JP2014206220A - Magnetic spring device - Google Patents

Magnetic spring device Download PDF

Info

Publication number
JP2014206220A
JP2014206220A JP2013083953A JP2013083953A JP2014206220A JP 2014206220 A JP2014206220 A JP 2014206220A JP 2013083953 A JP2013083953 A JP 2013083953A JP 2013083953 A JP2013083953 A JP 2013083953A JP 2014206220 A JP2014206220 A JP 2014206220A
Authority
JP
Japan
Prior art keywords
yoke portion
magnetic
spring device
mover
magnetic spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013083953A
Other languages
Japanese (ja)
Other versions
JP6178604B2 (en
Inventor
上運天 昭司
Shoji Kamiunten
昭司 上運天
光晴 田中
Mitsuharu Tanaka
光晴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2013083953A priority Critical patent/JP6178604B2/en
Priority to PCT/JP2014/060082 priority patent/WO2014168109A1/en
Publication of JP2014206220A publication Critical patent/JP2014206220A/en
Application granted granted Critical
Publication of JP6178604B2 publication Critical patent/JP6178604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F6/00Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid
    • F16F6/005Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid using permanent magnets only

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic spring device having a constant force region where a spring force is almost constant to displacement, capable of changing a magnitude of the spring force, and fundamentally not requiring electric power.SOLUTION: A magnetic body 1-1 is applied as a first yoke portion, a magnetic body 1-2 is applied as a second yoke portion, a magnetic body 1-3 is applied as a connection yoke portion, a permanent magnet (movable element) 2 is disposed between opposed faces of the yoke portions 1-1, 1-2, and the yoke portions 1-1, 1-2 are magnetically connected by the connection yoke portion 1-3. Thus an absolute value of the force Fz generated in the movable shaft direction (Z-axis direction) of the movable element 2 can be increased, and further a constant region (constant force region) of the force Fz can be enlarged. A facing distance d between the movable element 2 and the yoke portions 1-1, 1-2 is adjustable, and a magnitude of the force Fz can be changed according to the facing distance d while almost keeping the constant force region.

Description

この発明は、磁気の吸引力を磁気バネ力として用いる磁気バネ装置に関するものである。   The present invention relates to a magnetic spring device that uses a magnetic attractive force as a magnetic spring force.

部品の自動組付け、電極の押付け、ICチップ等の小型精密部品用の吸着ノズル、形状測定器のプローブ、研磨ヘッド、工作機械などの様々な用途で、変位しても押付け力や引っ張り力が一定のバネが必要な場合が多く、また、必要に応じて簡単にバネ力を調整したいというニーズも多い。機械式バネではバネ長を長くして変位に対する力変化を小さくして対応しているが、サイズが大きくなってしまい、また、バネ長を大きく変化させないとバネ力が変化しなくなるため、バネ力の調整も難しくなる。   In various applications such as automatic assembly of parts, pressing of electrodes, suction nozzles for small precision parts such as IC chips, probes for shape measuring instruments, polishing heads, machine tools, etc. There are many cases where a constant spring is necessary, and there is also a great need for easily adjusting the spring force as necessary. In mechanical springs, the spring length is increased to reduce the force change with respect to displacement, but the size increases and the spring force does not change unless the spring length is changed greatly. It becomes difficult to adjust.

それに対して、特許文献1には、図29にその要部の構成(図29(a)は軸方向断面図、図29(b)は図29(a)をX方向から見た図)を示すような磁気バネ300が示されている。この磁気バネ300は、軸受301,301によって軸方向に移動可能とされた可動軸302と、可動軸302に固定された可動の内筒303と、可動軸303と同軸上に配置された固定の外筒304とを有し、内筒303を永久磁石によって形成し、外筒304を磁性体によって形成している。なお、内筒303を磁性体、外筒304を永久磁石とする構成も別の例として示されている。   On the other hand, in Patent Document 1, FIG. 29 shows a configuration of the main part (FIG. 29A is an axial sectional view, and FIG. 29B is a view of FIG. 29A viewed from the X direction). A magnetic spring 300 as shown is shown. The magnetic spring 300 includes a movable shaft 302 that is movable in the axial direction by bearings 301, 301, a movable inner cylinder 303 that is fixed to the movable shaft 302, and a fixed shaft that is disposed coaxially with the movable shaft 303. The outer cylinder 304 is formed with a permanent magnet, and the outer cylinder 304 is formed with a magnetic material. A configuration in which the inner cylinder 303 is a magnetic body and the outer cylinder 304 is a permanent magnet is shown as another example.

この磁気バネ300では、軸方向に引き合う内筒303と外筒304との間の磁力によって、バネ力を発生させている。これにより、図30に特許文献1の図9に示された可動軸のストロークとバネ力との関係を転記して示すように、変位に対してばね力がほゞ一定となる力一定領域(力の変化率が少ない領域)を持つことができる。   In the magnetic spring 300, a spring force is generated by the magnetic force between the inner cylinder 303 and the outer cylinder 304 that are attracted in the axial direction. Accordingly, as shown in FIG. 30, the relationship between the stroke of the movable shaft and the spring force shown in FIG. 9 of Patent Document 1 is transcribed, and the force constant region where the spring force is substantially constant with respect to the displacement ( Can have a low rate of change of force).

また、特許文献2には、図31にその要部の構成を示すようなばね定数可変式磁気ばね装置400が示されている。このばね定数可変式磁気バネ装置400は、永久磁石401と強磁性体402とからなる可動子403と、コイル404と強磁性体405とからなる固定子406,406とを具備し、永久磁石401による磁気吸引力で磁気ばねのばね力を発生させ、可動子403から固定子406に流れる磁束の量を、コイル404に流す電流、または、可動子403と固定子406との間のギャップの大きさ、または、永久磁石401を保磁力が異なるものに交換することで調節することによって磁気ばねのばね力を調節できる磁気回路を含んでいる。   Further, Patent Document 2 shows a spring constant variable magnetic spring device 400 whose configuration is shown in FIG. The variable spring constant type magnetic spring device 400 includes a mover 403 composed of a permanent magnet 401 and a ferromagnetic body 402, and stators 406 and 406 composed of a coil 404 and a ferromagnetic body 405. The magnetic attraction force generated by the magnetic spring generates a magnetic spring force, the amount of magnetic flux flowing from the mover 403 to the stator 406, the current flowing through the coil 404, or the size of the gap between the mover 403 and the stator 406 Alternatively, it includes a magnetic circuit that can adjust the spring force of the magnetic spring by adjusting the permanent magnet 401 by exchanging it with one having a different coercive force.

特開2004−68906号公報JP 2004-68906 A 特開2004−360747号公報JP 2004-360747 A

しかしながら、特許文献1に記載された磁気バネでは、バネ力を調節できないという問題がある。また、特許文献2に記載されたばね定数可変式磁気ばね装置では、ばね力の調節にコイル電流を使用する場合は、常時電力が必要になり発熱も生じてしまう。   However, the magnetic spring described in Patent Document 1 has a problem that the spring force cannot be adjusted. Further, in the spring constant variable magnetic spring device described in Patent Document 2, when a coil current is used for adjusting the spring force, electric power is always required and heat is generated.

なお、特許文献2に記載されたばね定数可変式磁気ばね装置において、可動子と固定子との間のギャップの大きさや永久磁石の交換による場合は、これらの問題は解決されるが、磁気ばねの性能に関して構造的に以下の問題がある。   In the spring constant variable magnetic spring device described in Patent Document 2, these problems are solved when the size of the gap between the mover and the stator or the replacement of the permanent magnet is solved. There are the following structural problems regarding performance.

すなわち、その装置の名称にも「ばね定数可変式」として含まれているように、また図32に特許文献2の図3に示された特性を転記して示すように、変位に対してばね定数を持つ領域(ばね力が(比例)変化する領域)のみで、変位に対してばね力がほゞ一定となる力一定領域(力の変化率が少ない領域)が基本的に無いという問題がある。   That is, as shown in the name of the device as “variable spring constant”, and as shown in FIG. 32 with the characteristics shown in FIG. There is a problem that there is basically no constant force region (region where the rate of change in force is small) where the spring force is almost constant with respect to displacement only in a region with a constant (region where the spring force changes (proportional)). is there.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、変位に対してばね力がほゞ一定となる力一定領域(力の変化率が少ない領域)を持ち、バネ力の大きさを変化させることができ、また、基本的に電力を必要としない磁気バネ装置を提供することにある。さらに好ましいものとしては、力一定領域(力の変化率が少ない領域)の範囲を広くした磁気バネ装置を提供することにある。   The present invention has been made in order to solve such a problem. The object of the present invention is to provide a constant force region (region where the rate of change in force is small) in which the spring force is substantially constant with respect to displacement. It is an object of the present invention to provide a magnetic spring device that can hold and change the magnitude of the spring force and basically does not require electric power. It is further preferable to provide a magnetic spring device in which the range of the constant force region (region where the rate of change in force is small) is widened.

このような目的を達成するために本発明は、磁気の吸引力を磁気バネ力として用いる磁気バネ装置において、距離を隔てて対向する対向面を持つ第1のヨーク部と第2のヨーク部とからなる対向ヨーク部と、第1のヨーク部と第2のヨーク部との間を磁気的に接続して第1のヨーク部と第2のヨーク部との間の磁路となる連結ヨーク部とを備えた固定子と、対向ヨーク部の対向面間に、第1のヨーク部と第2のヨーク部との対向方向に対してほゞ直交する方向を可動軸方向として設けられ、その可動軸を挟んで対向する位置に少なくとも一対の磁極を有する永久磁石からなる可動子と、可動子の一対の磁極の一方が第1のヨーク部に距離を隔てて対面し、可動子の一対の磁極の他方が第2のヨーク部に距離を隔てて対面し、第1のヨーク部と可動子との間の対面距離および第2のヨーク部と可動子との間の対面距離を調整可能とする距離調整手段とを備えることを特徴とする。   In order to achieve such an object, the present invention provides a magnetic spring device that uses a magnetic attraction force as a magnetic spring force, and includes a first yoke portion and a second yoke portion having opposing surfaces facing each other at a distance. And a connecting yoke portion that forms a magnetic path between the first yoke portion and the second yoke portion by magnetically connecting between the first yoke portion and the second yoke portion. Between the opposing surface of the opposing yoke portion and a direction substantially orthogonal to the opposing direction of the first yoke portion and the second yoke portion as a movable axis direction. A mover made of a permanent magnet having at least a pair of magnetic poles at positions facing each other across the shaft, and one of the pair of magnetic poles of the mover face each other with a distance from the first yoke portion, and the pair of magnetic poles of the mover The other of the first and second yoke parts face each other at a distance from the first yoke part. Characterized in that it comprises a distance adjusting means for enabling adjustment of the facing distance between the facing distance and the second yoke portion and the movable element between Doko.

