JP2014204383A - On-vehicle stereo camera - Google Patents

On-vehicle stereo camera Download PDF

Info

Publication number
JP2014204383A
JP2014204383A JP2013081167A JP2013081167A JP2014204383A JP 2014204383 A JP2014204383 A JP 2014204383A JP 2013081167 A JP2013081167 A JP 2013081167A JP 2013081167 A JP2013081167 A JP 2013081167A JP 2014204383 A JP2014204383 A JP 2014204383A
Authority
JP
Japan
Prior art keywords
stay
longitudinal direction
imaging
substrate
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013081167A
Other languages
Japanese (ja)
Other versions
JP2014204383A5 (en
JP6114617B2 (en
Inventor
智之 片石
Tomoyuki KATAISHI
智之 片石
絢 早川
Aya Hayakawa
絢 早川
磯野 忠
Tadashi Isono
磯野  忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013081167A priority Critical patent/JP6114617B2/en
Publication of JP2014204383A publication Critical patent/JP2014204383A/en
Publication of JP2014204383A5 publication Critical patent/JP2014204383A5/ja
Application granted granted Critical
Publication of JP6114617B2 publication Critical patent/JP6114617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress the occurrence of a deviation in the optical axis of an image pickup unit attached at either end in longitudinal direction of a stay.SOLUTION: An on-vehicle stereo camera comprises: a first image pickup body to which a first image pickup unit for capturing a subject image is attached; a second image pickup body to which a second image pickup unit for capturing a subject image is attached; a circuit board on which a circuit for processing a signal outputted from the first and second image pickup units is provided; and a stay extending in the longitudinal direction. The first image pickup body is fixed at one end in longitudinal direction of the stay, and the second image pickup body is fixed at the other end in longitudinal direction of the stay. The circuit board is composed of a plurality of partial circuit boards divided along the longitudinal direction of the stay, each of the partial circuit boards having a first hole used for fixation having freedom for the stay in the longitudinal direction and a second hole used for fixation without freedom for the stay in the longitudinal direction.

Description

本発明は、車載ステレオカメラに関する。   The present invention relates to an in-vehicle stereo camera.

従来から、一対のカメラモジュールをそれぞれカメラステイの長手方向の両端部に取り付けたステレオカメラが知られている(たとえば特許文献1)。   Conventionally, a stereo camera in which a pair of camera modules is attached to both ends of a camera stay in the longitudinal direction is known (for example, Patent Document 1).

特開2010−41373号公報JP 2010-41373 A

しかしながら、ブラケットに反りが発生した場合には、一対のカメラモジュールの光軸にずれが発生し、三角測量の原理に基づいて算出される前方車両までの距離の精度が低下するという問題がある。   However, when the bracket is warped, there is a problem in that the optical axis of the pair of camera modules is displaced, and the accuracy of the distance to the preceding vehicle calculated based on the principle of triangulation is lowered.

請求項1に記載の車載ステレオカメラは、第1光学部材を介して被写体像を撮像する第1撮像部が取り付けされた第1撮像筐体と、第2光学部材を介して被写体像を撮像する第2撮像部が取り付けられた第2撮像筐体と、第1撮像部と第2撮像部から出力された信号を処理するための回路が設けられた基板と、長手方向に延在するステーとを備え、第1撮像筐体は、ステーの長手方向の一方の端部に固定され、第2撮像筐体は、ステーの所長手向の他方の端部に固定され、基板は、ステーの長手方向に沿って複数に分割された部分基板から構成され、部分基板のそれぞれは、ステーに対して長手方向へ自由度を有して固定するための第1孔と、ステーに対して長手方向への自由度を有することなく固定するための第2孔とを備えることを特徴とする。   The in-vehicle stereo camera according to claim 1 captures a subject image via a first imaging housing to which a first imaging unit that captures a subject image via a first optical member is attached, and a second optical member. A second imaging housing to which the second imaging unit is attached; a substrate on which a circuit for processing signals output from the first imaging unit and the second imaging unit is provided; and a stay extending in the longitudinal direction; The first imaging housing is fixed to one end in the longitudinal direction of the stay, the second imaging housing is fixed to the other end in the longitudinal direction of the stay, and the substrate is Each of the partial substrates is configured with a first hole for fixing with a degree of freedom in the longitudinal direction with respect to the stay and a longitudinal direction with respect to the stay. And a second hole for fixing without having a degree of freedom. To.

本発明によれば、ステーの長手方向に沿って複数に分割された部分基板のそれぞれを、第1孔を介してステーに対して長手方向へ自由度を有して固定するとともに、第2孔を介してステーに対して長手方向への自由度を有することなく固定できるので、第1および第2撮像部に光軸のずれが発生することを抑制できる。   According to the present invention, each of the partial substrates divided into a plurality along the longitudinal direction of the stay is fixed to the stay with a degree of freedom in the longitudinal direction via the first hole, and the second hole. Since it can fix to a stay without having a freedom degree to a longitudinal direction via this, it can suppress that the shift | offset | difference of an optical axis arises in a 1st and 2nd imaging part.

本発明の一実施の形態によるステレオカメラ装置の内部構造を説明する分解斜視図である。It is a disassembled perspective view explaining the internal structure of the stereo camera apparatus by one embodiment of this invention. 一実施の形態によるステレオカメラ装置を構成するステー内部を説明する斜視図である。It is a perspective view explaining the inside of a stay which constitutes a stereo camera device by one embodiment. 一実施の形態によるステレオカメラ装置を構成するカバー内部を説明する斜視図である。It is a perspective view explaining the inside of a cover which constitutes a stereo camera device by one embodiment. 一実施の形態によるステレオカメラ装置のステーに取り付けられる基板を説明する斜視図である。It is a perspective view explaining the board | substrate attached to the stay of the stereo camera apparatus by one Embodiment.

図面を参照しながら、本発明によるステレオカメラ装置の一実施の形態について説明する。本明細書においては、乗用車等の車両に備えられ、車載安全装置の一つとして用いられる外界認識センサであるステレオカメラ装置を一例として説明を行う。ステレオカメラ装置は、左右に基線長(たとえば200mm〜400mm程度)の間隔で離れて設けられた2つの撮像部により取得されたそれぞれの画像を用いて、三角測量の原理を利用して対象物までの距離を測定する。   An embodiment of a stereo camera device according to the present invention will be described with reference to the drawings. In this specification, a stereo camera device that is an external recognition sensor that is provided in a vehicle such as a passenger car and is used as one of in-vehicle safety devices will be described as an example. The stereo camera device uses a triangulation principle and uses the respective images acquired by two imaging units provided apart from each other at intervals of a base line length (for example, about 200 mm to 400 mm) to reach an object. Measure the distance.

