JP2014206007A - Method for quantitatively evaluating clogging effect of grout material - Google Patents
Method for quantitatively evaluating clogging effect of grout material Download PDFInfo
- Publication number
- JP2014206007A JP2014206007A JP2013084245A JP2013084245A JP2014206007A JP 2014206007 A JP2014206007 A JP 2014206007A JP 2013084245 A JP2013084245 A JP 2013084245A JP 2013084245 A JP2013084245 A JP 2013084245A JP 2014206007 A JP2014206007 A JP 2014206007A
- Authority
- JP
- Japan
- Prior art keywords
- grout material
- ground
- clogging
- correction coefficient
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Abstract
Description
本発明は、グラウト材の目詰まり効果をモデル化して定量評価ができるようにしたものに関する。 The present invention relates to a model capable of quantitative evaluation by modeling the clogging effect of a grout material.
セメントミル等の懸濁液型のグラウト材や水ガラスやシリカ材等の水ガラス系溶液型のグラウト材は、地盤や岩盤の止水や改良のために広く利用されている。これらグラウト材は、地盤の間隙や岩盤の亀裂へ入り込んで止水や改良を行うので、グラウト材の配合設計や注入計画に当たっては、注入したグラウト材が地盤等にどの程度浸透するかを事前に評価することが極めて重要である。このため、例えば、特許文献1に示されるような透水性の評価方法が提案されている。
Suspension type grout materials such as cement mills and water glass type solution type grout materials such as water glass and silica materials are widely used for water stoppage and improvement of ground and bedrock. Since these grout materials enter the gaps in the ground and cracks in the rock and stop and improve the water, the amount of the grout material that penetrates into the ground, etc. in advance should be determined in advance when designing and blending the grout materials. It is very important to evaluate. For this reason, for example, a water permeability evaluation method as shown in
上記特許文献1に示される評価方法は、評価対象区間に水を圧入して所定の圧力にし、次いで、水の供給を停止すると同時に、バルブを閉じて評価対象区間内を閉鎖し、評価対象区間内の所定の圧力から所定の度合いだけ低下するまでの経過時間Ttを測定するようにしている。また、複数の透水係数Kcを設定し、これらの各透水係数Kcにおける評価対象区間内の圧力と経過時間Tcとの関係を算出して、所定の度合いだけ低下するまでの経過時間Tcと各透水係数Kcとの関係を図示するようにしている。そして、経過時間Ttに対応する透水係数Kcを図から読み取り、この値を評価対象区間内の透水係数Ktとするようにしている。
In the evaluation method shown in
また、近年、情報化施工の進展やCIM(Construction Information Modeling)活用による施工管理の高度化等を背景に、グラウト材の注入による地盤改良範囲や改良効果を定量的に予想する予測解析手法のニーズは高まりつつあり、上記特許文献1に示される評価方法以外にも多くの評価方法が提案されている。
In recent years, the need for predictive analysis methods for quantitatively predicting the ground improvement range and the improvement effect due to the injection of grout materials against the background of the progress of computerized construction and the advancement of construction management by utilizing CIM (Construction Information Modeling) Many evaluation methods have been proposed in addition to the evaluation method disclosed in
ところで、注入工によるグラウト材の地盤や岩盤(以下、「地盤」で説明する)中の挙動は、地下水解析と同じように、多孔質体や亀裂内の粘性流体の浸透挙動としてモデル化できるが、水とは異なるグラウト材特有の性状を考慮する必要があり、その一つにグラウト材内の粒子による地盤間隙の目詰まりがある。 By the way, the behavior of grouting material in the ground and bedrock (hereinafter referred to as “ground”) can be modeled as a permeation behavior of a viscous fluid in a porous body or crack, as in groundwater analysis. It is necessary to consider the properties unique to the grout material different from water, and one of them is clogging of the ground gap due to particles in the grout material.
現在、一般的に広く用いられているグラウト材は、懸濁液型のグラウト材及び水ガラス系溶液型のグラウト材に大別される。これらグラウト材のうち、懸濁液型のグラウト材は、若材齢の段階では水とセメント粒子などの固液混合流体として挙動し、グラウト材の注入時において粒子による地盤間隙の目詰まりが流動状況や地盤内の浸透範囲に大きく影響することが知られている。 At present, the grout materials that are generally widely used are roughly classified into suspension-type grout materials and water glass-based solution-type grout materials. Among these grouting materials, suspension type grouting material behaves as a solid-liquid mixed fluid such as water and cement particles at the early age stage, and clogging of the ground gap due to particles flows when the grouting material is injected. It is known to greatly affect the situation and the penetration range in the ground.
