JP2014205136A - Dinitrogen monoxide(n2o) suppression type sewage treatment technique using carbon fiber packed aerobic bioreactor - Google Patents

Dinitrogen monoxide(n2o) suppression type sewage treatment technique using carbon fiber packed aerobic bioreactor Download PDF

Info

Publication number
JP2014205136A
JP2014205136A JP2014042825A JP2014042825A JP2014205136A JP 2014205136 A JP2014205136 A JP 2014205136A JP 2014042825 A JP2014042825 A JP 2014042825A JP 2014042825 A JP2014042825 A JP 2014042825A JP 2014205136 A JP2014205136 A JP 2014205136A
Authority
JP
Japan
Prior art keywords
sewage
carbon fiber
treatment
aeration
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014042825A
Other languages
Japanese (ja)
Other versions
JP6210514B2 (en
Inventor
恭広 山下
Yasuhiro Yamashita
恭広 山下
隆 長田
Takashi Osada
隆 長田
暁史 荻野
Akifumi Ogino
暁史 荻野
田中 康男
Yasuo Tanaka
康男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2014042825A priority Critical patent/JP6210514B2/en
Publication of JP2014205136A publication Critical patent/JP2014205136A/en
Application granted granted Critical
Publication of JP6210514B2 publication Critical patent/JP6210514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for sewage treatment which suppresses emission of dinitrogen monoxide (NO) from sewage.SOLUTION: A sewage treatment method includes a step of subjecting sewage to an aeration treatment in the presence of fixed-bed type carbon fibers and suppresses generation of dinitrogen monoxide by utilizing microorganisms accumulated on the carbon fibers.

Description

本発明は、例えば畜舎汚水、下水等の有機性汚水の処理方法及び当該方法に使用される汚水処理装置に関する。   The present invention relates to a method for treating organic sewage such as livestock sewage and sewage, and a sewage treatment apparatus used in the method.

家畜排泄物起源の温室効果ガス(GHG)発生は、農業系排出量の約26%の寄与があるとされており、削減への期待が大きい。日本の家畜排泄物管理区分においては、GHGであるメタン(CH4)及び一酸化二窒素(N2O)の主たる排出源の1つに汚水浄化が挙げられている。特に、N2Oの地球温暖化係数は二酸化炭素の298倍であると報告されている(気候変動に関する政府間パネル(IPCC) 第4次評価報告書)ことから、汚水浄化におけるN2O発生抑制技術の開発はGHG発生量削減に大きく貢献するものと考えられる。 The generation of greenhouse gas (GHG) from livestock excreta is said to contribute about 26% of agricultural emissions, and there are high expectations for reduction. In Japan's livestock excrement management category, sewage purification is cited as one of the main sources of GHG methane (CH 4 ) and dinitrogen monoxide (N 2 O). In particular, since the global warming potential of N 2 O is reported to be 298 times that of carbon dioxide (Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report), N 2 O generated in the dirty water The development of suppression technology is considered to contribute greatly to the reduction of GHG emissions.

従来において、汚水処理から発生するN2Oの発生要因としては、硝化過程においては、溶存酸素不足、有機物の過負荷、短い汚泥滞留時間(SRT)、毒性物質の存在、低水温、及び高アンモニア性窒素(NH4-N)条件が指摘されており、また脱窒過程においては、投入汚水の炭素率(C/N)が低い条件、pHが低い条件、及び酸化還元電位(ORP)が高い条件が指摘されている(花木ら(2001), 水環境学会誌, 24(7), pp. 473-476;Kampschreurら(2009), Water Research, 43(17), pp. 4093-4103;及び増田ら(2009), 水環境学会誌, 32(3), pp. 147-152)。このように、N2Oの発生因子が多岐に渡る一方で、処理水中にNOX-Nの蓄積が認められた場合にN2Oの発生が増大することが報告されている(花木ら(2001), 水環境学会誌, 24(7), pp. 473-476;及びKampschreurら(2009), Water Research, 43(17), pp. 4093-4103)。 In the past, the causes of N 2 O generated from sewage treatment are as follows: dissolved oxygen deficiency, organic overload, short sludge residence time (SRT), presence of toxic substances, low water temperature, and high ammonia Nitrogen (NH 4 -N) conditions have been pointed out, and in the denitrification process, the carbon ratio (C / N) of input wastewater is low, the pH is low, and the redox potential (ORP) is high Conditions have been pointed out (Hanaki et al. (2001), Journal of Japan Society on Water Environment, 24 (7), pp. 473-476; Kampschreur et al. (2009), Water Research, 43 (17), pp. 4093-4103; and Masuda et al. (2009), Journal of Japan Society on Water Environment, 32 (3), pp. 147-152). Thus, while N 2 O generation factors vary widely, it has been reported that the generation of N 2 O increases when NO X -N accumulation is observed in the treated water (Hanaki et al. ( 2001), Journal of Japan Society on Water Environment, 24 (7), pp. 473-476; and Kampschreur et al. (2009), Water Research, 43 (17), pp. 4093-4103).

ところで、従来において、汚水浄化処理は、例えば活性汚泥法により行われている。
標準活性汚泥法は、最初沈殿、曝気、最終沈殿の順から成る処理方式で、最初沈殿で先ず重力沈降によって物理的な処理が行われ、次いで、得られた上澄み液を曝気槽に投入する。曝気槽では活性汚泥によって好気的な微生物処理が行われ、有機物が分解される。最終沈殿では、活性汚泥を沈降させ、曝気槽へ汚泥の一部を返送することにより、汚泥濃度が調整される。また、最終沈殿後の上澄み液が処理水となる。浄化処理において、当該標準活性汚泥法が一般的な処理手法として用いられている。しかしながら、曝気槽の汚泥濃度の調整や沈殿槽から曝気槽への汚泥返送量の調整等の運転管理が必要である。また、窒素成分は、硝化までは進んでも脱窒が十分に行われず亜硝酸イオンや硝酸イオンが蓄積する場合が多い。報告によれば、大気中へのN2O放出は、当該亜硝酸イオン蓄積が一因とされている。また、標準活性汚泥法では、投入窒素の5%程度がN2Oとして大気中に放出すると推測されている(日本国温室効果ガスインベントリ報告書2012年4月)。
By the way, conventionally, the sewage purification process is performed by the activated sludge method, for example.
The standard activated sludge method is a treatment system consisting of an initial precipitation, aeration, and a final precipitation in this order. In the initial precipitation, a physical treatment is first performed by gravity sedimentation, and then the obtained supernatant is put into an aeration tank. In the aeration tank, aerobic microorganism treatment is performed by activated sludge, and organic matter is decomposed. In the final sedimentation, the activated sludge is settled, and the sludge concentration is adjusted by returning a part of the sludge to the aeration tank. Moreover, the supernatant liquid after final precipitation becomes treated water. In the purification treatment, the standard activated sludge method is used as a general treatment technique. However, operation management such as adjustment of the sludge concentration in the aeration tank and adjustment of the amount of sludge returned from the sedimentation tank to the aeration tank is necessary. In many cases, the nitrogen component is not sufficiently denitrified even after nitrification, but nitrite ions and nitrate ions accumulate. According to reports, N 2 O release into the atmosphere is attributed to the accumulation of nitrite ions. In the standard activated sludge method, it is estimated that about 5% of the input nitrogen is released into the atmosphere as N 2 O (Japan Greenhouse Gas Inventory Report, April 2012).

間欠曝気法は、上記標準活性汚泥法の変法であり、標準活性汚泥法が連続曝気による処理であるのに対し、処理過程において部分的に曝気を停止させることで、酸素の供給をストップさせて無酸素状態とし、脱窒を促進させる手法である。間欠曝気法によれば、N2Oの発生をかなり抑えることが可能であると報告されている一方で、N2Oの発生が増大したケースも報告されている。また、当該手法は一時的に曝気を停止することで有機物分解能が低下する可能性がある。そのため、標準活性汚泥法よりも大きい処理槽が必要である。さらに、各畜産農家濃度に合った曝気ON、OFF時間の調整が必要である。 The intermittent aeration method is a modification of the above-mentioned standard activated sludge method, and the standard activated sludge method is a treatment by continuous aeration, whereas the supply of oxygen is stopped by partially stopping aeration in the treatment process. This is a technique that promotes denitrification by making oxygen free. According to the intermittent aeration method, it has been reported that the generation of N 2 O can be considerably suppressed, while cases in which the generation of N 2 O has increased have been reported. Moreover, the said method may reduce organic substance resolution | decomposability by temporarily stopping aeration. Therefore, a treatment tank larger than the standard activated sludge method is required. Furthermore, it is necessary to adjust the aeration ON and OFF times according to the concentration of each livestock farmer.

回分式活性汚泥法もまた上記標準活性汚泥法の変法であり、通常、標準活性汚泥法が最終沈殿池を設けて処理を行うのに対し、1つの処理槽で全ての処理工程を終わらせる手法である。すなわち、回分式活性汚泥法は、汚水の投入、曝気処理、曝気停止による汚泥沈降、固液分離された上澄み液の処理水としての排出の4工程を1つの処理槽で繰り返して行う手法である。回分式活性汚泥法も間欠曝気法と同様にN2Oの発生を抑えることが可能であると報告されている。しかしながら、回分式活性汚泥法では汚水の連続供給ができず、また曝気時間に制限があるため、大きな処理槽が必要となるといった問題が存在する。さらに、汚水量や水温等の変化に合わせて曝気や汚泥沈殿時間を容易に変更できるが、一方で管理者の知識及び能力が要求されるというデメリットがある。 The batch activated sludge method is also a modification of the above standard activated sludge method. Normally, the standard activated sludge method performs treatment with a final sedimentation basin, whereas all treatment steps are completed in one treatment tank. It is a technique. In other words, the batch activated sludge method is a method in which four steps of sewage input, aeration treatment, sludge sedimentation by aeration stop, and discharge of the supernatant liquid separated into solid and liquid as treatment water are repeated in one treatment tank. . It has been reported that the batch activated sludge method can suppress the generation of N 2 O as in the intermittent aeration method. However, the batch activated sludge method cannot continuously supply sewage, and there is a problem that a large treatment tank is required because the aeration time is limited. Furthermore, although the aeration and sludge settling time can be easily changed according to changes in the amount of sewage and the water temperature, there is a demerit that the knowledge and ability of the manager are required.

