JP2014207343A - Pulse oscillation fiber laser and electronic apparatus using the same - Google Patents

Pulse oscillation fiber laser and electronic apparatus using the same Download PDF

Info

Publication number
JP2014207343A
JP2014207343A JP2013084462A JP2013084462A JP2014207343A JP 2014207343 A JP2014207343 A JP 2014207343A JP 2013084462 A JP2013084462 A JP 2013084462A JP 2013084462 A JP2013084462 A JP 2013084462A JP 2014207343 A JP2014207343 A JP 2014207343A
Authority
JP
Japan
Prior art keywords
dispersion
cfbg
amount
wavelength
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013084462A
Other languages
Japanese (ja)
Inventor
浩樹 光田
Hiroki Mitsuta
浩樹 光田
渡辺 正浩
Masahiro Watanabe
正浩 渡辺
敏之 中尾
Toshiyuki Nakao
敏之 中尾
吉武 康裕
Yasuhiro Yoshitake
康裕 吉武
秀明 笹澤
Hideaki Sasazawa
秀明 笹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013084462A priority Critical patent/JP2014207343A/en
Publication of JP2014207343A publication Critical patent/JP2014207343A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which, while a CFBG is known as a dispersion compensation element, since a dispersion amount provided by a regular CFBG is too large compared to a dispersion amount generated in a resonator, it is not possible to appropriately compensate a dispersion of a resonator.SOLUTION: By using a dispersion amount of a finite difference obtained by combining CFBGs having different signs of dispersion, a dispersion generated in a resonator is compensated. By integrating a dispersion controlling mechanism, a dispersion amount may be arbitrarily controlled and a desired pulse width may be obtained.

Description

本発明は、パルス発振するファイバレーザに関する。   The present invention relates to a pulsed fiber laser.

ファイバレーザは高安定性・小型化が可能といった特徴を有するため、固体レーザに代わる光源として期待されており、計測、加工用途に使用されるケースが増加している
光ファイバには分散(屈折率の波長依存性)があり、波長によって光の伝搬する速度が異なるという特徴がある。短波長側の光が速く進み、長波長側の光が遅く進む分散を異常分散と呼び、短波長の光ほど遅く進み、長波長の光ほど速く進む分散を正常分散と呼ぶ。レーザ光線がファイバを伝搬することでパルス幅が広がってしまうため、短パルスレーザを作製する場合には、分散補償(パルス幅の広がり抑制)を行う必要がある。
Fiber lasers are expected to serve as a light source to replace solid-state lasers because of their high stability and downsizing characteristics, and are increasingly used in measurement and processing applications. Wavelength dependence), and the speed of light propagation varies depending on the wavelength. Dispersion in which light on the short wavelength side advances fast and light on the long wavelength side advances slowly is called anomalous dispersion. Dispersion that advances more slowly on short wavelength light and advances faster on longer wavelength light is called normal dispersion. Since the pulse width spreads when the laser beam propagates through the fiber, dispersion compensation (suppression of the spread of the pulse width) needs to be performed when a short pulse laser is manufactured.

この分散補償は一般的に回折格子を用いることが多い[特許文献1]。   This dispersion compensation generally uses a diffraction grating [Patent Document 1].

分散補償の手法には回折格子対を用いる手法以外に、CFBG(Chirped Fiber Bragg Grating)が挙げられる。特に帯域の異なるCFBGを組み合わせて分散補償を行う手法が開発されている[特許文献2]。   As a dispersion compensation method, in addition to a method using a diffraction grating pair, CFBG (Chirped Fiber Bragg Grating) can be cited. In particular, a technique for performing dispersion compensation by combining CFBGs having different bands has been developed [Patent Document 2].

特開2009−252824JP2009-252824 特開2010−288200JP 2010-288200 A

CFBGを用いる手法は、回折格子のように光を外に取り出す必要がないという利点がある。しかし通常のCFBGは高い反射率を得るために一つのブラッグ波長に対して数万本ものグレーティングを刻む。その結果、波長ごとの光路長差は大きくなり、CFBG全体としての分散量は大きくなりすぎてしまい、適切な分散補償をすることが困難という課題があった。   The method using CFBG has an advantage that it is not necessary to extract light outside like a diffraction grating. However, in order to obtain a high reflectance, a normal CFBG engraves tens of thousands of gratings for one Bragg wavelength. As a result, the optical path length difference for each wavelength becomes large, and the amount of dispersion as a whole of the CFBG becomes too large, which makes it difficult to perform appropriate dispersion compensation.

上記課題を解決するための一例を示せば、分散の符号が異なるCFBGを組み合わせ、その差分の分散量を用いて共振器の分散を補償することを特徴とする。   An example for solving the above problem is characterized by combining CFBGs having different signs of dispersion and compensating the dispersion of the resonator using the difference dispersion amount.

本発明によれば、CFBGによる適切な分散補償を実現したパルス発振ファイバレーザを提供することが出来る。   According to the present invention, it is possible to provide a pulsed fiber laser that realizes appropriate dispersion compensation by CFBG.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされるであろう。   Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.

パルス発振ファイバレーザの基本構成の説明図である。It is explanatory drawing of the basic composition of a pulse oscillation fiber laser. 回折格子対を用いた分散補償の説明図である。It is explanatory drawing of the dispersion compensation using a diffraction grating pair. 従来技術の説明図である。It is explanatory drawing of a prior art. CFBGの構造の説明図である。It is explanatory drawing of the structure of CFBG. FBGの構造の説明図である。It is explanatory drawing of the structure of FBG. 本発明の概略構成図である。It is a schematic block diagram of this invention. 2つのCFBGの関係の概略図である。It is the schematic of the relationship of two CFBG. 分散量制御機構の説明図である。It is explanatory drawing of a dispersion amount control mechanism. 分散量制御機構の説明図である。It is explanatory drawing of a dispersion amount control mechanism. 分散量制御機構の説明図である。It is explanatory drawing of a dispersion amount control mechanism. 共振器作製フローである。It is a resonator manufacturing flow.