これに対して、水ガラス系溶液型のグラウト材は、粒子を含まない均質流体として挙動するので、地盤間隙の目詰まりが生じないと考えられていた。しかし、本出願人の実験によって、水ガラス系溶液型のグラウト材においても目詰まりを起こすことが分かってきている。例えば、水ガラス系溶液型のグラウト材がコロイダルシリカ系の場合、硬化促進剤の配合後に早期に急激なゲル化が局所的に進行することにより粒径の大きなゲルが生成され、これにより地盤間隙の目詰まりがおこることが分かってきている。 On the other hand, the water glass-based solution type grout material behaves as a homogeneous fluid containing no particles, so that it was considered that clogging of the ground gap does not occur. However, it has been found by experiments of the present applicant that clogging occurs even in a water glass-based solution type grout material. For example, when the water glass solution type grout material is colloidal silica, a gel with a large particle size is generated due to the rapid rapid gelation locally after the addition of the curing accelerator. It has been found that clogging occurs.
水ガラス系溶液型のグラウト材の目詰まりについて、図3及び図4のグラフを用いてさらに説明すると、図3は粒径60μmのガラスビーズを模擬地盤として行われた浸透実験を示し、図4は粒径30μmのガラスビーズを模擬地盤として行われた浸透実験におけるグラウト注入流量の時間変化を示している。そして、各模擬地盤には、コロイダルシリカを主成分とするグラウト材を一定圧で注入して浸透実験が行われている。これら図中、実線はコロイダルシリカの粘度から計算された理論値をそれぞれ示し、プロットは測定値をそれぞれ示している。 The clogging of the water glass solution type grout material will be further described with reference to the graphs of FIGS. 3 and 4. FIG. 3 shows an infiltration experiment conducted using glass beads having a particle size of 60 μm as simulated ground. Shows the time change of the grout injection flow rate in the infiltration experiment conducted using glass beads with a particle size of 30 μm as the simulated ground. In each simulated ground, a grouting material containing colloidal silica as a main component is injected at a constant pressure to conduct an infiltration experiment. In these figures, the solid line indicates the theoretical value calculated from the viscosity of the colloidal silica, and the plot indicates the measured value.
図3の粒径60μmの間隙径の大きな模擬地盤では、グラウト注入流量の理論値と測定値とが良好に一致しているのに対して、図4の粒径30μmの間隙径の小さな模擬地盤では、注入開始後に測定値が急激に低下していることから、間隙に目詰まりが発生することにより浸透性の低下が生じていることが予想される。 In the simulated ground with a large gap diameter of 60 μm in FIG. 3, the theoretical value and the measured value of the grout injection flow rate agree well, whereas the simulated ground with a small gap diameter of 30 μm in FIG. Then, since the measured value is drastically decreased after the injection is started, it is expected that the permeability is lowered due to clogging in the gap.
上述のように、懸濁液型のグラウト材及び水ガラス系溶液型のグラウト材のいずれにおいても、グラウト材は、グラウト材中の粒子による地盤の目詰まりと、これに伴う地盤の浸透性の低下が生じる可能性を有している。グラウト材の浸透範囲や改良効果の判定の予測においては、この目詰まり効果を適切に評価して予測結果に反映する必要がある。しかし、過去の検討事例においては、目詰まりによる地盤の浸透性低下の効果についての言及はあるものの、その定量的なモデルや予測評価への具体的な反映方法については検討されていない。上述の特許文献1においても同様である。
As described above, in both the suspension-type grout material and the water glass-based solution-type grout material, the grout material is clogged with the ground due to particles in the grout material, and the accompanying soil permeability. There is a possibility of reduction. In the prediction of the determination of the penetration range of the grout material and the improvement effect, it is necessary to appropriately evaluate this clogging effect and reflect it in the prediction result. However, in the past study examples, although there is a reference to the effect of soil permeability reduction due to clogging, the quantitative model and the specific reflection method for predictive evaluation have not been studied. The same applies to
本発明は、上述する問題点に鑑みてなされたもので、グラウト材の目詰まり効果をモデル化して定量評価ができるようにしたグラウト材の目詰まり効果の定量評価方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a quantitative evaluation method for the clogging effect of a grout material that can be quantitatively evaluated by modeling the clogging effect of the grout material. To do.
