were high. Since the amount of the hydrophilic polymer on the surface of the adsorbing material is in the optimum range, compared to the following Comparative Example 10 in which the polymer grafting is not performed, sufficient platelet adhesion inhibitory activity is obtained, and the β 2 -microglobulin adsorbing ability is reduced. It was possible to maintain without letting.
(Example 5)
From the inlet side to the outlet side of the fiber column containing polymethyl methacrylate (PMMA) produced in Production Example 1, 0.5 weight of vinylpyrrolidone / vinyl acetate (7/3) copolymer (“Collidon VA73” manufactured by BASF) 900 mL of a% aqueous solution was passed, and the column was filled with the aqueous solution. Thereafter, the column was irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. About this column, ESCA measurement, elemental analysis, surface pore ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, β 2 -microglobulin adsorption test by column, β 2 -microglobulin clearance measurement, batch test (Beta) 2- microglobulin adsorption rate measurement was performed. As a result, it was as shown in Table 1. That is, compared with Example 1, the platelet adhesion number was large and the adsorption removal performance of β 2 -microglobulin was high. Compared to Example 1, since the proportion of repeating units provided by vinylpyrrolidone monomer in the hydrophilic polymer is high, the platelet adhesion inhibitory effect was low, while the decrease in the adsorption ability of β 2 -microglobulin was suppressed. It is thought that it was done.
(Comparative Example 1)
From the inlet side to the outlet side of the fiber column containing polymethyl methacrylate (PMMA) produced in Production Example 1, 0.001 wt% aqueous solution of polyvinylpyrrolidone (“K90” manufactured by ISP) was passed through the column, Filled with aqueous solution. Thereafter, the column was irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. About the column, surface area ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, β 2 -microglobulin adsorption test by column, β 2 -microglobulin clearance measurement, β 2 -microglobulin by batch test The adsorption rate was measured. As a result, it was as shown in Table 1. That is, compared to Comparative Example 4 in which the polymer grafting was not performed, the adsorption ability of β 2 -microglobulin could be maintained without greatly decreasing, but platelet adhesion inhibitory property was not obtained.
(Comparative Example 2)
From the inlet side to the outlet side of the fiber column containing polymethyl methacrylate (PMMA) produced in Production Example 1, 900 mL of 0.001 wt% aqueous solution of polyethylene glycol (“Macrogol 6000” manufactured by NOF Corporation) was passed through the column. The inside was filled with the aqueous solution. Thereafter, the column was irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. About the column, surface area ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, β 2 -microglobulin adsorption test by column, β 2 -microglobulin clearance measurement, β 2 -microglobulin by batch test The adsorption rate was measured. As a result, it was as shown in Table 1. That is, compared to Comparative Example 4 in which the polymer grafting was not performed, the adsorption ability of β 2 -microglobulin could be maintained without greatly decreasing, but platelet adhesion inhibitory property was not obtained.
(Comparative Example 3)
From the inlet side to the outlet side of the fiber column containing polymethyl methacrylate (PMMA) produced in Production Example 1, 900 mL of a 0.075 wt% aqueous solution of polyethylene glycol (“Macrogol 6000” manufactured by NOF Corporation) was passed through the column. The inside was filled with the aqueous solution. Thereafter, the column was irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. About the column, surface area ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, β 2 -microglobulin adsorption test by column, β 2 -microglobulin clearance measurement, β 2 -microglobulin by batch test The adsorption rate was measured. As a result, it was as shown in Table 1. That is, since a hydrophilic polymer solution having a higher concentration than that of Comparative Example 2 was used and the amount of hydrophilic polymer on the surface of the adsorbing material was large, the platelet adhesion inhibitory activity was high, but even the adsorption of β 2 -microglobulin was suppressed. It was.
(Comparative Example 4)
900 mL of water was passed from the inlet side to the outlet side of the fiber column containing polymethyl methacrylate (PMMA) produced in Production Example 1, and the column was filled with water. Thereafter, the column was irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. About this column, ESCA measurement, elemental analysis, surface pore ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, β 2 -microglobulin adsorption test by column, β 2 -microglobulin clearance measurement, batch test (Beta) 2- microglobulin adsorption rate measurement was performed. As a result, it was as shown in Table 1. That is, nitrogen atoms on the surface of the adsorbing material and the entire adsorbing material were not detected. Moreover, although the adsorption removal performance of (beta) 2- microglobulin is high, platelet adhesion inhibitory property was not acquired.