パルス発振ファイバレーザの基本構成を図1に示す。共振器1、周波数変調部2、パルスストレッチャ3、アンプ4、パルスコンプレッサ5から構成される。共振器1から発振されたレーザ光線は、周波数変調器2で所望の周波数に変調され、パルス幅を広げるパルスストレッチャ3、アンプ4、パルス幅を狭めるパルスコンプレッサ5を通して、外部に射出される。共振器1の励起源にはEr(Erbium)やYb(Ytterbium)がドープされたファイバが用いられることが多く、ドープファイバに励起光を導入することで、反転分布を形成し、誘導放出によりレーザ発振を行う。通信・計測の分野の光源では発振波長が1550nm近辺のErドープファイバ(EDF:Er Doped Fiber)が、加工用途には利得が高いYbドープファイバ(YDF:Yb Doped Fiber)が用いられることが多い。YDFの発振波長は1030nm近辺である。共振器1から発振されるレーザ光線はパルス発振しているため高い尖頭値(ピークエネルギ)を有しており、短いパルス幅のまま増幅させると尖頭値が非常に高くなり、非線形効果が起きる場合やファイバにダメージが発生する恐れがある。そこで、アンプ4で出力を増幅する前にパルスストレッチャ3でパルス幅を広げ、尖頭値を低下させる。尖頭値を低下させた状態で出力を増幅させ、最後にパルスコンプレッサ5でパルス幅を狭めることで、高尖頭値化して射出する。   A basic configuration of a pulsed fiber laser is shown in FIG. The resonator 1, the frequency modulator 2, the pulse stretcher 3, the amplifier 4, and the pulse compressor 5 are included. The laser beam oscillated from the resonator 1 is modulated to a desired frequency by the frequency modulator 2, and is emitted to the outside through a pulse stretcher 3 that widens the pulse width, an amplifier 4, and a pulse compressor 5 that narrows the pulse width. A fiber doped with Er (Erbium) or Yb (Yterbium) is often used as the pumping source of the resonator 1, and an inversion distribution is formed by introducing pumping light into the doped fiber, and laser is induced by stimulated emission. Oscillates. In light sources in the field of communication and measurement, an Er-doped fiber (EDF: Er Doped Fiber) having an oscillation wavelength near 1550 nm is often used, and a Yb-doped fiber (YDF: Yb Doped Fiber) having a high gain is often used for processing applications. The oscillation wavelength of YDF is around 1030 nm. The laser beam oscillated from the resonator 1 has a high peak value (peak energy) because it oscillates in a pulse, and if it is amplified with a short pulse width, the peak value becomes very high, and a nonlinear effect is produced. If it happens, the fiber may be damaged. Therefore, before the amplifier 4 amplifies the output, the pulse width is widened by the pulse stretcher 3 to reduce the peak value. The output is amplified in a state where the peak value is lowered, and finally the pulse width is narrowed by the pulse compressor 5, thereby increasing the peak value and injecting.

光ファイバには分散(屈折率の波長依存性)があり、波長によって光の伝搬する速度が異なるという特徴がある。短波長側の光が速く進み、長波長側の光が遅く進む分散を異常分散と呼び、短波長の光ほど遅く進み、長波長の光ほど速く進む分散を正常分散と呼ぶ。レーザ光線がファイバを伝搬することでパルス幅が広がってしまうため、短パルスレーザを作製する場合には、分散補償(パルス幅の広がり抑制)を行う必要がある。波長1550nm近辺の帯域においては、EDFは正常分散を、SMF(Single Mode Fiber)は異常分散を示すため、励起源にEDFを用いた共振器ではEDFとSMFの長さを適切な長さに調整することでお互いの分散を相殺し、短いパルス幅で発振させることが可能になる。しかし、波長1030nm近辺の帯域においては、一例としてYDF、SMFともに正常分散を示すため、励起源としてYDFを用いた共振器では、YDFとSMFの長さを調整することで分散補償を行うことはできず、レーザ光線がファイバを伝搬するにつれてパルス幅が広がってしまう(常に長波長側の光が先に進む)。そのため、YDFを用いた超短パルスレーザを作製するためには分散補償機構を組み込む必要がある。分散補償は一般的に回折格子を用いることが多い。   An optical fiber has dispersion (wavelength dependence of refractive index), and has a feature that the speed of light propagation varies depending on the wavelength. Dispersion in which light on the short wavelength side advances fast and light on the long wavelength side advances slowly is called anomalous dispersion. Dispersion that advances more slowly on short wavelength light and advances faster on longer wavelength light is called normal dispersion. Since the pulse width spreads when the laser beam propagates through the fiber, dispersion compensation (suppression of the spread of the pulse width) needs to be performed when a short pulse laser is manufactured. In the band near 1550 nm, EDF shows normal dispersion, and SMF (Single Mode Fiber) shows anomalous dispersion. Therefore, in a resonator using EDF as an excitation source, the lengths of EDF and SMF are adjusted to appropriate lengths. By doing so, it becomes possible to cancel each other's dispersion and oscillate with a short pulse width. However, in the band near the wavelength of 1030 nm, both YDF and SMF exhibit normal dispersion as an example. Therefore, in a resonator using YDF as an excitation source, dispersion compensation can be performed by adjusting the lengths of YDF and SMF. This is not possible, and the pulse width increases as the laser beam propagates through the fiber (the light on the long wavelength side always advances first). Therefore, it is necessary to incorporate a dispersion compensation mechanism in order to manufacture an ultrashort pulse laser using YDF. In general, a dispersion grating is often used for dispersion compensation.

図2を用いて回折格子対を用いた分散補償を説明する。回折格子では、入射光は波長に応じて異なる角度に回折するため、波長ごとに光路長差を与えることが可能である。レーザ光線10を回折格子11に入射すると波長ごとに異なる角度に回折する。レーザ光線の回折格子11への入射角をθ、長波長成分をλ、短波長成分をλとする。図2の構成では、長波長ほど回折角が大きくなるため、レーザ光線の長波長成分λは、短波長成分λよりも長い光路長を与えられる。Ybドープファイバレーザでは、長波長側が先行しているため、回折格子11において、レーザ光線の長波長成分λを短波長成分λよりも長い光路長を与えることで分散補償が可能となる。波長ごとに異なる角度に回折した光を回折格子12に入射させて平行光にし、ミラー13に入射する。ミラー13で反射したレーザ光線は回折格子12を透過することで、再びレーザ光線の長波長成分λほど長い光路長を与えられて分散補償が行われる。ミラー13でレーザ光線を反射させる際、回折格子12への入射角を回折格子11への入射角と同じ角度θにすることで、回折格子11透過後に元のレーザ光線と同じスポット径に戻すことができる。回折格子対の間隔を変化させることで、レーザ光線の長波長成分λと短波長成分λの光路長差を変化させることができるため、共振器で生じる分散量に応じた分散補償量の制御が可能となる。 The dispersion compensation using the diffraction grating pair will be described with reference to FIG. In the diffraction grating, the incident light is diffracted at different angles depending on the wavelength, so that it is possible to give an optical path length difference for each wavelength. When the laser beam 10 is incident on the diffraction grating 11, it is diffracted at different angles for each wavelength. The incident angle of the laser beam on the diffraction grating 11 is θ, the long wavelength component is λ 1 , and the short wavelength component is λ 2 . In the configuration of FIG. 2, since the diffraction angle increases as the wavelength increases, the long wavelength component λ 1 of the laser beam is given a longer optical path length than the short wavelength component λ 2 . In the Yb-doped fiber laser, since the long wavelength side is preceded, dispersion compensation can be performed by giving the long wavelength component λ 1 of the laser beam longer than the short wavelength component λ 2 in the diffraction grating 11. Light diffracted at different angles for each wavelength is incident on the diffraction grating 12 to be parallel light, and is incident on the mirror 13. The laser beam reflected by the mirror 13 is transmitted through the diffraction grating 12, so that an optical path length as long as the long wavelength component λ 1 of the laser beam is given again to perform dispersion compensation. When the laser beam is reflected by the mirror 13, the incident angle to the diffraction grating 12 is set to the same angle θ as the incident angle to the diffraction grating 11, thereby returning to the same spot diameter as the original laser beam after passing through the diffraction grating 11. Can do. Since the optical path length difference between the long wavelength component λ 1 and the short wavelength component λ 2 of the laser beam can be changed by changing the distance between the diffraction grating pairs, the amount of dispersion compensation corresponding to the amount of dispersion generated in the resonator can be changed. Control becomes possible.