N2O発生測定を行った報告によれば、連続式嫌気好気回分式活性汚泥法において、N2Oが投入窒素の0.5%以上発生したことが報告されている(Itokawa, H.ら(2001), Water Research, 35(3), pp. 657-664)。また、連続式活性汚泥法において、N2Oが投入窒素の0.2〜1.5%発生したことが報告されている(Noda, N.ら(2003), Water Science and Technology 48(11-12), pp. 363-370)。 According to a report of N 2 O generation measurement, it was reported that 0.5% or more of N 2 O was generated in the continuous anaerobic aerobic batch activated sludge process (Itokawa, H. et al. 2001), Water Research, 35 (3), pp. 657-664). In addition, it has been reported that N 2 O is generated in the continuous activated sludge process by 0.2 to 1.5% of the input nitrogen (Noda, N. et al. (2003), Water Science and Technology 48 (11-12), pp. 363-370).

このように、従来法による汚水処理においては、十分にN2Oの発生を抑制することができなかった。
一方、炭素繊維を含有する微生物担体を用いた汚水の浄化方法が、従来において知られている。
Thus, in the sewage treatment by the conventional method, generation of N 2 O could not be sufficiently suppressed.
On the other hand, a method for purifying sewage using a microbial carrier containing carbon fiber is conventionally known.

特許文献1は、ポリ塩化ビニリデン、ナイロン、ポリエチレン、ポリプロピレン及び炭素繊維から選択される少なくとも1種の繊維並びにアクリル繊維を、基幹に多数のU字形ループを形成させるように直立した微生物担体、及び当該微生物担体を充填した処理槽を用いて曝気処理を行う汚水浄化方法を開示する。   Patent Document 1 discloses an at least one type of fiber selected from polyvinylidene chloride, nylon, polyethylene, polypropylene, and carbon fiber, and an acrylic fiber, and a microbial carrier upright so as to form a large number of U-shaped loops in the backbone, and Disclosed is a method for purifying sewage in which aeration treatment is performed using a treatment tank filled with a microorganism carrier.

特許文献2は、生物膜を保持する接触濾材として炭素繊維から成る単糸開繊房状濾材を接触曝気槽に設置した汚水処理装置、及び当該汚水処理装置を用いた汚水処理方法を開示する。   Patent Document 2 discloses a sewage treatment apparatus in which a single-filament open tufted filter medium made of carbon fiber is installed in a contact aeration tank as a contact filter medium that holds a biofilm, and a sewage treatment method using the sewage treatment apparatus.

特許文献3は、嫌気性処理槽と、鉛直方向に長い形状を有し、嫌気性処理槽内に固定された支持体と、支持体に一部が固定され、鉛直方向に複数配列された炭素繊維等から形成される紐状濾材と、嫌気性処理槽内で、鉛直上方に汚水を循環させる汚水循環部とを有する水処理装置を開示する。   Patent Document 3 has an anaerobic treatment tank, a support that is long in the vertical direction, fixed in the anaerobic treatment tank, and a plurality of carbons that are partially fixed to the support and arranged in the vertical direction. Disclosed is a water treatment device having a string-like filter medium formed from fibers and the like, and a sewage circulation unit that circulates sewage vertically upward in an anaerobic treatment tank.

特許文献4は、空中又は水中において一定の形態を保持できる程度の硬さを有する棒状の支持体と、支持体から斜め方向に張り出した複数の炭素繊維等の繊維部材を螺旋状に配置することで懸濁固形物等汚泥を効率的に捕集できる水処理部材と、支持体の長軸方向が処理水の流れる方向となるように形成された嫌気性処理槽とを有する浄化槽、並びに当該浄化槽を用いた水処理方法を開示する。   In Patent Document 4, a rod-like support body having a hardness that can maintain a certain form in the air or water and a plurality of carbon fibers and other fiber members protruding obliquely from the support body are arranged in a spiral shape. A septic tank having a water treatment member capable of efficiently collecting sludge such as suspended solids, an anaerobic treatment tank formed so that the major axis direction of the support is the direction in which the treated water flows, and the septic tank Disclosed is a water treatment method using

特許文献5は、予めサイジング剤が除去されたPAN系の炭素繊維フィラメントによって生物膜担体が形成されると共に、生物膜担体は、柔軟性及び可撓性に富む極細の多数の炭素繊維フィラメントが結束されたり圧縮されたり編まれたり織られたりして、水中に設置した場合には、多数の各炭素繊維フィラメントが水中でばらけて露出し、泳動することにより、大きな微生物付着表面積を確保する成形体に形成され、当該成形体は、炭素繊維フィラメントによって形成されたストランド基幹部に対して、複数本の炭素繊維フィラメントから成る炭素繊維ストランドを連結一体化することによってほうき状に形成されたほうき型ストランド成形体から構成された、接触酸化式水浄化装置における接触濾材を開示する。   In Patent Document 5, a biofilm carrier is formed by PAN-based carbon fiber filaments from which a sizing agent has been removed in advance, and the biofilm carrier binds a large number of ultrafine carbon fiber filaments rich in flexibility and flexibility. Molded to secure a large surface area for attaching microorganisms by being exposed, migrated, and scattered in the water when a large number of carbon fiber filaments are exposed to water when placed in water, compressed, knitted or woven. A broom mold formed into a body by connecting and integrating carbon fiber strands composed of a plurality of carbon fiber filaments to a strand backbone formed by carbon fiber filaments. Disclosed is a contact filter medium in a contact oxidation water purifier constituted of a strand molded body.

特許文献6は、含酸素基を導入した炭素繊維の周りに好炭素菌の層を固定化し、好炭素菌の周りに微生物を固定化して、固定化微生物と、難分解性有機物を含む排水とを接触させることによって、難分解性有機物を分解して排水を浄化することを含む排水浄化方法を開示する。   Patent Document 6 discloses a method of immobilizing a carbonophile layer around a carbon fiber into which an oxygen-containing group has been introduced, immobilizing microorganisms around the carbonophile, and immobilizing microorganisms and waste water containing persistent organic substances. Disclosed is a method for purifying waste water, which comprises decomposing a hardly decomposable organic substance and purifying waste water by contacting the waste water.

特開平10-276777号公報JP-A-10-276777 特開2000-325973号公報JP 2000-325973 A 特開2012-91115号公報JP 2012-91115 A 特開2011-147886号公報JP 2011-147886 特許第2954509号公報Japanese Patent No. 2954509 特許第3328700号公報Japanese Patent No. 3328700

上述のように、汚水処理においてN2Oの放出を抑制することができれば、GHG発生量削減に大きく貢献するものと期待される。しかしながら、従来法による汚水処理においては、十分にN2Oの発生を抑制することができなかった。 As described above, if N 2 O release can be suppressed in sewage treatment, it is expected to greatly contribute to the reduction of GHG generation. However, in the sewage treatment by the conventional method, the generation of N 2 O could not be sufficiently suppressed.

そこで、本発明は、上述した実情に鑑み、汚水からのN2Oの放出を抑制することができる汚水処理方法及び汚水処理装置を提供することを目的とする。 The present invention has been made in view of the circumstances described above, and an object thereof is to provide a wastewater treatment method and sewage treatment apparatus which can suppress the release of N 2 O from sewage.

上記課題を解決するため鋭意研究を行った結果、NOX-Nの蓄積が少ない処理を目指して活性汚泥法とは異なる手法として生物膜法に着目し、且つ構造的に担体の配置を工夫することにより炭素繊維を微生物担体として用いて汚水処理を行うことで、汚水からのN2Oの放出を抑制できることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, we focused on the biofilm method as a method different from the activated sludge method, aiming for treatment with low NO X -N accumulation, and devised the arrangement of carriers structurally As a result, it has been found that by performing sewage treatment using carbon fiber as a microorganism carrier, release of N 2 O from sewage can be suppressed, and the present invention has been completed.

本発明は以下を包含する。
(1)汚水を固定床型炭素繊維存在下で曝気処理に供する工程を含み、該炭素繊維に集積した微生物により一酸化二窒素(N2O)の発生を抑制する、汚水処理方法。
(2)汚水を、筒体と該筒体外周面に法線方向に張り出して配置した炭素繊維とを含む固定床型微生物担体存在下で曝気処理に供する、(1)記載の方法。
(3)曝気処理後の流出水を汚泥と処理水とに分離する工程を含む、(1)又は(2)記載の方法。
(4)汚水が畜舎汚水である、(1)〜(3)のいずれか1記載の方法。
(5)汚水を曝気処理に供する固定床型炭素繊維充填処理槽を備え、該炭素繊維に集積した微生物により一酸化二窒素(N2O)の発生を抑制する、汚水処理装置。
(6)固定床型炭素繊維充填処理槽が、筒体と該筒体外周面に法線方向に張り出して配置した炭素繊維とを含む固定床型微生物担体を充填した処理槽である、(5)記載の装置。
(7)曝気処理後の流出水を汚泥と処理水に分離する沈殿槽を含む、(5)又は(6)記載の装置。
(8)汚水が畜舎汚水である、(5)〜(7)のいずれか1記載の装置。
The present invention includes the following.
(1) A sewage treatment method including a step of subjecting sewage to aeration treatment in the presence of fixed-bed carbon fibers, and suppressing generation of dinitrogen monoxide (N 2 O) by microorganisms accumulated on the carbon fibers.
(2) The method according to (1), wherein the sewage is subjected to an aeration treatment in the presence of a fixed bed type microbial carrier including a cylinder and a carbon fiber projecting in a normal direction on the outer peripheral surface of the cylinder.
(3) The method according to (1) or (2), comprising a step of separating the effluent after aeration treatment into sludge and treated water.
(4) The method according to any one of (1) to (3), wherein the sewage is livestock sewage.
(5) A sewage treatment apparatus comprising a fixed-bed carbon fiber filling treatment tank for subjecting sewage to aeration treatment, and suppressing generation of dinitrogen monoxide (N 2 O) by microorganisms accumulated on the carbon fiber.
(6) The fixed bed type carbon fiber filling treatment tank is a treatment tank filled with a fixed bed type microbial carrier including a cylinder and a carbon fiber arranged so as to protrude in a normal direction on the outer peripheral surface of the cylinder. ) The device described.
(7) The apparatus according to (5) or (6), including a precipitation tank that separates the effluent after aeration into sludge and treated water.
(8) The apparatus according to any one of (5) to (7), wherein the sewage is livestock sewage.