(Comparative Example 5)
From the inlet side to the outlet side of the fiber column containing polysulfone (PSf) produced in Production Example 4, a vinylpyrrolidone / vinyl acetate (6/4) copolymer (“Collidon VA64” manufactured by BASF) 0.001 wt% aqueous solution Was passed through 900 mL, and the column was filled with the aqueous solution. Thereafter, the column was irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. For the column, ESCA measurement, elemental analysis, surface porosity measurement, platelet adhesion test, β 2 -microglobulin adsorption test by column, β 2 -microglobulin clearance measurement, β 2 -microglobulin adsorption rate measurement by batch test went. As a result, it was as shown in Table 1. That is, the platelet adhesion inhibitory property was high, but the adsorption removal performance of β 2 -microglobulin was low. High protein adsorption capacity due to the large amount of nitrogen atoms contained in the adsorbent material, the base material is polysulfone, and the ratio of the pore diameter in the central part to the pore diameter near the surface of the adsorbent material is large and the pore size is not uniform. It is thought that was not obtained.
(Comparative Example 6)
From the inlet side to the outlet side of the hollow fiber column containing polymethyl methacrylate (PMMA) produced in Production Example 5, a vinylpyrrolidone / vinyl acetate (6/4) copolymer ("Collidon VA64" manufactured by BASF) 0.001 900 mL of a weight% aqueous solution was passed, and the column was filled with the aqueous solution. Thereafter, the column was irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. About this column, ESCA measurement, elemental analysis, surface pore ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, β 2 -microglobulin adsorption test by column, β 2 -microglobulin clearance measurement, batch test (Beta) 2- microglobulin adsorption rate measurement was performed. As a result, it was as shown in Table 1. That is, although the platelet adhesion inhibitory activity was high, the adsorption removal performance of β 2 -microglobulin was low. The shape is used an adsorbent material is a hollow fiber, due to the slow flow rate of the blood on the inside than the outside of the hollow fiber, the hollow fiber inner does not contact the blood efficiently beta 2 - microglobulin efficient adsorption It is thought that removal could not be performed.
(Comparative Example 7)
From the inlet side to the outlet side of the fiber column containing polymethyl methacrylate (PMMA) produced in Production Example 1, 0.5 weight of vinylpyrrolidone / vinyl acetate (6/4) copolymer (“Collidon VA64” manufactured by BASF) 900 mL of a% aqueous solution was passed, and the column was filled with the aqueous solution. Thereafter, the column was irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. Further, this aqueous copolymer solution and γ-ray irradiation were repeated 3 times in total. About this column, ESCA measurement, elemental analysis, surface pore ratio measurement, pore diameter measurement, cross-sectional pore diameter measurement, platelet adhesion test, β 2 -microglobulin adsorption test by column, β 2 -microglobulin clearance measurement, batch test (Beta) 2- microglobulin adsorption rate measurement was performed. As a result, it was as shown in Table 1. That is, although the platelet adhesion inhibitory activity was high, the adsorption removal performance of β 2 -microglobulin was low. Compared to Example 1, using a high concentration of the hydrophilic polymer solution, also liquid passage of the polymer solution, since it was repeated three times γ-irradiation, since the hydrophilic polymer content of the adsorbent material surface is too large, beta 2 - It is thought that the ability to adsorb microglobulin decreased.
(Comparative Example 8)
The nonwoven fabric containing polystyrene (PSt) and polypropylene (PP) produced in Production Example 2 was cut into a circle with a diameter of 6 mm, immersed in 2 mL of water, and irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. About this nonwoven fabric, the surface opening rate measurement, the pore diameter measurement, the measurement of the hole diameter of a cross section, the platelet adhesion test, and the β 2 -microglobulin adsorption rate measurement by a batch test were performed. As a result, it was as shown in Table 1. That is, although the adsorption removal performance of β 2 -microglobulin is high, the platelet adhesion inhibitory property was not obtained.
(Comparative Example 9)
Three pieces of a knitted fabric containing polystyrene (PSt) and polypropylene (PP) produced in Production Example 3 were cut into a circle having a diameter of 6 mm, immersed in 2 mL of water, and irradiated with γ rays. The absorbed gamma ray dose was 25 kGy. The knitted fabric was subjected to measurement of surface area porosity, pore size, cross-sectional pore size, platelet adhesion test, and β 2 -microglobulin adsorption rate by batch test. As a result, it was as shown in Table 1. That is, although the adsorption removal performance of β 2 -microglobulin is high, the platelet adhesion inhibitory property was not obtained.