この発明では、連結ヨーク部が対向ヨーク部の第1のヨーク部と第2のヨーク部との間の磁路となり、対向ヨーク部の第1のヨーク部と第2のヨーク部との間が磁気的に接続される。これにより、例えば、可動子の一方の磁極をN極、可動子の他方の磁極をS極とすると、可動子の一方の磁極から出た磁束が対向ヨーク部の第1のヨーク部に入り、第1のヨーク部から連結ヨーク部を通り、連結ヨーク部から対向ヨーク部の第2のヨーク部に入り、可動子の他方の磁極に戻される。これにより、本発明では、可動子の可動軸方向への変位に対し、その可動軸方向に生じる力の絶対値が大きくなると共に、さらにこの可動軸方向に生じる力の一定領域(力一定領域)が拡大される。また、永久磁石を使用するので磁力の生成においては基本的に電力を必要としない。   In this invention, the connecting yoke portion serves as a magnetic path between the first yoke portion and the second yoke portion of the opposing yoke portion, and the space between the first yoke portion and the second yoke portion of the opposing yoke portion is between Magnetically connected. Thereby, for example, if one of the magnetic poles of the mover is an N pole and the other magnetic pole of the mover is an S pole, the magnetic flux emitted from one of the magnetic poles of the mover enters the first yoke portion of the opposing yoke portion, The first yoke portion passes through the connecting yoke portion, enters the second yoke portion of the opposing yoke portion from the connecting yoke portion, and is returned to the other magnetic pole of the mover. As a result, in the present invention, the absolute value of the force generated in the movable axis direction with respect to the displacement of the mover in the movable axis direction is increased, and a constant region (force constant region) of the force generated in the movable shaft direction is further increased. Is enlarged. Further, since a permanent magnet is used, basically no electric power is required for generating a magnetic force.

また、本発明では、第1のヨーク部と可動子との間の対面距離および第2のヨーク部と可動子との間の対面距離が調整可能とされている。この第1のヨーク部と可動子との間の対面距離および第2のヨーク部と可動子との間の対面距離を調整可能とする距離調整手段は、それぞれの対面距離を独立して調整可能とする機構であってもよく、それぞれの対面距離を可動子の可動軸を中心にして対称に変化させる機構であってもよい。これにより、本発明では、第1のヨーク部と可動子との間の対面距離および第2のヨーク部と可動子との間の対面距離を調整すると、力一定領域をほゞ維持したまま、力の大きさを対面距離に応じて変化させることができる。   In the present invention, the facing distance between the first yoke portion and the mover and the facing distance between the second yoke portion and the mover can be adjusted. The distance adjusting means that can adjust the facing distance between the first yoke portion and the mover and the facing distance between the second yoke portion and the mover can independently adjust each facing distance. It is also possible to use a mechanism that changes each facing distance symmetrically about the movable axis of the mover. Thereby, in the present invention, when the facing distance between the first yoke portion and the mover and the facing distance between the second yoke portion and the mover are adjusted, the force constant region is maintained substantially. The magnitude of the force can be changed according to the facing distance.

本発明によれば、対向ヨーク部の第1のヨーク部と第2のヨーク部との間を連結ヨーク部で磁気的に接続し、連結ヨーク部を第1のヨーク部と第2のヨーク部との間の磁路とするようにしたので、また、第1のヨーク部と可動子との間の対面距離および第2のヨーク部と可動子との間の対面距離を調整可能としたので、変位に対してバネ力がほゞ一定となる力一定領域(力の変化率が少ない領域)を持ち、バネ力の大きさを変化させることができ、また、基本的に電力を必要としない磁気バネ装置を提供することが可能となる。   According to the present invention, the first yoke portion and the second yoke portion of the opposing yoke portion are magnetically connected by the connecting yoke portion, and the connecting yoke portion is connected to the first yoke portion and the second yoke portion. Since the magnetic path between the first yoke portion and the mover and the distance between the second yoke portion and the mover can be adjusted. , It has a constant force region (region where the rate of change of force is small) where the spring force is almost constant with respect to the displacement, and the magnitude of the spring force can be changed, and basically no power is required. A magnetic spring device can be provided.

本発明の基礎となる磁気バネ装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the magnetic spring apparatus used as the foundation of this invention. この磁気バネ装置においてZ軸方向の力Fz(磁気バネ力)が発生する様子を示す図である。It is a figure which shows a mode that the force Fz (magnetic spring force) of a Z-axis direction generate | occur | produces in this magnetic spring apparatus. この磁気バネ装置における磁性体と永久磁石のZ軸方向の位置ずれとZ軸方向の力Fz(磁気バネ力)との関係を示す図である。It is a figure which shows the relationship between the position shift of the Z-axis direction of the magnetic body and permanent magnet in this magnetic spring apparatus, and the force Fz (magnetic spring force) of a Z-axis direction. 本発明に係る磁気バネ装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the magnetic spring apparatus which concerns on this invention. この磁気バネ装置における磁性体と永久磁石のZ軸方向の位置ずれとZ軸方向の力Fz(磁気バネ力)との関係を示す図である。It is a figure which shows the relationship between the position shift of the Z-axis direction of the magnetic body and permanent magnet in this magnetic spring apparatus, and the force Fz (magnetic spring force) of a Z-axis direction. この磁気バネ装置において一対の対向する磁性体の面と永久磁石のそれぞれの磁極面の間の距離dを変化させた場合の磁性体と永久磁石のZ軸方向の位置ずれとZ軸方向の力Fz(磁気バネ力)との関係を示す図である。In this magnetic spring device, the displacement of the magnetic body and the permanent magnet in the Z-axis direction and the force in the Z-axis direction when the distance d between the surfaces of the pair of opposing magnetic bodies and the respective magnetic pole faces of the permanent magnet is changed. It is a figure which shows the relationship with Fz (magnetic spring force). 一対の対向する磁性体の面にわずかな傾斜をつけた例を示す図である。It is a figure which shows the example which gave slight inclination to the surface of a pair of opposing magnetic body. 一対の対向する磁性体の面に窪みまたは突起を設けた例を示す図である。It is a figure which shows the example which provided the hollow or protrusion in the surface of a pair of opposing magnetic body. 一対の対向する磁性体の面にわずかな傾斜をつけた場合に永久磁石が対向する磁性体の面の間からZ軸方向に飛び出していない状態でもZ軸方向の力Fzが発生する様子を示す図である。When the surface of a pair of opposing magnetic bodies is slightly inclined, the Z-axis direction force Fz is generated even when the permanent magnet does not protrude in the Z-axis direction from between the opposing surfaces of the magnetic body. FIG. 一対の対向する磁性体の面を平行とした場合とわずかな傾斜を付けた場合の磁性体と永久磁石のZ軸方向の位置ずれとZ軸方向の力Fz(磁気バネ力)との関係を比較して示す図である。The relationship between the Z axis displacement and the force Fz (magnetic spring force) in the Z-axis direction between the magnetic body and the permanent magnet when the surfaces of the pair of opposing magnetic bodies are parallel and slightly inclined is used. It is a figure shown in comparison. 一対の対向する磁性体と永久磁石との間の対面距離dを調整可能とする機構(距離調整手段)の第1例を示す図である。It is a figure which shows the 1st example of the mechanism (distance adjustment means) which can adjust the facing distance d between a pair of opposing magnetic body and a permanent magnet. 一対の対向する磁性体と永久磁石との間の対面距離dを調整可能とする機構(距離調整手段)の第2例を示す図である。It is a figure which shows the 2nd example of the mechanism (distance adjustment means) which can adjust the facing distance d between a pair of opposing magnetic body and a permanent magnet. 一対の対向する磁性体と永久磁石との間の対面距離dを調整可能とする機構(距離調整手段)の第3例を示す図である。It is a figure which shows the 3rd example of the mechanism (distance adjustment means) which enables adjustment of the facing distance d between a pair of opposing magnetic body and a permanent magnet. 本発明に係る磁気バネ装置の一実施の形態の要部を示す斜視図である。It is a perspective view which shows the principal part of one Embodiment of the magnetic spring apparatus which concerns on this invention. この磁気バネ装置においてシャフトに押し付ける方向へ外力が加わった場合および引っ張る方向へ外力が加わった場合の磁気バネ力の発生状態を示す図である。It is a figure which shows the generation | occurrence | production state of the magnetic spring force when the external force is applied in the direction of pressing against the shaft in this magnetic spring device and when the external force is applied in the pulling direction. 第1のヨーク部と第2のヨーク部との対向面間にリニアガイド(ブッシュ)を設けるようにして例を示す図である。It is a figure which shows an example by providing a linear guide (bush) between the opposing surfaces of a 1st yoke part and a 2nd yoke part. 可動子に始点ストッパを取り付け、シャフトに終点ストッパを取り付け、可動子の可動軸方向(Z軸方向)の移動範囲を制限するようにした例を示す図である。It is a figure which shows the example which attached the start point stopper to the needle | mover, attached the end point stopper to the shaft, and restrict | limits the moving range of the needle | mover's movable axis direction (Z-axis direction). 対向ヨーク部と連結ヨーク部とを一体化させた例を示す図である。It is a figure which shows the example which integrated the opposing yoke part and the connection yoke part. 可動子を円筒状の永久磁石とした例および角柱状の永久磁石とした例を示す図である。It is a figure which shows the example which used the needle | mover as the cylindrical permanent magnet, and the example made into the prismatic permanent magnet. 可動子を円柱状又は円筒状とした場合に一対のヨーク部の対向面を可動子の外周面に合わせて円弧状とした例を示す図である。It is a figure which shows the example which made the opposing surface of a pair of yoke part arc-shaped according to the outer peripheral surface of a needle | mover, when a needle | mover is made into a column shape or cylindrical shape. 連結ヨーク部を一対のヨーク部の可動軸と直交方向の端面の片側だけではなく両側に設けるようにした例を示す図である。It is a figure which shows the example which provided the connection yoke part not only in the one side of the end surface of an orthogonal direction with the movable axis | shaft of a pair of yoke part but in both sides. 一対のヨーク部の可動軸方向の端面の両側に連結ヨーク部を設けるようにした例を示す図である。It is a figure which shows the example which provided the connection yoke part on both sides of the end surface of the movable axis direction of a pair of yoke part. 一対のヨーク部の可動軸と直交方向の端面片側の任意の範囲にのみ連結ヨーク部を設けるようにした例を示す図である。It is a figure which shows the example which provided the connection yoke part only in the arbitrary ranges of the end surface one side orthogonal to the movable axis of a pair of yoke part. 一対のヨーク部と可動子との間の距離dを変化させる機構(距離調整機構)を例示する図である。It is a figure which illustrates the mechanism (distance adjustment mechanism) which changes the distance d between a pair of yoke part and a needle | mover. 距離調整機構の別の例(リンク機構を用いた例)を示す図である。It is a figure which shows another example (example using a link mechanism) of a distance adjustment mechanism. 距離調整機構の別の例(移動方向変換機構を用いた例)を示す図である。It is a figure which shows another example (example using the moving direction conversion mechanism) of the distance adjustment mechanism. 距離調整機構の別の例(カム機構を用いた例)を示す図である。It is a figure which shows another example (example using a cam mechanism) of a distance adjustment mechanism. 距離調整機構の別の例(ラックアンドピニオン機構を用いた例)を示す図である。It is a figure which shows another example (example using the rack and pinion mechanism) of a distance adjustment mechanism. 特許文献1に示された磁気バネの要部の構成を示す図である。It is a figure which shows the structure of the principal part of the magnetic spring shown by patent document 1. FIG. 特許文献1の図9に示された可動軸のストロークとバネ力との関係を転記して示す図である。FIG. 10 is a diagram showing the relationship between the stroke of the movable shaft and the spring force shown in FIG. 特許文献2に示されたばね定数可変式磁気ばね装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the spring constant variable type magnetic spring apparatus shown by patent document 2. FIG. 特許文献2の図3に示された特性を転記して示す図である。It is a figure which transcribe | transfers and shows the characteristic shown by FIG. 3 of patent document 2. FIG.

以下、本発明を図面に基づいて詳細に説明する。先ず、本発明に係る磁気バネ装置の実施の形態の説明に入る前に、本発明の原理について説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings. First, the principle of the present invention will be described before the description of the embodiment of the magnetic spring device according to the present invention.