図1は、一実施の形態によるステレオカメラ装置の内部構造を説明する分解斜視図である。なお、x軸、y軸、z軸からなる座標系を図示の通りに設定したものとして以後の説明を行う。図1に示すように、ステレオカメラ装置100は、ステー7と、カバー13と、第1撮像ユニット110と、第2撮像ユニット120とにより構成される。ステー7はアルミ等の金属材料により作成され、x軸方向を長手方向として延在する。カバー13はアルミ等の金属材料により作成され、x軸方向を長手方向として延在する。   FIG. 1 is an exploded perspective view illustrating the internal structure of a stereo camera device according to an embodiment. In the following description, it is assumed that a coordinate system including the x-axis, y-axis, and z-axis is set as shown in the figure. As shown in FIG. 1, the stereo camera device 100 includes a stay 7, a cover 13, a first imaging unit 110, and a second imaging unit 120. The stay 7 is made of a metal material such as aluminum and extends with the x-axis direction as a longitudinal direction. The cover 13 is made of a metal material such as aluminum and extends with the x-axis direction as a longitudinal direction.

第1撮像ユニット110は、第1撮像素子111と、第1撮像基板112と、第1レンズ113と、第1撮像筐体114と、第1カバー115とにより構成される。第1レンズ113は、y軸と光軸とが平行になるように第1撮像筐体114に取り付けられ、y軸+側に存在する被写体からの光束を通過させて第1撮像素子111へ導く。第1撮像素子111は、CCDやCMOS等により構成され、第1レンズ113の光軸と直交するように第1撮像筐体114に取り付けられる。第1撮像素子111は、第1レンズ113を介して被写体(前方車両や人等)からの光束を受光して、被写体像を光電変換信号として出力する。第1撮像基板112は、第1撮像筐体114に取り付けられ、後述する電源回路から電力の供給を受けて第1撮像素子111を動作させる。第1撮像筐体114は、ステー7のx軸+側の端部に、第1撮像素子111の受光面がxz平面に平行となるように取り付けられる。第1カバー115は、第1撮像基板112をz軸+側から覆う保護部材である。   The first imaging unit 110 includes a first imaging element 111, a first imaging substrate 112, a first lens 113, a first imaging housing 114, and a first cover 115. The first lens 113 is attached to the first imaging housing 114 so that the y-axis and the optical axis are parallel to each other, and passes the light beam from the subject existing on the y-axis + side and guides it to the first imaging element 111. . The first imaging element 111 is configured by a CCD, a CMOS, or the like, and is attached to the first imaging casing 114 so as to be orthogonal to the optical axis of the first lens 113. The first image sensor 111 receives a light beam from a subject (a front vehicle, a person, etc.) via the first lens 113, and outputs the subject image as a photoelectric conversion signal. The first imaging substrate 112 is attached to the first imaging housing 114, and operates the first imaging element 111 by receiving power from a power supply circuit described later. The first imaging housing 114 is attached to the end of the stay 7 on the x axis + side so that the light receiving surface of the first imaging element 111 is parallel to the xz plane. The first cover 115 is a protective member that covers the first imaging substrate 112 from the z axis + side.

第2撮像ユニット120は、第2撮像素子121と、第2撮像基板122と、第2レンズ123と、第2撮像筐体124と、第2カバー125とにより構成される。第2レンズ123は、y軸と光軸とが平行になるように第2撮像筐体124に取り付けられ、y軸+側に存在する被写体からの光束を通過させて第2撮像素子121へ導く。第2撮像素子121は、CCDやCMOS等により構成され、第2レンズ123の光軸と直交するように第2撮像筐体124に取り付けられる。第2撮像素子121は、第2レンズ123を介して被写体(前方車両や人等)からの光束を受光して、被写体像を光電変換信号として出力する。第2撮像基板122は、第2撮像筐体124に取り付けられ、後述する電源回路から電力の供給を受けて第2撮像素子121を動作させる。第2撮像筐体124は、ステー7のx軸−側の端部に、第2撮像素子121の受光面がxz平面に平行となるように取り付けられる。換言すると、第1撮像素子111の受光面と第2撮像素子121の受光面とは、互いに平行になるように取り付けられている。第2カバー125は、第2撮像基板122をz軸+側から覆う保護部材である。   The second imaging unit 120 includes a second imaging element 121, a second imaging substrate 122, a second lens 123, a second imaging housing 124, and a second cover 125. The second lens 123 is attached to the second imaging housing 124 so that the y-axis and the optical axis are parallel to each other, and passes the light beam from the subject existing on the y-axis + side and guides it to the second imaging element 121. . The second imaging element 121 is configured by a CCD, a CMOS, or the like, and is attached to the second imaging casing 124 so as to be orthogonal to the optical axis of the second lens 123. The second image sensor 121 receives a light beam from a subject (a front vehicle, a person, etc.) via the second lens 123, and outputs the subject image as a photoelectric conversion signal. The second imaging substrate 122 is attached to the second imaging housing 124, and operates the second imaging element 121 upon receiving power from a power supply circuit described later. The second imaging housing 124 is attached to the end of the stay 7 on the x-axis side so that the light receiving surface of the second imaging element 121 is parallel to the xz plane. In other words, the light receiving surface of the first image sensor 111 and the light receiving surface of the second image sensor 121 are attached to be parallel to each other. The second cover 125 is a protective member that covers the second imaging substrate 122 from the z axis + side.

ステー7の内部には、電源基板8と、制御用基板9と、フレキシブルケーブル10と、第1コネクタ11と、第2コネクタ12とが設置されている。電源基板8は、たとえばFR4等の樹脂を材料として形成され、ステー7内部のx軸+側に取り付けられる。電源基板8には、電源回路16とメインコネクタ18とが設置される。なお、電源基板8の形状およびステー7への取り付けについては、詳細な説明を後述する。   Inside the stay 7, a power supply board 8, a control board 9, a flexible cable 10, a first connector 11, and a second connector 12 are installed. The power supply substrate 8 is formed of a resin such as FR4, for example, and is attached to the x axis + side inside the stay 7. A power supply circuit 16 and a main connector 18 are installed on the power supply board 8. A detailed description of the shape of the power supply board 8 and the attachment to the stay 7 will be given later.