本発明によれば、汚水処理において、汚水からの一酸化二窒素(N2O)の発生を抑制する一方で、汚水を浄化することができる。 According to the present invention, in sewage treatment, sewage can be purified while suppressing generation of dinitrogen monoxide (N 2 O) from sewage.

本発明における固定床型炭素繊維充填処理槽の一例を示す模式図である。It is a schematic diagram which shows an example of the fixed bed type | mold carbon fiber filling processing tank in this invention. 本発明に係る汚水処理装置の一例を示す模式図である。It is a schematic diagram which shows an example of the sewage treatment apparatus which concerns on this invention. 実施例1における炭素繊維充填好気性バイオリアクターの模式図である。1 is a schematic diagram of a carbon fiber filled aerobic bioreactor in Example 1. FIG. 実施例1におけるコントロールとしての活性汚泥リアクターの模式図である。1 is a schematic diagram of an activated sludge reactor as a control in Example 1. FIG. 運転130日〜136日における(a)炭素繊維リアクターと(b)活性汚泥リアクターから発生したNH3、N2O及びCH4のガス濃度変化を示すグラフである。経過時間0(hrs)〜168(hrs)は、運転130日目から136日目までの経過時間である。Is a graph showing the NH 3, N 2 gas concentration change of O and CH 4 generated from (a) carbon fiber reactor and (b) activated sludge reactors in operation 130 days to 136 days. Elapsed time 0 (hrs) to 168 (hrs) is an elapsed time from the 130th day to the 136th day of operation. 運転131日目における(a)炭素繊維リアクターと(b)活性汚泥リアクターの汚水投入後における水質及び発生ガス濃度の変化の典型例を示すグラフである。It is a graph which shows the typical example of the change of the water quality and generated gas density | concentration after the sewage injection | pouring of the (a) carbon fiber reactor and the (b) activated sludge reactor in the 131st day of operation. 炭素繊維リアクターにおける菌叢解析結果を示す。The flora analysis result in a carbon fiber reactor is shown.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る汚水処理方法(以下、「本方法」と称する)は、汚水を固定床型(例えば、円筒形の支持体に固定した)炭素繊維存在下で曝気処理に供する方法である。具体的には、曝気処理により、固定床型炭素繊維を固定した支持体(円筒)内及びその周囲に浮遊する好気性微生物により、硝化反応が促進される。一方、支持体(円筒形)の外側に取り付けられた炭素繊維の内部に主に嫌気性微生物を集積及び担持させることにより、N2Oの発生を抑制した処理が可能である。当該微生物を使用して汚水中の有機物及び窒素を除去する。本方法によれば、汚水中の有機物及び窒素を効率的に処理する一方で、例えば従来の活性汚泥法と比較して、汚水からの一酸化二窒素(N2O)の発生を有意に抑制することができる。特に、本処理構造を有する固定床型炭素繊維充填処理槽を用いることにより、活性汚泥法では集積することが困難な嫌気性微生物を高濃度に炭素繊維に保持させることで、集積した微生物による硝化及び脱窒反応が同時に進行し、N2Oの発生を有意に抑制することができる。 The sewage treatment method according to the present invention (hereinafter referred to as “the present method”) is a method in which sewage is subjected to an aeration treatment in the presence of carbon fiber fixed bed type (for example, fixed to a cylindrical support). Specifically, the nitrification reaction is accelerated by aerobic microorganisms floating in and around the support (cylinder) on which the fixed-bed carbon fibers are fixed by aeration treatment. On the other hand, a treatment that suppresses the generation of N 2 O is possible by accumulating and supporting mainly anaerobic microorganisms inside carbon fibers attached to the outside of the support (cylindrical). Organic matter and nitrogen in sewage are removed using the microorganism. According to this method, while effectively treating organic matter and nitrogen in sewage, for example, compared with the conventional activated sludge method, the generation of dinitrogen monoxide (N 2 O) from sewage is significantly suppressed. can do. In particular, by using a fixed bed type carbon fiber filling treatment tank having this treatment structure, anaerobic microorganisms that are difficult to accumulate by the activated sludge method are retained in the carbon fiber at a high concentration, so that nitrification by accumulated microorganisms is performed. And the denitrification reaction proceeds simultaneously, and the generation of N 2 O can be significantly suppressed.

ここで、汚水としては、限定されるものではないが、例えば畜舎汚水、下水等が挙げられる。畜舎汚水とは、例えば豚舎や牛舎等の糞尿や洗浄水を含む汚水を意味する。畜舎汚水には、例えば硝化反応(好気条件下でのアンモニウムイオンから亜硝酸イオン、硝酸イオンへの酸化)を行う硝化細菌及び脱窒反応(硝酸イオンから窒素ガスへの還元)を行う脱窒細菌が存在する。畜舎汚水中のこのような微生物を固定床型炭素繊維充填処理槽に集積及び担持させることで、硝化及び脱窒反応が同時に進行し、当該汚水中のアンモニウムイオンが窒素ガスへと変換され、窒素を系外へ放出し、N2Oの発生を抑制することができる。 Here, the sewage is not limited, and examples thereof include livestock sewage and sewage. Livestock sewage means sewage including manure and washing water, such as a pig barn and a cow barn. For livestock sewage, for example, nitrifying bacteria that perform nitrification reactions (oxidation from ammonium ions to nitrite ions and nitrate ions under aerobic conditions) and denitrification reactions that perform denitrification reactions (reduction of nitrate ions to nitrogen gas) There are bacteria. By accumulating and supporting such microorganisms in sewage sewage in a fixed-bed carbon fiber filling treatment tank, nitrification and denitrification proceed simultaneously, and ammonium ions in the sewage are converted into nitrogen gas. Can be released out of the system and generation of N 2 O can be suppressed.

本方法では、汚水を、そのまま曝気処理に供することができる。あるいは曝気処理前に、汚水を、機械式や重力沈殿等による固液分離に供し、得られた液分を流入水として曝気処理に供することもできる。機械式による固液分離法としては、例えば圧搾や篩別が挙げられる。圧搾では、スクリュープレス又はロールプレスを使用する。スクリュープレスは、円筒内に取り付けたスクリューを回転させて、内部の間隙や排出口を縮小することにより圧力を高め、円筒に設けた小孔又は間隙から液汁を排除する装置である。また、ロールプレスは、相対する2本のロールに材料を挟み、固形物と液汁を分離する装置である。一方、篩別は、篩面を用いて粉粒体を粒径の大小に分別する操作を意味し、固定篩、回転篩、振動篩等を使用する。固定篩は、濾網面が固定されたものである。回転篩は、濾網が円筒状になっており、回転軸を傾斜させて回転させ、円筒内部に生じる篩渣(分離固形物)は傾斜軸に従って下方に移動し排除される仕組みである。振動篩は、濾網をわずかに傾斜させ、クランク機構による往復又は円弧運動、偏心軸による旋回運動、振動モータによるスプリングで支持した濾網の共振等により振動を与え、篩渣を排除する仕組みとなっている装置である。   In this method, the sewage can be directly subjected to an aeration process. Alternatively, before the aeration treatment, the sewage can be subjected to solid-liquid separation by a mechanical method or gravity precipitation, and the obtained liquid can be used as an inflow water for the aeration treatment. Examples of the solid-liquid separation method using a mechanical method include pressing and sieving. In pressing, a screw press or a roll press is used. The screw press is a device that removes liquid juice from a small hole or a gap provided in the cylinder by rotating a screw attached in the cylinder to reduce an internal gap and a discharge port to increase pressure. The roll press is an apparatus that separates solid and liquid juice by sandwiching materials between two opposing rolls. On the other hand, sieving means an operation of separating powder particles into large and small particles using a sieving surface, and a fixed sieve, a rotary sieve, a vibrating sieve, or the like is used. The fixed sieve has a fixed mesh surface. The rotary sieve is a mechanism in which the filter mesh is cylindrical, and the rotation shaft is inclined and rotated, and the sieve residue (separated solid matter) generated inside the cylinder moves downward along the inclination axis and is eliminated. The vibration sieve is designed to eliminate the sieve by applying a vibration by slightly tilting the filter mesh, reciprocating or circular arc motion by a crank mechanism, turning motion by an eccentric shaft, resonance of a filter mesh supported by a spring by a vibration motor, etc. It is a device.

