JP2014206384A - Estimation method of optimal mixing ratio of fine aggregate for concrete, and estimation method of unit water quantity and trial production funnel flow-down time for the same - Google Patents

Estimation method of optimal mixing ratio of fine aggregate for concrete, and estimation method of unit water quantity and trial production funnel flow-down time for the same Download PDF

Info

Publication number
JP2014206384A
JP2014206384A JP2013082345A JP2013082345A JP2014206384A JP 2014206384 A JP2014206384 A JP 2014206384A JP 2013082345 A JP2013082345 A JP 2013082345A JP 2013082345 A JP2013082345 A JP 2013082345A JP 2014206384 A JP2014206384 A JP 2014206384A
Authority
JP
Japan
Prior art keywords
coefficient
estimated
concrete
estimation method
funnel flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013082345A
Other languages
Japanese (ja)
Inventor
伊藤 智章
Tomoaki Ito
智章 伊藤
拓也 杉山
Takuya Sugiyama
拓也 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2013082345A priority Critical patent/JP2014206384A/en
Publication of JP2014206384A publication Critical patent/JP2014206384A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce labor for a test kneading of concrete at a selection of a fine aggregate.SOLUTION: An estimation method of unit water quantity and trial production funnel flow-down time estimates unit water quantity as an index of consistency of concrete and trial production funnel flow-down time as an index of workability, by a multiple regression expression with weighted average efficiency by a mixing ratio of the specific physical property value of a fine aggregate, as an explaining variable.

Description

本発明は、コンクリート用細骨材の最適混合比率の推定方法、並びにそのための単位水量及び試作漏斗流下時間の推定方法に関する。   The present invention relates to a method for estimating an optimum mixing ratio of fine aggregate for concrete, and a method for estimating a unit water amount and a trial funnel flow-down time therefor.

近年、天然骨材の枯渇や採取規制などにより、コンクリート用細骨材は、単味の使用では所要の粒度などが得られず、数種類の細骨材を混合使用する場合が増加している。このため、生コン工場での細骨材の選定時には、これまで以上に時間と労力の負担が増す可能性がある。   In recent years, due to the depletion of natural aggregates and restrictions on collection, the fine aggregate for concrete cannot be obtained with the required particle size when used alone, and the use of several types of fine aggregates is increasing. For this reason, when selecting a fine aggregate at a ready-mixed factory, there is a possibility that the burden of time and labor may increase more than before.

こうした、細骨材の選定時には、候補となる多数の細骨材の混合割合を変えて、コンクリートを練混ぜ、目視や、スコップによるハンドリング性、またスランプ板等の振動による材料分離抵抗性等によって、施工性を含めたコンクリートの性能を確認しながら多くの作業を行うのが一般的である。   When selecting such fine aggregates, change the mixing ratio of a large number of candidate fine aggregates, mix concrete, and visually, handleability with a scoop, or material separation resistance due to vibration of slump plates, etc. In general, many operations are performed while confirming the performance of concrete including workability.

これに対し、このような多くの作業を行わずとも、所要のコンクリートのワーカビリティーが得られる方法も提案されている(特許文献1参照)。   On the other hand, a method is also proposed in which the required concrete workability can be obtained without performing many such operations (see Patent Document 1).

特開2003−329561号公報JP 2003-329561 A

しかしながら、上述のような方法を行おうとすると、試験練りの事前に細骨材と水との混合物について保水性の評価を行うなど、JISで定められた試験以外の作業が追加で必要であり、さらに、それだけではコンクリートの施工性の評価は困難であった。生コン工場での細骨材の選定時には、依然として多くの種類の候補を用いてコンクリートの試験練りにより最適混合比率を見極めることが必要であり、限られた人員で膨大な量の試験練りを行うことも必要であることから、多くの時間および労力が発生するという問題がある。   However, when trying to carry out the method as described above, work other than the test defined by JIS is additionally required, such as evaluating the water retention of the mixture of fine aggregate and water prior to the test kneading, Furthermore, it was difficult to evaluate the workability of concrete by itself. When selecting fine aggregates at the ready-mixed concrete factory, it is still necessary to determine the optimum mixing ratio by testing concrete using many types of candidates, and a huge amount of testing should be conducted with limited personnel. In other words, a lot of time and labor are required.

そこで、上記課題を解決するために、本発明は、コンクリート用細骨材の最適混合比率の推定方法、並びにそのための単位水量及び試作漏斗流下時間の推定方法を提供する。   Therefore, in order to solve the above problems, the present invention provides a method for estimating the optimum mixing ratio of fine aggregate for concrete, and a method for estimating the amount of unit water and trial funnel flow-down time.

本発明者らは、上記目的を達成するため、種々の検討を行った。その結果、事前にコンクリートの性質が優れると予測される単位水量と試作漏斗流下時間の範囲を絞り込むことで、適正骨材混合比率決定のための試験練りの軽減が図れることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors have conducted various studies. As a result, it has been found that by reducing the range of unit water volume and trial funnel flow time that are predicted to be excellent in concrete properties in advance, it is possible to reduce the test mixing for determining the appropriate aggregate mixing ratio, and the present invention. It came to be completed.

すなわち、本願発明は、コンクリートのコンシステンシー(スランプ発現性)の指標とした単位水量と、施工性の指標とした試作漏斗流下時間とを、細骨材の特定物性値の混合比率による加重平均値を説明変数とする重回帰式により推定する、単位水量及び試作漏斗流下時間の推定方法を提供する。   That is, the present invention is a weighted average value based on a mixing ratio of specific physical property values of fine aggregates, with a unit water amount as an index of concrete consistency (slump expression) and a trial funnel flow down time as an index of workability. A method for estimating the unit water volume and the trial funnel flow-down time, which is estimated by a multiple regression equation using as an explanatory variable, is provided.

上記本願発明の推定方法においては、以下の式(1)によって単位水量を推定することが好ましい。式(1)を用いることによって、高い精度で単位水量を推定できる。
(推定単位水量)=a×α1+b×α2+c×α3+d×α4+e×α5+f×α6+g×α7+h・・・(1)
α1:実積率(%)
α2:粗粒率
α3:表乾密度(g/cm
α4:微粒分量(%)
α5:2.5mmふるいを通過する質量分率(%)
α6:0.6mmふるいを通過する質量分率(%)
α7:0.3mmふるいを通過する質量分率(%)
係数a:−3.00〜−5.00
係数b:−140.00〜−150.00
係数c:−160.00〜−170.00
係数d:1.00〜2.00
係数e:−2.00〜−4.00
係数f:−1.00〜−3.00
係数g:−1.00〜−2.00
係数h:1600.00〜1800.00
In the estimation method of the present invention, the unit water amount is preferably estimated by the following equation (1). By using Equation (1), the unit water amount can be estimated with high accuracy.
(Estimated unit water amount) = a × α1 + b × α2 + c × α3 + d × α4 + e × α5 + f × α6 + g × α7 + h (1)
α1: Actual volume ratio (%)
α2: Coarse grain ratio α3: Surface dry density (g / cm 3 )
α4: Amount of fine particles (%)
α5: Mass fraction passing through 2.5 mm sieve (%)
α6: Mass fraction passing through 0.6mm sieve (%)
α7: Mass fraction passing through 0.3 mm sieve (%)
Coefficient a: −3.00 to −5.00
Coefficient b: -140.00 to -150.00
Coefficient c: -160.00 to -170.00
Coefficient d: 1.00 to 2.00
Coefficient e: -2.00 to -4.00
Coefficient f: -1.00 to -3.00
Coefficient g: -1.00 to -2.00
Coefficient h: 1600.00 to 1800.00