上記目的を達成するため、本発明に係るグラウト材の目詰まり効果の定量評価方法では、地盤へ注入して止水や改良を行うグラウト材の目詰まりによる地盤の浸透性低下を定量的に評価するグラウト材の目詰まり効果の定量評価方法であって、目詰まりによる浸透性低下を、グラウト材の積算流量の関数となる0〜1の範囲の補正係数を計算し、その計算された補正係数を地盤の浸透率に乗じてモデル化して定量評価することを特徴としている。 In order to achieve the above object, in the quantitative evaluation method for clogging effect of the grout material according to the present invention, quantitatively evaluate the decrease in permeability of the ground due to clogging of the grout material which is injected into the ground to stop water or improve A method for quantitative evaluation of clogging effect of grout material to be used, which calculates a correction coefficient in the range of 0 to 1 as a function of the accumulated flow rate of the grout material for the decrease in permeability due to clogging, and the calculated correction coefficient It is characterized in that it is modeled by multiplying the permeability of the ground and quantitatively evaluated.
本発明では、地盤の浸透率に0〜1の範囲の補正係数を乗じて、すなわち、ダルシー式を所定の補正係数で修正してグラウト材の目詰まり効果をモデル化する。この場合、グラウト材の目詰まりによる浸透性低下の効果をモデル化することができ、目詰まり効果を適切に定量評価することが可能となるので、その評価に基づいてグラウト材の配合設計や注入計画等を効果的に行うことができる。 In the present invention, the clogging effect of the grout material is modeled by multiplying the soil permeability by a correction coefficient in the range of 0 to 1, that is, correcting the Darcy equation with a predetermined correction coefficient. In this case, the effect of reduced permeability due to clogging of the grout material can be modeled, and the clogging effect can be appropriately quantitatively evaluated. Planning can be done effectively.
また、本発明に係るグラウト材の目詰まり効果の定量評価方法では、モデル化は、(1)式及び(2)式に基づいて生成されることが好ましい。 Moreover, in the quantitative evaluation method of the clogging effect of the grout material according to the present invention, the modeling is preferably generated based on the equations (1) and (2).
ここで、qは流動流体の単位面積当たり流量、ρは流動流量の密度、μは流動流量の粘度、dp/dxは流動方向の圧力勾配、kは地盤の浸透率(固有等価係数)、keは0〜1の範囲の補正係数で(2)式によって定義される。なお、「流動流量」とは、地盤または岩盤中に元から存在する水とグラウト材の混合流体である。 Where q is the flow rate per unit area of the fluid flow, ρ is the density of the fluid flow rate, μ is the viscosity of the fluid flow rate, dp / dx is the pressure gradient in the flow direction, k is the soil permeability (inherent equivalent coefficient), ke Is a correction coefficient in the range of 0 to 1 and is defined by equation (2). The “flow rate” is a mixed fluid of water and grout material originally present in the ground or rock.
ここで、cは流動流体中のグラウト材の濃度、積分記号は注入開始からの時間積分量を示している。 Here, c is the concentration of the grout material in the flowing fluid, and the integration symbol indicates the amount of time integration from the start of injection.
本発明によれば、補正係数keはクラウド材の積算流量の関数として定義されるので、グラウト材の目詰まりによる浸透性低下の効果を容易にモデル化することができる。 According to the present invention, since the correction coefficient ke is defined as a function of the integrated flow rate of the cloud material, it is possible to easily model the effect of permeability reduction due to clogging of the grout material.
また、本発明に係るグラウト材の目詰まり効果の定量評価方法では、グラウト材の注入対象の地盤を試料として室内でグラウト材の注入実験により、モデル化された計算結果又は数値シミュレーション結果を比較して補正係数の(2)式中のパラメータを設定し、その設定されたパラメータを用いて実際に注入工事を行う地盤のモデルを対象に数値シミュレーションを行って実工事におけるグラウト材の浸透挙動を予測評価することが好ましい。 Further, in the method for quantitative evaluation of the clogging effect of the grout material according to the present invention, a modeled calculation result or a numerical simulation result is compared by a grout material injection experiment indoors using the ground of the grout material injection target as a sample. Set the parameters in the equation (2) of the correction coefficient, and use the set parameters to predict the infiltration behavior of the grout material in the actual work by performing a numerical simulation on the ground model that will actually be poured. It is preferable to evaluate.