一方、曝気処理を行う槽として、固定床型炭素繊維充填処理槽を準備する。ここで、固定床型炭素繊維(微生物担体)とは、槽内に充填するか若しくは流動しないように固定させた炭素繊維(微生物担体)を意味する。また、固定床型炭素繊維充填処理槽は、当該固定床型炭素繊維を充填した、又は流動しないように固定させた処理槽を意味する。   On the other hand, a fixed-bed carbon fiber filling treatment tank is prepared as a tank for performing the aeration process. Here, the fixed bed type carbon fiber (microbe carrier) means a carbon fiber (microbe carrier) that is filled in the tank or fixed so as not to flow. The fixed bed type carbon fiber filling treatment tank means a treatment tank filled with the fixed bed type carbon fiber or fixed so as not to flow.

本発明における固定床型炭素繊維充填処理槽の一例を図1に示す。図1に示すように、本発明における固定床型炭素繊維充填処理槽は、例えば円筒形リアクターの中心部にメッシュ筒(支持体)に取り付けた炭素繊維(微生物担体)を固定した固定床型バイオリアクターとする。本技術は、炭素繊維を微生物担体として、円筒形の外側に配置させることにより、連続曝気条件下でも、好気部位及び嫌気部位が形成され、N2Oの発生を抑えながら窒素除去を行うことができることを特長とした処理装置である。微生物担体としては、炭素繊維以外に繊維状の担体を用いることができるが、特に炭素繊維が好ましい。炭素繊維は、例えばスプリング・フィールド有限会社等から市販されているものであってよい。汚水中の微生物を集積できるように、炭素繊維の繊維径としては、例えば3〜20μm、特に7〜8μmの範囲とすることが好ましい。微生物担体の構造としては、メッシュ筒の外側に担体が張り出した状態とすることにより、接触曝気とならないように、直接、曝気が担体に当たらない構造とすることで、担体からの生物膜の剥離を抑制するとともに、酸素供給を抑制することができる。この構造により、担体の生物膜の形成が促進され、担体において嫌気性微生物が増殖する。また、担体に付着していない浮遊微生物は、曝気による酸素供給により好気性微生物の増殖を促進させ、有機物の分解、硝化反応を起こす。生物化学的酸素要求量(BOD)負荷は、0.1〜0.5kg/m3/dayが好ましい。従って、炭素繊維を処理槽内に接触曝気することがないように配置充填することで、嫌気性微生物の増殖を促し、N2Oの発生を抑制させることを特長とする処理装置を作製する。例えば筒体(支持体)と該筒体外周面に法線方向に張り出して配置した炭素繊維とを含む固定床型微生物担体(微生物集積部材)として処理槽内に充填することができる。ここで、筒体としては、例えばプラスチック製のメッシュ状の筒体が挙げられる。例えば図1に示すように、当該メッシュ状の筒体に対して、該筒体外周面に複数(例えば4本)の炭素繊維を法線方向に張り出すように固定して配置する。さらにメッシュ状の筒体外周面に、長手方向に所定の間隔で複数段(例えば11段)で炭素繊維を配置することができる。メッシュ状の筒体外周面への炭素繊維の固定方法としては、例えば接着や溶着が挙げられる。また、処理槽内に少なくとも1以上の当該微生物担体を配置することができる。処理槽内への当該微生物担体の配置方法としては、例えば汚水(流入水)中に微生物担体全体が浸漬するように設置する方法が挙げられる。この場合、直接、散気管からの曝気が当たらないように設置することが好ましい。 An example of the fixed bed type carbon fiber filling treatment tank in the present invention is shown in FIG. As shown in FIG. 1, the fixed bed type carbon fiber filling treatment tank according to the present invention is, for example, a fixed bed type biofiber in which a carbon fiber (microorganism carrier) attached to a mesh cylinder (support) is fixed at the center of a cylindrical reactor. Reactor. In this technology, carbon fiber is placed on the outside of the cylinder as a microbial carrier, and aerobic sites and anaerobic sites are formed even under continuous aeration conditions, and nitrogen removal is performed while suppressing the generation of N 2 O. It is a processing device characterized by being able to. As the microbial carrier, a fibrous carrier can be used in addition to the carbon fiber, and carbon fiber is particularly preferable. The carbon fiber may be commercially available from, for example, Spring Field Limited. The fiber diameter of the carbon fiber is, for example, preferably 3 to 20 μm, particularly preferably 7 to 8 μm so that microorganisms in the sewage can be accumulated. The structure of the microbial carrier is such that the carrier protrudes from the outside of the mesh cylinder so that aeration does not directly hit the carrier so that contact aeration does not occur. As well as suppressing oxygen supply. This structure promotes the formation of a biofilm on the carrier, and anaerobic microorganisms grow on the carrier. In addition, suspended microorganisms not attached to the carrier promote the growth of aerobic microorganisms by supplying oxygen by aeration, causing decomposition of organic matter and nitrification reaction. The biochemical oxygen demand (BOD) load is preferably 0.1 to 0.5 kg / m 3 / day. Accordingly, a processing apparatus is produced which is characterized by promoting the growth of anaerobic microorganisms and suppressing the generation of N 2 O by arranging and filling the carbon fiber so as not to be contacted and aerated in the processing tank. For example, the treatment tank can be filled as a fixed bed type microbial carrier (microorganism accumulating member) including a cylindrical body (support) and carbon fibers extending in a normal direction on the outer peripheral surface of the cylindrical body. Here, examples of the cylindrical body include a plastic mesh-shaped cylindrical body. For example, as shown in FIG. 1, a plurality of (for example, four) carbon fibers are fixedly arranged on the outer peripheral surface of the mesh body so as to project in the normal direction with respect to the mesh-shaped cylinder body. Furthermore, carbon fibers can be arranged in a plurality of stages (for example, 11 stages) at predetermined intervals in the longitudinal direction on the outer peripheral surface of the mesh-like cylinder. Examples of the method for fixing the carbon fiber to the outer peripheral surface of the mesh-like cylinder include adhesion and welding. In addition, at least one microbial carrier can be disposed in the treatment tank. Examples of the method for arranging the microbial carrier in the treatment tank include a method of installing the microbial carrier so that the entire microbial carrier is immersed in sewage (inflow water). In this case, it is preferable to install so that aeration from a diffuser tube does not hit directly.

例えば、下記の実施例における炭素繊維リアクター(図3)のように、直径15cm、高さ約120cm及び容積20L規模(有効容積10L)の円筒形カラムから成る処理槽(バイオリアクター)においては、直径5cm及び高さ55cmのメッシュ状の筒体外周面に直径7μm×幅0.5cm×長さ5cmの複数の炭素繊維を対向して、法線方向に張り出すように、且つ長手方向に5cm間隔で複数段で配置する。   For example, in a treatment tank (bioreactor) composed of a cylindrical column having a diameter of 15 cm, a height of about 120 cm, and a volume of 20 L (effective volume of 10 L) like a carbon fiber reactor in the following example (FIG. 3), the diameter A plurality of carbon fibers with a diameter of 7 μm, a width of 0.5 cm and a length of 5 cm are opposed to the outer peripheral surface of a mesh-like cylinder having a height of 5 cm and a height of 55 cm so as to protrude in the normal direction and at intervals of 5 cm in the longitudinal direction. Arrange in multiple stages.

次いで、固定床型炭素繊維充填処理槽に上述の汚水又は固液分離後の流入水を供給し、汚水又は流入水中の微生物を炭素繊維に集積させ、且つ担持させる。また当該処理槽内に空気を供給すること(通気)で、当該処理槽内で曝気処理を行う。すなわち、固定床型炭素繊維充填処理槽内は、好気条件となる。通気は、連続的に行うことが好ましい。曝気強度としては、例えば1〜6m3/m3・hが挙げられる。また、曝気処理における温度としては、例えば4〜40℃、好ましくは20〜30℃が挙げられる。さらに曝気処理におけるpHとしては、例えばpH5.8〜8.6、好ましくはpH6.0〜8.0が挙げられる。 Next, the sewage or the inflow water after solid-liquid separation is supplied to the fixed bed type carbon fiber filling treatment tank, and the microorganisms in the sewage or the inflow water are accumulated and supported on the carbon fiber. Further, aeration processing is performed in the processing tank by supplying air (venting) into the processing tank. That is, the inside of the fixed bed type carbon fiber filling treatment tank is in an aerobic condition. Aeration is preferably performed continuously. The aeration intensity, include, for example 1~6m 3 / m 3 · h. Moreover, as temperature in an aeration process, 4-40 degreeC, for example, Preferably 20-30 degreeC is mentioned. Further, the pH in the aeration treatment is, for example, pH 5.8 to 8.6, preferably pH 6.0 to 8.0.

曝気処理後、流出水を沈殿槽に移し、汚泥を沈殿させる。当該沈殿処理では、重力沈殿によって曝気処理後の流出水が汚泥(余剰汚泥)と処理水に分離される。汚泥はその後、一般的に脱水処理に供される。沈殿槽からの流出水は浄化された処理水となる。   After the aeration treatment, the effluent water is transferred to a settling tank to precipitate sludge. In the precipitation treatment, the effluent after the aeration treatment is separated into sludge (surplus sludge) and treated water by gravity precipitation. The sludge is then generally subjected to a dehydration process. The outflow water from the settling tank becomes purified treated water.