上記式(1)は以下の式(1−1)であることがより好ましい。式(1−1)を用いることによって、より高い精度で単位水量を推定できる。
(推定単位水量)=−4.09×α1−145.36×α2−167.78×α3+1.12×α4−3.21×α5−2.39×α6−1.70×α7+1717.45・・・(1−1)
The above formula (1) is more preferably the following formula (1-1). By using the equation (1-1), the unit water amount can be estimated with higher accuracy.
(Estimated unit amount of water) = − 4.09 × α1-145.36 × α2−167.78 × α3 + 1.12 × α4−3.21 × α5-2.39 × α6-1.70 × α7 + 171717.・ (1-1)

上記本願発明の推定方法においては、以下の式(2)によって試作漏斗流下時間を推定することが好ましい。式(2)を用いることによって、高い精度で試作漏斗流下時間を推定できる。
(推定試作漏斗流下時間)=p×β1+q×β2+r×β3+s×β4+t×β5+u・・・(2)
β1:表乾密度(g/cm
β2:2.5mmふるいを通過する質量分率(%)
β3:0.6mmふるいを通過する質量分率(%)
β4:0.3mmふるいを通過する質量分率(%)
β5:0.15mmふるいを通過する質量分率(%)
係数p:10.00〜12.00
係数q:−0.050〜−0.150
係数r:−0.040〜−0.100
係数s:0.040〜0.100
係数t:−0.050〜−0.200
係数u:−14.00〜−17.00
In the estimation method of the present invention, it is preferable to estimate the trial funnel flow-down time by the following equation (2). By using equation (2), the trial funnel flow-down time can be estimated with high accuracy.
(Estimated prototype funnel flow-down time) = p × β1 + q × β2 + r × β3 + s × β4 + t × β5 + u (2)
β1: Surface dry density (g / cm 3 )
β2: Mass fraction passing through 2.5 mm sieve (%)
β3: Mass fraction passing through a 0.6 mm sieve (%)
β4: Mass fraction passing through 0.3 mm sieve (%)
β5: Mass fraction passing through a 0.15 mm sieve (%)
Coefficient p: 10.00 to 12.00
Coefficient q: -0.050 to -0.150
Coefficient r: -0.040 to -0.100
Coefficient s: 0.040-0.100
Coefficient t: -0.050 to -0.200
Coefficient u: -14.00 to -17.00

上記式(2)は以下の式(2−1)であることがより好ましい。式(2−1)を用いることによって、より高い精度で試作漏斗流下時間を推定できる。
(推定試作漏斗流下時間)=11.59×β1−0.103×β2−0.0817×β3+0.0817×β4−0.150×β5−15.7・・・(2−1)
The above formula (2) is more preferably the following formula (2-1). By using Expression (2-1), the trial funnel flow-down time can be estimated with higher accuracy.
(Estimated trial funnel flow-down time) = 11.59 × β1−0.103 × β2−0.0817 × β3 + 0.0817 × β4−0.150 × β5-15.7 (2-1)

また、本願発明においては、上記式(1)又は式(1−1)によって推定された推定単位水量、及び上記式(2)又は式(2−1)によって推定された推定試作漏斗流下時間に基づき、コンクリート用細骨材の最適混合比率を推定する、コンクリート用細骨材の最適混合比率の推定方法を提供する。   In the present invention, the estimated unit water amount estimated by the above formula (1) or formula (1-1) and the estimated trial funnel flow time estimated by the above formula (2) or formula (2-1) are used. A method for estimating an optimum mixing ratio of fine aggregate for concrete is provided.

本発明によれば、細骨材の選定時におけるコンクリートの試験練りなどの労力を軽減することが可能となる。   According to the present invention, it is possible to reduce labor such as test mixing of concrete when selecting a fine aggregate.

本発明の実施形態に係る推定式(1−1)を得るために用いたスランプフローと単位水量の関係を表すグラフである。It is a graph showing the relationship between the slump flow used in order to obtain the estimation formula (1-1) which concerns on embodiment of this invention, and unit water quantity. 本発明の実施形態に係る推定式(2−1)を得るために用いたスランプフローと試作漏斗流下時間の関係を表すグラフである。It is a graph showing the relationship between the slump flow used in order to obtain the estimation formula (2-1) which concerns on embodiment of this invention, and a trial funnel flow-down time. 本発明の実施形態に係る推定式(1−1)を用いた単位水量の推定値と実測値との関係を表すグラフである。It is a graph showing the relationship between the estimated value of unit water quantity using the estimation formula (1-1) which concerns on embodiment of this invention, and an actual value. 本発明の実施形態に係る推定式(2−1)を用いた試作漏斗流下時間の推定値と実測値との関係を表すグラフである。It is a graph showing the relationship between the estimated value and experimental value of trial funnel flow-down time using the estimation formula (2-1) which concerns on embodiment of this invention. 最適細骨材混合比率の推定方法として、単位水量と試作漏斗流下時間とのコンクリート性状に対する適正範囲を表すグラフである。It is a graph showing the appropriate range with respect to the concrete property of unit water volume and trial funnel flow time as an estimation method of the optimal fine aggregate mixing ratio. コンクリート用細骨材の最適混合比率の推定方法のフローの一例を示す図である。It is a figure which shows an example of the flow of the estimation method of the optimal mixing ratio of the fine aggregate for concrete. 本発明の実施形態に係る推定式(1−1)及び(2−1)を用いて単位水量と試作漏斗流下時間の推定値と実測値及び最適細骨材混合比率の推定方法の検証を示した一例である。Using the estimation formulas (1-1) and (2-1) according to the embodiment of the present invention, the verification of the estimation method of the unit water volume, the estimated value of the trial funnel flow-down time, the actual measurement value, and the optimum fine aggregate mixing ratio is shown. It is an example.

以下、本発明に係る単位水量及び試作漏斗流下時間の推定方法、並びに、コンクリート用細骨材の最適混合比率の推定方法の好適な実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the method for estimating the unit water amount and trial funnel flow-down time and the method for estimating the optimum mixing ratio of the fine aggregate for concrete according to the present invention will be described, but the present invention is limited to the following embodiments. Is not to be done.