本発明によれば、補正係数keを求める上記(2)式中のパラメータが室内のグラウト材の注入実験により設定され、設定されたパラメータを用いてグラウト材の浸透挙動を予測評価できるので、容易に実工事に適用することができる。 According to the present invention, the parameter in the above equation (2) for obtaining the correction coefficient ke is set by an indoor grout material injection experiment, and the infiltration behavior of the grout material can be predicted and evaluated using the set parameter. It can be applied to actual construction.
また、本発明に係るグラウト材の目詰まり効果の定量評価方法では、グラウト材は、懸濁液型のグラウト材又は水ガラス系溶液型のグラウト材からなることを特徴としている。 Moreover, in the quantitative evaluation method of the clogging effect of the grout material according to the present invention, the grout material is made of a suspension type grout material or a water glass-based solution type grout material.
本発明によれば、懸濁液型あるいは水ガラス系溶液型のいずれのグラウト材にも適用することができるから、広範囲のグラウト材に適用することができる。 According to the present invention, since it can be applied to any suspension type or water glass type solution type grout material, it can be applied to a wide range of grout materials.
本発明のグラウト材の目詰まり効果の定量評価方法によれば、ダルシー式を所定の補正係数keで修正してグラウト材の目詰まりによる浸透性低下の効果をモデル化できるので、グラウト材の配合設計や注入計画等を効果的に行うことができるとともに、情報化施工やCIM活用による施工管理のニーズに応えることができる予測解析手法を提供することができる。 According to the quantitative evaluation method of the clogging effect of the grout material of the present invention, the Darcy equation can be corrected with a predetermined correction coefficient ke to model the effect of decrease in permeability due to clogging of the grout material. It is possible to provide a predictive analysis method that can effectively perform design, injection planning, and the like, and can meet the needs of construction management by computerized construction and CIM utilization.
以下、本発明の実施の形態によるグラウト材の目詰まり効果の定量評価方法について、図面に基づいて説明する。なお、本発明は、この実施の形態により限定されるものではなく、また、下記の実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一ものも含まれる。 Hereinafter, a quantitative evaluation method for the clogging effect of a grout material according to an embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment, and constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same. .
本実施の形態に係るグラウト材は、コロイダルシリカを主成分とするグラウト材であり、地盤の止水や改良に用いられる。すなわち、このグラウト材は、周知のコロイダルシリカを主成分とする水ガラス系溶液型のグラウト材と同様に、コロイダルシリカ、塩化カリウム(KCl)等の硬化促進剤及び工業用精製水の混合流体である。 The grout material which concerns on this Embodiment is a grout material which has colloidal silica as a main component, and is used for the water stop and improvement of a ground. That is, this grout material is a mixed fluid of a hardening accelerator such as colloidal silica and potassium chloride (KCl) and industrial purified water, as well as a water glass solution type grout material mainly composed of colloidal silica. is there.
上記グラウト材の目詰まり効果の定量評価方法は、目詰まりによる浸透性低下を、グラウト材の積算流量の関数となる0〜1の範囲の補正係数keを計算し、その計算された補正係数を地盤の浸透率に乗じてモデル化される。 The quantitative evaluation method for the clogging effect of the grout material is to calculate the correction coefficient ke in the range of 0 to 1 as a function of the accumulated flow rate of the grout material, and to calculate the correction coefficient ke calculated as a function of the accumulated flow rate of the grout material. Modeled by multiplying the soil penetration rate.
このモデル化は、(1)式に基づいて生成される。 This modeling is generated based on equation (1).