図3を用いて、分散補償機構を用いたYbドープファイバレーザの説明を行う。励起LD20から射出されたレーザ光線は、SMF21の内部を伝搬する。レーザ光線はWDMカプラ(WDM:Wavelength Division Multiplexing) 22を経由し、YDF23に導入されることで誘導放出を起こし、中心波長1030nmのレーザを放出する。レーザ光線は分岐カプラ24を経由してコリメータ25から自由空間へ射出され、非線形偏波回転コントローラによりパルス発振させる。非線形偏波回転コントローラはλ/4板26、33、λ/2板27、PBS(polarized beam splitter)28から構成される。非線形偏波回転コントローラは、偏光の回転の仕方が強度に依存することを利用してパルス発振を促進させる機構である。直線偏光の光がファイバ中を伝搬するとき、コアの断面形状の非対称性により楕円偏光に変化する。楕円偏光は、非線形効果により回転する。このとき、強度の強い成分の偏光は強度の弱い成分よりも大きく偏光が回転するため、λ/4板26とλ/2板27を用いて、光強度の強いパルス波のみがPBSを通過し、光強度の弱い成分は通過しないように偏光状態を調整することで、パルス発振を促進させることが可能となる。レーザ光線のパルス成分はミラー29の上を通過して回折格子30、31に入射し、分散補償が行われる。ミラー32で反射する際、ミラー32の角度を上下または左右に傾けることで、異なる角度にレーザ光線が反射するため、入射光と反射光を分離することが可能となる。回折格子透過後、レーザ光線はミラー32で反射され、回折格子30、31で再び分散補償が行われる。分散補償後のレーザ光線はミラー29で反射された後、λ/4板33でファイバ中を伝搬するパルス成分と同じ偏光に戻し、コリメータ34で集光されてファイバ内に再入射する。共振器内に戻ったレーザ光線は戻り光を防ぐためにアイソレータ35を透過させ、WDMカプラ22で波長976nmの励起光と合波し、YDF23を経て、分岐カプラ24から共振器外に射出される。   A Yb-doped fiber laser using a dispersion compensation mechanism will be described with reference to FIG. The laser beam emitted from the excitation LD 20 propagates inside the SMF 21. The laser beam passes through a WDM coupler (WDM: Wavelength Division Multiplexing) 22 and is introduced into the YDF 23 to cause stimulated emission and emit a laser having a center wavelength of 1030 nm. The laser beam is emitted from the collimator 25 to the free space via the branch coupler 24, and is pulsated by the nonlinear polarization rotation controller. The nonlinear polarization rotation controller includes λ / 4 plates 26 and 33, λ / 2 plate 27, and PBS (polarized beam splitter) 28. The nonlinear polarization rotation controller is a mechanism for promoting pulse oscillation by utilizing the fact that the polarization rotation method depends on the intensity. When linearly polarized light propagates through the fiber, it changes to elliptically polarized light due to the asymmetry of the cross-sectional shape of the core. Elliptical polarization rotates due to non-linear effects. At this time, since the polarized light of the strong component rotates more than the weak component, only the pulse wave having the high light intensity passes through the PBS using the λ / 4 plate 26 and the λ / 2 plate 27. By adjusting the polarization state so that components with low light intensity do not pass, pulse oscillation can be promoted. The pulse component of the laser beam passes on the mirror 29 and enters the diffraction gratings 30 and 31, and dispersion compensation is performed. When the light is reflected by the mirror 32, the angle of the mirror 32 is tilted up and down or left and right, so that the laser beam is reflected at different angles, so that incident light and reflected light can be separated. After passing through the diffraction grating, the laser beam is reflected by the mirror 32, and dispersion compensation is performed again by the diffraction gratings 30 and 31. After the dispersion-compensated laser beam is reflected by the mirror 29, it is returned to the same polarization as the pulse component propagating through the fiber by the λ / 4 plate 33, condensed by the collimator 34, and reentered into the fiber. The laser beam that has returned into the resonator is transmitted through the isolator 35 to prevent return light, is combined with the excitation light having a wavelength of 976 nm by the WDM coupler 22, and is emitted from the branch coupler 24 to the outside of the resonator through the YDF 23.