本実施形態の単位水量及び試作漏斗流下時間の推定方法は、コンクリートのコンシステンシーの指標とした単位水量と、施工性の指標とした試作漏斗流下時間とを、混合細骨材の特定物性値の加重平均値を説明変数とする重回帰式により推定する。   The method of estimating the unit water volume and trial funnel flow time of the present embodiment is based on the unit water volume as an index of concrete consistency and the trial funnel flow time as an index of workability of specific physical property values of the mixed fine aggregate. Estimated by a multiple regression equation with the weighted average as an explanatory variable.

また、本実施形態のコンクリート用細骨材の最適混合比率の推定方法においては、上記推定方法によって推定された推定単位水量及び推定試作漏斗流下時間に基づき、コンクリート用細骨材の最適混合比率を推定する。   Further, in the estimation method of the optimal mixing ratio of the fine aggregate for concrete according to the present embodiment, the optimal mixing ratio of the fine aggregate for concrete is determined based on the estimated unit water amount estimated by the estimation method and the estimated trial funnel flow time. presume.

本実施形態においては、例えば、細骨材の物性試験から特定物性値の加重平均を得る第1の工程と、第1の工程において得た特定物性値の加重平均値から、コンクリートのコンシステンシーの指標とした単位水量と施工性の指標とした試作漏斗流下時間を推定する第2の工程と、第2の工程で推定された単位水量と試作漏斗流下時間の関係からコンクリートの性質に優れる細骨材の最適混合比率の範囲を推定する第3の工程、を有する推定方法であってもよい。   In the present embodiment, for example, the first step of obtaining a weighted average of specific physical property values from a physical property test of fine aggregate, and the weighted average value of specific physical property values obtained in the first step, the consistency of concrete The second step to estimate the trial water flow time as the index of unit water volume and workability as an index, and the fine bone with excellent concrete properties from the relationship between the unit water amount estimated in the second step and the trial funnel flow time The estimation method which has the 3rd process of estimating the range of the optimal mixing ratio of material may be sufficient.

本実施形態においては、JISに定められた試験方法に従って、例えば細骨材の混合質量割合(混合比率)を5%刻みで変えた場合の特定物性値の加重平均値を算出する。   In the present embodiment, according to a test method defined in JIS, for example, a weighted average value of specific physical property values when the mixed mass ratio (mixing ratio) of fine aggregate is changed in increments of 5% is calculated.

次に、上記で算出した細骨材の各種物性値から、コンクリートのコンシステンシーの指標とした単位水量の推定値を下記式(1)から算出する。
(推定単位水量)=a×α1+b×α2+c×α3+d×α4+e×α5+f×α6+g×α7+h・・・(1)
Next, an estimated value of the unit water amount as an index of the consistency of the concrete is calculated from the following formula (1) from the various physical property values of the fine aggregate calculated above.
(Estimated unit water amount) = a × α1 + b × α2 + c × α3 + d × α4 + e × α5 + f × α6 + g × α7 + h (1)

ここで、上記式(1)においては、
α1:実積率(%)
α2:粗粒率
α3:表乾密度(g/cm
α4:微粒分量(%)
α5:2.5mmふるいを通過する質量分率(%)
α6:0.6mmふるいを通過する質量分率(%)
α7:0.3mmふるいを通過する質量分率(%)
係数a:−3.00〜−5.00
係数b:−140.00〜−150.00
係数c:−160.00〜−170.00
係数d:1.00〜2.00
係数e:−2.00〜−4.00
係数f:−1.00〜−3.00
係数g:−1.00〜−2.00
係数h:1600.00〜1800.00
を表す。
Here, in the above formula (1),
α1: Actual volume ratio (%)
α2: Coarse grain ratio α3: Surface dry density (g / cm 3 )
α4: Amount of fine particles (%)
α5: Mass fraction passing through 2.5 mm sieve (%)
α6: Mass fraction passing through 0.6mm sieve (%)
α7: Mass fraction passing through 0.3 mm sieve (%)
Coefficient a: −3.00 to −5.00
Coefficient b: -140.00 to -150.00
Coefficient c: -160.00 to -170.00
Coefficient d: 1.00 to 2.00
Coefficient e: -2.00 to -4.00
Coefficient f: -1.00 to -3.00
Coefficient g: -1.00 to -2.00
Coefficient h: 1600.00 to 1800.00
Represents.

上記式(1)において、係数aは−3.20〜−4.80であることが好ましく、−3.40〜−4.60であることがより好ましく、−3.60〜−4.40であることがさらに好ましい。係数bは−141.00〜−149.00であることが好ましく、−142.00〜−148.00であることが好ましく、−143.00〜−147.00であることがさらに好ましい。係数cは−161.00〜−169.00であることが好ましく、−162.00〜−169.00であることがより好ましく、−163.00〜−169.00であることがさらに好ましい。係数dは1.00〜1.90であることが好ましく、1.00〜1.80であることがより好ましく、1.00〜1.70であることがさらに好ましい。係数eは−2.20〜−3.80であることが好ましく、−2.40〜−3.60であることがより好ましく、−2.60〜−3.40であることがさらに好ましい。係数fは−1.20〜−2.80であることが好ましく、−1.40〜−2.60であることがより好ましく、−1.60〜−2.60であることがさらに好ましい。係数gは−1.10〜−1.90であることが好ましく、−1.20〜−1.80であることがより好ましく、−1.30〜−1.80であることがさらに好ましい。係数hは1620.00〜1780.00であることが好ましく、1640.00〜1760.00であることがより好ましく、1660.00〜1740.00であることがさらに好ましい。   In the above formula (1), the coefficient a is preferably −3.20 to −4.80, more preferably −3.40 to −4.60, and −3.60 to −4.40. More preferably. The coefficient b is preferably −141.00 to −149.00, preferably −142.00 to −148.00, and more preferably −143.00 to −147.00. The coefficient c is preferably -161.00 to -169.00, more preferably -162.00 to -169.00, and further preferably -163.00 to -169.00. The coefficient d is preferably 1.00 to 1.90, more preferably 1.00 to 1.80, and even more preferably 1.00 to 1.70. The coefficient e is preferably −2.20 to −3.80, more preferably −2.40 to −3.60, and further preferably −2.60 to −3.40. The coefficient f is preferably -1.20 to -2.80, more preferably -1.40 to -2.60, and further preferably -1.60 to -2.60. The coefficient g is preferably -1.10 to -1.90, more preferably -1.20 to -1.80, and still more preferably -1.30 to -1.80. The coefficient h is preferably 1620.00 to 1780.00, more preferably 1640.00 to 1760.00, and still more preferably 1660.00 to 1740.00.