〔発明の原理〕
図1に本発明の基礎となる磁気バネ装置の要部の構成(図1(a)は平面図、図1(b)は正面図)を示す。この図に示されるように、ある軸(Z軸と定義)方向に長さLの一対の対向する面を持つ磁性体1−1,1−2の間(ほゞ中央)に、同じくZ軸方向に長さLを持ちZ軸方向と直交方向に磁極面を持つ永久磁石2が配置され、磁性体1−1の面に永久磁石2の一方の磁極面が対向し、磁性体1−2の面に永久磁石2の他方の磁極面が対向しているとき、長さLの磁性体1−1,1−2の面と長さLの永久磁石2(磁極面)が、Z軸方向に重なっているときは、Z軸と直交方向に磁気吸引力Fxが働くのみで、Z軸方向には力が発生しない。
[Principle of the Invention]
FIG. 1 shows a configuration of a main part of a magnetic spring device as a basis of the present invention (FIG. 1A is a plan view and FIG. 1B is a front view). As shown in this figure, between the magnetic bodies 1-1 and 1-2 having a pair of opposing surfaces of length L in the direction of a certain axis (defined as the Z axis) (about the center), the Z axis A permanent magnet 2 having a length L in the direction and having a magnetic pole surface perpendicular to the Z-axis direction is disposed, and one magnetic pole surface of the permanent magnet 2 faces the surface of the magnetic body 1-1, and the magnetic body 1-2. When the other magnetic pole surface of the permanent magnet 2 faces the surface of the magnetic material 1-1, the surfaces of the magnetic bodies 1-1 and 1-2 having the length L and the permanent magnet 2 (magnetic pole surface) having the length L are in the Z-axis direction. , Only the magnetic attractive force Fx acts in the direction orthogonal to the Z axis, and no force is generated in the Z axis direction.

しかし、それらがZ軸方向にずれると、永久磁石2が飛び出した側の磁性体1−1,1−2の面の端部付近では磁気吸引力FxがZ軸方向に傾き、その分解ベクトルとしてZ軸方向の力Fzが発生する(図2(a)参照)。そして、それらのZ軸方向のずれが大きくなると、Z軸方向に傾いた磁気吸引力Fxの大きさは小さくなるが、そのZ軸方向の分解ベクトルFzの割合は大きくなる(図2(b)参照)。これにより、結果として、永久磁石2が磁性体1−1,1−2の面からZ軸方向にずれ始めてから抜け出るまでの領域において、変位に対してZ軸方向の力がほゞ一定になる力一定領域(力の変化率が少ない領域)が現れる(図3参照)。   However, when they deviate in the Z-axis direction, the magnetic attractive force Fx is inclined in the Z-axis direction near the ends of the surfaces of the magnetic bodies 1-1 and 1-2 on the side from which the permanent magnet 2 protrudes. A force Fz in the Z-axis direction is generated (see FIG. 2A). When the deviation in the Z-axis direction increases, the magnitude of the magnetic attractive force Fx tilted in the Z-axis direction decreases, but the ratio of the decomposition vector Fz in the Z-axis direction increases (FIG. 2B). reference). As a result, in the region from when the permanent magnet 2 starts to shift in the Z-axis direction from the surfaces of the magnetic bodies 1-1 and 1-2 and then comes out, the force in the Z-axis direction becomes substantially constant with respect to the displacement. A constant force region (region where the rate of change in force is small) appears (see FIG. 3).

図4に本発明に係る磁気バネ装置の要部の構成(図4(a)は平面図、図4(b)は正面図)を示す。発明者は、この図に示されるように、一対の対向する磁性体1−1,1−2間を、永久磁石2からの直接の影響が無視できる程度に離れた位置で磁性体1−3で磁気的に連結し、一対の磁性体1−1,1−2間の磁束が流れるようにすると、Z軸方向に生じる力Fzの絶対値が大きくなるとともに、さらにその力Fzの一定領域(力一定領域)を拡大することができることを見出した(図5参照)。また、その状態で一対の対向する磁性体1−1,1−2の面と永久磁石2のそれぞれの磁極面の間の距離(対面距離)dを変化させると、力一定領域をほゞ維持したまま、力Fzの大きさを対面距離dに応じて変化させることができることを見出した(図6参照)。   FIG. 4 shows the configuration of the main part of the magnetic spring device according to the present invention (FIG. 4 (a) is a plan view and FIG. 4 (b) is a front view). As shown in this figure, the inventor places the magnetic body 1-3 between the pair of opposing magnetic bodies 1-1 and 1-2 at a position where the direct influence from the permanent magnet 2 can be ignored. And the magnetic flux between the pair of magnetic bodies 1-1 and 1-2 flows, the absolute value of the force Fz generated in the Z-axis direction increases, and the constant region of the force Fz ( It was found that the (force constant region) can be enlarged (see FIG. 5). Further, when the distance (face-to-face distance) d between the surfaces of the pair of opposing magnetic bodies 1-1 and 1-2 and the respective magnetic pole surfaces of the permanent magnet 2 is changed in this state, the constant force region is substantially maintained. As it is, it was found that the magnitude of the force Fz can be changed according to the facing distance d (see FIG. 6).

これは、一対の対向する磁性体1−1,1−2のみの場合は、磁性体1−1,1−2に挟まれた空間における磁束の流れる経路が、永久磁石2のZ軸方向の位置や、対向する磁性体1−1,1−2の面と永久磁石2の各磁極面の間の距離によって大きく変化するため、磁気吸引力Fxの変化(つまり、磁気バネ特性の変化)も大きかったのに対し、磁束の流れを対向する磁性体1−1,1−2間を連結した磁性体1−3に集中させて安定させることにより、永久磁石2のZ軸方向の位置や、対向する磁性体1−1,1−2の面と永久磁石2の各磁極面の間の距離に関わらず、磁気バネの特性が対向する磁性体1−1,1−2の面と永久磁石2の各磁極面間の位置状態にのみ影響されるようになるためである。   In the case of only a pair of opposing magnetic bodies 1-1 and 1-2, the magnetic flux flowing path in the space between the magnetic bodies 1-1 and 1-2 is in the Z-axis direction of the permanent magnet 2. The change in the magnetic attractive force Fx (that is, the change in the magnetic spring characteristics) also changes greatly depending on the position and the distance between the surfaces of the opposing magnetic bodies 1-1 and 1-2 and the magnetic pole surfaces of the permanent magnet 2. Whereas it was large, the flow of magnetic flux was concentrated and stabilized on the magnetic body 1-3 connecting the opposing magnetic bodies 1-1 and 1-2, so that the position of the permanent magnet 2 in the Z-axis direction, Regardless of the distance between the faces of the opposing magnetic bodies 1-1 and 1-2 and the magnetic pole faces of the permanent magnet 2, the faces of the magnetic bodies 1-1 and 1-2 and the permanent magnet with opposite characteristics of the magnetic spring This is because only the position state between the two magnetic pole faces is affected.

また、発明者は、一対の対向する磁性体1−1,1−2の面にわずかな傾斜をつけたり(図7に示す傾斜角θ参照)、窪みや突起などを付けて(図8に示す窪みまたは突起1a参照)、一対の対向する磁性体1−1,1−2の面と永久磁石2の磁極面との間の空間の磁気抵抗にZ軸方向の適切な勾配(対向する磁性体1−1,1−2の面のZ軸方向端部の一方で磁気抵抗が大きく、他方で小さくなるような勾配)をつけることにより、空間の磁気抵抗が大きい方の端部側方向への永久磁石2の変位に対して、力一定領域(力の変化率が少ない領域)をさらに広げることができることを見出した。   In addition, the inventor gives a slight inclination to the surfaces of the pair of opposing magnetic bodies 1-1 and 1-2 (see the inclination angle θ shown in FIG. 7), or adds depressions or protrusions (shown in FIG. 8). A suitable gradient in the Z-axis direction (opposing magnetic body) in the magnetic resistance of the space between the surface of the pair of opposing magnetic bodies 1-1, 1-2 and the magnetic pole surface of the permanent magnet 2 1-1, 1-2, the Z-axis direction end of one of the Z-axis direction end portions has a large magnetic resistance and a gradient that decreases the other end). It has been found that the constant force region (region where the rate of change in force is small) can be further expanded with respect to the displacement of the permanent magnet 2.

すなわち、一対の対向する磁性体1−1,1−2の面と永久磁石2の磁極面が平行な場合は、図1に示されるように、永久磁石2が一対の対向する磁性体1−1,1−2の面の間からZ軸方向に飛び出していない状態では、Z軸と直交方向に磁気吸引力Fxが働くのみで、Z軸方向には力Fzが発生しない。しかし、一対の対向する磁性体1−1,1−2の面と永久磁石2の磁極面との間の空間の磁気抵抗にZ軸方向の適切な勾配をつけることにより、例えば図9に示されるように、永久磁石2が一対の対向する磁性体1−1,1−2の面の間からZ軸方向に飛び出していない状態でも磁気吸引力FxがZ軸方向に傾き、その分解ベクトルとしてZ軸方向の力Fzが発生するため、変位に対する力特性が平坦化される(図10参照)。この場合、平坦化されることによって最高発生力は小さくなるが、一対の対向する磁性体1−1,1−2の面と永久磁石2の磁極面との間の距離を近づけることで発生力の低下をキャンセルすることができる。   That is, when the surfaces of the pair of opposing magnetic bodies 1-1 and 1-2 and the magnetic pole surface of the permanent magnet 2 are parallel, as shown in FIG. 1, the permanent magnet 2 has a pair of opposing magnetic bodies 1- In a state where it does not protrude in the Z-axis direction from between the surfaces of 1 and 1-2, only the magnetic attractive force Fx acts in the direction orthogonal to the Z-axis, and no force Fz is generated in the Z-axis direction. However, by giving an appropriate gradient in the Z-axis direction to the magnetoresistance of the space between the surfaces of the pair of opposing magnetic bodies 1-1 and 1-2 and the magnetic pole surface of the permanent magnet 2, for example, as shown in FIG. As shown, the magnetic attraction force Fx is inclined in the Z-axis direction even when the permanent magnet 2 does not protrude in the Z-axis direction from between the surfaces of the pair of opposing magnetic bodies 1-1 and 1-2. Since the force Fz in the Z-axis direction is generated, the force characteristic with respect to the displacement is flattened (see FIG. 10). In this case, the maximum generated force is reduced by flattening, but the generated force is reduced by reducing the distance between the surfaces of the pair of opposing magnetic bodies 1-1 and 1-2 and the magnetic pole surface of the permanent magnet 2. Can be canceled.

なお、図4に示した例では、磁性体(第1のヨーク部)1−1と永久磁石(可動子)2との間の対面距離dと磁性体(第2のヨーク部)1−2と永久磁石(可動子)2との間の対面距離dとを等しい距離としており、この磁性体1−1,1−2と永久磁石(可動子)2との間の対面距離dよりも磁性体(連結ヨーク部)1−3と永久磁石(可動子)2との間の対面距離eを大きくしている。これにより、一対の対向する磁性体1−1,1−2間を、永久磁石2からの直接の影響が無視できる程度に離れた位置で、磁性体1−3によって磁気的に連結させている。   In the example shown in FIG. 4, the facing distance d between the magnetic body (first yoke part) 1-1 and the permanent magnet (mover) 2 and the magnetic body (second yoke part) 1-2 are shown. The facing distance d between the magnetic body 1-1 and 1-2 and the permanent magnet (movable element) 2 is more magnetic than the facing distance d between the magnetic bodies 1-1 and 1-2 and the permanent magnet (movable element) 2. The facing distance e between the body (connection yoke part) 1-3 and the permanent magnet (mover) 2 is increased. As a result, the pair of opposing magnetic bodies 1-1 and 1-2 are magnetically coupled by the magnetic body 1-3 at a position that is far enough to ignore the direct influence from the permanent magnet 2. .