分散補償の手法には回折格子対を用いる手法以外に、CFBG(Chirped Fiber Bragg Grating)が挙げられる(図4)。CFBGは光ファイバのコア内に回折格子を形成し、光フィルタとしての機能を持たせたファイバ型素子である。通常のFBG(Fiber Bragg Grating)の構成を図5に示す。図5ではファイバのコア40とクラッド41を示しており、被覆は図示していない。コア40に紫外線で露光することで、回折格子42bを形成する。回折格子42bで反射する光の波長はブラッグ波長λと呼ばれ、回折格子42bのピッチとコアの屈折率で決まる。回折格子42bにブラック波長λと同じ波長を含む光が入射した場合、回折格子42bではブラッグ波長と同じ波長の光λのみが反射し、ブラック波長λ以外の波長は、回折格子42bを透過する。ブラッグλ波長は、回折格子のピッチが広いほど長波長になり、コアの屈折率が大きいほど長波長になる。一方CFBGは、ファイバ中の回折格子42aの周期をファイバの位置に応じて変化させている。これにより、ファイバの位置に応じて反射する波長を変化させることができる。例えば、図4に示すように、レーザ光線の入射位置付近の回折格子のピッチを狭くし、入射位置から遠くなるにつれて回折格子のピッチを広くする。レーザ光線の短波長側の波長をλB1、長波長側の波長をλB2とすると、CFBGに入射したレーザ光線は、入射位置付近の回折格子ではブラッグ波長λB1の光が反射し、入射位置から遠い回折格子では、ブラッグ波長λB2の光が反射する。その結果、短波長側の光よりも長波長側の光が長い光路長を与えられるCFBGを作製することができる。これは異常分散を与えることに相当する。 As a dispersion compensation method, there is CFBG (Chirped Fiber Bragg Grating) in addition to a method using a diffraction grating pair (FIG. 4). CFBG is a fiber-type element in which a diffraction grating is formed in the core of an optical fiber to provide a function as an optical filter. FIG. 5 shows a configuration of a normal FBG (Fiber Bragg Grating). FIG. 5 shows the fiber core 40 and the clad 41, and the coating is not shown. A diffraction grating 42b is formed by exposing the core 40 with ultraviolet rays. Wavelength of light reflected by the diffraction grating 42b is called a Bragg wavelength lambda B, determined by the refractive index of the pitch and the core of the diffraction grating 42b. When light including the same wavelength as the black wavelength λ B is incident on the diffraction grating 42b, only the light λ B having the same wavelength as the Bragg wavelength is reflected by the diffraction grating 42b, and wavelengths other than the black wavelength λ B are reflected on the diffraction grating 42b. To Penetrate. The Bragg λ B wavelength becomes longer as the pitch of the diffraction grating is wider, and becomes longer as the refractive index of the core is larger. On the other hand, the CFBG changes the period of the diffraction grating 42a in the fiber according to the position of the fiber. Thereby, the wavelength reflected can be changed according to the position of the fiber. For example, as shown in FIG. 4, the pitch of the diffraction grating near the incident position of the laser beam is narrowed, and the pitch of the diffraction grating is increased as the distance from the incident position is increased. When the wavelength on the short wavelength side of the laser beam is λ B1 and the wavelength on the long wavelength side is λ B2 , the laser beam incident on the CFBG is reflected by the light having the Bragg wavelength λ B1 at the diffraction grating near the incident position. The light having the Bragg wavelength λ B2 is reflected by the diffraction grating far from the center. As a result, it is possible to produce a CFBG in which light on the long wavelength side is given a longer optical path length than light on the short wavelength side. This corresponds to giving anomalous dispersion.

以上の説明を元に、CFBGを用いたパルス発振ファイバレーザについて以下実施例にて詳述する。   Based on the above description, a pulse oscillation fiber laser using CFBG will be described in detail in the following examples.

本実施例では、分散の符号が異なるCFBGの差分の分散量を用いて分散補償を行う例を説明する。 In this embodiment, an example will be described in which dispersion compensation is performed using a dispersion amount of a difference between CFBGs having different dispersion codes.

図6は、本実施例の共振器の構成図を示す。
励起LD20から射出された励起レーザはSMF21を通じて伝搬する。励起LD20の中心波長は例えば976nmである。励起レーザはWDM22を透過後、発振媒体であるYDF23に導入され、波長1030nmのレーザ光線を誘導放出する。レーザ光線は、分岐カプラ24を透過し、可飽和吸収体45においてパルス発振する。可飽和吸収体は強度の弱い入射光に対しては吸収体として動作し、強度の高い入射光に対しては吸収体としての能力が飽和し、透明体として動作する。その結果、発振したレーザ光線を過飽和吸収体に入射させることで強度の低い連続波成分が吸収され、パルス発振が促進される。パルス発振したレーザ光線は分散補償機構51で分散補償される。分散補償機構51はサーキュレータ46、48、CFBG47、49、分散量制御機構50から構成される。レーザ光線はサーキュレータ46で光路を変化され、CFBG47に入射する。CFBG47は、サーキュレータ46に近いほど回折格子のピッチを広くし、サーキュレータ46から遠いほど回折格子のピッチを狭くすることで、長波長側ほど光路長が短くなり、正常分散を与えることができる。CFBG47で反射したレーザ光線はサーキュレータ46、48で光路を変えてCFBG49に入射する。CFBG49はサーキュレータ48に近いほど回折格子のピッチを狭くし、サーキュレータ48から遠いほど回折格子のピッチを広くすることで、短波長側ほど光路長が短くなり、異常分散を与えることができる。その結果、CFBG47に入射する前のレーザ光線とCFBG49で反射した後のレーザ光線には、CFBG47とCFBG49の差分の分散量だけ分散が与えられることになる。
FIG. 6 shows a configuration diagram of the resonator of this embodiment.
The excitation laser emitted from the excitation LD 20 propagates through the SMF 21. The center wavelength of the excitation LD 20 is, for example, 976 nm. After passing through the WDM 22, the excitation laser is introduced into the YDF 23 that is an oscillation medium, and stimulates and emits a laser beam having a wavelength of 1030 nm. The laser beam passes through the branch coupler 24 and pulsates in the saturable absorber 45. The saturable absorber operates as an absorber for incident light having a low intensity, and the ability as an absorber is saturated for incident light having a high intensity, and operates as a transparent body. As a result, the oscillated laser beam is made incident on the saturable absorber, so that the continuous wave component having a low intensity is absorbed and the pulse oscillation is promoted. The pulsed laser beam is compensated for dispersion by the dispersion compensation mechanism 51. The dispersion compensation mechanism 51 includes circulators 46 and 48, CFBGs 47 and 49, and a dispersion amount control mechanism 50. The optical path of the laser beam is changed by the circulator 46 and enters the CFBG 47. The CFBG 47 increases the pitch of the diffraction grating as it is closer to the circulator 46, and narrows the pitch of the diffraction grating as it is farther from the circulator 46, so that the optical path length becomes shorter toward the longer wavelength side and normal dispersion can be given. The laser beam reflected by the CFBG 47 changes its optical path by the circulators 46 and 48 and enters the CFBG 49. The closer the CFBG 49 is to the circulator 48, the narrower the pitch of the diffraction grating, and the farther away from the circulator 48, the wider the pitch of the diffraction grating, so that the shorter the wavelength, the shorter the optical path length and the extraordinary dispersion. As a result, the laser beam before being incident on the CFBG 47 and the laser beam after being reflected by the CFBG 49 are given dispersion by the difference amount of the difference between the CFBG 47 and the CFBG 49.

ここで、CFBG47と49の関係を概略図で示すと、図7のようにピッチの細かい方向が相反した構成となっている。   Here, when the relationship between the CFBGs 47 and 49 is schematically shown, the fine pitch directions are in conflict with each other as shown in FIG.