上記式(1)は以下の式(1−1)であることがより好ましい。式(1−1)を用いることによって、より高い精度で単位水量を推定できる。
(推定単位水量)=−4.09×α1−145.36×α2−167.78×α3+1.12×α4−3.21×α5−2.39×α6−1.70×α7+1717.45・・・(1−1)
The above formula (1) is more preferably the following formula (1-1). By using the equation (1-1), the unit water amount can be estimated with higher accuracy.
(Estimated unit amount of water) = − 4.09 × α1-145.36 × α2−167.78 × α3 + 1.12 × α4−3.21 × α5-2.39 × α6-1.70 × α7 + 171717.・ (1-1)

続いて、上記で算出した細骨材の各種物性値から、コンクリートの施工性の指標とした試作漏斗流下時間の推定値を下記式(2)から算出する。
(推定試作漏斗流下時間)=p×β1+q×β2+r×β3+s×β4+t×β5+u・・・(2)
Subsequently, an estimated value of the trial funnel flow time as an index of concrete workability is calculated from the following formula (2) from the various physical property values of the fine aggregate calculated above.
(Estimated prototype funnel flow-down time) = p × β1 + q × β2 + r × β3 + s × β4 + t × β5 + u (2)

ここで、上記式(2)においては、
β1:表乾密度(g/cm
β2:2.5mmふるいを通過する質量分率(%)
β3:0.6mmふるいを通過する質量分率(%)
β4:0.3mmふるいを通過する質量分率(%)
β5:0.15mmふるいを通過する質量分率(%)
係数p:10.00〜12.00
係数q:−0.050〜−0.150
係数r:−0.040〜−0.100
係数s:0.040〜0.100
係数t:−0.050〜−0.200
係数u:−14.00〜−17.00
を表す。
Here, in the above formula (2),
β1: Surface dry density (g / cm 3 )
β2: Mass fraction passing through 2.5 mm sieve (%)
β3: Mass fraction passing through a 0.6 mm sieve (%)
β4: Mass fraction passing through 0.3 mm sieve (%)
β5: Mass fraction passing through a 0.15 mm sieve (%)
Coefficient p: 10.00 to 12.00
Coefficient q: -0.050 to -0.150
Coefficient r: -0.040 to -0.100
Coefficient s: 0.040-0.100
Coefficient t: -0.050 to -0.200
Coefficient u: -14.00 to -17.00
Represents.

上記式(2)において、係数pは10.20〜11.80であることが好ましく、10.40〜11.80であることがより好ましく、10.60〜11.80であることがさらに好ましい。係数qは−0.060〜−0.140であることが好ましく、−0.070〜−0.130であることがより好ましく、−0.080〜−0.120であることがさらに好ましい。係数rは−0.050〜−0.090であることが好ましく、−0.060〜−0.090であることがより好ましく、−0.070〜−0.090であることがさらに好ましい。係数sは0.050〜0.090であることが好ましく、0.060〜0.090であることがより好ましく、0.070〜0.090であることがさらに好ましい。係数tは−0.060〜−0.190であることが好ましく、−0.070〜−0.180であることがより好ましく、−0.080〜−0.170であることがさらに好ましい。係数uは−14.30〜−16.70であることが好ましく、−14.60〜−16.40であることがより好ましく、−14.90〜−16.10であることがさらに好ましい。   In the above formula (2), the coefficient p is preferably 10.20 to 11.80, more preferably 10.40 to 11.80, and still more preferably 10.60 to 11.80. . The coefficient q is preferably −0.060 to −0.140, more preferably −0.070 to −0.130, and further preferably −0.080 to −0.120. The coefficient r is preferably −0.050 to −0.090, more preferably −0.060 to −0.090, and further preferably −0.070 to −0.090. The coefficient s is preferably 0.050 to 0.090, more preferably 0.060 to 0.090, and still more preferably 0.070 to 0.090. The coefficient t is preferably −0.060 to −0.190, more preferably −0.070 to −0.180, and further preferably −0.080 to −0.170. The coefficient u is preferably -14.30 to -16.70, more preferably -14.60 to -16.40, and further preferably -14.90 to -16.10.

上記式(2)は以下の式(2−1)であることがより好ましい。式(2−1)を用いることによって、より高い精度で試作漏斗流下時間を推定できる。
(推定試作漏斗流下時間)=11.59×β1−0.103×β2−0.0817×β3+0.0817×β4−0.150×β5−15.7・・・(2−1)
The above formula (2) is more preferably the following formula (2-1). By using Expression (2-1), the trial funnel flow-down time can be estimated with higher accuracy.
(Estimated trial funnel flow-down time) = 11.59 × β1−0.103 × β2−0.0817 × β3 + 0.0817 × β4−0.150 × β5-15.7 (2-1)

本実施形態において、上述の単位水量及び試作漏斗流下時間の推定式(1)、(1−1)、式(2)、(2−1)の使用にあたっては、細骨材の各種物性値を以下の範囲での適用に限定することが好ましい。
表乾密度:2.56〜2.83(g/cm
微粒分量:0.0〜16.2(%)
実積率:57.9〜73.0(%)
粗粒率:1.54〜3.14
2.5mmふるいを通過する質量分率:83〜99(%)
0.6mmふるいを通過する質量分率:24〜89(%)
0.3mmふるいを通過する質量分率:10〜55(%)
0.15mmふるいを通過する質量分率:2〜15(%)
In the present embodiment, in using the estimation formulas (1), (1-1), formulas (2), and (2-1) for the above unit water amount and trial funnel flow-down time, various physical property values of the fine aggregate are set. It is preferable to limit the application to the following range.
Table dry density: 2.56 to 2.83 (g / cm 3 )
Amount of fine particles: 0.0 to 16.2 (%)
Actual volume ratio: 57.9-73.0 (%)
Coarse grain ratio: 1.54 to 3.14
Mass fraction passing through 2.5 mm sieve: 83-99 (%)
Mass fraction passing through 0.6 mm sieve: 24-89 (%)
Mass fraction passing through 0.3 mm sieve: 10-55 (%)
Mass fraction passing through 0.15 mm sieve: 2-15 (%)

上記で用いた細骨材の各種物性値は、JIS A 1109「細骨材の密度及び吸水率試験方法」、JIS A 1103「骨材の微粒分量試験方法」、JIS A 5005「コンクリート用砕石及び砕砂」、JIS A 1104「骨材の単位容積質量及び実積率試験方法」、JIS A 1102「骨材のふるい分け試験方法」に基づいて求められる値である。   Various physical property values of the fine aggregate used above are JIS A 1109 “Method for testing density and water absorption rate of fine aggregate”, JIS A 1103 “Method for testing fine particle amount of aggregate”, JIS A 5005 “crushed stone for concrete and It is a value determined based on “crushed sand”, JIS A 1104 “Aggregate unit volume mass and actual volume ratio test method”, JIS A 1102 “Aggregate screening test method”.

上記のとおり求めた推定単位水量と、推定試作漏斗流下時間とを関係を例えば関係図を作成することによって、コンクリートの性質に優れる細骨材の最適混合比率が存在する領域を推定することが好ましい。例えば、上記により求めた推定単位水量が190kg/m以下、推定試作漏斗流下時間が3秒以内になる領域に、コンクリートの性質に優れる細骨材の最適混合比率が存在すると推定することができる(図6参照)。 It is preferable to estimate the region where the optimum mixing ratio of fine aggregate having excellent properties of concrete exists, for example, by creating a relationship diagram between the estimated unit water amount obtained as described above and the estimated trial funnel flow time, for example. . For example, it can be estimated that there is an optimum mixing ratio of fine aggregates excellent in concrete properties in an area where the estimated unit water amount obtained above is 190 kg / m 3 or less and the estimated trial funnel flow time is within 3 seconds. (See FIG. 6).