Figure 2014207989
Figure 2014207989

Claims (14)

以下の項目を満たすことを特徴とするタンパク質吸着材料。
(a)X線電子分光法(ESCA)により検出される、表面の全原子に対する窒素原子の割合が、0.1(原子数%)以上、8(原子数%)以下
(b)β−マイクログロブリン吸着量0.05μg/cm以上
(c)表面の血小板付着数が10(個/4.3×10μm)以下
A protein adsorbing material characterized by satisfying the following items.
(A) The ratio of nitrogen atoms to all atoms on the surface detected by X-ray electron spectroscopy (ESCA) is 0.1 (number of atoms%) or more and 8 (number of atoms%) or less (b) β 2 − Microglobulin adsorption amount 0.05 μg / cm 2 or more (c) The number of platelet adhesion on the surface is 10 (pieces / 4.3 × 10 3 μm 2 ) or less
表面近傍の孔径に対する、中心部の孔径の比が0.5以上、1.3以下であることを特徴とする請求項1に記載のタンパク質吸着材料。   2. The protein adsorbing material according to claim 1, wherein the ratio of the pore diameter in the central portion to the pore diameter in the vicinity of the surface is 0.5 or more and 1.3 or less. 元素分析により検出される、タンパク質吸着材料を構成する全原子に対する窒素原子の濃度が、0.0001重量%以上、1重量%以下であることを特徴とする請求項1または2に記載のタンパク質吸着材料。   The protein adsorption according to claim 1 or 2, wherein the concentration of nitrogen atoms with respect to all atoms constituting the protein adsorbing material detected by elemental analysis is 0.0001 wt% or more and 1 wt% or less. material. 前記ESCAにより検出される表面の窒素原子、および/または、前記元素分析により検出されるタンパク質吸着材料を構成する窒素原子が、ビニルピロリドンの単量体が与える繰り返し単位を含む共重合体由来の窒素原子を含むことを特徴とする請求項1〜3のいずれかに記載のタンパク質吸着材料。   Nitrogen derived from a copolymer in which the nitrogen atom on the surface detected by the ESCA and / or the nitrogen atom constituting the protein adsorbing material detected by the elemental analysis contains a repeating unit given by the monomer of vinylpyrrolidone The protein adsorbing material according to claim 1, comprising an atom. 前記共重合体が、さらにカルボン酸ビニルエステル、アクリル酸エステルおよびメタクリル酸エステル、から選ばれる少なくとも一つの単量体が与える繰り返し単位を含むことを特徴とする請求項4に記載のタンパク質吸着材料。   The protein-adsorbing material according to claim 4, wherein the copolymer further comprises a repeating unit provided by at least one monomer selected from a carboxylic acid vinyl ester, an acrylic acid ester, and a methacrylic acid ester. 比表面積が0.0001μm/μm以上、10μm/μm以下であることを特徴とする請求項1〜5のいずれかに記載のタンパク質吸着材料。 6. The protein adsorbing material according to claim 1, wherein the specific surface area is 0.0001 μm 2 / μm 3 or more and 10 μm 2 / μm 3 or less. 表面開孔率が0.1%以上、95%以下であることを特徴とする請求項1〜6のいずれかに記載のタンパク質吸着材料。   The protein-adsorbing material according to any one of claims 1 to 6, wherein the surface porosity is 0.1% or more and 95% or less. 細孔の一次平均半径が1nm以上、200nm以下であることを特徴とする請求項1〜7のいずれかに記載のタンパク質吸着材料。   The protein-adsorbing material according to any one of claims 1 to 7, wherein a primary average radius of the pores is 1 nm or more and 200 nm or less. 基材がポリメチルメタクリレート、ポリスチレン、ポリプロピレン、セルロース系ポリマー、二酸化ケイ素、アルミノケイ酸塩および無定形炭素から選ばれる1つ以上を含むことを特徴とする請求項1〜8のいずれかに記載のタンパク質吸着材料。 The protein according to any one of claims 1 to 8, wherein the substrate comprises one or more selected from polymethyl methacrylate, polystyrene, polypropylene, cellulosic polymer, silicon dioxide, aluminosilicate, and amorphous carbon. Adsorption material. 基材がポリメチルメタクリレートを含むことを特徴とする請求項9に記載のタンパク質吸着材料。   The protein-adsorbing material according to claim 9, wherein the base material contains polymethyl methacrylate. 形状が繊維、不織布、織物、編物、粒子、フィルムおよび成形品から選ばれる少なくとも一つであることを特徴とする請求項1〜10のいずれかに記載のタンパク質吸着材料。   The protein adsorbing material according to claim 1, wherein the shape is at least one selected from fibers, nonwoven fabrics, woven fabrics, knitted fabrics, particles, films, and molded articles. 前記ポリメチルメタクリレートがステレオコンプレックス構造を構成していることを特徴とする請求項10または11に記載のタンパク質吸着材料。   The protein adsorption material according to claim 10 or 11, wherein the polymethyl methacrylate forms a stereocomplex structure. 請求項1〜12のいずれかに記載のタンパク質吸着材料が内蔵されてなることを特徴とする血液浄化器。   A blood purifier comprising the protein adsorbing material according to claim 1 incorporated therein. ポリメチルメタクリレート、ポリスチレン、ポリプロピレン、セルロース系ポリマー、二酸化ケイ素、アルミノケイ酸塩、無定形炭素から選ばれる少なくとも一つを含む基材を、ビニルピロリドンの単量体が与える繰り返し単位を含む共重合体溶液に接触させ、放射線照射して得られるタンパク質吸着材料の製造方法。
Copolymer solution containing a repeating unit provided by a monomer of vinyl pyrrolidone on a substrate containing at least one selected from polymethyl methacrylate, polystyrene, polypropylene, cellulosic polymer, silicon dioxide, aluminosilicate, and amorphous carbon A method for producing a protein-adsorbing material obtained by contacting with a substance and irradiating with radiation.
JP2014071769A 2013-03-29 2014-03-31 Protein adsorbing material, method for producing the same, blood purifier Active JP6291970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071769A JP6291970B2 (en) 2013-03-29 2014-03-31 Protein adsorbing material, method for producing the same, blood purifier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013071461 2013-03-29
JP2013071461 2013-03-29
JP2014071769A JP6291970B2 (en) 2013-03-29 2014-03-31 Protein adsorbing material, method for producing the same, blood purifier

Publications (2)

Publication Number Publication Date
JP2014207989A true JP2014207989A (en) 2014-11-06
JP6291970B2 JP6291970B2 (en) 2018-03-14

Family

ID=51902699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071769A Active JP6291970B2 (en) 2013-03-29 2014-03-31 Protein adsorbing material, method for producing the same, blood purifier

Country Status (1)

Country Link
JP (1) JP6291970B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109843347A (en) * 2016-11-29 2019-06-04 富士胶片株式会社 Blood constituent selects absorption filtering material and blood filter
CN112203758A (en) * 2018-07-31 2021-01-08 东丽株式会社 Carrier for adsorbing organic substances
CN112592441A (en) * 2020-12-09 2021-04-02 嘉兴学院 Blood compatible polymer layer and preparation method thereof
WO2022202603A1 (en) 2021-03-26 2022-09-29 東レ株式会社 Porous adsorbent material, separation column using same for purifying biopharmaceutical, and method for manufacturing biopharmaceutical

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283295A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Ligand immobilizing material and method of producing the same
WO2009123088A1 (en) * 2008-03-31 2009-10-08 東レ株式会社 Separation membrane, method of producing the same and separation membrane module using the separation membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283295A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Ligand immobilizing material and method of producing the same
WO2009123088A1 (en) * 2008-03-31 2009-10-08 東レ株式会社 Separation membrane, method of producing the same and separation membrane module using the separation membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109843347A (en) * 2016-11-29 2019-06-04 富士胶片株式会社 Blood constituent selects absorption filtering material and blood filter
CN112203758A (en) * 2018-07-31 2021-01-08 东丽株式会社 Carrier for adsorbing organic substances
EP3769836A4 (en) * 2018-07-31 2021-06-09 Toray Industries, Inc. Carrier for adsorbing organic matter
CN112203758B (en) * 2018-07-31 2022-12-23 东丽株式会社 Carrier for adsorbing organic substances
CN112592441A (en) * 2020-12-09 2021-04-02 嘉兴学院 Blood compatible polymer layer and preparation method thereof
WO2022202603A1 (en) 2021-03-26 2022-09-29 東レ株式会社 Porous adsorbent material, separation column using same for purifying biopharmaceutical, and method for manufacturing biopharmaceutical

Also Published As

Publication number Publication date
JP6291970B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP5664732B2 (en) Separation membrane and separation membrane module
KR102144703B1 (en) Hollow-fiber membrane module, process for producing hollow-fiber membrane, and process for producing hollow-fiber membrane module
US5258149A (en) Process of making a membrane for high efficiency removal of low density lipoprotein-cholesterol from whole blood
JP5434691B2 (en) Biological component separation membrane and method for producing biological component separation membrane
JP5407713B2 (en) Polysulfone-based hollow fiber membrane module and manufacturing method
JP6036882B2 (en) Separation membrane, separation membrane module, method for producing separation membrane, and method for producing separation membrane module
US5418061A (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JP5011722B2 (en) Method for producing medical separation membrane and method for producing medical separation membrane module using the medical separation membrane
EP0488095B1 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
TWI683933B (en) Hollow fiber membrane module and manufacturing method thereof
JP5338431B2 (en) Polysulfone separation membrane and method for producing polysulfone separation membrane module
JPWO2002009857A1 (en) Modified hollow fiber membrane
JP6291970B2 (en) Protein adsorbing material, method for producing the same, blood purifier
CA3018164A1 (en) Porous fiber, adsorbent material, and purification column
JP5633277B2 (en) Separation membrane module
JP2012115743A (en) Hollow fiber membrane module
EP0570232A2 (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JP4569315B2 (en) Modified hollow fiber membrane
JP6547518B2 (en) Hollow fiber membrane module and method for manufacturing the same
JP2005065711A (en) Absorption material and manufacturing method of the same
JP2003010322A (en) Hollow fiber membrane for hemocatharsis, method for manufacturing the same, and blood purifier
JP5673306B2 (en) Adsorbing material and method for producing adsorbing material
JP4882518B2 (en) Method for manufacturing medical separation membrane and medical separation membrane module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180129

R151 Written notification of patent or utility model registration

Ref document number: 6291970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151