ここで、(1)式において、qは流動流体の単位面積当たり流量、ρは流動流量の密度、μは流動流量の粘度、dp/dxは流動方向の圧力勾配、kは地盤の浸透率(固有等価係数)、keは0〜1の範囲の補正係数で(2)式によって定義される。なお、「流動流量」とは、地盤または岩盤中に元から存在する水とグラウト材の混合流体である。また、コロイダルシリカを主成分とするグラウト材は時間経過とともに粘度が変化するため、この適用事例ではμをグラウト材作液からの経過時間tの関数として定義している。 Where q is the flow rate per unit area of the fluid flow, ρ is the density of the fluid flow rate, μ is the viscosity of the fluid flow rate, dp / dx is the pressure gradient in the flow direction, and k is the permeability of the ground ( (Equivalent Equivalent Coefficient), ke is a correction coefficient in the range of 0 to 1, and is defined by Equation (2). The “flow rate” is a mixed fluid of water and grout material originally present in the ground or rock. In addition, since the viscosity of a grout material containing colloidal silica as a main component changes with time, μ is defined as a function of the elapsed time t from the grout material solution in this application example.
ここで、(2)式において、cは流動流体中のグラウト材の濃度、積分記号は注入開始からの時間積分量を示している。 Here, in the equation (2), c is the concentration of the grout material in the flowing fluid, and the integration symbol indicates the amount of time integration from the start of injection.
地盤の浸透性低下の影響度は、補正係数keの計算式中のパラメータによって調整される。また、有限要素法(FEM)や差分法などの数値解法を用いる場合は、地盤領域を分割した計算要素毎に補正係数keを算定して各要素の計算に用いることにより、目詰まりによる局所的な地盤浸透性の低下を再現することができる。 The influence degree of the soil permeability decrease is adjusted by a parameter in the calculation formula of the correction coefficient ke. In addition, when using a numerical solution method such as a finite element method (FEM) or a difference method, a correction coefficient ke is calculated for each calculation element obtained by dividing the ground region, and is used for calculation of each element. It is possible to reproduce a significant decrease in soil permeability.
以下、上記モデル化の適用事例について説明する。この適用事例は、直径5cm、高さ40cmのカラムを有する実験装置(図1参照)を用いて行われている。使用される地盤の条件は、乾燥密度;1.553(g/cm3)、間隙率;41.2 (φ(%))、透水係数;1.3×10−6(k(m/s))、及び、グラウト材の条件は、コロイダルシリカ;970.4g(800ml)、硬化促進剤(KCl);14.7g(7.3ml)、工業用精製水;192.7g(192.7ml)(合計1177.8g(1000.0ml))である。 Hereinafter, application examples of the modeling will be described. This application example is performed using an experimental apparatus (see FIG. 1) having a column having a diameter of 5 cm and a height of 40 cm. The conditions of the ground used are: dry density: 1.553 (g / cm 3 ), porosity: 41.2 (φ (%)), hydraulic conductivity: 1.3 × 10 −6 (k (m / s) )) And the conditions of the grout material are: colloidal silica; 970.4 g (800 ml), curing accelerator (KCl); 14.7 g (7.3 ml), industrial purified water; 192.7 g (192.7 ml) (Total 1171.7 g (1000.0 ml)).
上記グラウト材を圧力300kPaで注入したときのグラウト材の浸透距離の実験結果と数値解析結果が図2に示されている。図中のプロットは実測値を示している。また、破線は、目詰まりによる浸透性低下(ke)を考慮しない場合を示し、実線は目詰まりによる浸透性低下を考慮した場合を示している。この実験の補正係数keは、(3)式により定義されている。 FIG. 2 shows experimental results and numerical analysis results of the penetration distance of the grout material when the grout material is injected at a pressure of 300 kPa. The plot in the figure shows actual measurement values. A broken line indicates a case where the permeability decrease (ke) due to clogging is not considered, and a solid line indicates a case where the permeability decrease due to clogging is considered. The correction coefficient ke in this experiment is defined by equation (3).
ここで、a、bは、目詰りによる浸透率低下の影響度を示すパラメータで、ここでの設定値は、aは6.5e−3、bは1.5である。 Here, a and b are parameters indicating the degree of influence of the decrease in permeability due to clogging, and the set values here are 6.5e-3 for b and 1.5 for b.
図2から明らかなように、目詰まりモデルを用いた場合の解析結果は、実験結果と良好に一致しており、グラウト材の目詰まり効果をモデル化した定量評価方法の有効性が裏付けられている。 As is clear from FIG. 2, the analysis results when the clogging model is used are in good agreement with the experimental results, confirming the effectiveness of the quantitative evaluation method modeling the clogging effect of grout materials. Yes.