制御用基板9は、たとえばFR4等の樹脂を材料として形成され、ステー7内部のx軸−側に取り付けられる。制御用基板9には、処理回路17が設置される。なお、制御用基板9の形状およびステー7への取り付けについては、詳細な説明を後述する。   The control board 9 is made of resin such as FR4, for example, and is attached to the x-axis-side inside the stay 7. A processing circuit 17 is installed on the control board 9. A detailed description of the shape of the control board 9 and attachment to the stay 7 will be given later.

フレキシブルケーブル10は、電源基板8と制御用基板9とを接続して、各種の信号を伝達する。第1コネクタ11は、電源基板8と第1撮像ユニット110の第1撮像基板112とを接続して、各種の信号を伝達する。第2コネクタ12は、制御用基板9と第2撮像ユニット120の第2撮像基板122とを接続して、各種の信号を伝達する。   The flexible cable 10 connects the power supply board 8 and the control board 9 and transmits various signals. The first connector 11 connects the power supply board 8 and the first imaging board 112 of the first imaging unit 110 and transmits various signals. The second connector 12 connects the control board 9 and the second imaging board 122 of the second imaging unit 120 to transmit various signals.

メインコネクタ18は、車両に搭載されたバッテリ(不図示)からの電源を電源回路16へ供給する。電源回路16は、メインコネクタ18を介して供給された電力を、処理回路17、第1撮像基板112および第2撮像基板122へ供給する。処理回路17は、第1撮像素子111および第2撮像素子121からの光電変換信号を入力して、被写体の認識処理や、上述した三角測量の原理を用いて被写体までの距離を算出する距離算出処理等を行う。処理回路17による処理結果は、メインコネクタ18を介して車両に制御信号として出力される。   The main connector 18 supplies power from a battery (not shown) mounted on the vehicle to the power supply circuit 16. The power supply circuit 16 supplies the power supplied via the main connector 18 to the processing circuit 17, the first imaging board 112 and the second imaging board 122. The processing circuit 17 receives photoelectric conversion signals from the first image sensor 111 and the second image sensor 121, and calculates a distance to the object using the object recognition process and the above-described triangulation principle. Perform processing. The processing result by the processing circuit 17 is output as a control signal to the vehicle via the main connector 18.

図2にステー7の内部形状を示す。ステー7の底面7Bには、z軸+側へ突設された突起22,23,32,33(総称する場合は、突起20と呼ぶ)と、ねじ穴24,25,34,35(総称する場合は、ねじ穴30と呼ぶ)とが設置される。ステー7の内壁面には、カバー13を取り付ける際のスナップフィット嵌合用のくぼみ51,52,53,54,55,56,57(総称する場合は、くぼみ50と呼ぶ)が形成される。   FIG. 2 shows the internal shape of the stay 7. On the bottom surface 7B of the stay 7, projections 22, 23, 32, 33 (generally referred to as projections 20) projecting toward the z axis + side and screw holes 24, 25, 34, 35 (generically referred to). In this case, it is called a screw hole 30). On the inner wall surface of the stay 7, recesses 51, 52, 53, 54, 55, 56, 57 for fitting the snap fit when the cover 13 is attached (generally referred to as the recess 50) are formed.

突起22および23と、ねじ穴24および25とは、電源基板8のステー7への取り付けに用いられ、突起22および23はステー7の中央部近傍に設置され、ねじ穴24および25はステー7のx軸+側の端部近傍に設置される。突起32および33と、ねじ穴34および35とは、制御用基板9のステー7への取り付けに用いられ、突起32および33はステー7の中央部近傍に設置され、ねじ穴34および35はステー7のx軸−側の端部近傍に配置される。突起20の高さ、すなわちz軸方向の長さは、電源基板8および制御用基板9を取り付けた際、それぞれの基板の上面(z軸+側の面)から突起20が突出しないように形成される。   The protrusions 22 and 23 and the screw holes 24 and 25 are used for attaching the power supply board 8 to the stay 7. The protrusions 22 and 23 are installed near the center of the stay 7, and the screw holes 24 and 25 are the stay 7. Near the end of the x-axis + side. The protrusions 32 and 33 and the screw holes 34 and 35 are used to attach the control board 9 to the stay 7. The protrusions 32 and 33 are installed near the center of the stay 7, and the screw holes 34 and 35 are the stays. 7 near the end on the x-axis side. The height of the protrusion 20, that is, the length in the z-axis direction is formed so that the protrusion 20 does not protrude from the upper surface (z-axis + side surface) of each substrate when the power supply substrate 8 and the control substrate 9 are attached. Is done.

図3にカバー13の内部形状を示す。カバー13の上面13Uには、z軸−側へ突設された突起41,42,43,44(総称する場合は、突起40と呼ぶ)が設置される。カバー13の外壁面には、カバー13をステー7に取り付ける際のスナップフィット固定用の突起61,62,63,64,65,66,67(総称する場合は、突起60と呼ぶ)が設置され、ステー7への取り付け時には、それぞれくぼみ51,52,53,54,55,56,57と勘合する。   FIG. 3 shows the internal shape of the cover 13. On the upper surface 13U of the cover 13, projections 41, 42, 43, and 44 (generally referred to as projections 40) that project toward the z-axis-side are installed. On the outer wall surface of the cover 13, projections 61, 62, 63, 64, 65, 66, and 67 for fixing the snap fit when the cover 13 is attached to the stay 7 (generally referred to as the projection 60) are installed. When attaching to the stay 7, the recesses 51, 52, 53, 54, 55, 56 and 57 are fitted.

突起41および42は電源基板8をz軸+側から固定するための部材であり、ステー7にカバー13を取り付けた際に、ステー7に設けられた突起22および23とそれぞれz軸方向に沿って実質的に同一線上に並ぶように設置される。突起43および44は制御用基板9をz軸+側から固定するための部材であり、ステー7にカバー13を取り付けた際に、ステー7に設けられた突起32および33とそれぞれz軸方向に沿って実質的に同一線上に並ぶように設置される。   The protrusions 41 and 42 are members for fixing the power supply substrate 8 from the z-axis + side. When the cover 13 is attached to the stay 7, the protrusions 22 and 23 provided on the stay 7 are respectively along the z-axis direction. So that they are arranged on the same line. The protrusions 43 and 44 are members for fixing the control substrate 9 from the z axis + side. When the cover 13 is attached to the stay 7, the protrusions 32 and 33 provided on the stay 7 are respectively in the z axis direction. It is installed so that it may line up substantially on the same line along.