例えば、CFBG47の分散パラメータを−50ps/nm、CFBG49の分散パラメータを55ps/nmとする。CFBG47に入射したレーザ光線は−50ps/nmの正常分散が与えられ、パルス伸張が起きる。その後、CFBG49で55ps/nmの異常分散を与えることでパルス圧縮が起きる。これにより、CFBG47入射前とCFBG49入射後では、レーザ光線は2つのCFBGの差分の分散量である5ps/nmの異常分散が与えられたことになる。CFBG47入射前のレーザ光線のスペクトル幅が5nm、パルス幅が26psであったとき、5ps/nmの異常分散が与えられるとCFBG49入射後にはパルス幅1psに圧縮される。このようにCFBGの差分の分散量を用いることでCFBG単体がもつ分散パラメータよりも小さい分散量を実現することが可能となり、共振器で生じる分散を適切に補償することができる。CFBG49で反射したレーザ光線はサーキュレータ48で光路を変化され、アイソレータ35を透過し、戻り光による素子へのダメージを抑制する。レーザ光線はWDMカプラ22で波長976nmの励起レーザと合波された後、YDF23を経て、分岐カプラ24から共振器外に射出される。射出後のレーザはオートコリレータ52でパルス幅を測定し、所望のパルス幅が得られているか確認する。CFBG47とCFBG49の差分の分散量のみで所望のパルス幅が得られていなかった場合、分散量制御機構50で分散補償量を調整する。調整する分散補償量は、オートコリレータ52で測定したパルス幅と目標のパルス幅から算出する。算出した分散補償量から、分散量制御機構50における制御量を算出し、分散量制御機構50にフィードバックして分散補償量を調整する。分散量制御機構において制御する分散量の算出は、手動、自動のどちらで行ってもよい。例えば、測定結果がスペクトル幅5nm、パルス幅1psであり、目標のパルス幅が500fsであった場合、分散量制御機構50で0.1ps/nmの分散を与えることで、パルス幅1psから500fsに圧縮可能となる。分散量制御機構50における分散の調整量はあらかじめデータベース化しておき、実験結果をフィードバックすることで任意の調整量を実現可能にする。   For example, the dispersion parameter of CFBG 47 is -50 ps / nm, and the dispersion parameter of CFBG 49 is 55 ps / nm. The laser beam incident on the CFBG 47 is given a normal dispersion of −50 ps / nm, and pulse stretching occurs. Thereafter, pulse compression occurs by providing anomalous dispersion of 55 ps / nm with CFBG49. As a result, before the CFBG 47 is incident and after the CFBG 49 is incident, the laser beam is given an anomalous dispersion of 5 ps / nm, which is a dispersion amount of the difference between the two CFBGs. When the spectral width of the laser beam before the CFBG 47 incidence is 5 nm and the pulse width is 26 ps, if an anomalous dispersion of 5 ps / nm is given, the pulse width is compressed to 1 ps after the CFBG 49 is incident. Thus, by using the dispersion amount of the difference of the CFBG, it is possible to realize a dispersion amount smaller than the dispersion parameter of the CFBG alone, and it is possible to appropriately compensate for the dispersion generated in the resonator. The laser beam reflected by the CFBG 49 is changed in its optical path by the circulator 48, passes through the isolator 35, and suppresses damage to the element due to return light. The laser beam is combined with an excitation laser having a wavelength of 976 nm by the WDM coupler 22 and then emitted from the branch coupler 24 to the outside of the resonator through the YDF 23. After the laser beam is emitted, the autocorrelator 52 measures the pulse width to check whether a desired pulse width is obtained. When a desired pulse width is not obtained only by the difference dispersion amount between CFBG 47 and CFBG 49, the dispersion amount control mechanism 50 adjusts the dispersion compensation amount. The dispersion compensation amount to be adjusted is calculated from the pulse width measured by the autocorrelator 52 and the target pulse width. A control amount in the dispersion amount control mechanism 50 is calculated from the calculated dispersion compensation amount, and is fed back to the dispersion amount control mechanism 50 to adjust the dispersion compensation amount. The calculation of the dispersion amount controlled by the dispersion amount control mechanism may be performed either manually or automatically. For example, when the measurement result is a spectrum width of 5 nm, a pulse width of 1 ps, and a target pulse width of 500 fs, the dispersion amount control mechanism 50 gives a dispersion of 0.1 ps / nm, thereby changing the pulse width from 1 ps to 500 fs. It becomes compressible. The amount of adjustment of dispersion in the dispersion amount control mechanism 50 is stored in a database in advance, and an arbitrary amount of adjustment can be realized by feeding back experimental results.

本実施例では、CFBGを連続で配置しているが、これに限定される必要はない。   In this embodiment, CFBGs are continuously arranged, but it is not necessary to be limited to this.

本実施例では、分散量制御機構の一例を説明する。   In the present embodiment, an example of a dispersion amount control mechanism will be described.

図8では、CFBGに応力を加えることで分散量を調整する構成を説明する。図6で説明した素子20〜24、35、45〜49に関しては説明を省略する。分散量調整機構は、ゴムプレート62、モータ63a、63bから構成されている。CFBG47、49はゴムプレートに接着されている。ゴムプレート62の一端は治具により固定されており、もう一端はモータ63a、63bに接続されている。モータ63a、63bは、回転トルクを制御することでゴムプレート62にz軸方向の応力を与え、ゴムプレート62を均一に曲げることを可能にする。モータにはステッピングモータを用いることでゴムプレート62の曲げ量を高精度に制御可能である。   FIG. 8 illustrates a configuration in which the amount of dispersion is adjusted by applying stress to CFBG. Description of the elements 20 to 24, 35, and 45 to 49 described in FIG. 6 is omitted. The dispersion amount adjusting mechanism includes a rubber plate 62 and motors 63a and 63b. CFBGs 47 and 49 are bonded to a rubber plate. One end of the rubber plate 62 is fixed by a jig, and the other end is connected to the motors 63a and 63b. The motors 63a and 63b apply a stress in the z-axis direction to the rubber plate 62 by controlling the rotational torque, thereby enabling the rubber plate 62 to be bent uniformly. By using a stepping motor as the motor, the bending amount of the rubber plate 62 can be controlled with high accuracy.