本定量評価方法の実現場への適用においては、グラウト材の注入対象の地盤を試料として室内でグラウト材の注入実験を行うことにより、モデル化された計算結果又は数値シミュレーション結果を比較して補正係数の式中のパラメータを同定し、その同定されたパラメータを用いて実際に注入工事を行う地盤のモデルを対象に数値シミュレーションを行って実工事におけるグラウト材の浸透挙動が予測評価される。 In the application of this quantitative evaluation method to the realization field, the modeled calculation results or numerical simulation results are compared and corrected by performing the grout material injection experiment indoors using the ground of the grout material injection target as a sample. The parameters in the coefficient equation are identified, and numerical simulation is performed on the ground model to be actually injected using the identified parameters to predict and evaluate the infiltration behavior of the grout material in actual construction.
図1には、上記実験に好適な室内浸透実験装置1が示されている。すなわち、この室内浸透実験装置1は、直径50mm、高さ30mmの空間を有するカラム2内に実際のグラウト材の注入の対象となる地盤から採集した試料3をフィルターメッシュ4,4で挟むように構成されている。
FIG. 1 shows an indoor
浸透実験は、グラウト材を充填したカラム2を精製水で満たした後、貯槽5に用意されているグラウト材に所定の圧力を付加してグラウト材をカラム2の下方に供給し、そのカラム2の上方から押し出されて排出される流体をメスシリンダ6で計測して行われる。
In the permeation experiment, after the
上述の実施例では、グラウト材の注入される対象が地盤として説明したが、グラウト材の注入される対象が岩盤でもよく、また、グラウト材は、水ガラス系溶液型のグラウト材を用いたがセメントミル等の懸濁液型のグラウト材であってもよい。したがって、本発明の特許請求の範囲で「地盤」というときは、岩盤も含まれている。 In the above-described embodiments, the object into which the grout material is injected is described as the ground. However, the object into which the grout material is injected may be a rock, and the grout material is a water glass-based solution type grout material. It may be a suspension type grout material such as a cement mill. Therefore, the term “ground” in the claims of the present invention includes rock.
次に、上述したグラウト材の目詰まり効果の定量評価方法の作用について、詳細に説明する。
本実施の形態では、地盤の浸透率に0〜1の範囲の補正係数を乗じて、すなわち、ダルシー式を所定の補正係数で修正してグラウト材の目詰まり効果をモデル化する。この場合、グラウト材の目詰まりによる地盤の浸透性低下の効果をモデル化することができ、目詰まり効果を適切に定量評価することが可能となるので、その評価に基づいてグラウト材の配合設計や注入計画等を効果的に行うことができる。
Next, the operation of the quantitative evaluation method for the clogging effect of the grout material described above will be described in detail.
In this embodiment, the clogging effect of the grout material is modeled by multiplying the soil permeability by a correction coefficient in the range of 0 to 1, that is, correcting the Darcy equation with a predetermined correction coefficient. In this case, it is possible to model the effect of ground permeability reduction due to clogging of the grout material, and it becomes possible to appropriately and quantitatively evaluate the clogging effect, so the blending design of the grout material based on the evaluation And an injection plan can be effectively performed.
また、本実施の形態では、上述した(1)式及び(2)式を用いてモデル化する方法であり、補正係数keがクラウド材の積算流量の関数として定義されるので、グラウト材の目詰まりによる浸透性低下の効果を容易にモデル化することができる。 In the present embodiment, modeling is performed using the above-described equations (1) and (2), and the correction coefficient ke is defined as a function of the accumulated flow rate of the cloud material. The effect of reduced permeability due to clogging can be easily modeled.
さらに、補正係数keを求める上記(2)式中のパラメータが室内のグラウト材の注入実験により設定され、設定されたパラメータを用いて実地盤におけるグラウト材の浸透挙動を予測評価できるので、容易に実工事に適用することができる。 Furthermore, the parameters in the above equation (2) for obtaining the correction coefficient ke are set by an indoor grout material injection experiment, and the infiltration behavior of the grout material in the actual ground can be predicted and evaluated using the set parameters, so that It can be applied to actual construction.
また、懸濁液型あるいは水ガラス系溶液型のいずれのグラウト材にも適用することができるから、広範囲のグラウト材に適用することができる。 Further, since it can be applied to any suspension type or water glass type grout material, it can be applied to a wide range of grout materials.