以上のように、本実施形態においては、細骨材の特定物性値の加重平均値からコンクリートのコンシステンシーの指標とした単位水量の推定値及びコンクリートの施工性の指標とした試作漏斗流下時間の推定値を算出する。従来の生コン工場での細骨材の選定時には、膨大な量の試験練りを行う必要があり、多くの時間および労力が発生してきたが、本実施形態のコンクリート用細骨材の最適混合比率の推定方法並びにそのための単位水量及び試作漏斗流下時間の推定方法によれば、事前にコンクリートの性質が優れると予測される単位水量と試作漏斗流下時間の範囲を絞り込むことで、適正骨材混合比率決定のための試験練りの軽減を図ることが可能となる。   As described above, in this embodiment, the estimated amount of unit water volume as a concrete consistency index from the weighted average value of specific physical property values of fine aggregates and the prototype funnel flow-down time as an index of concrete workability Calculate an estimate. When selecting fine aggregates at conventional ready-mixed concrete factories, it is necessary to perform a huge amount of testing and a lot of time and labor has occurred, but the optimal mixing ratio of the fine aggregate for concrete of this embodiment According to the estimation method and the estimation method of unit water volume and trial funnel flow time, the appropriate aggregate mixing ratio is determined by narrowing down the range of unit water volume and trial funnel flow time that is expected to have excellent concrete properties in advance. This makes it possible to reduce the amount of trials for testing.

以下、実施例1〜38並びに図1〜7に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on Examples 1-38 and FIGS. 1-7, this invention is not limited to a following example.

[1]使用材料
フレッシュコンクリートを製造するために、以下の材料を用いて混合を行った。
(1)セメント
普通ポルトランドセメント(宇部興産株式会社製、密度3.16g/cm
(2)骨材
(2.1)細骨材
表1に示す細骨材を使用した。各物性試験は、JIS A 1109「細骨材の密度及び吸水率試験方法」、JIS A 1103「骨材の微粒分量試験方法」、JIS A 5005「コンクリート用砕石及び砕砂」、JIS A 1104「骨材の単位容積質量及び実積率試験方法」、JIS A 1102「骨材のふるい分け試験方法」に準じて行った。
(2.2)粗骨材
硬質砂岩砕石2010(表乾密度:2.66g/cm、吸水率:0.5%)
硬質砂岩砕石1505(表乾密度:2.66g/cm、吸水率:0.5%)
(3)化学混和剤
AE減水剤(ヴィンソル80S:山宗化学製)
(4)練混ぜ水
上水道水
[1] Materials used In order to produce fresh concrete, mixing was performed using the following materials.
(1) Cement Ordinary Portland cement (Ube Industries, Ltd., density 3.16 g / cm 3 )
(2) Aggregate (2.1) Fine aggregate The fine aggregate shown in Table 1 was used. Each physical property test is performed according to JIS A 1109 “Test method for density and water absorption rate of fine aggregate”, JIS A 1103 “Method for testing fine particle amount of aggregate”, JIS A 5005 “crushed stone and sand for concrete”, JIS A 1104 “bone” The test was performed according to “Unit Volume Mass and Actual Volume Ratio Test Method”, JIS A 1102 “Aggregate Screening Test Method”.
(2.2) Coarse aggregate Hard sandstone crushed stone 2010 (surface dry density: 2.66 g / cm 3 , water absorption: 0.5%)
Hard sandstone crushed stone 1505 (surface dry density: 2.66 g / cm 3 , water absorption: 0.5%)
(3) Chemical admixture AE water reducing agent (Vinsol 80S: manufactured by Yamaso Chemical Co., Ltd.)
(4) Mixing water Tap water

[2]フレッシュコンクリートの調整
上記のセメント、細骨材及び粗骨材を水平二軸形強制練りミキサ内に投入し、10秒間攪拌混合した後、上記の混和剤と上水道水を混合した練混ぜ水を当該ミキサ内にさらに投入し、90秒間攪拌することによって、フレッシュコンクリートを製造した。
[2] Preparation of fresh concrete The above cement, fine aggregate and coarse aggregate are put into a horizontal biaxial forced kneading mixer, mixed with stirring for 10 seconds, and then mixed with the above admixture and tap water. Water was further poured into the mixer and stirred for 90 seconds to produce fresh concrete.

フレッシュコンクリートの配合は、一般的な建築用配合(水セメント比:55.0%、粗骨材かさ容積:570L/m、AE減水剤量:セメント量×0.5%)とした。 The composition of the fresh concrete was a general building composition (water cement ratio: 55.0%, coarse aggregate bulk volume: 570 L / m 3 , AE water reducing agent amount: cement amount × 0.5%).

表2に示す細骨材の組み合わせおよび混合比率について、スランプ約19cm(スランプフロー320mm)を中心に単位水量の水準を数点変え、コンクリートのスランプ(スランプフロー)および施工性を定量的に求めるため、試作漏斗(上面径:230mm、下面開口部:φ100mm、高さ:420mm、容積:10L)を用いて測定した。結果を図1及び2に示す。   In order to quantitatively determine the concrete slump (slump flow) and workability of the fine aggregate combinations and mixing ratios shown in Table 2 by changing the unit water level several times around a slump of about 19 cm (slump flow 320 mm). , And measured using a prototype funnel (upper surface diameter: 230 mm, lower surface opening: φ100 mm, height: 420 mm, volume: 10 L). The results are shown in FIGS.

スランプおよびスランプフローの測定は、JIS A 1101「コンクリートのスランプ試験方法」、JIS A 1150「コンクリートのスランプフロー試験方法」に準じて行った。空気量の測定は、JIS A 1128「フレッシュコンクリートの空気量の圧力による試験方法(空気室圧力方法)」に準じて行った。   The slump and slump flow were measured according to JIS A 1101 “Concrete slump test method” and JIS A 1150 “Concrete slump flow test method”. The amount of air was measured according to JIS A 1128 “Testing method based on air pressure of fresh concrete (air chamber pressure method)”.

コンクリートのコンシステンシー(スランプ発現性)は、細骨材単体の物性値の混合比率による加重平均値(実積率:α1、粗粒率:α2、表乾密度:α3、微粒分量:α4、2.5mmふるいを通過する質量分率:α5、0.6mmふるいを通過する質量分率:α6、0.3mmふるいを通過する質量分率:α7)を説明変数とし、図1で求めた同一スランプフロー320mmにおける単位水量を被説明変数として、重回帰分析し、単位水量の推定式における係数を下記推定式(1−1)のとおり設定した。また、図3に、下記式(1−1)を用いたコンクリートの単位水量の推定値及び実測値の相関係数を示す。
(推定単位水量)=−4.09×α1−145.36×α2−167.78×α3+1.12×α4−3.21×α5−2.39×α6−1.70×α7+1717.45・・・(1−1)
Consistency of concrete (slump expression) is a weighted average value based on the mixing ratio of physical properties of fine aggregates (actual volume ratio: α1, coarse grain ratio: α2, surface dry density: α3, fine particle amount: α4, 2 1. Mass fraction passing through a 5 mm sieve: α5, Mass fraction passing through a 0.6 mm sieve: α6, Mass fraction passing through a 0.3 mm sieve: α7) Multiple regression analysis was performed using the unit water amount in the flow of 320 mm as an explanatory variable, and the coefficient in the estimation formula of the unit water amount was set as the following estimation equation (1-1). Moreover, the correlation coefficient of the estimated value of the unit water quantity of concrete using the following formula (1-1) and the measured value is shown in FIG.
(Estimated unit amount of water) = − 4.09 × α1-145.36 × α2−167.78 × α3 + 1.12 × α4−3.21 × α5-2.39 × α6-1.70 × α7 + 171717.・ (1-1)

続いて、コンクリートの施工性は、細骨材単体の物性値の混合比率による加重平均値(表乾密度:β1、2.5mmふるいを通過する質量分率:β2、0.6mmふるいを通過する質量分率:β3、0.3mmふるいを通過する質量分率:β4、0.15mmふるいを通過する質量分率:β5)を説明変数とし、図2で求めた同一スランプフロー320mmにおける試作漏斗流下時間を被説明変数として、重回帰分析し、試作漏斗流下時間の推定式における係数を下記推定式(2−1)のとおり設定した。また、図4に、下記式(2−1)を用いたコンクリートの試作漏斗流下時間の推定値及び実測値の相関係数を示す。
(推定試作漏斗流下時間)=11.59×β1−0.103×β2−0.0817×β3+0.0817×β4−0.150×β5−15.7・・・(2−1)
Subsequently, the workability of the concrete is a weighted average value by the mixing ratio of the physical property values of the fine aggregate alone (surface dry density: β1, mass fraction passing through 2.5 mm sieve: β2, passing through 0.6 mm sieve) Mass flow rate: β3, mass fraction passing through 0.3 mm sieve: β4, mass fraction passing through 0.15 mm sieve: β5) as explanatory variables, trial funnel flow in the same slump flow 320 mm obtained in FIG. Multiple regression analysis was performed using time as an explanatory variable, and the coefficient in the estimation formula for the trial funnel flow-down time was set as shown in the following estimation formula (2-1). Moreover, the correlation coefficient of the estimated value of the trial funnel flow-down time of concrete using the following formula (2-1) and the measured value is shown in FIG.
(Estimated trial funnel flow-down time) = 11.59 × β1−0.103 × β2−0.0817 × β3 + 0.0817 × β4−0.150 × β5-15.7 (2-1)

図3及び4に示すように、コンクリートの単位水量及び試作漏斗流下時間の推定式を用いることで、細骨材単体の物性値の混合比率による加重平均値からコンクリートの単位水量及び試作漏斗流下時間を精度良く推定できることが確認された。   As shown in Figs. 3 and 4, by using the estimation formula for the unit water volume of concrete and the trial funnel flow time, the unit water quantity of concrete and the trial funnel flow time can be calculated from the weighted average value based on the mixing ratio of the physical property values of the fine aggregate alone. It was confirmed that can be estimated with high accuracy.

良好なコンクリートのフレッシュ性状が得られる細骨材の混合比率を求めるため、単位水量と施工性を示す試作漏斗流下時間の最適な範囲を設定した。本実施例の粗骨材、表1に示す山砂A、砂岩B、砂岩Cの3種類の細骨材を使用したサンプルにおけるスランプ19cmの場合の単位水量及び試作漏斗流下時間は、それぞれ190kg/m及び2.6秒であった。これにより、施工性が良好な範囲の試作漏斗流下時間としては、四捨五入した「3秒以下」とした。3種類の細骨材(山砂A、砂岩D、石灰C)の混合比率を5%刻みで変え、推定式(1−1)及び(2−1)から求めた単位水量と試作漏斗流下時間の関係図を図5に示す。これらによると、最適な細骨材混合比率が存在する領域は図中の網掛け部と推定されるところ、山砂A:砂岩D:石灰C=20:50:30であるサンプル1は図中の●印に位置付けられ、上記領域に存在することが確認できた。なお、この混合比率(上記サンプル1)のコンクリートと、網掛範囲内での任意の確認点★印(山砂A:砂岩D:石灰C=40:10:50であるサンプル2)についてスランプ(スランプフロー)と試作漏斗流下時間を測定した。実測のスランプ値はサンプル1(●印):18.2cm、サンプル2(★印):18.4cmとなり、いずれも設定値の19cmとほぼ同等となった。またサンプル2は、サンプル1よりもスランプフローが大きく(サンプル1:298mm×280mm、サンプル2:310mm×296mm)、試作漏斗流下時間も0.6秒(サンプル1:2.9秒、サンプル2:2.3秒)ほど速くなり、コンクリートのフレッシュ性状は、サンプル2の混合比率の場合の方が、サンプル1の混合比率の場合よりも優れることを確認した。 In order to determine the mixing ratio of fine aggregates that give good fresh properties of concrete, the optimal range of the trial funnel flow time indicating unit water volume and workability was set. In the sample using the coarse aggregate of this example, three types of fine aggregates of mountain sand A, sandstone B, and sandstone C shown in Table 1, the unit water volume and trial funnel flow time in the case of a slump of 19 cm are 190 kg / It was m 3 and 2.6 seconds. As a result, the trial funnel flow-down time with good workability was rounded to “3 seconds or less”. Change the mixing ratio of 3 types of fine aggregates (mountain sand A, sandstone D, lime C) in 5% increments, unit water volume and trial funnel flow time calculated from estimation formulas (1-1) and (2-1) FIG. 5 shows the relationship diagram. According to these, the region where the optimum fine aggregate mixing ratio exists is estimated to be the shaded portion in the figure, but sample 1 with mountain sand A: sandstone D: lime C = 20: 50: 30 is shown in the figure. It can be confirmed that it is located in the above area. In addition, it is slump (slump) about concrete of this mixing ratio (the above-mentioned sample 1), and arbitrary confirmation point * mark (sample 2 which is mountain sand A: sandstone D: lime C = 40: 10: 50) in the shaded area. Flow) and trial funnel flow time. The measured slump values were Sample 1 (marked with ●): 18.2 cm and Sample 2 (marked with ★): 18.4 cm, which were almost equal to the set value of 19 cm. Sample 2 has a larger slump flow than sample 1 (sample 1: 298 mm × 280 mm, sample 2: 310 mm × 296 mm), and a trial funnel flow time of 0.6 seconds (sample 1: 2.9 seconds, sample 2: 2.3 seconds), it was confirmed that the fresh properties of the concrete were superior in the case of the mixing ratio of sample 2 than in the case of the mixing ratio of sample 1.

コンクリート用細骨材の最適混合比率の推定方法のフローの一例を、図6に示す。   An example of the flow of the estimation method of the optimal mixing ratio of the fine aggregate for concrete is shown in FIG.

また、本実施例で用いられていない細骨材(兵庫県産流紋岩砕砂、福岡県産石灰岩砕砂)を用い、コンクリート用細骨材の最適混合比率の推定方法(例えば図6で示すフロー)の検証を行った。推定単位水量と推定漏斗流下時間の関係を図7に示す。細骨材の混合比率が、兵庫県産流紋岩砕砂:福岡県産石灰岩砕砂=60:40の場合(サンプル3)は図7の●印、兵庫県産流紋岩砕砂:福岡県産石灰岩砕砂=80:20の場合(サンプル4)は図7の▲印、兵庫県産流紋岩砕砂:福岡県産石灰岩砕砂=40:60の場合(サンプル5)は図7の■印に位置付けられ、いずれも最適な細骨材混合比率が存在する領域内にあることが確認された。また、これらの実測のスランプ値はいずれも設定値の19cm程度(サンプル3(●印):18.4cm、サンプル4(▲印):19.4cm、サンプル5(■印):19.0cm)となった。さらに、漏斗流下時間の推定値(サンプル3(●印):2.0秒、サンプル4(▲印):1.8秒、サンプル5(■印):2.1秒)と実測値(サンプル3(●印):2.1秒、サンプル4(▲印):2.1秒、サンプル5(■印):2.2秒)もほぼ一致することが確認できた。   Moreover, the estimation method of the optimal mixing ratio of the fine aggregate for concrete (for example, the flow shown in FIG. 6) using the fine aggregate (Hyogo prefecture rhyolite crushed sand, Fukuoka prefecture limestone crushed sand) which is not used in the present Example. ) Was verified. FIG. 7 shows the relationship between the estimated unit water amount and the estimated funnel flow time. When the mixing ratio of fine aggregate is Hyogo prefecture rhyolite crushed sand: Fukuoka prefecture limestone crushed sand = 60:40 (sample 3), the ● mark in Hyogo prefecture, rhyolite crushed sand: Fukuoka prefecture limestone In the case of crushed sand = 80:20 (sample 4), the ▲ mark in FIG. 7 is used, and in the case of rhyolite crushed sand in Hyogo prefecture: limestone crushed sand from Fukuoka prefecture = 40:60 (sample 5) is placed in the ■ mark in FIG. Both were confirmed to be within the region where the optimum fine aggregate mixing ratio exists. In addition, these measured slump values are all about the set value of 19 cm (sample 3 (● mark): 18.4 cm, sample 4 (▲ mark): 19.4 cm, sample 5 (■ mark): 19.0 cm) It became. Furthermore, an estimated value of the funnel flow-down time (sample 3 (● mark): 2.0 seconds, sample 4 (▲ mark): 1.8 seconds, sample 5 (■ mark): 2.1 seconds) and actual measurement value (sample 3 (● mark): 2.1 seconds, sample 4 (▲ mark): 2.1 seconds, sample 5 (■ mark): 2.2 seconds) were confirmed to be almost identical.

[3]評価結果
図3及び4に示すように、本実施例1〜38に係るコンクリートのコンシステンシーの指標とした単位水量と施工性の指標とした試作漏斗流下時間は、混合細骨材の特定物性値の加重平均値を説明変数とする重回帰式により推定できることが確認された。
[3] Evaluation Results As shown in FIGS. 3 and 4, the trial water funnel flow time as the unit water amount and the workability index as the concrete consistency index of the concrete according to Examples 1 to 38 is as follows. It was confirmed that it can be estimated by a multiple regression equation using the weighted average value of specific physical properties as an explanatory variable.

また、上記により求めた推定単位水量が190kg/m以下、推定試作漏斗流下時間が3秒以内になる領域に、コンクリートの性質に優れる細骨材の最適混合比率が存在することも推定され、事前に範囲を絞り込むことによって混合比率決定のための試験練りの軽減が図れることが期待された。
It is also estimated that there is an optimum mixing ratio of fine aggregates excellent in concrete properties in the region where the estimated unit water amount obtained above is 190 kg / m 3 or less and the estimated trial funnel flow-down time is within 3 seconds, By narrowing down the range in advance, it was expected to reduce the amount of testing for determining the mixing ratio.

Claims (6)