なお、図4には、磁性体1−1,1−2と永久磁石2との間の対面距離dを調整可能とする機構(距離調整手段)については示していないが、例えば図11や図12,図13に示すような機構を採用することにより、磁性体1−1,1−2と永久磁石2との間の対面距離dを調整することが可能である。   FIG. 4 does not show a mechanism (distance adjusting means) that can adjust the facing distance d between the magnetic bodies 1-1, 1-2 and the permanent magnet 2, but for example, FIG. 12, By adopting a mechanism as shown in FIG. 13, the facing distance d between the magnetic bodies 1-1 and 1-2 and the permanent magnet 2 can be adjusted.

例えば、図11に示した例(第1例)では、中央部に永久磁石2の通過穴21aを有する非磁性材よりなる台座21を設け、磁性体1−1,1−2の外面に非磁性材よりなるL字状の取付部材22−1,22−2を固定し、このL字状の取付部材22−1,22−2をボルト23−1,23−2により台座21に固定することにより、磁性体1−1,1−2を永久磁石2の両側に対向させて配置している。L字状の取付部材22−1,22−2には、長穴22−1a,22−2aが形成されており、この長穴22−1a,22−2aを通して台座21に螺合されたボルト23−1,23−2を緩めて、L字状の取付部材22−1,22−2の位置を調整することにより、磁性体1−1,1−2と永久磁石2との間の対面距離dを調整することができる。   For example, in the example shown in FIG. 11 (first example), a pedestal 21 made of a nonmagnetic material having a passage hole 21a for the permanent magnet 2 is provided at the center, and the outer surfaces of the magnetic bodies 1-1 and 1-2 are not provided. L-shaped mounting members 22-1 and 22-2 made of magnetic material are fixed, and the L-shaped mounting members 22-1 and 22-2 are fixed to the base 21 with bolts 23-1 and 23-2. Thus, the magnetic bodies 1-1 and 1-2 are arranged to face both sides of the permanent magnet 2. Long holes 22-1a and 22-2a are formed in the L-shaped attachment members 22-1 and 22-2, and bolts screwed into the base 21 through the long holes 22-1a and 22-2a. 23-1 and 23-2 are loosened and the positions of the L-shaped mounting members 22-1 and 22-2 are adjusted so that the surfaces of the magnetic bodies 1-1 and 1-2 and the permanent magnet 2 face each other. The distance d can be adjusted.

図12に示した例(第2例)では、中央部に永久磁石2の通過穴21aを有する非磁性材よりなる台座21を設け、磁性体1−1,1−2の下端面に外側に折り曲げられた取付部1−1a,1−2aを一体的に形成し、この取付部1−1a,1−2aをボルト23−1,23−2により台座21に固定することにより、磁性体1−1,1−2を永久磁石2の両側に対向させて配置している。取付部1−1a,1−2aには、長穴1−1b,1−2bが形成されており、この長穴1−1b,1−2bを通して台座21に螺合されたボルト23−1,23−2を緩めて、取付部1−1a,1−2aの位置を調整することにより、磁性体1−1,1−2と永久磁石2との間の対面距離dを調整することができる。   In the example shown in FIG. 12 (second example), a pedestal 21 made of a non-magnetic material having a passage hole 21a for the permanent magnet 2 is provided in the central portion, and the lower ends of the magnetic bodies 1-1 and 1-2 are provided outward. The bent attachment portions 1-1a and 1-2a are integrally formed, and the attachment portions 1-1a and 1-2a are fixed to the pedestal 21 with bolts 23-1 and 23-2. −1 and 1-2 are arranged to face both sides of the permanent magnet 2. Slots 1-1b, 1-2b are formed in the mounting portions 1-1a, 1-2a, and bolts 23-1, screwed into the base 21 through the slots 1-1b, 1-2b, The facing distance d between the magnetic bodies 1-1 and 1-2 and the permanent magnet 2 can be adjusted by loosening 23-2 and adjusting the positions of the mounting portions 1-1a and 1-2a. .

図13に示した例(第3例)では、磁性体1−3の横幅を広くし、磁性体1−1,1−2の磁性体1−3側の端面に外側に折り曲げられた取付部1−1c,1−2cを一体的に形成し、この取付部1−1c,1−2cをボルト23−1,23−2により磁性体1−3に固定することにより、磁性体1−1,1−2を永久磁石2の両側に対向させて配置している。取付部1−1c,1−2cには、長穴1−1d,1−2dが形成されており、この長穴1−1d,1−2dを通して磁性体1−3に螺合されたボルト23−1,23−2を緩めて、取付部1−1c,1−2cの位置を調整することにより、磁性体1−1,1−2と永久磁石2との間の対面距離dを調整することができる。   In the example shown in FIG. 13 (third example), the width of the magnetic body 1-3 is widened, and the mounting portion is bent outward on the end surfaces of the magnetic bodies 1-1 and 1-2 on the magnetic body 1-3 side. 1-1c and 1-2c are integrally formed, and the mounting portions 1-1c and 1-2c are fixed to the magnetic body 1-3 with bolts 23-1 and 23-2, thereby allowing the magnetic body 1-1 to be fixed. , 1-2 are arranged to face both sides of the permanent magnet 2. Slots 1-1d, 1-2d are formed in the mounting portions 1-1c, 1-2c, and bolts 23 screwed into the magnetic body 1-3 through the slots 1-1d, 1-2d. The facing distance d between the magnetic bodies 1-1 and 1-2 and the permanent magnet 2 is adjusted by loosening the -1 and 23-2 and adjusting the positions of the mounting portions 1-1c and 1-2c. be able to.

このように、磁性体1−1,1−2と永久磁石2との間の対面距離dを調整可能とする機構(距離調整手段)は、ヨーク自体で製作しても、別部材で製作してもよいが、磁束が流れるヨークの磁路部分に穴をあけたり、応力がかかるような構造は避けるのが好ましい。   Thus, the mechanism (distance adjusting means) that can adjust the facing distance d between the magnetic bodies 1-1, 1-2 and the permanent magnet 2 can be manufactured by the yoke itself or by a separate member. However, it is preferable to avoid a structure in which a hole or a stress is applied to the magnetic path portion of the yoke through which the magnetic flux flows.

また、図4では、磁性体1−1と1−2との対向面間を空間としているが、この磁性体1−1と1−2との対向面間は空間に限られるものではない。例えば、永久磁石2の移動スペース以外が非磁性体でうまっていてもよい。   In FIG. 4, the space between the opposing surfaces of the magnetic bodies 1-1 and 1-2 is a space, but the space between the opposing surfaces of the magnetic bodies 1-1 and 1-2 is not limited to the space. For example, the space other than the moving space of the permanent magnet 2 may be made of a non-magnetic material.

〔実施の形態〕
図14は本発明に係る磁気バネ装置の一実施の形態の要部を示す斜視図である。この磁気バネ装置100は、図4に示した構成を基本とし、Z軸方向に長さLの一対の対向する面を持つ磁性体1−1,1−2と、磁性体1−1,1−2の間(ほゞ中央)に位置する永久磁石2と、磁性体1−1,1−2間を磁気的に連結する磁性体1−3とを備えている。永久磁石2は、磁性体1−1,1−2と同様にZ軸方向に長さLを持ち、Z軸方向と直交方向に磁極面を持つ。
Embodiment
FIG. 14 is a perspective view showing a main part of an embodiment of the magnetic spring device according to the present invention. This magnetic spring device 100 is based on the configuration shown in FIG. 4 and has magnetic bodies 1-1, 1-2 having a pair of opposing surfaces having a length L in the Z-axis direction, and magnetic bodies 1-1, 1. -2 (about the center), and a magnetic body 1-3 that magnetically connects the magnetic bodies 1-1 and 1-2. The permanent magnet 2 has a length L in the Z-axis direction and has a magnetic pole surface in the direction orthogonal to the Z-axis direction, like the magnetic bodies 1-1 and 1-2.

なお、この磁気バネ装置100において、磁性体1−1は本発明でいう第1のヨーク部に相当し、磁性体1−2は第2のヨーク部に相当し、磁性体1−3は連結ヨーク部に相当し、永久磁石2は可動子に相当する。以下、磁性体1−1を第1のヨーク部、磁性体1−2を第2のヨーク部、磁性体1−3を連結ヨーク部、永久磁石2を可動子と呼ぶ。なお、第1のヨーク部1−1、第2のヨーク部1−2は、単にヨーク部と呼ぶ場合もある。   In this magnetic spring device 100, the magnetic body 1-1 corresponds to the first yoke portion in the present invention, the magnetic body 1-2 corresponds to the second yoke portion, and the magnetic body 1-3 is connected. The permanent magnet 2 corresponds to a yoke and corresponds to a mover. Hereinafter, the magnetic body 1-1 is referred to as a first yoke portion, the magnetic body 1-2 is referred to as a second yoke portion, the magnetic body 1-3 is referred to as a connecting yoke portion, and the permanent magnet 2 is referred to as a mover. In addition, the 1st yoke part 1-1 and the 2nd yoke part 1-2 may be only called a yoke part.

この磁気バネ装置100において、第1のヨーク部1−1と第2のヨーク部1−2とは距離を隔てて対向し、対向ヨーク部1−4を構成している。また、連結ヨーク部1−3は、第1のヨーク部1−1と第2のヨーク部1−2との間を磁気的に接続して、第1のヨーク部1−1と第2のヨーク部1−2との間の磁路となる。この対向ヨーク部1−4と連結ヨーク部1−3とで固定子1が構成されている。   In the magnetic spring device 100, the first yoke part 1-1 and the second yoke part 1-2 are opposed to each other with a distance therebetween, and constitute a counter yoke part 1-4. Further, the connecting yoke portion 1-3 magnetically connects the first yoke portion 1-1 and the second yoke portion 1-2 so that the first yoke portion 1-1 and the second yoke portion 1-2 are connected to each other. It becomes a magnetic path between the yoke portions 1-2. The opposing yoke portion 1-4 and the connecting yoke portion 1-3 constitute the stator 1.

また、この磁気バネ装置100において、可動子2は円柱状とされており、その両端にはシャフト3が接続されている。シャフト3は非磁性体とされている。以下では、この可動子2とシャフト3とからなる一体物を可動体と呼び、符号4で示す。可動体4は、Z軸方向に移動可能に設けられている。すなわち、可動体4は、Z軸方向を可動軸方向としている。   In this magnetic spring device 100, the mover 2 has a cylindrical shape, and the shaft 3 is connected to both ends thereof. The shaft 3 is a non-magnetic material. In the following, an integrated body composed of the movable element 2 and the shaft 3 is referred to as a movable body and is denoted by reference numeral 4. The movable body 4 is provided so as to be movable in the Z-axis direction. That is, the movable body 4 has the Z-axis direction as the movable axis direction.

可動体4の可動軸方向(可動子2の可動軸方向)は、第1のヨーク部1−1と第2のヨーク部1−2との対向方向に対して直交する方向とされている。また、可動体4の可動軸方向(可動子2の可動軸方向)は、シャフト3の両端がリニアガイド(ブッシュ)5−1,5−2に挿入されることによって、規制されている。リニアガイド(ブッシュ)5−1,5−2は、ベースプレート6Bの両端に取り付けられたリニアガイドホルダ6A1,6A2内に、その位置が固定された状態で設けられている。   The movable axis direction of the movable body 4 (movable axis direction of the movable element 2) is a direction orthogonal to the opposing direction of the first yoke part 1-1 and the second yoke part 1-2. Further, the movable axis direction of the movable body 4 (the movable axis direction of the movable element 2) is regulated by inserting both ends of the shaft 3 into the linear guides (bush) 5-1 and 5-2. The linear guides (bush) 5-1 and 5-2 are provided in the linear guide holders 6A1 and 6A2 attached to both ends of the base plate 6B with their positions fixed.