本方法により、有意に汚水からのN2O発生を抑制できたか否かの評価は、例えばガスモニターを用いて曝気処理期間中にN2Oを測定し、N2Oの発生が有意に(例えば0.01 gN2O-N/gTN(全窒素)-load以下、好ましくは0.0005 gN2O-N/gTN-load以下)低減している場合には、本方法により汚水からのN2O発生を抑制できたと判断することができる。また、有意に汚水中の有機物及び窒素を除去できたか否かの評価は、例えば、水質指標である生物化学的酸素要求量(BOD)、浮遊物質(SS)、全窒素(TN)等について、汚水又は固液分離後の流入水と沈殿槽からの流出水(処理水)を比較することで行われる。沈殿槽からの流出水(処理水)において、汚水又は固液分離後の流入水と比較してこれらの指標が有意に低減し、例えばBODが160mg/L以下、SSが200mg/L以下、溶解性窒素化合物が100mg/L以下となっている場合には、本方法により有意に汚水を浄化できたと判断することができる。 By this method, significantly whether the evaluation could inhibit N 2 O generated from wastewater, for example using a gas monitor measured N 2 O during aeration period, N 2 O of generating a significantly ( (For example, 0.01 gN 2 ON / gTN (total nitrogen) -load or less, preferably 0.0005 gN 2 ON / gTN-load or less), it is judged that N 2 O generation from sewage can be suppressed by this method. can do. In addition, the evaluation of whether or not organic matter and nitrogen in the sewage could be removed significantly, for example, for biochemical oxygen demand (BOD), suspended solids (SS), total nitrogen (TN), etc. that are water quality indicators, This is done by comparing the inflow water after sewage or solid-liquid separation and the outflow water (treated water) from the settling tank. In the effluent (treated water) from the settling tank, these indicators are significantly reduced compared to the influent water after sewage or solid-liquid separation, for example, BOD is 160 mg / L or less, SS is 200 mg / L or less, dissolved When the nitrogenous compound is 100 mg / L or less, it can be determined that the sewage was significantly purified by this method.

以上、説明した本方法によれば、汚水から有機物及び窒素を除去し、汚水を浄化する一方で、汚水からのN2O発生を抑制できる。 As described above, according to the method described, to remove organic matter and nitrogen from wastewater, while purifying wastewater, the N 2 O generated from the sewage can be suppressed.

一方、本発明に係る汚水処理装置(以下、「本装置」と称する)は、以上に説明した本方法を行うことができる装置である。本装置は、汚水を曝気処理に供する固定床型炭素繊維充填処理槽を有するものである。さらに、本装置は、汚水を固定床型炭素繊維充填処理槽に移送する移送手段、又は汚水を固液分離に供する固液分離槽と該固液分離により得られた液分(流入水)を固定床型炭素繊維充填処理槽に移送する移送手段;曝気処理後の流出水を沈殿槽に移送する移送手段;及び曝気処理後の流出水を汚泥と処理水に分離する沈殿槽等を有するものとすることができる。   On the other hand, the sewage treatment apparatus according to the present invention (hereinafter referred to as “the present apparatus”) is an apparatus that can perform the present method described above. This apparatus has a fixed bed type carbon fiber filling treatment tank for subjecting sewage to aeration treatment. Further, this apparatus comprises a transfer means for transferring sewage to a fixed bed type carbon fiber filling treatment tank, or a solid-liquid separation tank for supplying sewage to solid-liquid separation and a liquid component (inflow water) obtained by the solid-liquid separation. Transfer means for transferring to fixed bed type carbon fiber filling treatment tank; Transfer means for transferring effluent after aeration treatment to settling tank; and precipitation tank for separating effluent after aeration treatment into sludge and treated water It can be.

図2は、固定床型炭素繊維充填処理槽を備える本装置の一例を示す模式図である。
図2に示すように、本装置1は、固定床型微生物担体2(筒体3と該筒体外周面に法線方向に張り出して配置した炭素繊維4とを含む固定床型微生物担体)を充填した固定床型炭素繊維充填処理槽5と、(汚水を固液分離に供する場合における)固定床型炭素繊維充填処理槽5における曝気処理前に汚水を固液分離に供する固液分離槽6と、固定床型炭素繊維充填処理槽5における曝気処理後の流出水を汚泥と処理水に分離する沈殿槽7とを備える。なお、汚水を固液分離に供しない場合には、本装置1は、固液分離槽6を備える必要がない。さらに、本装置1は、固定床型炭素繊維充填処理槽5内に通気を行う手段として空気を供給する通気ブロアー8を備える。
FIG. 2 is a schematic view showing an example of the present apparatus including a fixed bed type carbon fiber filling treatment tank.
As shown in FIG. 2, the present apparatus 1 includes a fixed bed type microbial carrier 2 (a fixed bed type microbial carrier including a cylinder 3 and carbon fibers 4 arranged so as to protrude in a normal direction on the outer peripheral surface of the cylinder). A filled fixed-bed carbon fiber filling treatment tank 5 and a solid-liquid separation tank 6 for subjecting sewage to solid-liquid separation before aeration treatment in the fixed-bed carbon fiber filling treatment tank 5 (when sewage is subjected to solid-liquid separation). And a settling tank 7 that separates outflow water after aeration treatment in the fixed-bed carbon fiber filling treatment tank 5 into sludge and treated water. In addition, when not using sewage for solid-liquid separation, this apparatus 1 does not need to be provided with the solid-liquid separation tank 6. FIG. The apparatus 1 further includes a ventilation blower 8 for supplying air as a means for venting the fixed bed type carbon fiber filling treatment tank 5.

先ず、汚水を固液分離に供する場合においては、固液分離槽6に汚水を供給し、固液分離を行う。固液分離後、分離された汚泥9を系外へと排出し、一方、分離された液分を、流入水として固定床型炭素繊維充填処理槽5に供給する。固液分離槽6と固定床型炭素繊維充填処理槽5との間の流路に投入ポンプ10(移送手段)を配置し、当該ポンプをタイマー等で一定時間毎(例えば1日1回)稼動させることで、固定床型炭素繊維充填処理槽5に流入水を当該処理槽下部から供給する。あるいは、汚水を固液分離に供しない場合には、汚水を直接、投入ポンプ10(移送手段)により固定床型炭素繊維充填処理槽5に供給する。   First, when using sewage for solid-liquid separation, sewage is supplied to the solid-liquid separation tank 6 and solid-liquid separation is performed. After the solid-liquid separation, the separated sludge 9 is discharged out of the system, while the separated liquid is supplied to the fixed bed type carbon fiber filling treatment tank 5 as inflow water. An injection pump 10 (transfer means) is disposed in the flow path between the solid-liquid separation tank 6 and the fixed bed type carbon fiber filling treatment tank 5, and the pump is operated at regular intervals (for example, once a day) with a timer or the like. By doing so, inflow water is supplied to the fixed bed type carbon fiber filling treatment tank 5 from the lower part of the treatment tank. Alternatively, when the sewage is not subjected to solid-liquid separation, the sewage is directly supplied to the fixed bed type carbon fiber filling treatment tank 5 by the input pump 10 (transfer means).

次に、固定床型炭素繊維充填処理槽5では、下部から供給された汚水又は流入水中の微生物を炭素繊維4に集積及び担持させ、また底部から通気ブロアー8を介して通気を行うことで、曝気処理を行う。通気は連続的に行われることが好ましい。   Next, in the fixed bed type carbon fiber filling treatment tank 5, the microorganisms in the sewage or the inflow water supplied from the lower part are accumulated and supported on the carbon fiber 4, and aeration is performed from the bottom through the ventilation blower 8, Perform aeration process. Aeration is preferably performed continuously.

固定床型炭素繊維充填処理槽5内での曝気処理終了後、一定量の液を当該処理槽上部より引き抜き、流出水として沈殿槽7に供給する。なお、固定床型炭素繊維充填処理槽5と沈殿槽7との間の流路に排出ポンプ11(移送手段)を配置し、当該ポンプをタイマー等で一定時間毎(例えば1日1回)稼動させることで、沈殿槽7に一定量の液を供給する。例えば、一定時間毎に、沈殿槽7への流出水の供給と共に、上述の固定床型炭素繊維充填処理槽5への流入水の供給を流出水と等量で行う。
沈殿槽7では、汚泥の沈殿が行われ、余剰汚泥12と処理水13とを別々に系外に排出する。
After the aeration process in the fixed bed type carbon fiber filling treatment tank 5 is completed, a certain amount of liquid is withdrawn from the upper part of the treatment tank and supplied to the sedimentation tank 7 as effluent water. A discharge pump 11 (transfer means) is disposed in the flow path between the fixed bed type carbon fiber filling treatment tank 5 and the settling tank 7, and the pump is operated at regular intervals (for example, once a day) with a timer or the like. As a result, a certain amount of liquid is supplied to the settling tank 7. For example, the effluent water is supplied to the settling tank 7 and the inflow water to the fixed bed type carbon fiber filling treatment tank 5 is supplied at an equal amount to the effluent water every predetermined time.
In the sedimentation tank 7, sedimentation of sludge is performed, and the excess sludge 12 and the treated water 13 are separately discharged out of the system.

本装置では、固定床型炭素繊維充填処理槽(曝気槽)の運転方法は、上述のように一定時間毎(例えば1日毎)に上部より一定量の液を引抜き沈殿槽に送り、一方、沈殿槽からの流出水を処理水とし、その後、当該処理槽上部より引抜き量と等量の汚水を投入する回分式か、又は常時一定量の汚水を当該処理槽下部に流入させ、当該処理槽最上部から越流する液を沈殿槽に流下させる連続処理方式のいずれかで行うことができる。   In this device, the operation method of the fixed bed type carbon fiber filling treatment tank (aeration tank) is to draw a certain amount of liquid from the upper part at a certain time interval (for example, every day) as described above, and send it to the precipitation tank. The effluent from the tank is treated water, and then a batch type in which sewage of the same amount as the withdrawal amount is introduced from the upper part of the treatment tank, or a constant amount of sewage is always allowed to flow into the lower part of the treatment tank, It can be carried out in any of the continuous processing systems in which the liquid overflowing from the upper part flows down to the settling tank.

以上に説明する本発明によれば、従来の活性汚泥法と比較して、汚水からのN2O発生を抑制でき、且つ炭素繊維を担体として汚水中の微生物を高濃度に集積させ、微生物が炭素繊維表面に付着して保持されるため、沈殿槽からの曝気槽へ汚泥返送が不要であり、また、反応タンク内の汚泥量の調整が必要ないため、運転管理が容易であり、畜産農家に適している。 According to the present invention described above, compared to the conventional activated sludge method, N 2 O generation from sewage can be suppressed, and microorganisms in the sewage are accumulated at a high concentration using carbon fiber as a carrier. Because it adheres to the carbon fiber surface and is retained, it is not necessary to return the sludge from the settling tank to the aeration tank, and it is not necessary to adjust the amount of sludge in the reaction tank. Suitable for

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not limited to these Examples.