ゴムプレート62を曲げると、一方のCFBGはファイバ長が伸びるため、回折格子のピッチは長くなる。これにより、波長ごとの光路長差は大きくなるため、分散量の絶対値は大きくなる。例えば、モータ63aを駆動させ、ゴムプレート62をz軸の正方向に曲げることでCFBG47の長さを0.1mm伸ばすことができる。その結果、分散量は50.0ps/nmから50.2ps/nmに変化する。それに対してゴムプレート62のもう一方の面に貼ったCFBG49のファイバ長は短くなるので、回折格子のピッチは短くなる。これにより、波長ごとの光路長差は小さくなり、分散量の絶対値は小さくなる。例えば、CFBG49の長さを0.1mm縮めることで、分散量を−50.5ps/nmから−50.3ps/nmに変化させることができる。この結果、2つのCFBGの差分の分散量は−0.5ps/nmから−0.1ps/nmに変化し、分散量の絶対値を減少させることができる。このようにCFBG47、49の分散量を同時に制御することで、小さい制御量で分散量の調整が可能となる。CFBGの曲げ量と分散量の変化をあらかじめデータベース化しておき、測定条件、測定結果にフィードバックすることで、所望のパルス幅に調整することが可能となる。   When the rubber plate 62 is bent, the fiber length of one CFBG is increased, so that the pitch of the diffraction grating is increased. Thereby, since the optical path length difference for each wavelength increases, the absolute value of the dispersion amount increases. For example, the length of the CFBG 47 can be increased by 0.1 mm by driving the motor 63a and bending the rubber plate 62 in the positive z-axis direction. As a result, the dispersion amount changes from 50.0 ps / nm to 50.2 ps / nm. In contrast, since the fiber length of the CFBG 49 attached to the other surface of the rubber plate 62 is shortened, the pitch of the diffraction grating is shortened. Thereby, the optical path length difference for each wavelength becomes small, and the absolute value of the dispersion amount becomes small. For example, the amount of dispersion can be changed from −50.5 ps / nm to −50.3 ps / nm by reducing the length of CFBG 49 by 0.1 mm. As a result, the dispersion amount of the difference between the two CFBGs changes from -0.5 ps / nm to -0.1 ps / nm, and the absolute value of the dispersion amount can be reduced. By controlling the dispersion amounts of the CFBGs 47 and 49 at the same time as described above, the dispersion amount can be adjusted with a small control amount. By making a database of changes in the bending amount and dispersion amount of the CFBG in advance and feeding back to the measurement conditions and measurement results, it is possible to adjust to a desired pulse width.

本実施例では、ゴムプレートを曲げて、CFBGの差分の分散量を減少させる構成を説明したが、CFBGの差分の分散量を増加させる構成を用いてもよい。これにより、CFBGの差分の分散量が共振器で生じる分散量よりも小さかった場合、CFBGの差分の分散量を増加させることで、共振器で生じる分散を補償することができる。   In the present embodiment, a configuration has been described in which the rubber plate is bent to reduce the CFBG differential dispersion amount. However, a configuration in which the CFBG differential dispersion amount is increased may be used. Thereby, when the dispersion amount of the difference of CFBG is smaller than the dispersion amount generated in the resonator, the dispersion generated in the resonator can be compensated by increasing the dispersion amount of the difference of CFBG.

本実施例では、ゴムプレートを用いてCFBGに応力を加えたが、これに限定される必要はない。   In this embodiment, stress is applied to CFBG using a rubber plate, but it is not necessary to be limited to this.

本実施例では、モータを用いてゴムプレートを曲げたが、これに限定される必要はない。   In this embodiment, the rubber plate is bent using a motor, but the present invention is not limited to this.

本発明の実施形態3を図9で説明する。   A third embodiment of the present invention will be described with reference to FIG.

図9では、2つのCFBGの温度差を制御することで分散量を調整する構成を説明する。CFBGに温度変化を与えた場合、屈折率が温度に依存するために、ブラッグ波長が変化する。また、温度変化によりガラスが伸縮するため回折格子のピッチが変化し、ブラッグ波長が変化する。図6で説明した素子20〜24、35、45〜49に関しては説明を省略する。符号の異なるCFBGをペルチェ素子64の両面に貼り付け、2つのCFBGの温度差を制御する。   FIG. 9 illustrates a configuration in which the dispersion amount is adjusted by controlling the temperature difference between two CFBGs. When a temperature change is given to CFBG, the Bragg wavelength changes because the refractive index depends on the temperature. Further, since the glass expands and contracts due to a temperature change, the pitch of the diffraction grating changes and the Bragg wavelength changes. Description of the elements 20 to 24, 35, and 45 to 49 described in FIG. 6 is omitted. CFBGs having different signs are attached to both surfaces of the Peltier element 64 to control the temperature difference between the two CFBGs.

ペルチェ素子64は温度調整機構65で制御する。ペルチェ素子64により加熱されたCFBG47は屈折率が大きくなる。また、熱膨張によりファイバ長が伸びるため、回折格子のピッチが長くなる。これにより、波長ごとの光路長差は長くなり、分散量の絶対値が大きくなる。例えば、温度を1°C上げることで、分散量を50.0ps/nmから50.2ps/nmに変化させることができる。一方、ペルチェ素子64により冷却されたCFBG49は屈折率が小さくなる。また、熱収縮によりファイバ長が短くなるため、回折格子のピッチが短くなる。これにより、波長ごとの光路長差が小さくなり、分散量の絶対値が小さくなる。例えば、温度を1°C下げることで、分散量を−50.5ps/nmから−50.3ps/nmに変化させることができる。その結果、CFBGの差分の分散量は、−0.5ps/nmから−0.1ps/nmに減少させることができる。この方法によりCFBGの差分の分散量を制御することが可能となり、所望のパルス幅を得ることができる。このようにCFBG47、49の分散量を同時に制御することで、小さい制御量で分散量の調整が可能となる。CFBGに与える温度変化と分散量変化の関係はデータベース化しておき、測定条件、測定結果にフィードバックすることで所望のパルス幅に調整することが可能となる。   The Peltier element 64 is controlled by a temperature adjustment mechanism 65. The CFBG 47 heated by the Peltier element 64 has a high refractive index. Further, since the fiber length is extended by thermal expansion, the pitch of the diffraction grating is increased. Thereby, the optical path length difference for each wavelength becomes long, and the absolute value of the dispersion amount becomes large. For example, the dispersion amount can be changed from 50.0 ps / nm to 50.2 ps / nm by raising the temperature by 1 ° C. On the other hand, the CFBG 49 cooled by the Peltier element 64 has a small refractive index. Further, since the fiber length is shortened by heat shrinkage, the pitch of the diffraction grating is shortened. Thereby, the optical path length difference for each wavelength is reduced, and the absolute value of the dispersion amount is reduced. For example, the dispersion amount can be changed from −50.5 ps / nm to −50.3 ps / nm by lowering the temperature by 1 ° C. As a result, the amount of CFBG difference dispersion can be reduced from -0.5 ps / nm to -0.1 ps / nm. By this method, it becomes possible to control the amount of dispersion of the difference of CFBG, and a desired pulse width can be obtained. By controlling the dispersion amounts of the CFBGs 47 and 49 at the same time as described above, the dispersion amount can be adjusted with a small control amount. The relationship between the temperature change and the dispersion amount change applied to the CFBG is stored in a database and can be adjusted to a desired pulse width by feeding back to the measurement conditions and measurement results.

本実施例では、ペルチェ素子で2つCFBGの温度を制御し、CFBGの差分の分散量を減少させる構成を説明したが、CFBGの差分の分散量を増加させる構成を用いてもよい。これにより、CFBGの差分の分散量が共振器で生じる分散量よりも小さかった場合、CFBGの差分の分散量を増加させることで、共振器で生じる分散を補償することができる。   In the present embodiment, a configuration has been described in which the temperature of two CFBGs is controlled by a Peltier element to reduce the amount of CFBG difference dispersion, but a configuration in which the amount of CFBG difference dispersion is increased may be used. Thereby, when the dispersion amount of the difference of CFBG is smaller than the dispersion amount generated in the resonator, the dispersion generated in the resonator can be compensated by increasing the dispersion amount of the difference of CFBG.