コンクリートのコンシステンシーの指標とした単位水量と、施工性の指標とした試作漏斗流下時間とを、細骨材の特定物性値の混合比率による加重平均値を説明変数とする重回帰式により推定する、単位水量及び試作漏斗流下時間の推定方法。   Estimate the unit water volume as a concrete consistency index and the trial funnel flow time as a workability index using a multiple regression equation with the weighted average value based on the mixing ratio of specific properties of fine aggregates as explanatory variables. , Estimation method of unit water volume and trial funnel flow time. 以下の式(1)によって前記単位水量を推定する、請求項1に記載の推定方法。
(推定単位水量)=a×α1+b×α2+c×α3+d×α4+e×α5+f×α6+g×α7+h・・・(1)
α1:実積率(%)
α2:粗粒率
α3:表乾密度(g/cm
α4:微粒分量(%)
α5:2.5mmふるいを通過する質量分率(%)
α6:0.6mmふるいを通過する質量分率(%)
α7:0.3mmふるいを通過する質量分率(%)
係数a:−3.00〜−5.00
係数b:−140.00〜−150.00
係数c:−160.00〜−170.00
係数d:1.00〜2.00
係数e:−2.00〜−4.00
係数f:−1.00〜−3.00
係数g:−1.00〜−2.00
係数h:1600.00〜1800.00
The estimation method according to claim 1, wherein the unit water amount is estimated by the following equation (1).
(Estimated unit water amount) = a × α1 + b × α2 + c × α3 + d × α4 + e × α5 + f × α6 + g × α7 + h (1)
α1: Actual volume ratio (%)
α2: Coarse grain ratio α3: Surface dry density (g / cm 3 )
α4: Amount of fine particles (%)
α5: Mass fraction passing through 2.5 mm sieve (%)
α6: Mass fraction passing through 0.6mm sieve (%)
α7: Mass fraction passing through 0.3 mm sieve (%)
Coefficient a: −3.00 to −5.00
Coefficient b: -140.00 to -150.00
Coefficient c: -160.00 to -170.00
Coefficient d: 1.00 to 2.00
Coefficient e: -2.00 to -4.00
Coefficient f: -1.00 to -3.00
Coefficient g: -1.00 to -2.00
Coefficient h: 1600.00 to 1800.00
上記式(1)が以下の式(1−1)である、請求項2に記載の推定方法。
(推定単位水量)=−4.09×α1−145.36×α2−167.78×α3+1.12×α4−3.21×α5−2.39×α6−1.70×α7+1717.45・・・(1−1)
The estimation method according to claim 2, wherein the formula (1) is the following formula (1-1).
(Estimated unit amount of water) = − 4.09 × α1-145.36 × α2−167.78 × α3 + 1.12 × α4−3.21 × α5-2.39 × α6-1.70 × α7 + 171717.・ (1-1)
以下の式(2)によって前記試作漏斗流下時間を推定する、請求項1に記載の推定方法。
(推定試作漏斗流下時間)=p×β1+q×β2+r×β3+s×β4+t×β5+u・・・(2)
β1:表乾密度(g/cm
β2:2.5mmふるいを通過する質量分率(%)
β3:0.6mmふるいを通過する質量分率(%)
β4:0.3mmふるいを通過する質量分率(%)
β5:0.15mmふるいを通過する質量分率(%)
係数p:10.00〜12.00
係数q:−0.050〜−0.150
係数r:−0.040〜−0.100
係数s:0.040〜0.100
係数t:−0.050〜−0.200
係数u:−14.00〜−17.00
The estimation method according to claim 1, wherein the trial funnel flow-down time is estimated by the following equation (2).
(Estimated prototype funnel flow-down time) = p × β1 + q × β2 + r × β3 + s × β4 + t × β5 + u (2)
β1: Surface dry density (g / cm 3 )
β2: Mass fraction passing through 2.5 mm sieve (%)
β3: Mass fraction passing through a 0.6 mm sieve (%)
β4: Mass fraction passing through 0.3 mm sieve (%)
β5: Mass fraction passing through a 0.15 mm sieve (%)
Coefficient p: 10.00 to 12.00
Coefficient q: -0.050 to -0.150
Coefficient r: -0.040 to -0.100
Coefficient s: 0.040-0.100
Coefficient t: -0.050 to -0.200
Coefficient u: -14.00 to -17.00
上記式(2)が以下の式(2−1)である、請求項4に記載の推定方法。
(推定試作漏斗流下時間)=11.59×β1−0.103×β2−0.0817×β3+0.0817×β4−0.150×β5−15.7・・・(2−1)
The estimation method according to claim 4, wherein the formula (2) is the following formula (2-1).
(Estimated trial funnel flow-down time) = 11.59 × β1−0.103 × β2−0.0817 × β3 + 0.0817 × β4−0.150 × β5-15.7 (2-1)
請求項2又は3に記載の推定方法によって推定された前記推定単位水量、及び請求項4又は5に記載の推定方法によって推定された前記推定試作漏斗流下時間に基づき、コンクリート用細骨材の最適混合比率を推定する、コンクリート用細骨材の最適混合比率の推定方法。

Based on the estimated unit water amount estimated by the estimation method according to claim 2 or 3, and the estimated trial funnel flow time estimated by the estimation method according to claim 4 or 5, the optimum of the fine aggregate for concrete A method for estimating the optimum mixing ratio of fine aggregate for concrete that estimates the mixing ratio.

JP2013082345A 2013-04-10 2013-04-10 Estimation method of optimal mixing ratio of fine aggregate for concrete, and estimation method of unit water quantity and trial production funnel flow-down time for the same Pending JP2014206384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013082345A JP2014206384A (en) 2013-04-10 2013-04-10 Estimation method of optimal mixing ratio of fine aggregate for concrete, and estimation method of unit water quantity and trial production funnel flow-down time for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082345A JP2014206384A (en) 2013-04-10 2013-04-10 Estimation method of optimal mixing ratio of fine aggregate for concrete, and estimation method of unit water quantity and trial production funnel flow-down time for the same

Publications (1)

Publication Number Publication Date
JP2014206384A true JP2014206384A (en) 2014-10-30

Family

ID=52120051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082345A Pending JP2014206384A (en) 2013-04-10 2013-04-10 Estimation method of optimal mixing ratio of fine aggregate for concrete, and estimation method of unit water quantity and trial production funnel flow-down time for the same

Country Status (1)

Country Link
JP (1) JP2014206384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680146A (en) * 2015-11-10 2017-05-17 中联重科股份有限公司 Determination method for water consumption in concrete mixing ratio, and slump test apparatus
CN108908721A (en) * 2018-07-13 2018-11-30 河南兴安新型建筑材料有限公司 Rapid coagulation soil consistency detection system and its slurry preparation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680146A (en) * 2015-11-10 2017-05-17 中联重科股份有限公司 Determination method for water consumption in concrete mixing ratio, and slump test apparatus
CN108908721A (en) * 2018-07-13 2018-11-30 河南兴安新型建筑材料有限公司 Rapid coagulation soil consistency detection system and its slurry preparation system

Similar Documents

Publication Publication Date Title
Hwang et al. Performance-based specifications of self-consolidating concrete used in structural applications
Aliabdo et al. Re-use of waste marble dust in the production of cement and concrete
Nunes et al. Mixture design of self-compacting glass mortar
Afshoon et al. Ground copper slag as a supplementary cementing material and its influence on the fresh properties of self-consolidating concrete
JP6674356B2 (en) Prediction method of concrete quality or concrete mixing condition
CN108229093B (en) Construction method of saturated recycled concrete chloride ion diffusion coefficient multi-scale prediction model
JP2018069487A (en) Prediction method of mixing conditions for concrete
JP2008197013A (en) Flowability evaluation test method for concrete, and device therefor
CN104310892A (en) Preparation method of polypropylene fiber concrete
Namyong et al. Prediction of compressive strength of in-situ concrete based on mixture proportions
Shen et al. Change in fresh properties of high-strength concrete due to pumping
Braymand et al. Rheological properties of recycled aggregate concrete using superplasticizers
JP4477657B2 (en) Method for determining the proportion of finely divided powder in shotcrete, method for dividing and mixing the shotcrete obtained by this decision method and method for determining the proportion of thickener added to shotcrete
JP2014206384A (en) Estimation method of optimal mixing ratio of fine aggregate for concrete, and estimation method of unit water quantity and trial production funnel flow-down time for the same
CN107870137B (en) The method of mortar method detection concrete admixture performance
JP6909106B2 (en) Relationship identification method, estimation method, and concrete composition manufacturing method
Hamiruddin et al. The Effect of Different Sand Gradation with Ultra High Performance Concrete (UHPC)
Bouziani et al. Mixture design approach to evaluate fresh properties of SCC made with various sands
JP5248195B2 (en) Concrete fluidity evaluation test method and apparatus
Heniegal Developing underwater concrete properties with and without anti-washout admixtures
Roy et al. Experimental analysis on self-compacting concrete (SCC) made with locally available materials incorporating different W/C ratio
Juhart et al. A new combined filler concept for eco-concrete
Sylvester et al. Investigation of the properties of self-compacting concrete with palm kernel shell ash as mineral additive
JP2018004436A (en) Method for estimating slump flow of concrete
Beitzel Optimisation of the mixing process for producing self-compacting high-performance concrete