〔実施例1〕炭素繊維充填好気性バイオリアクターを用いた養豚汚水処理によるN2O発生の抑制
1. 実験方法
(1) 実験装置の概要及び運転条件
実験装置の概要を図3に示す。試験に使用した好気性バイオリアクターは、直径15cm、高さ約120cm及び容積20Lの円筒形カラムを用い、有効容積は10Lとし、リアクター下部から曝気を行う構造とした。当該リアクターには、直径5cm及び高さ55cmのメッシュ円筒の周囲に直径7μm × 幅0.5cm × 長さ5cmの炭素繊維を4方向×11段となるように取り付けたものをリアクター内に設置し、固定床型炭素繊維充填好気性バイオリアクター(以下、「炭素繊維リアクター」と称する)とした。
[Example 1] Suppression of N 2 O generation by swine sewage treatment using a carbon fiber filled aerobic bioreactor
1. Experimental method
(1) Outline of experimental apparatus and operating conditions Figure 3 shows an outline of the experimental apparatus. The aerobic bioreactor used in the test was a cylindrical column having a diameter of 15 cm, a height of about 120 cm and a volume of 20 L, an effective volume of 10 L, and a structure in which aeration was performed from the bottom of the reactor. In the reactor, a carbon cylinder having a diameter of 5 μm and a height of 55 cm and a carbon fiber having a diameter of 7 μm × width of 0.5 cm × length of 5 cm attached in four directions × 11 stages is installed in the reactor. A fixed bed carbon fiber filled aerobic bioreactor (hereinafter referred to as “carbon fiber reactor”) was used.

一方、図4に示すように、コントロールとして、活性汚泥処理施設の活性汚泥を種汚泥として投入した活性汚泥リアクターの運転も同時に行った。
処理方式は回分式とし、6時間に1度、汚泥を沈降させるために曝気を25分間停止させた。
On the other hand, as shown in FIG. 4, an activated sludge reactor in which activated sludge from an activated sludge treatment facility was used as seed sludge was also operated as a control.
The treatment method was batch, and once every 6 hours, aeration was stopped for 25 minutes in order to settle the sludge.

流入水は、豚舎汚水を使用し、上記の双方のリアクターに6時間に一度、リアクター下部から約400mLの汚水を投入すると共に、リアクター上部から処理水が流出するようにした。滞留時間は双方のリアクター共に平均約6日とした。双方のリアクターにおいて、それぞれ馴養期間を経て試験を開始した。   As inflow water, pig house sewage was used, and about 400 mL of sewage was introduced into the reactors from the lower part of the reactor once every 6 hours, and the treated water was allowed to flow out from the upper part of the reactor. The residence time was about 6 days on average for both reactors. In both reactors, the test was started after a habituation period.

処理水としてリアクターから流出した液を30分静置し、上澄み液を採水し、採取した上澄み液を水質分析に供した。   The liquid that flowed out of the reactor as treated water was allowed to stand for 30 minutes, the supernatant was collected, and the collected supernatant was subjected to water quality analysis.

また、双方のリアクターの運転を20℃の恒温室で行い、曝気量は運転初期を除き1L/min(曝気強度6m3/m3・h)で試験を行った。 In addition, both reactors were operated in a constant temperature room at 20 ° C., and the amount of aeration was tested at 1 L / min (aeration intensity 6 m 3 / m 3 · h) except in the initial operation.

(2) 分析方法
採取した上澄み液において、生物化学的酸素要求量(BOD)を、自動測定装置(Hach Company, BOD Trak, USA)を用いて測定した。また、浮遊物質(SS)を、下水試験方法(日本下水道協会1997)に基づいて測定した。さらに、全有機炭素(TOC)及び全窒素(TN)を、全有機体炭素計(Shimadzu, Co. Ltd., TOC-V CSN, TNM-1)を用いて測定した。
(2) Analysis Method In the collected supernatant, biochemical oxygen demand (BOD) was measured using an automatic measuring device (Hach Company, BOD Trak, USA). Suspended matter (SS) was measured based on the sewage test method (Japan Sewerage Association 1997). Furthermore, total organic carbon (TOC) and total nitrogen (TN) were measured using a total organic carbon meter (Shimadzu, Co. Ltd., TOC-V CSN, TNM-1).

また、採取した上澄み液を、0.45μmメンブレンフィルター(MILLIPORE, IC Millex-LH)を用いた濾過に供した後、陰イオンクロマトグラフィー(TOSOH, IC-2010, TSKgel Super IC-Anion HS)を用いて硝酸性窒素(NO3-N)及び亜硝酸性窒素(NO2-N)の濃度を測定し、陽イオンクロマトグラフィー(DIONEX, DX-120, IonPac CS12A column, USA)を用いてアンモニア性窒素(NH4-N)の濃度を測定した。 The collected supernatant was subjected to filtration using a 0.45 μm membrane filter (MILLIPORE, IC Millex-LH), and then anion chromatography (TOSOH, IC-2010, TSKgel Super IC-Anion HS) was used. The concentration of nitrate nitrogen (NO 3 -N) and nitrite nitrogen (NO 2 -N) was measured, and ammonia nitrogen (NO) was measured using cation chromatography (DIONEX, DX-120, IonPac CS12A column, USA). The concentration of NH 4 -N) was measured.

さらに、リアクターから発生したアンモニア(NH3)、N2O及びCH4のガス測定は、マルチガスモニター(LumaSense Technologies, Innova 1412 Multi Gas Monitor, USA)を用いて行った。pH、溶存酸素(DO)及び酸化還元電位(ORP)(山形東亜DKK, YUSBシリーズ)は、リアクターの水面下10cm付近で連続的に測定した。 Further, gas measurement of ammonia (NH 3 ), N 2 O and CH 4 generated from the reactor was performed using a multi-gas monitor (LumaSense Technologies, Innova 1412 Multi Gas Monitor, USA). The pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP) (Yamagata Toa DKK, YUSB series) were measured continuously at around 10 cm below the reactor surface.

2. 実験結果及び考察
(1) 実験装置の水質変化
下記の表1に流入水及び処理水質が安定した後(運転73〜176日)の炭素繊維リアクター処理水と活性汚泥リアクター処理水の水質の概要を示す。

Figure 2014205136
2. Experimental results and discussion
(1) Change in water quality of experimental equipment Table 1 below outlines the water quality of carbon fiber reactor treated water and activated sludge reactor treated water after the inflow water and treated water have stabilized (operations 73-176 days).
Figure 2014205136

表1に示すように、流入水のNH4-Nは平均165 mg/Lであったのに対し、炭素繊維リアクターの処理水では平均9.3 mg/Lであり、さらに炭素繊維リアクターの処理水のNO3-Nは平均14 mg/Lであった。このことから、炭素繊維リアクターでは硝化と脱窒が進行し、窒素除去が行われていたと推察された。 As shown in Table 1, the influent NH 4 -N averaged 165 mg / L, whereas the carbon fiber reactor treated water averaged 9.3 mg / L, and the carbon fiber reactor treated water further. NO 3 -N averaged 14 mg / L. From this, it was speculated that nitrification and denitrification proceeded and nitrogen was removed in the carbon fiber reactor.

一方、活性汚泥リアクター処理水では、NH4-Nは平均21 mg/L、NO3-Nは平均183 mg/Lであり、硝化反応のみが進行していたと推察された。 On the other hand, in the activated sludge reactor treated water, NH 4 -N averaged 21 mg / L and NO 3 -N averaged 183 mg / L, suggesting that only the nitrification reaction was in progress.

また、双方のリアクター共に、NO2-Nの蓄積はほとんど認められなかった。
これらの結果から、炭素繊維リアクターは、活性汚泥リアクターよりも硝酸イオンの蓄積を抑制できることが示唆された。
Moreover, almost no accumulation of NO 2 -N was observed in both reactors.
From these results, it was suggested that the carbon fiber reactor can suppress the accumulation of nitrate ions more than the activated sludge reactor.

(2) 実験装置のガス発生量
図5に、運転130日〜136日における(a)炭素繊維リアクターと(b)活性汚泥リアクターから発生したNH3、N2O及びCH4のガス濃度変化を示す。図5に示すように、炭素繊維リアクターでは、NH3は0.2 mg/day、N2Oは0.3 mg/day、CH4は10.0 mg/dayの発生量であるのに対し、活性汚泥リアクターでは、NH3は0.2 mg/day、N2Oは23.5 mg/day、CH4は7.1 mg/dayの発生量であった。このように、炭素繊維リアクターは、活性汚泥リアクターよりも98%以上のN2O発生を抑制可能であることが示された。
(2) Gas generation amount of experimental equipment Fig. 5 shows changes in gas concentrations of NH 3 , N 2 O and CH 4 generated from (a) carbon fiber reactor and (b) activated sludge reactor from 130 days to 136 days of operation. Show. As shown in FIG. 5, in the carbon fiber reactor, NH 3 is 0.2 mg / day, N 2 O is 0.3 mg / day, and CH 4 is 10.0 mg / day, whereas in the activated sludge reactor, NH 3 was 0.2 mg / day, N 2 O was 23.5 mg / day, and CH 4 was 7.1 mg / day. Thus, it was shown that the carbon fiber reactor can suppress generation of N 2 O by 98% or more than the activated sludge reactor.