本実施例では、ペルチェ素子を用いてCFBGの温度を制御したが、これに限定される必要はない。   In this embodiment, the temperature of the CFBG is controlled using a Peltier element, but it is not necessary to be limited to this.

本発明の実施形態4を図10で説明する。   Embodiment 4 of the present invention will be described with reference to FIG.

本実施例では、分散の符号の異なるCFBGを複数個組み合わせて所望の分散量を得る構成の例を説明する。図6で説明した素子20〜24、35、45〜49に関しては説明を省略する。まず共振器で生じる分散量を算出する。そして、共振器で生じる分散量の絶対値と同程度で分散の符号が逆になるCFBGの組み合わせを選択する。例えば、共振器で生じるGVDパラメータが0.1psであった場合、CFBGを複数個組み合わせて分散量が−0.1psとなるような組み合わせを選択すればよい。具体的には、CFBG47の分散量が20.5ps、CFBG49の分散量が−19.8ps、CFBG71の分散量が20.0ps、CFBG73の分散量が−20.8psという組み合わせのCFBGを用いれば、CFBG全体の分散量は−0.1psとなり、共振器で生じる分散0.1psを補償することができる。 In the present embodiment, an example of a configuration in which a desired dispersion amount is obtained by combining a plurality of CFBGs having different dispersion codes will be described. Description of the elements 20 to 24, 35, and 45 to 49 described in FIG. 6 is omitted. First, the amount of dispersion generated in the resonator is calculated. Then, a combination of CFBGs having the same degree of dispersion as the absolute value of the amount of dispersion generated in the resonator and the sign of dispersion being reversed is selected. For example, when the GVD parameter generated in the resonator is 0.1 ps 2 , a combination of a plurality of CFBGs and a dispersion amount of −0.1 ps 2 may be selected. Specifically, CFBG dispersion amount CFBG47 is the dispersion of 20.5ps 2, CFBG49 dispersion amount of -19.8ps 2, CFBG71 dispersion of 20.0ps 2, CFBG73 of combination of -20.8Ps 2 Is used, the dispersion amount of the entire CFBG becomes −0.1 ps 2 , and the dispersion of 0.1 ps 2 generated in the resonator can be compensated.

本実施例では、CFBGを4つ組み合わせた構成を用いたが、これに限定される必要はない。   In this embodiment, a configuration in which four CFBGs are combined is used, but it is not necessary to be limited to this.

本実施例では、正常分散を与えるCFBGと異常分散を与えるCFBGを交互に配置して分散補償を行ったが、これに限定される必要はない。   In this embodiment, the CFBG that gives normal dispersion and the CFBG that gives anomalous dispersion are alternately arranged to perform dispersion compensation. However, the present invention is not limited to this.

ファイバレーザの作製フローを図11に示す。CFBGの分散量を測定する(ステップ200)。CFBGの分散量は、位相法を用いて測定する。位相法は、波長の異なる複数の光源を用いて、被測定素子を通過する際の各波長における光信号の到達時間の差から波長分散値を求める方法である。各素子を融着接続し、共振器の作製を開始する(ステップ201)。このとき、各素子で使用するファイバの長さを測定し、ファイバで生じる正常分散を算出する(ステップ202)。符号の異なるCFBGの差分の分散量と共振器で生じる分散の差から分散量制御機構で調整する分散量を算出し、分散量制御機構にフィードバックして分散量を調整する(ステップ203)。オートコリレータで自己相関波形を測定し、レーザ光線の分散の符号の判定、パルス幅測定を行う(ステップ204)。自己相関波形は分散の符号により異なる波形を示す。正常分散領域では、ストレッチパルスモード同期と呼ばれる尖頭値が高い自己相関波形が観測される。一方、異常分散領域では、ソリトンモード同期と呼ばれるsech関数の自己相関波形が観測される。自己相関波形、パルス幅から所望の性能が得られているかを判断する(ステップ205)。所望の性能を達成していなかった場合、分散量制御機構を再度調整して、分散量を変化させる。所望のパルス幅が得られた場合、ファイバレーザ作製完了とする(ステップ206)。 A manufacturing flow of the fiber laser is shown in FIG. The amount of CFBG dispersion is measured (step 200). The amount of CFBG dispersion is measured using a phase method. The phase method is a method for obtaining a chromatic dispersion value from a difference in arrival times of optical signals at respective wavelengths when passing through a device under measurement using a plurality of light sources having different wavelengths. Each element is fusion-spliced, and manufacture of the resonator is started (step 201). At this time, the length of the fiber used in each element is measured, and the normal dispersion generated in the fiber is calculated (step 202). The dispersion amount to be adjusted by the dispersion amount control mechanism is calculated from the difference amount of the CFBG having different signs and the difference between the dispersions generated in the resonator, and is fed back to the dispersion amount control mechanism to adjust the dispersion amount (step 203). The autocorrelator measures the autocorrelation waveform, determines the sign of the laser beam dispersion, and measures the pulse width (step 204). The autocorrelation waveform shows a different waveform depending on the sign of dispersion. In the normal dispersion region, an autocorrelation waveform having a high peak value called stretch pulse mode synchronization is observed. On the other hand, in the anomalous dispersion region, an autocorrelation waveform of a sech 2 function called soliton mode synchronization is observed. It is determined whether desired performance is obtained from the autocorrelation waveform and pulse width (step 205). If the desired performance has not been achieved, the dispersion amount control mechanism is adjusted again to change the dispersion amount. If the desired pulse width is obtained, the fiber laser fabrication is completed (step 206).

本実施例では、CFBGの分散量を位相法を用いて測定したが、これに限定される必要はない。   In this example, the amount of CFBG dispersion was measured using the phase method, but the present invention is not limited to this.