上述のように本実施の形態によるグラウト材の目詰まり効果の定量評価方法では、ダルシー式を所定の補正係数keで修正してグラウト材の目詰まりによる地盤の浸透性低下の効果をモデル化できるので、グラウト材の配合設計や注入計画等を効果的に行うことができるとともに、情報化施工やCIM活用による施工管理のニーズに応えることができる予測解析手法を提供することができる。 As described above, in the quantitative evaluation method of the clogging effect of the grout material according to this embodiment, the Darcy equation can be corrected with a predetermined correction coefficient ke to model the effect of the ground permeability reduction due to clogging of the grout material. Therefore, it is possible to provide a predictive analysis method that can effectively perform the blending design of the grout material, the injection plan, and the like, and can meet the needs of information management and construction management using CIM.
以上、本発明によるグラウト材の目詰まり効果の定量評価方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能であり、また上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 As mentioned above, although embodiment of the quantitative evaluation method of the clogging effect of the grout material by this invention was described, this invention is not limited to said embodiment, It can change suitably in the range which does not deviate from the meaning. In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with known constituent elements.
1 室内浸透実験装置
2 カラム
3 試料
4 フィルターメッシュ
5 貯槽
6 メスシリンダ
1 Indoor
Claims (4)
前記目詰まりによる浸透性低下を、グラウト材の積算流量の関数となる0〜1の範囲の補正係数を計算し、その計算された補正係数を地盤の浸透率に乗じてモデル化して定量評価することを特徴とするグラウト材の目詰まり効果の定量評価方法。 A method for quantitative evaluation of the clogging effect of a grout material that quantitatively evaluates the decrease in permeability of the ground due to clogging of the grout material that is injected into the ground to stop water and improve,
The permeability decrease due to the clogging is quantitatively evaluated by calculating a correction coefficient in the range of 0 to 1 as a function of the accumulated flow rate of the grout material, and modeling the calculated correction coefficient by multiplying the permeability of the ground. The quantitative evaluation method of the clogging effect of grout material characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013084245A JP2014206007A (en) | 2013-04-12 | 2013-04-12 | Method for quantitatively evaluating clogging effect of grout material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013084245A JP2014206007A (en) | 2013-04-12 | 2013-04-12 | Method for quantitatively evaluating clogging effect of grout material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014206007A true JP2014206007A (en) | 2014-10-30 |
Family
ID=52119776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013084245A Pending JP2014206007A (en) | 2013-04-12 | 2013-04-12 | Method for quantitatively evaluating clogging effect of grout material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014206007A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104458530A (en) * | 2014-11-28 | 2015-03-25 | 山东大学 | Indoor determination method and device for permeability coefficient of degraded layer of cement soil |
CN104573399A (en) * | 2015-02-02 | 2015-04-29 | 山东科技大学 | Coal mine water burst dynamic water grouting amount prediction and grouting effect evaluation method |
CN104831674A (en) * | 2015-03-12 | 2015-08-12 | 黄河水利委员会黄河水利科学研究院 | Seepage failure hydraulic model |
JP2020020204A (en) * | 2018-08-02 | 2020-02-06 | 清水建設株式会社 | Estimation method and device of grout infiltration distance |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0355310A (en) * | 1989-07-25 | 1991-03-11 | Oyo Corp | Water permeability testing for cracked rockbed |
JPH1137997A (en) * | 1997-07-22 | 1999-02-12 | Shimizu Corp | Method for evaluating chemical grouting-solidification characteristics |
JP2006002457A (en) * | 2004-06-18 | 2006-01-05 | Toto Denki Kogyo Kk | Grout injection control device |
JP2007332594A (en) * | 2006-06-13 | 2007-12-27 | Central Res Inst Of Electric Power Ind | Method for investigating flowability of fluid in ground |
JP2013015456A (en) * | 2011-07-05 | 2013-01-24 | Takenaka Komuten Co Ltd | Measuring method and measuring apparatus for low water-permeable material and water-cutoff material |
-
2013
- 2013-04-12 JP JP2013084245A patent/JP2014206007A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0355310A (en) * | 1989-07-25 | 1991-03-11 | Oyo Corp | Water permeability testing for cracked rockbed |
JPH1137997A (en) * | 1997-07-22 | 1999-02-12 | Shimizu Corp | Method for evaluating chemical grouting-solidification characteristics |