投入汚水窒素当たりのN2O発生量はそれぞれ、炭素繊維リアクターでは0.0003 gN2O-N/gTN-load、活性汚泥リアクターでは0.03 gN2O-N/gTN-loadであった。日本国温室効果ガスインベントリ報告書(NIR)2012年によると、豚舎汚水の浄化におけるN2O排出係数は0.05 g-N2O-N/gNとされていることから、本実施例における炭素繊維リアクターはN2O発生を大幅に削減できることが示された。 The amount of N 2 O generated per nitrogen input was 0.0003 gN 2 ON / gTN-load for the carbon fiber reactor and 0.03 gN 2 ON / gTN-load for the activated sludge reactor. According to the Japan Greenhouse Gas Inventory Report (NIR) 2012, the N 2 O emission factor in the purification of swine sewage is 0.05 gN 2 ON / gN, so the carbon fiber reactor in this example is N 2 It was shown that O generation can be greatly reduced.

一方、投入汚水有機物当たりのCH4発生量は、炭素繊維リアクターでは0.0039 gCH4/gTOC、活性汚泥リアクターでは0.0029 gCH4/gTOCであった。前述のNIRにおける豚舎汚水の浄化のCH4排出係数は0.00019 g-CH4/g 有機物であり、本実施例におけるCH4発生量はやや高い値を示した。CH4の地球温暖化係数は二酸化炭素の25倍(IPCC 第4次評価報告書)であり、N2Oよりも影響は少ないものの、CH4の削減は今後の課題である。 Meanwhile, CH 4 emission per charged sewage organics, the carbon fiber reactor 0.0039 gCH 4 / gTOC, the activated sludge reactor was 0.0029 gCH 4 / gTOC. The CH 4 emission coefficient for purification of swine sewage in the NIR described above was 0.00019 g-CH 4 / g organic matter, and the amount of CH 4 generated in this example showed a slightly high value. The global warming potential of CH 4 is 25 times that of carbon dioxide (IPCC Fourth Assessment Report), and although there is less impact than N 2 O, the reduction of CH 4 is a future challenge.

温室効果ガスであるN2O及びCH4のデータを基にCO2換算すると、炭素繊維リアクターでは339.4 mg-CO2換算/day、活性汚泥リアクターでは7180.5 mg-CO2換算/dayであった。このことから、炭素繊維リアクターは活性汚泥リアクターよりも顕著に温室効果ガスを削減可能であることが示された。 With CO 2 converted based on the data of the N 2 O and CH 4 is a greenhouse gas, in the carbon fiber reactor was 339.4 mg-CO 2 conversion / day, in the activated sludge reactor 7,180.5 mg-CO 2 conversion / day. From this, it was shown that the carbon fiber reactor can remarkably reduce greenhouse gases more than the activated sludge reactor.

(3) 汚水投入による実験装置の水質及び発生ガスの挙動
図6に、運転131日目における(a)炭素繊維リアクターと(b)活性汚泥リアクターの汚水投入後における水質及び発生ガスの変化の典型例を示す。図6に示すように、双方のリアクターのCH4の発生は、6時間に1度行われる汚水投入直後に高いピークを示した。汚水投入直後に一時的にDOの低下が認められ、これに伴いORPが低下したことでメタン発酵が進行したものと考えられる。
(3) Behavior of experimental equipment water quality and generated gas by sewage injection Figure 6 shows typical changes in water quality and generated gas after sewage input in (a) carbon fiber reactor and (b) activated sludge reactor on the 131st day of operation. An example is shown. As shown in FIG. 6, the generation of CH 4 in both reactors showed a high peak immediately after the introduction of sewage once every 6 hours. Immediately after sewage injection, a decrease in DO was observed temporarily, and it was considered that methane fermentation had progressed due to a decrease in ORP.

また、炭素繊維リアクターにおいて、発生ガス測定では、CH4の発生は認められたもののNH3やN2Oは数mg/m3以下で推移していた。 Moreover, in the carbon fiber reactor, the generation gas measurement showed that CH 4 was generated, but NH 3 and N 2 O remained below several mg / m 3 .

一方、活性汚泥リアクターにおいて、DOが汚水投入後350〜360分にかけて低下しているのは、処理水がリアクターから排出される前に曝気を一時的に停止していたことによる影響である。発生ガス測定では、DO及びORPの低下時にN2Oの発生が増大していた。 On the other hand, in the activated sludge reactor, the decrease in DO over 350 to 360 minutes after the introduction of sewage is due to the fact that aeration was temporarily stopped before the treated water was discharged from the reactor. In the generated gas measurement, N 2 O generation increased when DO and ORP decreased.

(4) まとめ
炭素繊維リアクターは処理水中の硝酸イオン及び亜硝酸イオンの蓄積が少ない傾向にあり、脱窒が良好に進行していたと推定された。一方、活性汚泥リアクターでは、硝酸イオンの蓄積が高濃度で推移していた。NOX-Nの蓄積によってN2Oの発生量が増大するという報告があることから発生ガスの測定を行った結果、炭素繊維リアクターは、活性汚泥リアクターよりも顕著にN2Oの発生量が少ないことが確認された。このことから炭素繊維リアクターによって温室効果ガス(GHG)発生量を削減できることが明らかとなった。
(4) Summary The carbon fiber reactor tended to have less accumulation of nitrate and nitrite ions in the treated water, and it was estimated that denitrification proceeded well. On the other hand, in the activated sludge reactor, the accumulation of nitrate ions was high. Since there is a report that the amount of N 2 O generated increases due to the accumulation of NO X -N, as a result of measuring the generated gas, the carbon fiber reactor has a significantly higher amount of N 2 O generated than the activated sludge reactor. It was confirmed that there were few. This indicates that carbon fiber reactors can reduce greenhouse gas (GHG) generation.

〔実施例2〕養豚汚水処理後の炭素繊維充填好気性バイオリアクターにおける微生物の解析
実施例1における豚舎汚水処理後の炭素繊維リアクターから採取したDNAサンプルの菌叢解析を行った。その結果を図7に示す。
[Example 2] Analysis of microorganisms in a carbon fiber-filled aerobic bioreactor after swine sewage treatment DNA flora analysis of DNA samples collected from the carbon fiber reactor after swine sewage treatment in Example 1 was performed. The result is shown in FIG.

図7に示すように、1O/46の0TUsが硝酸塩還元可能な微生物の近縁種として検出された。具体的には、Paracoccus solventivorans (89% sequence identity)、Zoogloea resiniphila (97% sequence identity)、Zoogloea caeni (98% sequence identity)、Ramlibacter tataouinensis (96% sequence identity)、Hydrogenophaga pseudoflava (98% sequence identity)、Stenotrophomonas rhizophila (91% sequence identity)、Terrimonas ferruginea (93% sequence identity)、Propioniciclava tarda (93% sequence identity)、Denitrifying Fe-oxidizing bacteria(99% and 96% sequence identities)が検出された。また、Hydrogenophaga pseudoflavaは亜硝酸塩還元も可能な微生物として知られている。   As shown in FIG. 7, 1O / 46 0TUs was detected as a close species of microorganisms capable of nitrate reduction. Specifically, Paracoccus solventivorans (89% sequence identity), Zoogloea resiniphila (97% sequence identity), Zoogloea caeni (98% sequence identity), Ramlibacter tataouinensis (96% sequence identity), Hydrogenophaga pseudoflava (98% sequence identity), Stenotrophomonas rhizophila (91% sequence identity), Terrimonas ferruginea (93% sequence identity), Propioniciclava tarda (93% sequence identity), and Denitrifying Fe-oxidizing bacteria (99% and 96% sequence identities) were detected. In addition, Hydrogenophaga pseudoflava is known as a microorganism capable of nitrite reduction.

さらに、4/46のOTUsは、硝酸塩をN2又はN20に転換可能な微生物の近縁種であり、Thiobacillus denitrificans (97% sequence identity)、Hydrogenophaga pseudoflava (98% sequence identity)、Denitrifying Fe-oxidizing bacteria (99% and 96% sequence identities)が検出された。 Furthermore, 4/46 OTUs are closely related to microorganisms capable of converting nitrates to N 2 or N 20 , and include Thiobacillus denitrificans (97% sequence identity), Hydrogenophaga pseudoflava (98% sequence identity), Denitrifying Fe- oxidizing bacteria (99% and 96% sequence identities) were detected.

硝酸塩、亜硝酸塩を還元可能な微生物の近縁種が多く検出されたことから、これらの微生物の働きにより硝酸塩及び亜硝酸塩の蓄積が軽減されたものと推察される。さらに、この蓄積の軽減がpHの低下の抑制につながり、N20発生が抑制されたものと推察される。一方、硝化においては、アンモニア酸化細菌としては、Candidatus Nitrosoarchaeum limnia (96% sequence identity)が近縁種として検出され、亜硝酸酸化細菌としては、Nitrospira sp. (98% sequence identity)が近縁種として検出された。このように、炭素繊維リアクターには、多くの窒素転換に関与する細菌が増殖していたことが明らかとなった。 Since many related species of microorganisms capable of reducing nitrate and nitrite were detected, it is presumed that accumulation of nitrate and nitrite was reduced by the action of these microorganisms. Further, it is speculated that the reduction of the accumulation led to the suppression of the decrease in pH, and the generation of N 2 0 was suppressed. On the other hand, in nitrification, Candidatus Nitrosoarchaeum limnia (96% sequence identity) is detected as a close species as an ammonia oxidizing bacterium, and Nitrospira sp. (98% sequence identity) is a related species as a nitrite oxidizing bacterium. was detected. Thus, it was revealed that many bacteria involved in nitrogen conversion were growing in the carbon fiber reactor.