この磁気バネ装置100において、第1のヨーク部1−1と可動子2との間の対面距離dと第2のヨーク部1−1と可動子2との間の対面距離dは等しい距離とされており、このヨーク部1−1,1−2と可動子2との間の対面距離dよりも連結ヨーク部1−3と可動子2との間の対面距離eが大きくされている。これにより、一対の対向するヨーク部1−1,1−2間が、連結ヨーク部1−3によって、可動子2からの直接の影響が無視できる程度に離れた位置で磁気的に連結されている。   In this magnetic spring device 100, the facing distance d between the first yoke part 1-1 and the mover 2 is equal to the facing distance d between the second yoke part 1-1 and the mover 2. The facing distance e between the connecting yoke portion 1-3 and the mover 2 is made larger than the facing distance d between the yoke portions 1-1 and 1-2 and the mover 2. As a result, the pair of opposing yoke portions 1-1 and 1-2 are magnetically coupled by the coupling yoke portion 1-3 at a position separated so that the direct influence from the mover 2 can be ignored. Yes.

図14に示した状態は可動子2がその可動軸方向(Z軸方向)への移動範囲の中央位置(原点位置)に位置している状態を示している。この可動子2の原点位置では、対向ヨーク部1−4の対向面間に可動子2が位置し、その一方の磁極面(この例では、N極)の全てが第1のヨーク部1−1の面に距離を隔てて対面し、その他方の磁極面(この例では、S極)の全てが第2のヨーク部1−2の面に距離を隔てて対面している。すなわち、長さLのヨーク部1−1,1−2の面(磁性体の面)と長さLの可動子2(永久磁石の磁極面)が、Z軸方向に重なっている。この場合、図1を用いて説明したように、Z軸と直交方向に磁気吸引力Fxが働くのみで、Z軸方向には力が発生しない。   The state shown in FIG. 14 shows a state in which the mover 2 is located at the center position (origin position) of the movement range in the movable axis direction (Z-axis direction). At the origin position of the mover 2, the mover 2 is positioned between the opposed surfaces of the opposed yoke portion 1-4, and all of one magnetic pole surface (N pole in this example) is the first yoke portion 1-1. The other magnetic pole face (in this example, the S pole) faces the surface of the second yoke portion 1-2 with a distance. In other words, the surfaces of the yoke portions 1-1 and 1-2 having a length L (surfaces of magnetic bodies) and the mover 2 having a length L (the magnetic pole surfaces of permanent magnets) overlap each other in the Z-axis direction. In this case, as described with reference to FIG. 1, only the magnetic attractive force Fx acts in the direction orthogonal to the Z axis, and no force is generated in the Z axis direction.

なお、この状態において、一対の対向するヨーク部1−1,1−2間は、連結ヨーク部1−3で磁気的に連結され、一対のヨーク部1−1,1−2間の磁束が流れている。すなわち、可動子2のN極から出た磁束が対向ヨーク部1−4の第1のヨーク部1−1に入り、第1のヨーク部1−1から連結ヨーク部1−3を通り、連結ヨーク部1−3から対向ヨーク部1−4の第2のヨーク部1−2に入り、可動子2のS極に戻されている。   In this state, the pair of opposing yoke portions 1-1 and 1-2 are magnetically coupled by the coupling yoke portion 1-3, and the magnetic flux between the pair of yoke portions 1-1 and 1-2 is increased. Flowing. That is, the magnetic flux emitted from the N pole of the mover 2 enters the first yoke portion 1-1 of the opposing yoke portion 1-4, and is connected from the first yoke portion 1-1 through the connecting yoke portion 1-3. The yoke portion 1-3 enters the second yoke portion 1-2 of the counter yoke portion 1-4 and is returned to the S pole of the mover 2.

このような状態から、例えば図15(a)に示すように、シャフト3に押付ける方向への外力が加わると、図2(a)を用いて説明したように、可動子2が飛び出した側のヨーク部1−1,1−2の面の端部付近では磁気吸引力FxがZ軸方向に傾き、その分解ベクトルとしてZ軸方向の力Fzが発生する。   From this state, for example, as shown in FIG. 15 (a), when an external force is applied in the pressing direction to the shaft 3, the side from which the mover 2 pops out as described with reference to FIG. 2 (a). Near the ends of the surfaces of the yoke portions 1-1 and 1-2, the magnetic attractive force Fx is inclined in the Z-axis direction, and a force Fz in the Z-axis direction is generated as a decomposition vector thereof.

そして、それらのZ軸方向のずれが大きくなると、図2(b)を用いて説明したように、Z軸方向に傾いた磁気吸引力Fxの大きさは小さくなるが、そのZ軸方向の分解ベクトルFzの割合は大きくなる。   When the deviation in the Z-axis direction increases, as described with reference to FIG. 2B, the magnitude of the magnetic attractive force Fx tilted in the Z-axis direction decreases. The ratio of the vector Fz increases.

これにより、結果として、可動子2がヨーク部1−1,1−2の面からZ軸方向にずれ始めてから抜け出るまでの領域において、変位に対してZ軸方向の力がほゞ一定になる力一定領域(力の変化率が少ない領域)が現れる。   As a result, as a result, the force in the Z-axis direction becomes substantially constant with respect to the displacement in the region from when the mover 2 starts to shift in the Z-axis direction from the surfaces of the yoke parts 1-1 and 1-2. A constant force region (region where the rate of change of force is small) appears.

この場合、本実施の形態では、ヨーク部1−1,1−2間は、連結ヨーク部1−3で磁気的に連結され、この連結ヨーク部1−3を通して磁束が流れているので、前述した発明の原理でも説明したように、Z軸方向に生じる力Fzの絶対値が大きくなるとともに、さらにその力Fzの一定領域(力一定領域)が拡大される(図5参照)。   In this case, in the present embodiment, the yoke portions 1-1 and 1-2 are magnetically connected by the connecting yoke portion 1-3, and the magnetic flux flows through the connecting yoke portion 1-3. As described in the principle of the invention, the absolute value of the force Fz generated in the Z-axis direction is increased, and the constant region (constant force region) of the force Fz is further expanded (see FIG. 5).

また、後述するような距離調整機構を設けて、一対の対向するヨーク部1−1,1−2の面と可動子2のそれぞれの磁極面の間の距離dを変化させると、すなわちヨーク部1−1,1−2と可動子2との間の対面距離dを変化させると、力一定領域をほゞ維持したまま、力Fzの大きさを対面距離dに応じて変化させることができる(図6参照)。   Further, when a distance adjusting mechanism as will be described later is provided to change the distance d between the surfaces of the pair of opposing yoke portions 1-1 and 1-2 and the respective magnetic pole surfaces of the mover 2, that is, the yoke portion. When the facing distance d between 1-1 and 1-2 and the mover 2 is changed, the magnitude of the force Fz can be changed according to the facing distance d while maintaining a constant force region. (See FIG. 6).

図15(b)に示すように、シャフト3に引っ張る方向への外力が加わった場合も、磁気バネ力の方向が逆となるのみで、上述同様にして、力一定領域が得られる。また、ヨーク部1−1,1−2と可動子2との間の対面距離dを変化させることにより、力一定領域をほゞ維持したまま、力Fzの大きさを対面距離dに応じて変化させることができる。   As shown in FIG. 15B, even when an external force is applied to the shaft 3 in the pulling direction, the direction of the magnetic spring force is reversed, and a constant force region is obtained in the same manner as described above. Further, by changing the facing distance d between the yoke portions 1-1 and 1-2 and the movable element 2, the magnitude of the force Fz is changed according to the facing distance d while maintaining the constant force region. Can be changed.

なお、図14に示した磁気バネ装置100では、可動子2の可動軸方向をシャフト3の両端をリニアガイド(ブッシュ)5−1,5−2に挿入することにより規制するものとしているが、図16に示すように、第1のヨーク部1−1と第2のヨーク部1−2との対向面間に、その位置を固定させた状態でリニアガイド(ブッシュ)7を設け、このリニアガイド(ブッシュ)7によって可動子2の可動軸方向を規制するようにしてもよい。   In the magnetic spring device 100 shown in FIG. 14, the movable shaft direction of the mover 2 is restricted by inserting both ends of the shaft 3 into linear guides (bush) 5-1 and 5-2. As shown in FIG. 16, a linear guide (bush) 7 is provided between the opposing surfaces of the first yoke part 1-1 and the second yoke part 1-2 in a state where the position is fixed. You may make it regulate the movable-axis direction of the needle | mover 2 with the guide (bush) 7. FIG.

また、図17に示すように、可動子2に始点ストッパ8−1を取り付け、シャフト3に終点ストッパ8−2を取り付け、可動子2の可動軸方向の移動範囲を制限するようにしてもよい。この例では、可動子2の下降方向への移動がシャフト3に取り付けられた終点ストッパ8−2のリニアガイド(ブッシュ)7への当接により規制され、可動子2の上昇方向への移動が可動子2に取り付けられた始点ストッパ8−1のリニアガイド(ブッシュ)7への当接により規制される。なお、この例では、始点ストッパ8−1と終点ストッパ8−2の両方を設けているが、その何れか一方のみを設けるものとしてもよい。   In addition, as shown in FIG. 17, the start point stopper 8-1 is attached to the mover 2 and the end point stopper 8-2 is attached to the shaft 3, so that the movement range of the mover 2 in the movable axis direction may be limited. . In this example, the movement of the mover 2 in the downward direction is restricted by the contact of the end point stopper 8-2 attached to the shaft 3 with the linear guide (bush) 7, and the movement of the mover 2 in the upward direction is restricted. The start point stopper 8-1 attached to the mover 2 is regulated by contact with the linear guide (bush) 7. In this example, both the start point stopper 8-1 and the end point stopper 8-2 are provided, but only one of them may be provided.

また、図14に示した磁気バネ装置100では、対向ヨーク部1−4と連結ヨーク部1−3とを別体としているが、対向ヨーク部1−4と連結ヨーク部1−3とを一体とさせてもよい。すなわち、図14に示した磁気バネ装置100では、連結ヨーク部1−3を対向ヨーク部1−4のヨーク部1−1,1−2に接触させ、連結ヨーク部1−3を対向ヨーク部1−4に磁気的に吸着させているが、対向ヨーク部1−4と連結ヨーク部1−3とを一体化させてもよい。   Further, in the magnetic spring device 100 shown in FIG. 14, the opposing yoke portion 1-4 and the connecting yoke portion 1-3 are separated, but the opposing yoke portion 1-4 and the connecting yoke portion 1-3 are integrated. It may be allowed. That is, in the magnetic spring device 100 shown in FIG. 14, the connecting yoke portion 1-3 is brought into contact with the yoke portions 1-1 and 1-2 of the opposing yoke portion 1-4, and the connecting yoke portion 1-3 is connected to the opposing yoke portion. Although it is magnetically attracted to 1-4, the opposing yoke portion 1-4 and the connecting yoke portion 1-3 may be integrated.

図18に対向ヨーク部1−4と連結ヨーク部1−3とを一体化させた例を示す。この例では、図18(a),(b)に示すように、連結ヨーク部1−3を円弧状や角状の外力によって変形可能な形状にし、例えば、図11や12と同様な機構(距離調整手段)を付けることにより、ヨーク部1−1,1−2と可動子2との間の対面距離dを調整することができるようにしている。   FIG. 18 shows an example in which the opposing yoke portion 1-4 and the connecting yoke portion 1-3 are integrated. In this example, as shown in FIGS. 18 (a) and 18 (b), the connecting yoke portion 1-3 is deformed by an arc-shaped or square-shaped external force, for example, a mechanism ( The distance d between the yoke portions 1-1 and 1-2 and the mover 2 can be adjusted by attaching the distance adjusting means.