図4に示す内部斜視図を参照しながら、電源基板8の形状およびステー7への取り付けについて説明する。電源基板8は、ステー7の内部に取り付け可能となるように、xy平面上にてx軸方向を長手方向とした矩形形状に形成される。図に示すように、電源基板8のx軸方向の長さL1は、ステー7の底面7Bと重複する面積を減少させるために、ステー7のx軸方向の長さL0よりも短い。   With reference to the internal perspective view shown in FIG. 4, the shape of the power supply substrate 8 and attachment to the stay 7 will be described. The power supply substrate 8 is formed in a rectangular shape with the x-axis direction as the longitudinal direction on the xy plane so that it can be attached to the inside of the stay 7. As shown in the figure, the length L1 of the power supply board 8 in the x-axis direction is shorter than the length L0 of the stay 7 in the x-axis direction in order to reduce the area overlapping the bottom surface 7B of the stay 7.

電源基板8の四隅には、それぞれ開口が設けられている。電源基板8のx軸+側の二つの開口は、取付穴61および62であり、ステー7に設置されたねじ穴24および25に対応する位置にそれぞれ設けられる。電源基板8は、取付穴61および62およびステー7のねじ穴24および25に挿通したねじ91および92によりねじ止めによって取り付けられる。すなわち、取付穴61および62は、温度変化に応じて発生するステー7に対するx軸方向への相対的な長さ変化に対して自由度を有することなく電源基板8を固定する。   Openings are respectively provided at the four corners of the power supply substrate 8. Two openings on the x-axis + side of the power supply substrate 8 are attachment holes 61 and 62, which are provided at positions corresponding to the screw holes 24 and 25 installed in the stay 7, respectively. The power supply board 8 is attached by screwing with screws 91 and 92 inserted through the attachment holes 61 and 62 and the screw holes 24 and 25 of the stay 7. In other words, the mounting holes 61 and 62 fix the power supply substrate 8 without having a degree of freedom with respect to a relative length change in the x-axis direction with respect to the stay 7 generated according to a temperature change.

電源基板8のx軸−側の二つの開口は、貫通孔63および64であり、ステー7に設置された突起22および23に対応する位置にそれぞれ設けられる。電源基板8が、ステー7に取り付けられると、ステー7に設置された突起22および23は貫通孔63および64にそれぞれ挿入される。なお、突起22および23のz軸方向の長さは上述したように形成されているので、突起22および23が電源基板8の上面から突出することはない。   Two openings on the x-axis side of the power supply substrate 8 are through holes 63 and 64, and are provided at positions corresponding to the protrusions 22 and 23 provided on the stay 7, respectively. When the power supply substrate 8 is attached to the stay 7, the protrusions 22 and 23 installed on the stay 7 are inserted into the through holes 63 and 64, respectively. Since the lengths of the protrusions 22 and 23 in the z-axis direction are formed as described above, the protrusions 22 and 23 do not protrude from the upper surface of the power supply substrate 8.

貫通孔63および64は、x軸方向を長径とする楕円状に加工される。後述するように、貫通孔63および64の長径は、電源基板8が温度変化に応じてx軸方向へ延びる長さ(膨張量)と、ステー7が温度変化に応じてx軸方向へ延びる長さ(膨張量)との差分に応じて、x軸方向の長さが突起22および23の径よりも長くなるように決定される。   The through holes 63 and 64 are processed into an ellipse having a major axis in the x-axis direction. As will be described later, the long diameters of the through holes 63 and 64 are the length (expansion amount) in which the power supply substrate 8 extends in the x-axis direction in response to a temperature change and the length in which the stay 7 extends in the x-axis direction in response to a temperature change. The length in the x-axis direction is determined so as to be longer than the diameters of the protrusions 22 and 23 according to the difference from the height (the amount of expansion).

次に、制御用基板9の形状およびステー7への取り付けについて説明する。制御用基板9は、ステー7の内部に取り付け可能となるように、xy平面上にてx軸方向を長手方向とした矩形形状に形成される。図4に示すように、制御用基板9のx軸方向の長さL2は、ステー7の底面7Bと重複する面積を減少させるために、ステー7のx軸方向の長さL0よりも短い。なお、本実施の形態では、制御用基板9のx軸方向の長さL2と上述した電源基板8のx軸方向の長さL1との和は、ステー7のx軸方向の長さL0よりも短くなるように形成されている。換言すると、本実施の形態のステレオカメラ装置100が備える基板は、2つの部分基板としての電源基板8と制御用基板9とにより分割されて構成される。なお、基板は、ステー7のx軸方向の長さに応じて、3つ以上の部分基板により分割されてもよい。   Next, the shape of the control board 9 and attachment to the stay 7 will be described. The control board 9 is formed in a rectangular shape with the x-axis direction as the longitudinal direction on the xy plane so that it can be attached to the inside of the stay 7. As shown in FIG. 4, the length L <b> 2 of the control board 9 in the x-axis direction is shorter than the length L <b> 0 of the stay 7 in the x-axis direction in order to reduce the area overlapping the bottom surface 7 </ b> B of the stay 7. In the present embodiment, the sum of the length L2 of the control board 9 in the x-axis direction and the length L1 of the power supply board 8 in the x-axis direction is greater than the length L0 of the stay 7 in the x-axis direction. Is also formed to be shorter. In other words, the substrate included in the stereo camera device 100 of the present embodiment is configured by being divided by the power supply substrate 8 and the control substrate 9 as two partial substrates. The substrate may be divided by three or more partial substrates according to the length of the stay 7 in the x-axis direction.

制御用基板9の四隅には、それぞれ開口が設けられている。制御用基板9のx軸−側の二つの開口は、取付穴71および72であり、ステー7に設置されたねじ穴34および35に対応する位置にそれぞれ設けられる。制御用基板9は、取付穴71および72およびステー7のねじ穴34および35に挿通したねじ93および94によりねじ止めによって取り付けられる。すなわち、取付穴71および72は、温度変化に応じて発生するステー7に対するx軸方向への相対的な長さ変化に対して自由度を有することなく制御用基板9を固定する。   Openings are respectively provided at the four corners of the control substrate 9. Two openings on the x-axis side of the control board 9 are mounting holes 71 and 72, which are provided at positions corresponding to the screw holes 34 and 35 provided in the stay 7, respectively. The control board 9 is attached by screwing with screws 93 and 94 inserted through the attachment holes 71 and 72 and the screw holes 34 and 35 of the stay 7. In other words, the mounting holes 71 and 72 fix the control board 9 without having a degree of freedom with respect to a relative length change in the x-axis direction with respect to the stay 7 generated in accordance with a temperature change.