1:本発明に係る汚水処理装置
2:固定床型微生物担体
3:筒体
4:炭素繊維
5:固定床型炭素繊維充填処理槽
6:固液分離槽
7:沈殿槽
8:通気ブロアー
9:汚泥
10:投入ポンプ
11:排出ポンプ
12:余剰汚泥
13:処理水
1: Sewage treatment apparatus 2 according to the present invention: Fixed bed type microbial carrier 3: Cylinder 4: Carbon fiber 5: Fixed bed type carbon fiber filling treatment tank 6: Solid-liquid separation tank 7: Precipitation tank 8: Aeration blower 9: Sludge 10: Input pump 11: Discharge pump 12: Excess sludge 13: Treated water

Claims (8)

汚水を固定床型炭素繊維存在下で曝気処理に供する工程を含み、該炭素繊維に集積した微生物により一酸化二窒素の発生を抑制する、汚水処理方法。   A sewage treatment method comprising a step of subjecting sewage to aeration treatment in the presence of fixed-bed carbon fibers, and suppressing generation of dinitrogen monoxide by microorganisms accumulated on the carbon fibers. 汚水を、筒体と該筒体外周面に法線方向に張り出して配置した炭素繊維とを含む固定床型微生物担体存在下で曝気処理に供する、請求項1記載の方法。   The method according to claim 1, wherein the sewage is subjected to an aeration treatment in the presence of a fixed bed type microbial carrier comprising a cylinder and a carbon fiber arranged in a normal line direction on the outer peripheral surface of the cylinder. 曝気処理後の流出水を汚泥と処理水とに分離する工程を含む、請求項1又は2記載の方法。   The method of Claim 1 or 2 including the process of isolate | separating the effluent after an aeration process into sludge and treated water. 汚水が畜舎汚水である、請求項1〜3のいずれか1項記載の方法。   The method according to claim 1, wherein the sewage is livestock sewage. 汚水を曝気処理に供する固定床型炭素繊維充填処理槽を備え、該炭素繊維に集積した微生物により一酸化二窒素の発生を抑制する、汚水処理装置。   A sewage treatment apparatus comprising a fixed bed type carbon fiber filling treatment tank for subjecting sewage to aeration treatment, and suppressing generation of dinitrogen monoxide by microorganisms accumulated on the carbon fiber. 固定床型炭素繊維充填処理槽が、筒体と該筒体外周面に法線方向に張り出して配置した炭素繊維とを含む固定床型微生物担体を充填した処理槽である、請求項5記載の装置。   The fixed bed type carbon fiber filling treatment tank is a treatment tank filled with a fixed bed type microbial carrier comprising a cylinder and a carbon fiber arranged so as to project in a normal direction on the outer peripheral surface of the cylinder. apparatus. 曝気処理後の流出水を汚泥と処理水に分離する沈殿槽を含む、請求項5又は6記載の装置。   The apparatus of Claim 5 or 6 containing the sedimentation tank which isolate | separates the effluent after aeration process into sludge and treated water. 汚水が畜舎汚水である、請求項5〜7のいずれか1項記載の装置。   The apparatus of any one of Claims 5-7 whose sewage is livestock sewage.
JP2014042825A 2013-03-18 2014-03-05 Nitrous oxide (N2O) -suppressed sewage treatment technology using carbon fiber filled aerobic bioreactor Active JP6210514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014042825A JP6210514B2 (en) 2013-03-18 2014-03-05 Nitrous oxide (N2O) -suppressed sewage treatment technology using carbon fiber filled aerobic bioreactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013055547 2013-03-18
JP2013055547 2013-03-18
JP2014042825A JP6210514B2 (en) 2013-03-18 2014-03-05 Nitrous oxide (N2O) -suppressed sewage treatment technology using carbon fiber filled aerobic bioreactor

Publications (2)

Publication Number Publication Date
JP2014205136A true JP2014205136A (en) 2014-10-30
JP6210514B2 JP6210514B2 (en) 2017-10-11

Family

ID=52119174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014042825A Active JP6210514B2 (en) 2013-03-18 2014-03-05 Nitrous oxide (N2O) -suppressed sewage treatment technology using carbon fiber filled aerobic bioreactor

Country Status (1)

Country Link
JP (1) JP6210514B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876293A (en) * 2015-05-26 2015-09-02 四川环博环境科技有限公司 Method of filtering and adsorbing wastewater with carbon fiber for wastewater treatment
WO2017175967A1 (en) * 2016-04-06 2017-10-12 주식회사 세기종합환경 Water purification system using solar power generation
CN112028242A (en) * 2020-07-29 2020-12-04 江苏大学 Inhibition of N2Apparatus and method for O-bleed

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199399A (en) * 1997-09-29 1999-04-13 Teijin Ltd Waste water treating device
JPH11104692A (en) * 1997-10-02 1999-04-20 Teijin Ltd Higher order treatment method of drainage
JP2000157991A (en) * 1998-11-27 2000-06-13 Takeshi Umetsu Contact filter medium and waste water treating device
JP2000325973A (en) * 1999-05-24 2000-11-28 Masuo Ozaki Sewage treatment method and apparatus
JP2007007527A (en) * 2005-06-29 2007-01-18 Bridgestone Flowtech Corp Structure for water quality improvement
US20090145835A1 (en) * 2007-12-05 2009-06-11 Eco Work Co., Ltd. Water treatment contact filter and water treatment apparatus
JP2011147886A (en) * 2010-01-22 2011-08-04 Nikko Co Water treatment member, septic tank, and water treatment apparatus
JP2011189261A (en) * 2010-03-12 2011-09-29 Mitsubishi Rayon Co Ltd Biological treatment system, and biological treatment method
JP2013192465A (en) * 2012-03-16 2013-09-30 Kajima Corp Mixed bacteria and method for wastewater treatment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199399A (en) * 1997-09-29 1999-04-13 Teijin Ltd Waste water treating device
JPH11104692A (en) * 1997-10-02 1999-04-20 Teijin Ltd Higher order treatment method of drainage
JP2000157991A (en) * 1998-11-27 2000-06-13 Takeshi Umetsu Contact filter medium and waste water treating device
JP2000325973A (en) * 1999-05-24 2000-11-28 Masuo Ozaki Sewage treatment method and apparatus
JP2007007527A (en) * 2005-06-29 2007-01-18 Bridgestone Flowtech Corp Structure for water quality improvement
US20090145835A1 (en) * 2007-12-05 2009-06-11 Eco Work Co., Ltd. Water treatment contact filter and water treatment apparatus
JP2009136737A (en) * 2007-12-05 2009-06-25 Eco Work Co Ltd Water treatment contact filter and water treatment apparatus
JP2011147886A (en) * 2010-01-22 2011-08-04 Nikko Co Water treatment member, septic tank, and water treatment apparatus
JP2011189261A (en) * 2010-03-12 2011-09-29 Mitsubishi Rayon Co Ltd Biological treatment system, and biological treatment method
JP2013192465A (en) * 2012-03-16 2013-09-30 Kajima Corp Mixed bacteria and method for wastewater treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876293A (en) * 2015-05-26 2015-09-02 四川环博环境科技有限公司 Method of filtering and adsorbing wastewater with carbon fiber for wastewater treatment
WO2017175967A1 (en) * 2016-04-06 2017-10-12 주식회사 세기종합환경 Water purification system using solar power generation
CN112028242A (en) * 2020-07-29 2020-12-04 江苏大学 Inhibition of N2Apparatus and method for O-bleed

Also Published As

Publication number Publication date
JP6210514B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
Tawfik et al. Sewage treatment in a combined up-flow anaerobic sludge blanket (UASB)–down-flow hanging sponge (DHS) system
US6811700B2 (en) Integrated hydroponic and fixed-film wastewater treatment systems and associated methods
US20230373827A1 (en) Septic water treatment method for removing carbonaceous and nitrogenous compounds
CN103880244B (en) Comprehensive treatment method for liquid dung of livestock and poultry and domestic wastewater in country
US7547394B2 (en) Wastewater treatment with aerobic granules
TW200927677A (en) Treatment of wastewater
JP2007196221A (en) Biological treatment apparatus of organic matter-containing wastewater
Liu et al. Microbial nitrogen removal of ammonia wastewater in poly (butylenes succinate)-based constructed wetland: effect of dissolved oxygen
JP2019512380A (en) Biological removal of trace pollutants from wastewater
Tandukar et al. Combining UASB and the “fourth generation” down-flow hanging sponge reactor for municipal wastewater treatment
JP6210514B2 (en) Nitrous oxide (N2O) -suppressed sewage treatment technology using carbon fiber filled aerobic bioreactor
Subroto et al. Organic removal in domestic wastewater using anaerobic treatment system-MBBR with flow recirculation ratio and intermittent aeration
Di Iaconi et al. Bio-chemical treatment of medium-age sanitary landfill leachates in a high synergy system
KR100603182B1 (en) Method for advanced treatment of wastewater
Le et al. Performance of nitrogen removal in attached growth reactors with different carriers
KR101186606B1 (en) Advanced treatment apparatus to removing nitrogen and phosphorus from wastewater
Prado et al. Zero Nuisance Piggeries: Long-term performance of MBR (membrane bioreactor) for dilute swine wastewater treatment using submerged membrane bioreactor in semi-industrial scale
Yerushalmi et al. Performance evaluation of the BioCAST technology: a new multi-zone wastewater treatment system
KR100991403B1 (en) Wastewater treatment apparatus reducing a nasty smell and method thereof
KR100343257B1 (en) Combination purifier tank
JP5186626B2 (en) Biological purification method of sewage from livestock barn using shochu liquor wastewater
JP4376041B2 (en) Water purification unit, water purification unit assembly and water purification method
KR100619254B1 (en) Biological denitrification process using sulfur-utilizing chemolithoautotroph
KR101193497B1 (en) A sewage disposal facility having high processing apparatus
KR100474106B1 (en) Method for wastewater and night soil treatment utilizing microbial actuator and its apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170906

R150 Certificate of patent or registration of utility model

Ref document number: 6210514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250