JP2006002457A (en) * | 2004-06-18 | 2006-01-05 | Toto Denki Kogyo Kk | Grout injection control device |
JP2007332594A (en) * | 2006-06-13 | 2007-12-27 | Central Res Inst Of Electric Power Ind | Method for investigating flowability of fluid in ground |
JP2013015456A (en) * | 2011-07-05 | 2013-01-24 | Takenaka Komuten Co Ltd | Measuring method and measuring apparatus for low water-permeable material and water-cutoff material |
Non-Patent Citations (1)
Title |
---|
米山一幸、延藤遵: "ビンガム流体挙動および目詰まり効果を考慮した岩盤亀裂グラウト予測解析手法の検討", 土木学会年次学術講演会講演概要集(CD−ROM), JPN7016002127, 5 August 2010 (2010-08-05), JP, pages 151 - 152, ISSN: 0003364383 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104458530A (en) * | 2014-11-28 | 2015-03-25 | 山东大学 | Indoor determination method and device for permeability coefficient of degraded layer of cement soil |
CN104573399A (en) * | 2015-02-02 | 2015-04-29 | 山东科技大学 | Coal mine water burst dynamic water grouting amount prediction and grouting effect evaluation method |
CN104573399B (en) * | 2015-02-02 | 2016-07-06 | 山东科技大学 | The dynamic water grouting amount prediction of a kind of mine water inrush and slip casting effect evaluation methodology |
CN104831674A (en) * | 2015-03-12 | 2015-08-12 | 黄河水利委员会黄河水利科学研究院 | Seepage failure hydraulic model |
JP2020020204A (en) * | 2018-08-02 | 2020-02-06 | 清水建設株式会社 | Estimation method and device of grout infiltration distance |
JP7134010B2 (en) | 2018-08-02 | 2022-09-09 | 清水建設株式会社 | Grout penetration distance estimation method and estimation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Turco et al. | Unsaturated hydraulic behaviour of a permeable pavement: Laboratory investigation and numerical analysis by using the HYDRUS-2D model | |
Kuang et al. | Pore-structure models of hydraulic conductivity for permeable pavement | |
Yoon et al. | A filtration model for evaluating maximum penetration distance of bentonite grout through granular soils | |
Šavija et al. | Lattice modeling of chloride diffusion in sound and cracked concrete | |
Wu et al. | Modelling of two-dimensional chloride diffusion concentrations considering the heterogeneity of concrete materials | |
Huerta et al. | Experimental evidence for self-limiting reactive flow through a fractured cement core: Implications for time-dependent wellbore leakage | |
Yoon et al. | Groutability of granular soils using bentonite grout based on filtration model | |
Vardanega | State of the art: Permeability of asphalt concrete | |
Zheng et al. | Attachment–detachment dynamics of suspended particle in porous media: Experiment and modeling | |
Lei et al. | An experimental study on durability of shield segments under load and chloride environment coupling effect | |
Rotunno et al. | A finite element method for localized erosion in porous media with applications to backward piping in levees | |
JP2014206007A (en) | Method for quantitatively evaluating clogging effect of grout material | |
Zhou et al. | Analysis and engineering application investigation of multiple-hole grouting injections into porous media considering filtration effects | |
Robbins et al. | Analyses of backward erosion progression rates from small-scale flume experiments | |
AlShareedah et al. | Spherical discrete element model for estimating the hydraulic conductivity and pore clogging of pervious concrete | |
Wang et al. | An Experimental Investigation for Seepage‐Induced Instability of Confined Broken Mudstones with Consideration of Mass Loss | |
Seblany et al. | Determination of the opening size of granular filters | |
Wang et al. | Study of gas emission law at the heading face in a coal‐mine tunnel based on the Lattice Boltzmann method | |
Press Jr | Determining the minimum number of single-ring infiltration tests required to reliably predict performance of a rain garden | |
Kamalzare et al. | Computer simulation of levee erosion and overtopping | |
KR101292207B1 (en) | Prediction Method of Concrete Discharge Amount in Conveying Pipe | |
Shousha et al. | Effect of using grouted vertical barrier on seepage characteristics under small hydraulic structures | |
Raut | Mathematical modelling of granular filters and constriction-based filter design criteria | |
Berndt et al. | Materials properties of barricade bricks for mining applications | |
Garcia et al. | Numerical approach to simulate placement of wellbore plugging materials using the Lattice Boltzmann method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160726 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170214 |