制御用基板9のx軸+側の二つの開口は、貫通孔73および74であり、ステー7に設置された突起32および33に対応する位置にそれぞれ設けられる。制御用基板9が、ステー7に取り付けられると、ステー7に設置された突起32および33は貫通孔73および74にそれぞれ挿入される。なお、突起32および33のz軸方向の長さは上述したように形成されているので、突起32および33が制御用基板9の上面から突出することはない。   Two openings on the x axis + side of the control substrate 9 are through holes 73 and 74, which are provided at positions corresponding to the protrusions 32 and 33 provided on the stay 7, respectively. When the control board 9 is attached to the stay 7, the protrusions 32 and 33 installed on the stay 7 are inserted into the through holes 73 and 74, respectively. Since the lengths of the protrusions 32 and 33 in the z-axis direction are formed as described above, the protrusions 32 and 33 do not protrude from the upper surface of the control substrate 9.

貫通孔73および74は、貫通孔63および64と同様に、x軸方向を長径とする楕円状に加工される。後述するように、貫通孔73および74の長径は、制御用基板9が温度変化に応じてx軸方向へ延びる長さ(膨張量)と、ステー7が温度変化に応じてx軸方向へ延びる長さ(膨張量)との差分に応じて、x軸方向の長さが突起32および33の径よりも長くなるように決定される。すなわち、すなわち、貫通孔73および74は、温度変化に応じて発生するステー7に対するx軸方向への相対的な長さ変化に対して自由度を有して制御用基板9を固定する。   The through holes 73 and 74 are processed into an ellipse having a major axis in the x-axis direction, like the through holes 63 and 64. As will be described later, the long diameters of the through holes 73 and 74 are such that the control substrate 9 extends in the x-axis direction according to a temperature change (expansion amount) and the stay 7 extends in the x-axis direction according to a temperature change. Depending on the difference from the length (expansion amount), the length in the x-axis direction is determined to be longer than the diameters of the protrusions 32 and 33. That is, in other words, the through holes 73 and 74 fix the control substrate 9 with a degree of freedom with respect to a relative length change in the x-axis direction with respect to the stay 7 generated according to a temperature change.

以下、貫通孔63,64,73および74のx軸方向に沿った長径の長さの決定方法について説明する。長径の長さは、温度変化により電源基板8または制御用基板9の線膨張率とステー7の線膨張率との相違にともなうステー7の反りのを発生を防止することを目的として決定される。以下の説明は、制御用基板9に設けられた貫通孔73および74の長径について行うが、電源基板8に設けられた貫通孔63および64についても同様にして長径の長さが決定される。   Hereinafter, a method for determining the length of the major axis along the x-axis direction of the through holes 63, 64, 73, and 74 will be described. The length of the major axis is determined for the purpose of preventing the stay 7 from warping due to a difference between the linear expansion coefficient of the power supply board 8 or the control board 9 and the linear expansion coefficient of the stay 7 due to temperature change. . The following description will be made with respect to the long diameters of the through holes 73 and 74 provided in the control board 9, but the length of the long diameter is similarly determined for the through holes 63 and 64 provided in the power supply board 8.

貫通孔73および74の長径の長さは、制御用基板9のx軸方向の膨張量と、ステー7のx軸方向の膨張量との差分に基づいて決定される。制御用基板9の膨張量ΔL2と、制御用基板9と重複するステー7の膨張量ΔL0とは、それぞれ以下の式(1)を用いて算出される。
ΔL2=α1×L2×ΔT
ΔL0=α0×L2×ΔT …(1)
なお、ΔTは温度変化を表し、α1およびα0はそれぞれ制御用基板9およびステー7の材料が有する、常温、一般的な普通純度における線膨張率を表す。上述したように、ステー7はアルミを材料としているので、線膨張率α1は23.5×10−6[/℃]であり、制御用基板9はFR4を材料としているので、線膨張率α0は15×10−6[/℃]である。
The lengths of the long diameters of the through holes 73 and 74 are determined based on the difference between the expansion amount of the control substrate 9 in the x-axis direction and the expansion amount of the stay 7 in the x-axis direction. The expansion amount ΔL2 of the control board 9 and the expansion amount ΔL0 of the stay 7 overlapping with the control board 9 are calculated using the following equation (1).
ΔL2 = α1 × L2 × ΔT
ΔL0 = α0 × L2 × ΔT (1)
ΔT represents a change in temperature, and α1 and α0 represent linear expansion coefficients at normal temperature and general ordinary purity, which the materials of the control substrate 9 and the stay 7 have, respectively. As described above, since the stay 7 is made of aluminum, the linear expansion coefficient α1 is 23.5 × 10 −6 [/ ° C.], and since the control substrate 9 is made of FR4, the linear expansion coefficient α0. Is 15 × 10 −6 [/ ° C.].

上記の式(1)により算出された制御用基板9とステー7の膨張量ΔL2およびΔL0とを用いて、以下の式(2)のように、膨張量の差分Dが算出できる。
D=|ΔL0−ΔL2| …(2)
Using the control board 9 calculated by the above equation (1) and the expansion amounts ΔL2 and ΔL0 of the stay 7, the difference D of the expansion amount can be calculated as in the following equation (2).
D = | ΔL0−ΔL2 | (2)

貫通孔73および74の長径を、それぞれに挿入される突起32および33の径よりもx軸+側と−側とのそれぞれに少なくとも式(2)で算出される膨張量の差分Dだけ長く設定する。温度変化によりステー7と制御用基板9がx軸方向へ膨張して、それぞれのx軸方向の長さL0およびL2が変化しても、突起32および33が貫通孔73および74に対して、x軸方向に沿った相対移動が可能になる。ステー7が制御用基板9に対してx軸方向に沿って膨張量の差分Dだけ相対移動可能であれば、線膨張率の相違によるステー7の反りの発生を防ぐことができる。したがって、貫通孔73および74の長径の長さQは、以下の式(3)を満たすように決定できる。
Q≧d+2D …(3)
なお、dは貫通孔73および74に挿入される突起32および33の径である。
The long diameters of the through holes 73 and 74 are set to be longer than the diameters of the protrusions 32 and 33 inserted therein by at least the difference D of the expansion amount calculated by the equation (2) on the x axis + side and the − side, respectively. To do. Even if the stay 7 and the control substrate 9 expand in the x-axis direction due to the temperature change and the lengths L0 and L2 in the x-axis direction change, the projections 32 and 33 are Relative movement along the x-axis direction is possible. If the stay 7 can be moved relative to the control substrate 9 along the x-axis direction by the difference D of the expansion amount, it is possible to prevent the stay 7 from warping due to the difference in the linear expansion coefficient. Therefore, the length Q of the major axis of the through holes 73 and 74 can be determined so as to satisfy the following formula (3).
Q ≧ d + 2D (3)
Here, d is the diameter of the protrusions 32 and 33 inserted into the through holes 73 and 74.