また、図14に示した磁気バネ装置100では、可動子2を円柱状の永久磁石としたが、図19(a)に示すように円筒状の永久磁石としてもよく、図19(b)に示すように角柱状の永久磁石とするなどしてもよい。また、可動子2を円柱状又は円筒状とした場合、図20に示すように、ヨーク部1−1,1−2の対向面を可動子2の外周面に合わせて円弧状とするようにしてもよい。   In the magnetic spring device 100 shown in FIG. 14, the mover 2 is a columnar permanent magnet, but it may be a cylindrical permanent magnet as shown in FIG. As shown, a prismatic permanent magnet may be used. Further, when the mover 2 has a columnar shape or a cylindrical shape, as shown in FIG. May be.

また、図14に示した磁気バネ装置100では、対向ヨーク部1−4のヨーク部1−1,1−2の対向面を可動子2の可動軸方向と平行としたが、図7に示すように、ヨーク部1−1,1−2の対向面を可動子2の可動軸方向に対して傾斜させるようにしてもよい。この場合、ヨーク部1−1,1−2の傾斜方向を可動軸を挟んで対称とし、その傾斜角θも同一とする。また、図8に示すように、ヨーク部1−1,1−2の対向面に対称に、複数の窪みまたは突起1aを設けるようにしてもよい。この場合、ヨーク部1−1,1−2の対向面において、複数の窪みまたは突起1aの密度を可動軸方向に沿って徐々に変えるようにする。   In the magnetic spring device 100 shown in FIG. 14, the opposing surfaces of the yoke portions 1-1 and 1-2 of the opposing yoke portion 1-4 are parallel to the movable axis direction of the mover 2, but are shown in FIG. As described above, the opposing surfaces of the yoke portions 1-1 and 1-2 may be inclined with respect to the movable axis direction of the mover 2. In this case, the inclination directions of the yoke portions 1-1 and 1-2 are symmetrical with respect to the movable shaft, and the inclination angle θ is also the same. Moreover, as shown in FIG. 8, you may make it provide the several hollow or protrusion 1a symmetrically in the opposing surface of the yoke parts 1-1 and 1-2. In this case, the density of the plurality of depressions or projections 1a is gradually changed along the movable axis direction on the opposing surfaces of the yoke portions 1-1 and 1-2.

このように傾斜角θを設けたり、複数の窪みまたは突起1aを設けたりすることによって、一対の対向するヨーク部1−1,1−2の面と可動子2の磁極面との間の空間の磁気抵抗に可動軸(Z軸)方向の適切な勾配(対向するヨーク部1−1,1−2の面のZ軸方向端部の一方で磁気抵抗が大きく、他方で小さくなるような勾配)がつけられ、空間の磁気抵抗が大きい方の端部側方向への可動子2の変位に対して、力一定領域(力の変化率が少ない領域)をさらに広げることができるようになる。   The space between the surfaces of the pair of opposing yoke portions 1-1 and 1-2 and the magnetic pole surface of the mover 2 by providing the inclination angle θ and providing the plurality of depressions or protrusions 1a in this manner. The magnetic resistance is an appropriate gradient in the direction of the movable axis (Z-axis) (the gradient in which the magnetoresistance is large at one of the Z-axis direction ends of the surfaces of the opposing yoke portions 1-1 and 1-2, and the other is small) ), And a constant force region (a region where the rate of change in force is small) can be further expanded with respect to the displacement of the mover 2 toward the end of the space having the larger magnetic resistance.

なお、図7においては、ヨーク部1−1,1−2の面の対向間隔が広がった方が空間の磁気抵抗が大きい側となる。図8においては、複数の窪みまたは突起1aが窪みの場合、ヨーク部1−1,1−2の面の窪みの密度が大きい方が空間の磁気抵抗が大きい側となり、複数の窪みまたは突起1aが突起の場合、ヨーク部1−1,1−2の面の突起の密度が大きい方が空間の磁気抵抗が小さい側となる。   In FIG. 7, the larger the space between the surfaces of the yoke portions 1-1 and 1-2, the larger the magnetic resistance of the space. In FIG. 8, when a plurality of depressions or projections 1a are depressions, the higher the density of the depressions on the surfaces of the yoke portions 1-1 and 1-2, the larger the magnetic resistance of the space, and the plurality of depressions or projections 1a. Is a projection, the higher the density of projections on the surfaces of the yoke portions 1-1 and 1-2, the smaller the magnetic resistance of the space.

また、図14に示した磁気バネ装置100では、連結ヨーク部1−3をヨーク部1−1,1−2の可動軸と直交方向の端面の片側にしか設けなかったが、ヨーク部1−1,1−2の可動軸と直交方向の端面の両側に設けるようにしてもよい。すなわち、図21に示すように、ヨーク部1−1,1−2の可動軸と直交方向の端面の一方に第1の連結ヨーク部1−31を、ヨーク部1−1,1−2の可動軸と直交方向の端面の他方に第2の連結ヨーク部1−32を設けるようにしてもよい。この場合、第1の連結ヨーク部1−31と可動子2との間の対面距離eと同様に、第2の連結ヨーク部1−32と可動子2との間の対面距離eも、ヨーク部1−1,1−2と可動子2との間の対面距離dよりも大きくする。   In the magnetic spring device 100 shown in FIG. 14, the connecting yoke portion 1-3 is provided only on one side of the end surface in the direction orthogonal to the movable shafts of the yoke portions 1-1 and 1-2. You may make it provide in the both sides of the end surface of the orthogonal direction with the movable shaft of 1 and 1-2. That is, as shown in FIG. 21, the first connecting yoke portion 1-31 is disposed on one of the end surfaces in the direction orthogonal to the movable shafts of the yoke portions 1-1 and 1-2, and the yoke portions 1-1 and 1-2 are disposed. You may make it provide the 2nd connection yoke part 1-32 in the other of the end surface of a orthogonal direction with a movable shaft. In this case, similarly to the facing distance e between the first connecting yoke portion 1-31 and the mover 2, the facing distance e between the second connecting yoke portion 1-32 and the mover 2 is also the yoke. It is made larger than the facing distance d between the parts 1-1 and 1-2 and the mover 2.

また、図14に示した磁気バネ装置100では、連結ヨーク部1−3をヨーク部1−1,1−2の可動軸と直交方向の端面(の片側)に設けるようにしたが、ヨーク部1−1,1−2の可動軸方向の端面(の両側)に設けるようにしてもよい。例えば、図22に示すように、ヨーク部1−1,1−2の可動軸方向の端面の一方に第1の連結ヨーク部1−33を、ヨーク部1−1,1−2の可動軸方向の端面の他方に第2の連結ヨーク部1−34を設けるようにする。この場合、図14に示した連結ヨーク部1−3と可動子2との間の対面距離eと同様に、連結ヨーク部1−33,1−34と可動子2との間の対面距離eも、ヨーク部1−1,1−2と可動子2との間の対面距離dよりも大きくする。   In the magnetic spring device 100 shown in FIG. 14, the connecting yoke portion 1-3 is provided on the end surface (one side) orthogonal to the movable shafts of the yoke portions 1-1 and 1-2. You may make it provide in the end surface (the both sides) of the movable axis direction of 1-1, 1-2. For example, as shown in FIG. 22, the first connecting yoke portion 1-33 is provided on one of the end surfaces in the movable axis direction of the yoke portions 1-1 and 1-2, and the movable shaft of the yoke portions 1-1 and 1-2. A second connecting yoke portion 1-34 is provided on the other end surface in the direction. In this case, the facing distance e between the connecting yoke portions 1-33, 1-34 and the mover 2 is similar to the facing distance e between the connecting yoke portion 1-3 and the mover 2 shown in FIG. Also, it is made larger than the facing distance d between the yoke parts 1-1, 1-2 and the mover 2.

また、図14に示した磁気バネ装置100では、ヨーク部1−1,1−2の可動軸と直交方向の端面片側の全面に連結ヨーク部1−3を設けるようにしたが、ヨーク部1−1,1−2の可動軸と直交方向の端面片側の任意の範囲にのみ設けるようにしてもよい。例えば、図23に示すように、ヨーク部1−1,1−2の可動軸と直交方向の端面片側の中央部分にのみ連結ヨーク部1−3を設けるようにする。このように、連結ヨーク部1−3のサイズ、形状は、必要な量の磁束を流せる範囲で任意に変更可能である。   Further, in the magnetic spring device 100 shown in FIG. 14, the connecting yoke portion 1-3 is provided on the entire surface on one end face side in the direction orthogonal to the movable shafts of the yoke portions 1-1 and 1-2. You may make it provide only in the arbitrary ranges of the end surface one side of the orthogonal direction with the movable shaft of -1,1-2. For example, as shown in FIG. 23, the connecting yoke portion 1-3 is provided only at the central portion on one end face side in the direction orthogonal to the movable shaft of the yoke portions 1-1 and 1-2. As described above, the size and shape of the connecting yoke portion 1-3 can be arbitrarily changed within a range in which a necessary amount of magnetic flux can flow.

図24にヨーク部1−1,1−2と可動子2との間の対面距離dを変化させる機構(距離調整機構)を例示する。図24(a)は平面図、19(b)は正面図、図24(c)は図24(a)におけるA−A線断面図である。同図において、9は固定部軸受、10はネジ部、11はダイアル、12はスライド機構である。   FIG. 24 illustrates a mechanism (distance adjustment mechanism) that changes the facing distance d between the yoke portions 1-1 and 1-2 and the mover 2. 24 (a) is a plan view, 19 (b) is a front view, and FIG. 24 (c) is a cross-sectional view taken along line AA in FIG. 24 (a). In the figure, 9 is a fixed part bearing, 10 is a screw part, 11 is a dial, and 12 is a slide mechanism.

ネジ部10はそのネジ山が順方向とされた第1のネジ部10−1と、逆方向とされた第2のネジ部10−2とからなり、第1のネジ部10−1がヨーク部1−2を貫通してそのネジ孔部1−2aに螺合され、第2のネジ部10−2がヨーク部1−1を貫通してそのネジ孔部1−1aに螺合され、第1のネジ部10−1と第2のネジ部10−2との間が固定部軸受9によって軸支され、かつ、第1のネジ部10−1と第2のネジ部10−2の位置が図示左右方向に移動しないように 移動止め10−3が付いている。   The screw portion 10 is composed of a first screw portion 10-1 whose screw thread is in the forward direction and a second screw portion 10-2 in which the screw thread is in the reverse direction, and the first screw portion 10-1 is the yoke. The second screw portion 10-2 passes through the yoke portion 1-1 and is screwed into the screw hole portion 1-1a. A space between the first screw portion 10-1 and the second screw portion 10-2 is pivotally supported by the fixed portion bearing 9, and between the first screw portion 10-1 and the second screw portion 10-2. A detent 10-3 is attached so that the position does not move in the horizontal direction in the figure.

スライド機構12は、ヨーク部1−1側とヨーク部1−2側のそれぞれに設けられており、スライドレール12−1とスライダ12−2とからなる。ヨーク部1−1側において、スライダ12−2はヨーク部1−1の外面に固定されており、スライドレール12−1によって図示左右方向(可動子2の可動軸と直交方向)へ案内される。ヨーク部1−2側において、スライダ12−2はヨーク部1−2の外面に固定されており、スライドレール12−1によって図示左右方向(可動子2の可動軸と直交方向)へ案内される。   The slide mechanism 12 is provided on each of the yoke part 1-1 side and the yoke part 1-2 side, and includes a slide rail 12-1 and a slider 12-2. On the side of the yoke part 1-1, the slider 12-2 is fixed to the outer surface of the yoke part 1-1 and is guided by the slide rail 12-1 in the horizontal direction in the figure (in the direction orthogonal to the movable axis of the mover 2). . On the yoke section 1-2 side, the slider 12-2 is fixed to the outer surface of the yoke section 1-2, and is guided in the horizontal direction in the figure (direction perpendicular to the movable axis of the mover 2) by the slide rail 12-1. .