本実施例では、CFBGの分散量を測定(ステップ200)、共振器の作製を開始(ステップ201)、共振器で生じる分散量の算出(ステップ202)の順番で説明したが、これに限定される必要はない。   In this embodiment, the dispersion amount of CFBG is measured (step 200), the manufacture of the resonator is started (step 201), and the dispersion amount generated in the resonator is calculated (step 202). There is no need to

1…共振器、2…周波数変調部、3…パルスストレッチャ、4…アンプ、5…パルスコンプレッサ、10…レーザ光線、11、12、30、31…回折格子、13、29、32…ミラー、20…励起LD、21…SMF、22…WDMカプラ、23…YDF、24…分岐カプラ、25、34…コリメータ、26、33…λ/4板、27…λ/2板、28…PBS、35…アイソレータ、40…コア、41…クラッド、42a…CFBGの回折格子、42b…FBGの回折格子、45…可飽和吸収体、46、48、70、72…サーキュレータ、47、49、71、73…CFBG、50…分散量制御機構、51…分散補償機構、52…オートコリレータ、62…ゴムプレート、63a、63b…モータ、64…ペルチェ素子、65…ペルチェ素子温度制御機構、200〜206…ファイバレーザ作製工程 DESCRIPTION OF SYMBOLS 1 ... Resonator, 2 ... Frequency modulation part, 3 ... Pulse stretcher, 4 ... Amplifier, 5 ... Pulse compressor, 10 ... Laser beam, 11, 12, 30, 31 ... Diffraction grating, 13, 29, 32 ... Mirror, 20 ... excitation LD, 21 ... SMF, 22 ... WDM coupler, 23 ... YDF, 24 ... branch coupler, 25, 34 ... collimator, 26, 33 ... λ / 4 plate, 27 ... λ / 2 plate, 28 ... PBS, 35 ... Isolator, 40 ... core, 41 ... cladding, 42a ... CFBG diffraction grating, 42b ... FBG diffraction grating, 45 ... saturable absorber, 46, 48, 70, 72 ... circulator, 47, 49, 71, 73 ... CFBG , 50 ... dispersion amount control mechanism, 51 ... dispersion compensation mechanism, 52 ... autocorrelator, 62 ... rubber plate, 63a, 63b ... motor, 64 ... Peltier element, 65 ... Peltier element temperature Degree control mechanism, 200-206 ... fiber laser manufacturing process

Claims (6)

パルス発振ファイバレーザにおいて、前記ファイバレーザの分散を補償する第一のCFBGと、該第一のCFBGと分散の符合の異なる第二のCFBGとを有することを特徴とするパルス発振ファイバレーザ   A pulsed fiber laser comprising: a first CFBG that compensates for dispersion of the fiber laser; and a second CFBG having a different dispersion sign from the first CFBG. 請求項1に記載のパルス発振ファイバレーザにおいて、前記第一のCFBGと前記第二のCFBGの分散補償量を制御する機構を有することを特徴とするパルス発振ファイバレーザ   2. The pulsed fiber laser according to claim 1, further comprising a mechanism for controlling a dispersion compensation amount of the first CFBG and the second CFBG. 請求項2に記載のパルス発振ファイバレーザにおいて、応力を与えることで前記第一のCFBGと前記第二のCFBGの分散量を制御する機構を組み込むことを特徴とするパルス発振ファイバレーザ   3. The pulsed fiber laser according to claim 2, wherein a mechanism for controlling a dispersion amount of the first CFBG and the second CFBG by applying stress is incorporated. 請求項2に記載のファイバレーザにおいて、温度を制御することで前記第一のCFBGと前記第二のCFBGの分散量を制御する機構を組み込むことを特徴とするパルス発振ファイバレーザ   3. The fiber laser according to claim 2, wherein a mechanism for controlling a dispersion amount of the first CFBG and the second CFBG by controlling a temperature is incorporated. 請求項1に記載のパルス発振ファイバレーザにおいて、3つ以上のCFBGを有し、該3つ以上のCFBGが有する分散量の差分で分散補償量を制御することを特徴とするパルス発振ファイバレーザ   2. The pulsed fiber laser according to claim 1, comprising three or more CFBGs, and the dispersion compensation amount is controlled by a difference in dispersion amount of the three or more CFBGs. 請求項1ないし5のいずれか1項に記載のパルス発振ファイバレーザを用いることを特徴とする電子機器。   An electronic apparatus using the pulsed fiber laser according to claim 1.
JP2013084462A 2013-04-15 2013-04-15 Pulse oscillation fiber laser and electronic apparatus using the same Pending JP2014207343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013084462A JP2014207343A (en) 2013-04-15 2013-04-15 Pulse oscillation fiber laser and electronic apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013084462A JP2014207343A (en) 2013-04-15 2013-04-15 Pulse oscillation fiber laser and electronic apparatus using the same

Publications (1)

Publication Number Publication Date
JP2014207343A true JP2014207343A (en) 2014-10-30

Family

ID=52120683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013084462A Pending JP2014207343A (en) 2013-04-15 2013-04-15 Pulse oscillation fiber laser and electronic apparatus using the same

Country Status (1)

Country Link
JP (1) JP2014207343A (en)

Similar Documents

Publication Publication Date Title
JP5487213B2 (en) Highly rare earth doped optical fiber for use in fiber lasers and amplifiers.
US7257302B2 (en) In-line, high energy fiber chirped pulse amplification system
US9219344B2 (en) Generating ultrashort laser pulses based on two-stage pulse processing
US20220149579A1 (en) Ultrashort pulse laser source with chirped pulse amplification and tailored pulse train
US8508843B2 (en) Laser systems with doped fiber components
US20060209908A1 (en) An Optical System For Providing Short Laser-Pulses
JP5877280B2 (en) Optical amplifier, optical amplification system, wavelength converter, and optical communication system
JP2013077831A (en) Modular fiber-based chirped pulse amplification system
JP2004527001A (en) Optical pulse light source and method for generating optical pulses
CN102449936A (en) Systems and techniques for suppressing backward lasing in high-power cascaded raman fiber lasers
JP2014515175A (en) Compact, coherent and bright light source for mid-infrared and far-infrared
CN106998030B (en) Semi-open cavity type linear polarization and ultra-narrow linewidth multi-wavelength random fiber laser
KR101394720B1 (en) Method and apparatus to generate high power femtosecond light pulses by combining nonlinear polarization rotation and saturable absortion
Marques et al. Adjustable EDFA gain equalization filter for DWDM channels based on a single LPG excited by flexural acoustic waves
JP2008172166A (en) Noise-like laser light source and wide-band light source
US20230094403A1 (en) A method and system for generation of optical pulses of light
Fotiadi et al. Refractive Index Changes in Rare Earth‐Doped Optical Fibers and Their Applications in All‐Fiber Coherent Beam Combining
JP7346564B2 (en) Fiber-based supercontinuum light source
JP2014207343A (en) Pulse oscillation fiber laser and electronic apparatus using the same
Ceballos-Herrera et al. Single-to three-wavelength switchable ytterbium-doped fiber laser based on intracavity induced loss by a long-period holey fiber grating
KR20140049994A (en) Method and apparatus to generate high power femtosecond light pulses by combining nonlinear polarization rotation and saturable absortion
US20070098023A1 (en) Fiber laser and methods manufacture and use
CA3179682A1 (en) Fiber laser system
Luo et al. LPFG modulator for fiber laser Q switching
Rissanen Design of a Chirped Pulse Amplification System based on Tapered Fiber Amplifier