制御用基板9のx軸方向の長さL2を200[mm]、温度を85[℃]とした場合、貫通孔73および74の長径の長さQは、以下のように決定できる。ステー7の膨張量ΔL0および制御用基板9の膨張量ΔL2は、式(1)より、それぞれ0.28[mm]および0.18[mm]となる。この場合の膨張量の差分Dは、式(2)により、0.1[mm]である。したがって、貫通孔73および74長径の長さQは、突起32および33の径よりも、x軸+側および−側にそれぞれ少なくとも0.1[mm]ずつ長くなるように決定される。特に、マージンを取って、貫通孔73および74長径の長さQをx軸+側および−側にそれぞれ1[mm]ずつ長くすることが好ましい。   When the length L2 of the control substrate 9 in the x-axis direction is 200 [mm] and the temperature is 85 [° C.], the major axis length Q of the through holes 73 and 74 can be determined as follows. The expansion amount ΔL0 of the stay 7 and the expansion amount ΔL2 of the control substrate 9 are 0.28 [mm] and 0.18 [mm], respectively, from the equation (1). In this case, the expansion amount difference D is 0.1 [mm] according to the equation (2). Therefore, the length Q of the long diameter of the through holes 73 and 74 is determined to be longer than the diameter of the protrusions 32 and 33 by at least 0.1 [mm] on the x axis + side and − side, respectively. In particular, it is preferable to take a margin and increase the length Q of the long diameter of the through holes 73 and 74 by 1 [mm] on the x-axis + side and − side, respectively.

上記のような構成を有する電源基板8および制御用基板9をステー7に取り付けた後、カバー13の突起60をステー7のくぼみ50に勘合させてカバー13をステー7に取り付ける。カバー13には、上記のようにz軸−側に突設された突起40が設けられているので、電源基板8および制御用基板9がそれぞれの貫通孔71,72,73および74にてz軸+方向からカバー13によって付勢される。その結果、電源基板8および制御用基板9がステー7に対して固定されるとともに、ステレオカメラ装置100に振動が加わった場合に、振動による騒音の発生を抑制できる。   After the power supply board 8 and the control board 9 having the above-described configuration are attached to the stay 7, the protrusion 60 of the cover 13 is fitted into the recess 50 of the stay 7 and the cover 13 is attached to the stay 7. Since the cover 13 is provided with the projection 40 protruding on the z-axis side as described above, the power supply substrate 8 and the control substrate 9 are z through the through holes 71, 72, 73 and 74, respectively. It is urged by the cover 13 from the axis + direction. As a result, the power supply board 8 and the control board 9 are fixed to the stay 7 and, when vibration is applied to the stereo camera device 100, generation of noise due to vibration can be suppressed.

なお、上述したステー7の底面7Bに設けられた突起20に代えて、ねじ穴を設けて電源基板8および制御用基板9をねじ締めにより取り付けてもよい。この場合、ねじ穴と電源基板8および制御用基板9との間にゴムワッシャを挟んでねじ止めするのが好ましい。   Instead of the projection 20 provided on the bottom surface 7B of the stay 7 described above, a screw hole may be provided and the power supply board 8 and the control board 9 may be attached by screwing. In this case, it is preferable to screw the rubber washer between the screw hole and the power supply board 8 and the control board 9.

上述した一実施の形態によるステレオカメラ装置によれば、次の作用効果が得られる。
(1)ステー7に取り付ける基板を電源基板8と制御用基板9との2つの部分基板に分割した。式(1)に示すように、温度変化による膨張量は、ステー7に取り付けられた基板のx軸方向の長さに比例して大きくなる。このため、ステー7の長手方向に沿った長辺を有する矩形形状の1つの基板を取り付けた場合、ステー7と基板と間で生じる長手方向への膨張量の差分が大きくなり、ステー7に反りが発生して、第1レンズ113の光軸と第2レンズ123の光軸との間にずれが生じる。これに対して、本実施の形態によれば、電源基板8と制御用基板9とに分割することによって、ステー7に取り付けられるそれぞれの基板のx軸方向の長さを短くして、ステー7とそれぞれの基板とが重複する面積を減少させる。この結果、ステー7に反りが発生することを抑制できるので、第1レンズ113の光軸と第2レンズ123の光軸とのズレが抑制される。したがって、第1および第2撮像ユニット110および120は上下方向や回転方向へのズレの発生が低減された画像を取得可能になり、認識処理や距離算出処理の処理不可の低減や、処理精度の向上に寄与する。また、基板が複数に分割されることにより、長手方向の両端へ部品を取り付ける際の半田付け性を確保することも可能になる。
According to the stereo camera device according to the embodiment described above, the following operational effects can be obtained.
(1) The substrate attached to the stay 7 was divided into two partial substrates, a power supply substrate 8 and a control substrate 9. As shown in Expression (1), the amount of expansion due to temperature change increases in proportion to the length of the substrate attached to the stay 7 in the x-axis direction. For this reason, when a single rectangular substrate having a long side along the longitudinal direction of the stay 7 is attached, the difference in the amount of expansion in the longitudinal direction between the stay 7 and the substrate increases, and the stay 7 warps. Occurs, and a deviation occurs between the optical axis of the first lens 113 and the optical axis of the second lens 123. On the other hand, according to the present embodiment, by dividing the power supply board 8 and the control board 9, the length of each board attached to the stay 7 in the x-axis direction is shortened, and the stay 7 And the area where each substrate overlaps is reduced. As a result, it is possible to suppress the warp from occurring in the stay 7, so that the deviation between the optical axis of the first lens 113 and the optical axis of the second lens 123 is suppressed. Therefore, the first and second imaging units 110 and 120 can acquire an image in which the occurrence of deviation in the vertical direction and the rotation direction is reduced, and the reduction of the unacceptable processing of the recognition processing and the distance calculation processing is achieved. Contributes to improvement. Moreover, by dividing the substrate into a plurality of parts, it is possible to ensure solderability when attaching components to both ends in the longitudinal direction.

さらに、電源基板8および制御用基板9のそれぞれは、ステー7に対して長手方向へ自由度を有して固定するための貫通孔63,64および73、74と、ステー7に対して長手方向への自由度を有することなく固定するための取付穴61,62および71、72とを備えるようにした。このため、温度変化によりx軸方向へ膨張しても、電源基板8および制御用基板9とステー7とは、互いにx軸方向に沿って相対移動が可能になり、線膨張率の相違によるステー7の反りの発生を防ぐことができる。この結果、第1および第2撮像ユニット110および120は上下方向や回転方向へのズレの発生が低減された画像を取得可能になり、認識処理や距離算出処理の処理不可の低減や、処理精度の向上に寄与する。   Further, each of the power supply board 8 and the control board 9 has through holes 63, 64 and 73, 74 for fixing the stay 7 with flexibility in the longitudinal direction, and the longitudinal direction with respect to the stay 7. Mounting holes 61, 62 and 71, 72 for fixing without having a degree of freedom. Therefore, even if the power supply board 8 and the control board 9 and the stay 7 are expanded in the x-axis direction due to a temperature change, the power supply board 8 and the control board 9 and the stay 7 can move relative to each other along the x-axis direction. 7 can be prevented from occurring. As a result, the first and second imaging units 110 and 120 can acquire an image in which the occurrence of deviation in the vertical direction and the rotation direction is reduced, and the processing accuracy of the recognition processing and the distance calculation processing is reduced. It contributes to the improvement.

(2)貫通孔63,64,73および74は、長手方向に沿って、ステー7と電源基板8および制御用基板9とのそれぞれの線膨張率に基づいた長径を有し、突起20の径よりも貫通孔63,64,73および74の長径が長くなるようにした。その結果、簡便な構成により、電源基板8および制御用基板9とステー7とのx軸方向に沿った相対移動を確保して、第1レンズ113の光軸と第2レンズ123の光軸とのズレを抑制できる。 (2) The through holes 63, 64, 73 and 74 have a long diameter based on the respective linear expansion coefficients of the stay 7, the power supply substrate 8 and the control substrate 9 along the longitudinal direction, and the diameter of the protrusion 20. The longer diameters of the through holes 63, 64, 73, and 74 are made longer. As a result, with a simple configuration, the relative movement of the power supply substrate 8 and the control substrate 9 and the stay 7 along the x-axis direction is ensured, and the optical axis of the first lens 113 and the optical axis of the second lens 123 are Can be suppressed.

(3)第1撮像素子111の受光面と第2撮像素子121の受光面とが平行であり、第1レンズ113の光軸と第1撮像し111の受光面とが直交し、第2レンズ121の光軸と第2撮像素子121の受光面とが直交するように、第1撮像ユニット110と第2撮像ユニット120とがステー7に固定されるようにした。したがって、第1および第2撮像ユニット110および120は上下方向や回転方向へのズレの発生が低減された画像を取得可能になり、認識処理や距離算出処理の処理不可の低減や、処理精度の向上に寄与する。 (3) The light receiving surface of the first image sensor 111 and the light receiving surface of the second image sensor 121 are parallel, the optical axis of the first lens 113 and the light receiving surface of the first image pickup 111 are orthogonal, and the second lens The first imaging unit 110 and the second imaging unit 120 are fixed to the stay 7 so that the optical axis 121 and the light receiving surface of the second imaging element 121 are orthogonal to each other. Therefore, the first and second imaging units 110 and 120 can acquire an image in which the occurrence of deviation in the vertical direction and the rotation direction is reduced, and the reduction of the unacceptable processing of the recognition processing and the distance calculation processing is achieved. Contributes to improvement.

上述した実施の形態によるステレオカメラ装置100は、車両に搭載される車載用カメラとして説明した。しかし、建設機械や鉄道車両等の移動体や、産業用ロボットに搭載されるカメラ装置も本発明の一態様に含まれる。   The stereo camera device 100 according to the above-described embodiment has been described as an in-vehicle camera mounted on a vehicle. However, a mobile device such as a construction machine or a railway vehicle, or a camera device mounted on an industrial robot is also included in one embodiment of the present invention.

本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。   As long as the characteristics of the present invention are not impaired, the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

7…ステー、8…電源基板、9…制御用基板、13…カバー、
20、22、23、32、33…突起、
24、25、30、34、35…ねじ穴、
63、64、73、74…貫通孔、
100…ステレオカメラ装置、
110…第1撮像ユニット、111…第1撮像素子、112…第1撮像基板、
113…第1レンズ、114…第1撮像筐体、120…第2撮像ユニット、
121…第2撮像素子、122…第2撮像基板、123…第2レンズ、
124…第2撮像筐体
7 ... Stay, 8 ... Power supply board, 9 ... Control board, 13 ... Cover,
20, 22, 23, 32, 33 ... projections,
24, 25, 30, 34, 35 ... screw holes,
63, 64, 73, 74 ... through holes,
100 ... Stereo camera device,
110: First imaging unit, 111: First imaging element, 112: First imaging substrate,
113 ... 1st lens, 114 ... 1st imaging housing, 120 ... 2nd imaging unit,
121 ... 2nd imaging element, 122 ... 2nd imaging substrate, 123 ... 2nd lens,
124: Second imaging housing

Claims (3)