この距離調整機構200(200A)において、ダイアル11を回転させると、ネジ部10(10−1,10−2)が回転する。このネジ部10(10−1,10−2)の回転によって、ヨーク部1−1と可動子2との間の対面距離dおよびヨーク部1−2と可動子2との間の対面距離dが可動子2の可動軸を中心にして対称に変化する。   In the distance adjusting mechanism 200 (200A), when the dial 11 is rotated, the screw portion 10 (10-1, 10-2) is rotated. Due to the rotation of the screw portion 10 (10-1, 10-2), the facing distance d between the yoke portion 1-1 and the mover 2 and the facing distance d between the yoke portion 1-2 and the mover 2 are achieved. Changes symmetrically about the movable axis of the mover 2.

すなわち、ダイアル11を反時計方向へ回転させると、ヨーク部1−1,1−2がスライダ12−2,12−2とともにスライドレール12−1,12−1に案内されながら、可動子2に近づく方向に移動し、可動子2との間の対面距離dが狭まる。ダイアル11を時計方向へ回転させると、ヨーク部1−1,1−2がスライダ12−2,12−2とともにスライドレール12−1,12−1に案内されながら、可動子2から遠ざかる方向に移動し、可動子2との間の対面距離dが拡がる。   That is, when the dial 11 is rotated in the counterclockwise direction, the yoke portions 1-1 and 1-2 are guided to the slide rails 12-1 and 12-1 together with the sliders 12-2 and 12-2. It moves in the approaching direction, and the facing distance d to the mover 2 is reduced. When the dial 11 is rotated clockwise, the yoke portions 1-1 and 1-2 are guided by the slide rails 12-1 and 12-1 together with the sliders 12-2 and 12-2, and away from the mover 2. It moves and the facing distance d between the needle | mover 2 spreads.

図25〜図28に距離調整機構の別の例を示す。図25はリンク機構を用いた例、図26は移動方向変換機構を用いた例、図27はカム機構を用いた例、図28はラックアンドピニオン機構を用いた例であり、何れの図においてもヨーク部1−1,1−2を可動子2の可動軸と直交方向へ案内するスライド機構は省略している。   Another example of the distance adjusting mechanism is shown in FIGS. 25 is an example using a link mechanism, FIG. 26 is an example using a moving direction changing mechanism, FIG. 27 is an example using a cam mechanism, and FIG. 28 is an example using a rack and pinion mechanism. Also, a slide mechanism for guiding the yoke portions 1-1 and 1-2 in a direction orthogonal to the movable shaft of the mover 2 is omitted.

図25に示した距離調整機構200(200B)では、ダイアル11を回転させることにより、ボルト(ネジ部)13が回転し、リンク機構14がその幅Wを変化させながら上下動し、このリンク機構14の幅Wの変化によって、ヨーク部1−1と可動子2との間の対面距離dおよびヨーク部1−2と可動子2との間の対面距離dが可動子2の可動軸を中心にして対称に変化する。   In the distance adjustment mechanism 200 (200B) shown in FIG. 25, by rotating the dial 11, the bolt (screw part) 13 rotates, and the link mechanism 14 moves up and down while changing its width W, and this link mechanism. 14, the facing distance d between the yoke part 1-1 and the mover 2 and the facing distance d between the yoke part 1-2 and the mover 2 are centered on the movable axis of the mover 2 To change symmetrically.

図26に示した距離調整機構200(200C)では、ダイアル11を回転させることにより、ボルト(ネジ部)13が回転し、台座15−1とくさび状部材15−2とによって構成される移動方向変換機構15の幅Wが変化し、これによってヨーク部1−1と可動子2との間の対面距離dおよびヨーク部1−2と可動子2との間の対面距離dが可動子2の可動軸を中心にして対称に変化する。   In the distance adjusting mechanism 200 (200C) shown in FIG. 26, by rotating the dial 11, the bolt (screw portion) 13 rotates, and the moving direction configured by the base 15-1 and the wedge-shaped member 15-2. The width W of the conversion mechanism 15 changes, whereby the facing distance d between the yoke part 1-1 and the mover 2 and the facing distance d between the yoke part 1-2 and the mover 2 are reduced. It changes symmetrically around the movable axis.

図27に示した距離調整機構200(200D)では、シャフト16を回転させることにより、カム17が回転して、その(可動軸と直交方向の)幅Wが変化し、これによってヨーク部1−1と可動子2との間の対面距離dおよびヨーク部1−2と可動子2との間の対面距離dが可動子2の可動軸を中心にして対称に変化する。   In the distance adjusting mechanism 200 (200D) shown in FIG. 27, by rotating the shaft 16, the cam 17 rotates, and its width W (in the direction orthogonal to the movable shaft) changes. The facing distance d between 1 and the movable element 2 and the facing distance d between the yoke portion 1-2 and the movable element 2 change symmetrically about the movable axis of the movable element 2.

図28に示した距離調整機構200(200E)では、シャフト16を回転させることにより、ピニオン18−1とラック18−2,18−3とで構成されるラックアンドピニオン機構18の幅Wが変化し、これによってヨーク部1−1と可動子2との間の対面距離dおよびヨーク部1−2と可動子2との間の対面距離dが可動子2の可動軸を中心にして対称に変化する。   In the distance adjustment mechanism 200 (200E) shown in FIG. 28, by rotating the shaft 16, the width W of the rack and pinion mechanism 18 composed of the pinion 18-1 and the racks 18-2 and 18-3 is changed. Thus, the facing distance d between the yoke part 1-1 and the movable element 2 and the facing distance d between the yoke part 1-2 and the movable element 2 are symmetrical about the movable axis of the movable element 2. Change.

上述した本発明の実施の形態では、可動子2の磁極に対面する第1のヨーク部1−1および第2のヨーク部1−2の面が比較的広い場合の例を説明したが、可動子2の磁極との間に必要な磁気吸引力を発生することができる(あるいは、必要な磁束を流すことができる)程度の面積があればよく、この条件を満たすことができれば、狭くてもかまわない。例えば、可動子2を、ヨーク部1−1,1−2の可動軸と直交方向の、連結ヨーク部1−3と反対側の端面同士を結ぶ線の付近に配置したり、ヨーク部1−1,1−2の可動軸と直交方向の、連結ヨーク部1−3と反対側の端面を可動子2側に(直角に)折り曲げて、その端面を可動子2の磁極面と対面させてもよい。   In the above-described embodiment of the present invention, an example in which the surfaces of the first yoke portion 1-1 and the second yoke portion 1-2 facing the magnetic pole of the mover 2 are relatively wide has been described. It suffices if there is an area that can generate a necessary magnetic attractive force (or a necessary magnetic flux can flow) between the magnetic poles of the child 2 and if this condition can be satisfied, even if it is narrow, It doesn't matter. For example, the mover 2 is disposed in the vicinity of a line connecting the end surfaces opposite to the connecting yoke portion 1-3 in the direction orthogonal to the movable axes of the yoke portions 1-1 and 1-2, or the yoke portion 1- Bend the end surface opposite to the connecting yoke portion 1-3 in the direction orthogonal to the movable shafts 1, 1-2 to the mover 2 side (perpendicular), and face the end surface to the magnetic pole surface of the mover 2. Also good.

上述した本発明の実施の形態において、永久磁石は例えば、ネオジムやサマリウムコバルトなどの希土類磁石またはフェライト磁石などが好ましく、磁性体は、飽和磁束密度や透磁率が大きく、保磁力が小さく、磁気ヒステリシスの小さい軟磁性材料(例えば、電磁鋼板、電磁軟鉄、パーマロイなど)が好ましい。また、非磁性体は、例えば、SUS316、アルミニウム、真鍮、樹脂などや、その他、磁気回路への磁気的影響が無視できるレベルの材料からなる。   In the above-described embodiment of the present invention, the permanent magnet is preferably a rare earth magnet such as neodymium or samarium cobalt or a ferrite magnet, and the magnetic body has a high saturation magnetic flux density, a high magnetic permeability, a low coercive force, and a magnetic hysteresis. Soft magnetic material (for example, magnetic steel sheet, electromagnetic soft iron, permalloy, etc.) is preferable. The non-magnetic material is made of, for example, SUS316, aluminum, brass, resin, or the like, or any other material that can ignore the magnetic influence on the magnetic circuit.

上述した本発明の実施の形態では、可動軸つまり可動子2の移動方向を垂直にした例で説明したが、可動軸の方向に制限はなく水平や斜めにして使用してもよい。なお、可動軸を水平以外の方向にして使用する場合は、可動子2とシャフト3からなる可動体4の質量にかかる重力の分だけ可動体4が下方に移動し、それに対して発生した磁気バネ力とつりあう点が、外力が無い時の原点位置となる(厳密にはリニアガイド(ブッシュ)7の摩擦力もこれに加わる)。   In the above-described embodiment of the present invention, the example in which the movable shaft, that is, the moving direction of the movable element 2 is vertical, has been described. However, the direction of the movable shaft is not limited and may be used horizontally or obliquely. When the movable shaft is used in a direction other than horizontal, the movable body 4 moves downward by the amount of gravity applied to the mass of the movable body 4 composed of the movable element 2 and the shaft 3, and the generated magnetic force is generated. The point that balances with the spring force is the origin position when there is no external force (strictly, the frictional force of the linear guide (bush) 7 is added to this).

〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
[Extension of the embodiment]
The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the technical idea of the present invention.

1…固定子、1−1…磁性体(第1のヨーク部)、1−2…磁性体(第2のヨーク部)、1−1a,1−2a…取付部、1−1b,1−2b…長穴、1−1c,1−2c…取付部、1−1d,1−2d…長穴、1−3…磁性体(連結ヨーク部)、1−4…対向ヨーク部、2…永久磁石(可動子)、3…シャフト、4…可動体、5−1,5−2…リニアガイド(ブッシュ)、7…リニアガイド(ブッシュ)、8−1…始点ストッパ、8−2…終点ストッパ、21…台座、21a…通過穴、22−1,22−2…取付部材、22−1a,22−2a…長穴、23−1,23−2…ボルト、100…磁気バネ装置、200(200A〜200E)…距離調整機構。   DESCRIPTION OF SYMBOLS 1 ... Stator, 1-1 ... Magnetic body (1st yoke part), 1-2 ... Magnetic body (2nd yoke part), 1-1a, 1-2a ... Mounting part, 1-1b, 1- 2b ... long hole, 1-1c, 1-2c ... mounting part, 1-1d, 1-2d ... long hole, 1-3 ... magnetic body (connection yoke part), 1-4 ... opposing yoke part, 2 ... permanent Magnet (movable element), 3 ... shaft, 4 ... movable body, 5-1, 5-2 ... linear guide (bush), 7 ... linear guide (bush), 8-1 ... start point stopper, 8-2 ... end point stopper 21 ... Pedestal, 21a ... Passing hole, 22-1, 22-2 ... Mounting member, 22-1a, 22-2a ... Long hole, 23-1, 23-2 ... Bolt, 100 ... Magnetic spring device, 200 ( 200A-200E) Distance adjusting mechanism.