第1光学部材を介して被写体像を撮像する第1撮像部が取り付けされた第1撮像筐体と、
第2光学部材を介して被写体像を撮像する第2撮像部が取り付けられた第2撮像筐体と、
前記第1撮像部と前記第2撮像部から出力された信号を処理するための回路が設けられた基板と、
長手方向に延在するステーとを備え、
前記第1撮像筐体は、前記ステーの前記長手方向の一方の端部に固定され、
前記第2撮像筐体は、前記ステーの前記所長手向の他方の端部に固定され、
前記基板は、前記ステーの前記長手方向に沿って複数に分割された部分基板から構成され、前記部分基板のそれぞれは、前記ステーに対して前記長手方向へ自由度を有して固定するための第1孔と、前記ステーに対して前記長手方向への自由度を有することなく固定するための第2孔とを備えることを特徴とする車載ステレオカメラ。
A first imaging housing to which a first imaging unit that captures a subject image via a first optical member is attached;
A second imaging housing to which a second imaging unit that captures a subject image via the second optical member is attached;
A substrate provided with a circuit for processing signals output from the first imaging unit and the second imaging unit;
A stay extending in the longitudinal direction,
The first imaging housing is fixed to one end of the stay in the longitudinal direction,
The second imaging housing is fixed to the other end of the stay in the longitudinal direction,
The substrate is composed of a partial substrate divided into a plurality along the longitudinal direction of the stay, and each of the partial substrates is fixed to the stay with a degree of freedom in the longitudinal direction. An in-vehicle stereo camera comprising: a first hole; and a second hole for fixing the stay without having a degree of freedom in the longitudinal direction.
請求項1に記載の車載ステレオカメラにおいて、
前記第1孔は、前記長手方向に沿って、前記ステーと前記部分基板のそれぞれの膨張率に基づいた長径を有し、
前記ステーは、前記第1孔に対応する位置に、前記第1孔の長径よりも短い径を有する突起部を有することを特徴とする車載ステレオカメラ。
The in-vehicle stereo camera according to claim 1,
The first hole has a major axis based on an expansion coefficient of each of the stay and the partial substrate along the longitudinal direction,
The in-vehicle stereo camera, wherein the stay has a protrusion having a diameter shorter than the long diameter of the first hole at a position corresponding to the first hole.
請求項1または2に記載の車載ステレオカメラにおいて、
前記第1撮像筐体は前記第1撮像部を取り付けるための第1基準面を有し、
前記第2撮像筐体は前記第2撮像部を取り付けるための第2基準面を有し、
前記第1撮像筐体と前記第2撮像筐体とは、前記第1基準面と前記第2基準面とが平行であり、前記第1光学部材の光軸と前記第1基準面とが直交し、前記第2光学部材の光軸と前記第2基準面とが直交するように前記ステーに固定されることを特徴とする車載ステレオカメラ。
The in-vehicle stereo camera according to claim 1 or 2,
The first imaging housing has a first reference surface for attaching the first imaging unit,
The second imaging housing has a second reference surface for attaching the second imaging unit,
In the first imaging housing and the second imaging housing, the first reference surface and the second reference surface are parallel, and the optical axis of the first optical member and the first reference surface are orthogonal to each other. The vehicle-mounted stereo camera is fixed to the stay so that the optical axis of the second optical member and the second reference plane are orthogonal to each other.
JP2013081167A 2013-04-09 2013-04-09 Car stereo camera Active JP6114617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081167A JP6114617B2 (en) 2013-04-09 2013-04-09 Car stereo camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081167A JP6114617B2 (en) 2013-04-09 2013-04-09 Car stereo camera

Publications (3)

Publication Number Publication Date
JP2014204383A true JP2014204383A (en) 2014-10-27
JP2014204383A5 JP2014204383A5 (en) 2016-03-17
JP6114617B2 JP6114617B2 (en) 2017-04-12

Family

ID=52354438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081167A Active JP6114617B2 (en) 2013-04-09 2013-04-09 Car stereo camera

Country Status (1)

Country Link
JP (1) JP6114617B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9477143B2 (en) 2015-01-07 2016-10-25 Ricoh Company, Ltd. Camera device
JP2017108081A (en) * 2015-12-11 2017-06-15 キヤノン電子株式会社 Optical information reader
US10412274B2 (en) 2015-03-18 2019-09-10 Ricoh Company, Ltd. Imaging unit, vehicle control unit and heat transfer method for imaging unit
JP2019190877A (en) * 2018-04-19 2019-10-31 株式会社東芝 Stereo camera device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176267A (en) * 2003-12-15 2005-06-30 Fuji Xerox Co Ltd Image scanner
JP2009278488A (en) * 2008-05-16 2009-11-26 Ricoh Co Ltd Imaging unit, image reader and image forming apparatus
JP2010041373A (en) * 2008-08-05 2010-02-18 Panasonic Corp Camera module and stereo camera
JP2011123078A (en) * 2004-11-15 2011-06-23 Hitachi Automotive Systems Ltd Stereo camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176267A (en) * 2003-12-15 2005-06-30 Fuji Xerox Co Ltd Image scanner
JP2011123078A (en) * 2004-11-15 2011-06-23 Hitachi Automotive Systems Ltd Stereo camera
JP2009278488A (en) * 2008-05-16 2009-11-26 Ricoh Co Ltd Imaging unit, image reader and image forming apparatus
JP2010041373A (en) * 2008-08-05 2010-02-18 Panasonic Corp Camera module and stereo camera

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9477143B2 (en) 2015-01-07 2016-10-25 Ricoh Company, Ltd. Camera device
US10412274B2 (en) 2015-03-18 2019-09-10 Ricoh Company, Ltd. Imaging unit, vehicle control unit and heat transfer method for imaging unit
JP2017108081A (en) * 2015-12-11 2017-06-15 キヤノン電子株式会社 Optical information reader
JP2019190877A (en) * 2018-04-19 2019-10-31 株式会社東芝 Stereo camera device
JP7114316B2 (en) 2018-04-19 2022-08-08 株式会社東芝 stereo camera device

Also Published As

Publication number Publication date
JP6114617B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
KR100917514B1 (en) Stereo camera
US9854225B2 (en) Imaging unit including a chassis and heat transfer member
CN105933576B (en) Camera module and photographic device
JP6114617B2 (en) Car stereo camera
JP6627471B2 (en) Imaging unit, vehicle control unit, and heat transfer method of imaging unit
JP5793122B2 (en) In-vehicle image processing device
CN105763772B (en) Camera system
US11067875B2 (en) Stereo camera device
JP2009068906A (en) Distance measuring apparatus
WO2014050282A1 (en) Stereo camera device
US10237457B2 (en) Light receiving apparatus having body and exterior portion secured to mount
JP2018189773A (en) On-vehicle camera
US20140267621A1 (en) Stereo camera unit
WO2016170911A1 (en) Imaging device
JP2015198224A (en) Holding structure of substrate
JP2010224298A (en) Imaging apparatus
JP2008261974A (en) Imaging system
KR102615446B1 (en) Temperature abnormality detection device
JP2010041373A (en) Camera module and stereo camera
JP2021021939A (en) Imaging unit and vehicle control unit
JP2020112750A (en) Camera device
JP5942038B2 (en) Stereo camera device
JP6430586B2 (en) Stereo vision system for cars
US20240137478A1 (en) Stereo camera apparatus
JP2008263340A (en) Imaging system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170317

R150 Certificate of patent or registration of utility model

Ref document number: 6114617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170927

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250