Claims (14)

磁気の吸引力を磁気バネ力として用いる磁気バネ装置において、
距離を隔てて対向する対向面を持つ第1のヨーク部と第2のヨーク部とからなる対向ヨーク部と、前記第1のヨーク部と第2のヨーク部との間を磁気的に接続して前記第1のヨーク部と第2のヨーク部との間の磁路となる連結ヨーク部とを備えた固定子と、
前記対向ヨーク部の対向面間に、前記第1のヨーク部と第2のヨーク部との対向方向に対してほゞ直交する方向を可動軸方向として設けられ、その可動軸を挟んで対向する位置に少なくとも一対の磁極を有する永久磁石からなる可動子と、
前記可動子の一対の磁極の一方が前記第1のヨーク部に距離を隔てて対面し、前記可動子の一対の磁極の他方が前記第2のヨーク部に距離を隔てて対面し、前記第1のヨーク部と前記可動子との間の対面距離および前記第2のヨーク部と前記可動子との間の対面距離を調整可能とする距離調整手段と
を備えることを特徴とする磁気バネ装置。
In a magnetic spring device using a magnetic attractive force as a magnetic spring force,
Magnetically connecting between the first yoke portion and the second yoke portion, which is composed of a first yoke portion and a second yoke portion having opposing surfaces facing each other at a distance, and the first yoke portion and the second yoke portion. A stator having a connecting yoke portion serving as a magnetic path between the first yoke portion and the second yoke portion;
A direction substantially perpendicular to the facing direction of the first yoke portion and the second yoke portion is provided as a movable shaft direction between the facing surfaces of the facing yoke portion, and faces each other with the movable shaft interposed therebetween. A mover made of a permanent magnet having at least a pair of magnetic poles at a position;
One of the pair of magnetic poles of the mover faces the first yoke part at a distance, the other of the pair of magnetic poles of the mover faces the second yoke part at a distance, and the first A magnetic spring device comprising: a distance adjusting means capable of adjusting a facing distance between one yoke portion and the mover and a facing distance between the second yoke portion and the mover. .
請求項1に記載された磁気バネ装置において、
前記連結ヨーク部は、
前記第1のヨーク部および第2のヨーク部に接触して磁気的に吸着されている
ことを特徴とする磁気バネ装置。
The magnetic spring device according to claim 1,
The connecting yoke portion is
The magnetic spring device according to claim 1, wherein the magnetic spring device is magnetically attracted in contact with the first yoke portion and the second yoke portion.
請求項1に記載された磁気バネ装置において、
前記連結ヨーク部は、
前記対向ヨーク部と一体とされ、かつ外力によって変形可能とされている
ことを特徴とする磁気バネ装置。
The magnetic spring device according to claim 1,
The connecting yoke portion is
A magnetic spring device, wherein the magnetic spring device is integrated with the opposing yoke portion and is deformable by an external force.
請求項1〜3の何れか1項に記載された磁気バネ装置において、
前記連結ヨーク部は、
前記可動子との間の対面距離が、前記第1のヨーク部と前記可動子との間の対面距離および前記第2のヨーク部と前記可動子との間の対面距離よりも大きくされている
ことを特徴とする磁気バネ装置。
In the magnetic spring device according to any one of claims 1 to 3,
The connecting yoke portion is
The facing distance between the movable element and the movable element is larger than the facing distance between the first yoke part and the movable element and the facing distance between the second yoke part and the movable element. A magnetic spring device.
請求項1〜4の何れか1項に記載された磁気バネ装置において、
前記可動子は、
円柱状、円筒状、または角柱状の永久磁石である
ことを特徴とする磁気バネ装置。
In the magnetic spring device according to any one of claims 1 to 4,
The mover is
A magnetic spring device characterized by being a cylindrical, cylindrical, or prismatic permanent magnet.
請求項1〜5の何れか1項に記載された磁気バネ装置において、
前記可動子の可動軸方向の長さは、
前記対向ヨーク部の可動軸方向の長さと同程度とされている
ことを特徴とする磁気バネ装置。
In the magnetic spring device according to any one of claims 1 to 5,
The length of the movable element in the direction of the movable axis is
A magnetic spring device characterized in that it is approximately the same as the length of the opposing yoke portion in the movable axis direction.
請求項1〜6の何れか1項に記載された磁気バネ装置において、
前記第1のヨーク部および第2のヨーク部は、
前記可動子が円柱状又は円筒状である場合、その対向面が前記可動子の外周面に合わせて円弧状とされている
ことを特徴とする磁気バネ装置。
In the magnetic spring device according to any one of claims 1 to 6,
The first yoke portion and the second yoke portion are
When the mover has a columnar shape or a cylindrical shape, a facing surface of the mover has an arc shape in accordance with the outer peripheral surface of the mover.
請求項1〜6の何れか1項に記載された磁気バネ装置において、
前記第1のヨーク部および第2のヨーク部は、
その対向面が前記可動子の可動軸と平行とされている
ことを特徴とする磁気バネ装置。
In the magnetic spring device according to any one of claims 1 to 6,
The first yoke portion and the second yoke portion are
The opposing surface is parallel to the movable axis of the mover. A magnetic spring device.
請求項1〜6の何れか1項に記載された磁気バネ装置において、
前記第1のヨーク部および第2のヨーク部は、
その対向面が前記可動子の可動軸に対して傾斜し、その傾斜方向が可動軸を挟んで対称とされている
ことを特徴とする磁気バネ装置。
In the magnetic spring device according to any one of claims 1 to 6,
The first yoke portion and the second yoke portion are
The opposing surface is inclined with respect to the movable axis of the mover, and the inclined direction is symmetric with respect to the movable axis.
請求項1〜6の何れか1項に記載された磁気バネ装置において、
前記第1のヨーク部および第2のヨーク部は、
その対向面に、複数の窪み、または複数の突起を備えている
ことを特徴とする磁気バネ装置。
In the magnetic spring device according to any one of claims 1 to 6,
The first yoke portion and the second yoke portion are
A magnetic spring device comprising a plurality of depressions or a plurality of protrusions on the opposing surface.
請求項1〜10の何れか1項に記載された磁気バネ装置において、
前記距離調整手段は、
前記第1のヨーク部と前記可動子との間の対面距離および前記第2のヨーク部と前記可動子との間の対面距離を前記可動子の可動軸を中心にして対称に変化させる機構とされている
ことを特徴とする磁気バネ装置。
In the magnetic spring device according to any one of claims 1 to 10,
The distance adjusting means is
A mechanism for changing the facing distance between the first yoke portion and the mover and the facing distance between the second yoke portion and the mover symmetrically about the movable axis of the mover; A magnetic spring device characterized by that.
請求項1〜11の何れか1項に記載された磁気バネ装置において、
前記固定子は、
前記可動子の可動軸を中心に、前記第1のヨーク部および第2のヨーク部の対向面と直交方向に対称構造とされている
ことを特徴とする磁気バネ装置。
In the magnetic spring device according to any one of claims 1 to 11,
The stator is
A magnetic spring device characterized by having a symmetrical structure in a direction orthogonal to the opposing surfaces of the first yoke portion and the second yoke portion, with the movable shaft of the mover as the center.
請求項1〜12の何れか1項に記載された磁気バネ装置において、
前記可動子の可動軸方向の移動範囲を制限する移動範囲制限手段を備え、
前記移動範囲制限手段は、
前記可動子に取り付けられたストッパおよび前記可動子に連結されているシャフトに取り付けられたストッパの何れか一方あるいは両方である
ことを特徴とする磁気バネ装置。
The magnetic spring device according to any one of claims 1 to 12,
A moving range limiting means for limiting a moving range of the movable element in the movable axis direction;
The moving range limiting means includes
A magnetic spring device characterized by being one or both of a stopper attached to the movable element and a stopper attached to a shaft connected to the movable element.
請求項1〜13の何れか1項に記載された磁気バネ装置において、
前記連結ヨーク部は、複数の磁性体からなる
ことを特徴とする磁気バネ装置。
In the magnetic spring device according to any one of claims 1 to 13,
The connecting yoke portion is composed of a plurality of magnetic bodies.
JP2013083953A 2013-04-12 2013-04-12 Magnetic spring device Expired - Fee Related JP6178604B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013083953A JP6178604B2 (en) 2013-04-12 2013-04-12 Magnetic spring device
PCT/JP2014/060082 WO2014168109A1 (en) 2013-04-12 2014-04-07 Magnetic spring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083953A JP6178604B2 (en) 2013-04-12 2013-04-12 Magnetic spring device

Publications (2)

Publication Number Publication Date
JP2014206220A true JP2014206220A (en) 2014-10-30
JP6178604B2 JP6178604B2 (en) 2017-08-09

Family

ID=51689517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083953A Expired - Fee Related JP6178604B2 (en) 2013-04-12 2013-04-12 Magnetic spring device

Country Status (2)

Country Link
JP (1) JP6178604B2 (en)
WO (1) WO2014168109A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114658783A (en) * 2022-03-22 2022-06-24 中国人民解放军海军工程大学 Quasi-zero stiffness vibration isolator with adjustable positive and negative stiffness
CN114857194A (en) * 2022-03-22 2022-08-05 中国人民解放军海军工程大学 Electromagnetic negative stiffness device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625844U (en) * 1980-07-31 1981-03-10
JPH08121478A (en) * 1994-10-18 1996-05-14 Fuji Xerox Co Ltd Bearing device
JP2003322189A (en) * 2002-05-03 2003-11-14 Integrated Dynamics Engineering Gmbh Magnetic spring device having negative stiffness
JP2004162772A (en) * 2002-11-12 2004-06-10 Ckd Corp Output device with buffer function
JP2004360747A (en) * 2003-06-03 2004-12-24 Canon Inc Spring constant variable type magnetic spring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625844U (en) * 1980-07-31 1981-03-10
JPH08121478A (en) * 1994-10-18 1996-05-14 Fuji Xerox Co Ltd Bearing device
JP2003322189A (en) * 2002-05-03 2003-11-14 Integrated Dynamics Engineering Gmbh Magnetic spring device having negative stiffness
JP2004162772A (en) * 2002-11-12 2004-06-10 Ckd Corp Output device with buffer function
JP2004360747A (en) * 2003-06-03 2004-12-24 Canon Inc Spring constant variable type magnetic spring device

Also Published As

Publication number Publication date
JP6178604B2 (en) 2017-08-09
WO2014168109A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
US5434549A (en) Moving magnet-type actuator
JP3139051U (en) Voice coil motor device
WO2011125083A1 (en) Electromechanical conversion system with moving magnets; acoustic diffuser comprising said system and a moving member that generates sound waves
US11522430B2 (en) Linear vibration actuator
JP5785886B2 (en) Magnetic spring device
US20160018625A1 (en) Electromagnetic actuator
TW201007245A (en) Voice coil motor and optical device
EP1905050A1 (en) Actuator assembly, method of driving an actuator assembly and apparatus for driving an actuator assembly
JP6178604B2 (en) Magnetic spring device
JP2011155757A (en) Linear motor
JP2004360747A (en) Spring constant variable type magnetic spring device
US20110050006A1 (en) Actuator
KR20050085223A (en) Driving unit
JP2013109248A (en) Anti-vibration actuator
JP2011200752A (en) Vibration motor
JP2010153199A (en) Multidirectional input unit
JP2023114905A (en) Optical element driving device
US20130328431A1 (en) Cylindrical electromagnetic actuator
JP2012060756A (en) Linear motor
JP2016144257A (en) Magnet device
WO2022259916A1 (en) Vibration generating device
JPH11299210A (en) Linear actuator
JP5990113B2 (en) Magnetic spring device
JP2019115200A (en) Vibration power generator
JP6077815B2 (en) Magnetic spring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170714

R150 Certificate of patent or registration of utility model

Ref document number: 6178604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees