JP2014202199A - Utilization method for hot exhaust water and high temperature waste heat of thermal power plant - Google Patents

Utilization method for hot exhaust water and high temperature waste heat of thermal power plant Download PDF

Info

Publication number
JP2014202199A
JP2014202199A JP2013082118A JP2013082118A JP2014202199A JP 2014202199 A JP2014202199 A JP 2014202199A JP 2013082118 A JP2013082118 A JP 2013082118A JP 2013082118 A JP2013082118 A JP 2013082118A JP 2014202199 A JP2014202199 A JP 2014202199A
Authority
JP
Japan
Prior art keywords
salt
heat
waste
water
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013082118A
Other languages
Japanese (ja)
Other versions
JP6089251B2 (en
Inventor
村原正隆
Masataka Murahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hikari Energy Kaihatsu Kenkyusho Kk M
M Hikari and Energy Laboratory Co Ltd
Original Assignee
Hikari Energy Kaihatsu Kenkyusho Kk M
M Hikari and Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikari Energy Kaihatsu Kenkyusho Kk M, M Hikari and Energy Laboratory Co Ltd filed Critical Hikari Energy Kaihatsu Kenkyusho Kk M
Priority to JP2013082118A priority Critical patent/JP6089251B2/en
Publication of JP2014202199A publication Critical patent/JP2014202199A/en
Application granted granted Critical
Publication of JP6089251B2 publication Critical patent/JP6089251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a theme for manufacturing metallic sodium applied for alternative energy in place of fossil fuel under utilization of waste heat occupying approximately 50% of a thermal power plant while keeping a cooling effect irrespective of uneconomical state not utilizing abundant heat stored medium as well as tremendous amount of influence of this large amount of hot water discharged into the sea after sea water of 40 tons per 1 second is increased by 7°C and discharged into the sea so as to get an electrical power of 100 MW at a thermal power plant.SOLUTION: Tubules in a condenser through which cooling sea water circulates are divided into an upper circuit and a lower circuit, a speed of brine flowing in the upper circuit is delayed to increase heat storage amount for sea water and make high temperature sea water, then distilled water and concentrated seawater are efficiently recovered. The concentrated seawater is used for manufacturing metallic sodium under application of waste heat of a power plant, surplus electrical power and midnight power and so energy resources can be recovered.

Description

火力発電所の廃棄温海水と高温廃熱を利用したエネルギー資源回収方法に関する。 The present invention relates to a method for recovering energy resources using waste thermal seawater and high temperature waste heat from thermal power plants.

我が国の原発や火力発電所は沿岸に設備されている。理由は、海水を冷却水として使うからである。その量は“超莫大”で、2008年度の統計によると、原子力発電量を除いた火力発電量は1.79億kWすなわち、100万kWの発電機が179基在ることに匹敵する。この火力発電所で冷却水として海水を1秒間に40トン必要であるから、約7,200トン/秒が使われ、1日で約6億トンが海に捨てられていることになる。東京ドームの容積が120万トンであるから、日本中で1日で東京ドーム約500杯分の海水が利用されずに海に捨てられていることに成る。これら火力発電所で冷却水としてくみ上げた海水が約7℃上昇したのち海に戻される。この排海水に蓄熱されたエネルギーの有効利用が必要であることは勿論であるが、休み無く莫大な量の高温水が海に戻されることは、海の生態系や地球の温暖化に重大な影響を与えていると考える。 Our nuclear power plants and thermal power plants are installed on the coast. The reason is that seawater is used as cooling water. The amount is “extremely large” and according to the statistics of 2008, the thermal power generation amount excluding nuclear power generation amounted to 179 million kW, or 179 generators with 1 million kW. This thermal power plant requires 40 tons of seawater as cooling water per second, so about 7,200 tons / second is used, and about 600 million tons are discarded in the sea every day. Since the Tokyo Dome has a capacity of 1.2 million tons, it means that about 500 cups of Tokyo Dome in Japan will be thrown away into the sea without being used in one day. Seawater pumped up as cooling water at these thermal power plants rises by about 7 ° C and then returns to the sea. Of course, effective use of the energy stored in the wastewater is necessary, but the return of a huge amount of high-temperature water to the sea without a break is crucial for the marine ecosystem and global warming. I think it has an impact.

原子力発電所の温排水の熱を直接利用する試みとして、株式会社日立エンジニアリングサービスの金子らは特許文献1「発電所の融雪装置」(特許公開2003−328309)において、発電施設から出る温排水を、海水ポンプで、発電所施設内に敷設された融雪配管に圧送して除雪を行うことを開示している。鹿島建設株式会社の小山らは特許文献2「土壌加温緑化法」(特許公開平10−295−197)において、非透水性の断熱性発泡資材で囲まれた植栽エリア内の下層部を廃熱水を循環させて、土壌を加温することにより、冬季の公園やグリーンベルト、花壇、屋上、水辺などを緑化することが開示されている。株式会社日立製作所の千野らは特許文献3「凝縮器」(特許公開平5−64703)において、発電所の復水器からの温排水を減圧して凝縮させ、純水製造する方法を開示している。株式会社東芝の伊藤らは特許文献4「養殖システム」(特許公開2003−284449)において、原発の復水器からの温排水で、別途汲みあげた海洋深層水を加温して、海洋水産物を養殖育成することを開示している。株式会社東芝の伊藤らは特許文献5「風力発電プラント」(特許公開2004−44508)において、原子力発電プラントの外部電源が喪失した場合にも、風力発電を非常用電源として機能させることが開示されている。本願発明者は、特許文献6「オンサイト統合工場」(WO 2008/142995)および非特許文献1「“風力よ”エタノール化からトウモロコシを救え<風力発電による海洋資源回収と洋上工場」と非特許文献2の「Climate Change and sustainable Development (第19章)」において、海水から化石燃料の代替エネルギー源としての金属ナトリウムを回収する製造工程で、真水、塩酸、硫酸、マグネシウムを副産物として得、かつ主製造物の金属ナトリウムに水を注ぎ、発生させた水素で、水素燃焼発電を行い、この加水分解で生成する副産物の苛性ソーダを化学工業薬品とし、あるいはこの苛性ソーダを再度溶融塩電気分解してナトリウムを再生産することにより、核燃料サイクルと同じように燃料の再供給の必要が無い、水素/ナトリウム燃料サイクルについて開示している。 As an attempt to directly use the heat of the hot effluent of a nuclear power plant, Kaneko et al. Of Hitachi Engineering Service Co., Ltd. disclosed in Japanese Patent Application Laid-Open No. 2003-328309 the hot effluent from a power generation facility. In addition, it discloses that snow is removed by pumping to a snow melting pipe laid in a power plant facility with a seawater pump. Koyama et al. Of Kashima Construction Co., Ltd. in Patent Document 2 “Soil Heating Greening Method” (Patent Publication No. 10-295-197) describes the lower layer in a planting area surrounded by a non-permeable heat insulating foam material. It is disclosed that greening of winter parks, green belts, flower beds, rooftops, watersides, etc. is performed by circulating waste hot water and heating the soil. Chino et al. Of Hitachi, Ltd. disclosed a method for producing pure water by depressurizing and condensing hot waste water from a condenser of a power plant in Patent Document 3 “Condenser” (Patent Publication No. 5-64703). ing. Ito et al. Of Toshiba Corporation, in Patent Document 4 “Aquaculture System” (Patent Publication 2003-284449), warms deep seawater separately pumped up with warm wastewater from the primary condenser, and produces marine marine products. Disclosure of aquaculture. Ito et al. Of Toshiba Corporation disclosed in Patent Document 5 “Wind Power Plant” (Patent Publication 2004-44508) that even when the external power source of the nuclear power plant is lost, the wind power generator functions as an emergency power source. ing. The inventor of the present application is a patent document 6 “on-site integrated factory” (WO 2008/142995) and non-patent document 1 “Reserve corn from ethanol generation” <marine resource recovery by wind power generation and offshore factory ”and non-patent In “Climate Change and sustainable Development (Chapter 19)” in Reference 2, the production process recovers metallic sodium as an alternative energy source of fossil fuel from seawater, and obtains fresh water, hydrochloric acid, sulfuric acid, and magnesium as by-products. Water is poured into the metal sodium of the product, and hydrogen combustion power generation is performed with the generated hydrogen. By-product caustic soda generated by this hydrolysis is used as a chemical industrial chemical, or this caustic soda is electrolyzed again with molten salt to produce sodium. Disclosed is a hydrogen / sodium fuel cycle that does not need to be refueled like a nuclear fuel cycle by regenerating. There.

「発電所の融雪装置」(特許公開2003−328309)"Snow melting equipment for power plants" (Patent Publication 2003-328309) 「土壌加温緑化法」(特許公開平10−295−197)"Soil warming greening method" (Patent Publication 10-295-197) 「凝縮器」(特許公開平5−64703)"Condenser" (Patent Publication 5-64703) 「養殖システム」(特許公開2003−284449)"Aquaculture system" (patent publication 2003-284449) 「風力発電プラント」(特許公開2004−44508)“Wind Power Plant” (Patent Publication 2004-44508) 「オンサイト統合工場」(WO 2008/142995)“Onsite integrated factory” (WO 2008/142995)

村原正隆・関和市 「“風力よ”エタノール化からトウモロコシを救え」パワー社出版(2007年12月発行)Masataka Murahara / Kanwa City “Wind, save corn from ethanolization” published by Power Company (December 2007) Masataka Murahara「Climate Change and sustainable Development (Chapter 19)」Edited by Ruth A. Reck, Ph.D. , Linton Atlantic Books, Ltd.(2010年3月発行)Masataka Murahara “Climate Change and sustainable Development (Chapter 19)” Edited by Ruth A. Reck, Ph.D., Linton Atlantic Books, Ltd. (issued in March 2010) Masataka Murahara「Fuelling the Future/ New energy source manufactured from warm seawater discharge at nuclear power plant <sodium production for hydrogen power generation>」Edited by A.Mendez-Vilas, Brown Walker Press Boca Raton, 429-433p (2012)Masataka Murahara `` Fuelling the Future / New energy source manufactured from warm seawater discharge at nuclear power plant <sodium production for hydrogen power generation> '' Edited by A. Mendez-Vilas, Brown Walker Press Boca Raton, 429-433p (2012)

原発を海岸に建設する理由は原子炉の冷却水が得やすいためである。一般に、1基の発電機で100万kWの電力を得るために必要とする海水量は、原発で70トン/秒、火力発電で40トン/秒。したがって、原発では1日約600万トンは東京ドーム5杯分、火力発電所の346万トンは東京ドームの3杯分に相当する。しかもその廃水に蓄熱された温度は7℃以上。この大量な高温水が魚貝類や気象に与える影響は計り知れないし、豊富な蓄熱された媒体を利用しないのも非経済的である。本発明が解決しようとすることは、原子力発電所も火力発電所であるからこれら火力発電所の廃水量を減らし、かつ廃水温度を下げ、しかも廃水海水に蓄熱されたエネルギーを化石燃料の代替エネルギーと成る金属ナトリウム製造に利用することである。 The reason for constructing the nuclear power plant on the coast is that it is easy to obtain reactor coolant. Generally, the amount of seawater required to obtain 1 million kW of electricity with one generator is 70 tons / second for nuclear power generation and 40 tons / second for thermal power generation. Therefore, about 6 million tons per day at the nuclear power plant is equivalent to 5 cups of Tokyo Dome, and 3.46 million tons of thermal power plant is equivalent to 3 cups of Tokyo Dome. Moreover, the temperature stored in the wastewater is over 7 ℃. The impact of this large amount of high temperature water on fish and shellfish and the weather is immeasurable, and it is uneconomical not to use abundant heat storage media. The present invention intends to solve the problem that since nuclear power plants are also thermal power plants, the amount of waste water from these thermal power plants is reduced, the temperature of the waste water is reduced, and the energy stored in the waste water seawater is used as alternative energy for fossil fuels. It is used for the production of metallic sodium.

原発1基から廃出される温熱海水は、1日600万トンあり、その温排水には760万キロカロリーの熱エネルギーが蓄熱されている。この熱を利用しなければならない。さらに、600万トンの海水には、単純計算すると真水540万トン、ナトリウム6.5万トン、硫酸1.7万トン、マグネシウム7.7千トンが含まれている。さらに海水を7℃上昇させるための蓄熱エネルギーは420億kcalである。非特許文献3によると、現在の市価を考慮して夫々の資源を単純計算すると、真水5.4億円、ナトリウム975億円、硫酸12億円、マグネシウム31億円および海水の蓄熱エネルギーは石油換算すると3.4億円と、合計原発1基で1日約1,000億円が利用されず、海に棄てられていることになる。原発50基ならばその50倍である。原発を除いた火力発電所は180倍である。従って、日本全国の火力発電所で、1日10兆円が利用されずに海に棄てられている計算に成る。したがって、この温排水のエネルギーを有効利用して、金属ナトリウムを製造することが本発明の最大の課題である。金属ナトリウムは水を注げば瞬時に大量の水素を発生する固体であるから、本願発明では“水素の元”と命名する。この水素の元を原発や火力発電から廃棄される海水から製造し、この水素の元を火力発電所で水素燃焼発電に供することにより海に廃棄する温排水を極減させ、かつそれを電力エネルギーである“水素の元”を低価格で生産することである。 The hot seawater discharged from one nuclear power plant is 6 million tons per day, and 7.6 million kilocalories of thermal energy is stored in the hot wastewater. This heat must be used. Furthermore, 6 million tons of seawater contains 5.4 million tons of fresh water, 65,000 tons of sodium, 17,000 tons of sulfuric acid, and 77,000 tons of magnesium. Furthermore, the heat storage energy for raising seawater by 7 ℃ is 42 billion kcal. According to Non-Patent Document 3, if each resource is simply calculated in consideration of the current market price, the heat storage energy of fresh water 540 million yen, sodium 97.5 billion yen, sulfuric acid 1.2 billion yen, magnesium 3.1 billion yen and seawater This means that about 100 billion yen per day is not used and is abandoned by the sea. If it is 50 nuclear power plants, it is 50 times that. The number of thermal power plants excluding nuclear power plants is 180 times. Therefore, it is calculated that 10 trillion yen a day is not used and discarded in the ocean at thermal power plants all over Japan. Therefore, it is the greatest problem of the present invention to produce metallic sodium by effectively using the energy of this warm waste water. Since metallic sodium is a solid that generates a large amount of hydrogen instantly when water is poured, it is named “source of hydrogen” in the present invention. The source of this hydrogen is produced from seawater discarded from nuclear power plants and thermal power generation, and this hydrogen source is used for hydrogen combustion power generation at a thermal power plant to minimize the amount of hot wastewater that is discarded into the sea and to use it as power energy. This is to produce the “source of hydrogen” at a low price.

原発や火力発電所が海岸に建設される理由は、冷却海水が得られるためである。しかし電力を都市圏の電力消費地に送るためには送電線が必要である。これを、原発の目的を“ナトリウムの製造”に限定すれば、発生した電力を首都圏の電力消費地に送る送電線の必要はない。従って、冷却海水が得られる場所ならば無人島でも孤島でも良い。原発の立地を居住地域とは隔離し、そこで海水からナトリウムを製造し、陸地の電力消費地に輸送し、ナトリウムに水を加え、水素を発生させ、電力消費地の火力発電所で水素発電を行えば、二酸化炭素も放射能もないクリーンな生活環境を創成することができる。 The reason why nuclear power plants and thermal power plants are built on the coast is because of the cooling water. However, transmission lines are necessary to send power to the power consumption areas in urban areas. If the purpose of the nuclear power plant is limited to “manufacture of sodium”, there is no need for a transmission line to send the generated power to the power consumption areas in the Tokyo metropolitan area. Therefore, it may be an uninhabited island or a solitary island as long as cooling seawater can be obtained. Isolate the location of the nuclear power plant from the residential area, manufacture sodium from seawater, transport it to land-based power consumption areas, add water to sodium, generate hydrogen, and generate hydrogen power at thermal power plants in the power consumption areas If you do, you can create a clean living environment without carbon dioxide and radioactivity.

火力発電所や原発で温排水を海に大量に放水することは、生物環境や地球の温暖化に重大な影響を与える。原発の復水器を冷却するために使われた排海水の放水口での温度は7℃以上である。そこで出来うることなら、この温度差を“ゼロ”に収斂させて、生物環境や地球の温暖化防止することが必要である。 Discharging large amounts of hot wastewater into the ocean at thermal power plants and nuclear power plants has a significant impact on the biological environment and global warming. The temperature at the outlet of the wastewater used to cool the condenser of the nuclear power plant is 7 ℃ or higher. If possible, it is necessary to converge this temperature difference to “zero” to prevent biological environment and global warming.

海水を濃縮し、食塩を30%にすると水溶液電気分解で苛性ソーダを製造することができる。このためには復水器からの温排水の温度を100℃にすれば、減圧せずに蒸留水を回収し、かつ高濃度の濃縮塩を回収することができる。一般に海水を煮詰めると108℃で硫酸カルシウムの析出が始まり、180℃で塩が析出し、塩化マグネシウムがろ液として分離できる。したがって、温排水の温度を100℃にすれば海水中の水は蒸留水として、食塩は濃縮食塩として別途エネルギーを使わずに回収ができる。そこで復水器内で水蒸気を水に還元させる手段と冷却水としての海水を濃縮する手段とに役割分担させるために、復水器内で冷却水としての海水を貫流させる冷却用細管系統を、冷却水の排出温度により復水器内の中央部上下で、低温冷却水が排出される下部細管部と高温冷却水が排出される上部細管部に二分割し、上部細管部を貫流される温海水はタービン回転後の水蒸気と復水器内で熱交換した後50℃-100℃の高温海水として排出される。更に、この高温海水を減圧蒸留して真水及び濃縮塩水(20-30%)を得る。この濃縮塩水を電気分解工場に移送し、不純物としてのカルシウムイオン、マグネシウムイオン及びイオン交換膜で硫酸イオンを分離した後、そのろ液を水溶液電解して苛性ソーダを製造する。この苛性ソーダを脱水後、溶融塩電解して金属ナトリウムを製造する。一方、復水器のタービン側では水蒸気の圧力は70気圧で温度は280℃であるが、復水器を出て原子炉に戻る水の気圧は極端に低く、温度は50℃以下である。したがって、下部細管部を貫流する冷却海水は冷却のみの目的に供し、復水器内での使用後は温排水として海に放水される。 When seawater is concentrated and sodium chloride is 30%, caustic soda can be produced by aqueous electrolysis. For this purpose, if the temperature of the hot waste water from the condenser is set to 100 ° C., distilled water can be recovered without reducing the pressure, and concentrated salt with a high concentration can be recovered. In general, when seawater is boiled, precipitation of calcium sulfate begins at 108 ° C, salt precipitates at 180 ° C, and magnesium chloride can be separated as a filtrate. Therefore, if the temperature of the hot waste water is 100 ° C., the water in the seawater can be recovered as distilled water, and the salt as concentrated salt can be recovered without using energy separately. Therefore, in order to share the role between the means for reducing water vapor into water in the condenser and the means for concentrating seawater as cooling water, a cooling capillary system for allowing seawater as cooling water to flow through the condenser, Depending on the cooling water discharge temperature, the temperature is divided into two parts, the lower narrow tube section where the low-temperature cooling water is discharged and the upper thin tube section where the high-temperature cooling water is discharged, above and below the central part of the condenser. Seawater is discharged as high-temperature seawater at 50 ° C to 100 ° C after exchanging heat in the condenser with water vapor after turbine rotation. Further, this high-temperature seawater is distilled under reduced pressure to obtain fresh water and concentrated brine (20-30%). This concentrated salt water is transferred to an electrolysis factory, and calcium ions, magnesium ions as impurities and sulfate ions are separated by an ion exchange membrane, and then the filtrate is electrolyzed with an aqueous solution to produce caustic soda. After dehydrating the caustic soda, molten salt electrolysis is performed to produce metallic sodium. On the other hand, on the turbine side of the condenser, the water vapor pressure is 70 atmospheres and the temperature is 280 ° C., but the water pressure leaving the condenser and returning to the reactor is extremely low, and the temperature is 50 ° C. or less. Therefore, the cooling seawater flowing through the lower narrow pipe portion serves only for cooling, and is discharged into the sea as hot wastewater after use in the condenser.

請求項1記載の発明は、石炭火力、石油火力、LNG火力、バイオマス火力あるいは原子力などの火力発電所の燃焼ボイラーの中を循環する水を蒸発させて、水蒸気を作りこの水蒸気の力でタービンを回すために、復水器で水蒸気を冷却して気圧差を発生させ、その気圧差でタービンの回転で発電機を駆動するのが火力発電である。水蒸気発生器から発生した水蒸気は、発電用タービンを回転させた後、水蒸気を水に戻す役割を持つ復水器に導入され、復水器の中で冷却されて水に変換された後、復水器の出口から出て、夫々の発熱源に戻る。一般に、水が100℃で気体に成ると体積は約1200倍膨張し、さらに高温になれば、さらに膨張する。ところが、その水蒸気を100℃以下に冷やせば水に変わり、体積は1/1200以下に戻る。この気圧差がタービンを回し、その水蒸気が水に戻った後、ボイラーに戻す。このタービンを回すための水蒸気は、「液体+熱→水蒸気→タービンの回転運動に変換→水蒸気+冷却→液体」の工程を繰り返す。この「“+熱”」が燃料棒やボイラーである。「“+冷却”」が復水器(2次冷却水)の役目である。この2次冷却水に海水を用いるため日本の原発や火力発電所は海岸に隣接している。この冷却水としての海水の量が発電量100kW当たり40トン/秒が必要である。1日あたり345万トンである。この海水には単純計算すると真水310万トン、ナトリウム3.7万トン、硫酸0.98万トン、マグネシウム4.4千トンが含まれている。さらに海水を7℃上昇させるための蓄熱エネルギーは241億kcalが蓄えられている。これらミネラルを回収する目的で、本発明ではこの復水器の中に冷却水として海水を貫流される冷却用細管系統が、冷却水の温度により復水器内の中央部上下で低温冷却水が移送される下部細管部と高温冷却水が移送される上部細管部に二分割させた位置に設備され、下部細管部を貫流する冷却海水は冷却のみの目的に供し、復水器内での使用後は温排水として海に放水する。一方、上部細管部を貫流される高温海水は、50℃-100℃に蓄熱された後、減圧蒸留して、望ましくは多段式フラッシュ蒸留缶で減圧蒸留して蒸留水として回収する。同時に脱水された温海水は、20〜30%の濃縮海水として回収され、この濃縮海水は苛性ソーダ製造用に供される。一般に火力発電所の発電効率は40〜50%で、50%以上の熱エネルギーが棄てられている。そこで本発明では、火力発電所のガスタービンの前段を流れる超高温ガス(800℃以上)または後段から排気される高温ガス(800〜600℃)あるいは蒸気タービンの後段から排気される中高温ガス(600〜300℃)の温度雰囲気内に熱媒が充填されたパイプを備え、そのパイプの中の熱媒を介して卑金属塩を融解して、極力ジュール熱発生のための電力供給を抑制し、その分廃熱を利用して溶融塩を形成させている。本発明での主原料は海洋塩であるので、先ず発電用蒸気タービンの後段から排気される中高温ガス(600〜300℃)の廃熱で製塩を行い備蓄し、発電所の深夜電力や余剰電力とガスタービンの前段を流れる超高温ガス(800℃以上)または後段から排気される高温ガス(800〜600℃)で直接食塩を融解させて、金属ナトリウム、水素化ナトリウム、金属マグネシウムなどを製造する。また我が国で唯一自給率100%を誇る石灰岩は、格好なエネルギー源金属カルシウムや水素化カルシウムの原料である。これらの炭酸カルシウムは、石灰岩として、廃材としては鉄鋼スラグ、貝殻や甲殻類あるいは温泉水に含有する。とくに鉄鋼スラグの廃熱はこれらの融解熱としても使用できる。これら鉄鋼スラグや火力発電所の廃熱を熱媒ヒーターで融解させるために、溶融塩炉と廃熱源とをパイプで繋ぎこのパイプの中に熱倍を循環させて熱媒を介して、卑金属溶融塩を作り、少ない電力でエネルギー資源を回収することが本発明の特徴である。 The invention according to claim 1 evaporates the water circulating in the combustion boiler of a thermal power plant such as coal-fired, oil-fired, LNG-fired, biomass-fired, or nuclear power to produce steam, and the turbine is generated by the power of the steam. In order to rotate, thermal power generation is a system in which water vapor is cooled by a condenser to generate a pressure difference, and the generator is driven by the rotation of the turbine by the pressure difference. The steam generated from the steam generator is introduced into a condenser that rotates the turbine for power generation and returns the steam to water, cooled in the condenser, converted into water, and then recovered. Exit the water bottle and return to the respective heat source. In general, when water becomes a gas at 100 ° C., the volume expands by about 1200 times, and further expands at higher temperatures. However, if the water vapor is cooled to 100 ° C. or lower, it changes to water and the volume returns to 1/1200 or lower. This pressure difference turns the turbine and the water vapor returns to the water before returning it to the boiler. The steam for rotating the turbine repeats the process of “liquid + heat → steam → converted into rotational motion of the turbine → steam + cooling → liquid”. This “+ heat” is a fuel rod or boiler. “+ Cooling” is the role of the condenser (secondary cooling water). Because seawater is used for this secondary cooling water, Japanese nuclear power plants and thermal power plants are adjacent to the coast. The amount of seawater as cooling water is 40 tons / second per 100kW of power generation. It is 3.45 million tons per day. This seawater contains 3.1 million tons of fresh water, 37,000 tons of sodium, 0.98 million tons of sulfuric acid, and 44,000 tons of magnesium. Furthermore, 24.1 billion kcal is stored as heat storage energy to raise seawater by 7 ℃. For the purpose of recovering these minerals, in the present invention, a cooling capillary system through which seawater flows as cooling water in this condenser is used, and low-temperature cooling water is provided above and below the central portion of the condenser according to the temperature of the cooling water. It is installed in a position divided into two parts, the lower narrow pipe part to be transferred and the upper thin pipe part to which the high-temperature cooling water is transferred, and the cooling seawater flowing through the lower thin pipe part serves only for cooling and is used in the condenser. After that, it is discharged into the sea as warm wastewater. On the other hand, the high-temperature seawater flowing through the upper thin tube portion is stored at 50 ° C. to 100 ° C., and then distilled under reduced pressure, preferably by distillation under reduced pressure in a multistage flash distillation can and recovered as distilled water. Simultaneously dehydrated warm seawater is recovered as 20-30% concentrated seawater, and this concentrated seawater is used for caustic soda production. In general, the power generation efficiency of thermal power plants is 40-50%, and more than 50% of thermal energy is discarded. Therefore, in the present invention, an ultra-high temperature gas (800 ° C. or higher) flowing in the front stage of the gas turbine of the thermal power plant, a high-temperature gas exhausted from the rear stage (800 to 600 ° C.), or an intermediate high-temperature gas exhausted from the rear stage of the steam turbine ( 600-300 ° C) with a pipe filled with a heat medium in the temperature atmosphere, melting the base metal salt via the heat medium in the pipe, suppressing the power supply for generating Joule heat as much as possible, The molten salt is formed by utilizing the waste heat. Since the main raw material in the present invention is marine salt, salt production is first carried out with waste heat of medium and high temperature gas (600 to 300 ° C) exhausted from the latter stage of the power generation steam turbine, and the midnight power and surplus of the power plant are stored. Sodium salt, sodium hydride, magnesium metal, etc. are manufactured by melting salt directly with the high-temperature gas (800 ° C or higher) flowing in the front stage of power and gas turbines or the high-temperature gas (800-600 ° C) exhausted from the rear stage. To do. In Japan, limestone boasting the only self-sufficiency rate of 100% is a good source of calcium and metal hydride. These calcium carbonates are contained as limestone and as waste materials in steel slag, shells and shellfish or hot spring water. In particular, the waste heat of steel slag can be used as the heat of fusion. In order to melt the waste heat of these steel slag and thermal power plant with a heat medium heater, the molten salt furnace and the waste heat source are connected by a pipe, the heat double is circulated in this pipe and the base metal is melted through the heat medium. It is a feature of the present invention to make salt and recover energy resources with less power.

請求項2記載の発明は、請求項1記載の超高温ガスとは水素酸素燃焼にかかわる1700℃以上を意味する。火力発電所の熱効率は、世界で、日本が最も高く、45% である。原子力発電の場合は、30%と低い。木材チップを燃やして発電する木質バイオマス発電では更に低い20%である。一方、発電効率向上の努力も続けられ、2007年には1500℃級のLNGコンバインドサイクル発電で約59%が達成され、2016年には燃焼室の温度を1600℃級にして効率61%を目指している。ただこれでも、燃料がLNGだから二酸化炭素排出は免れない。ところが、水素の燃焼温度は3,000℃と高く、燃焼エネルギーは水素2gで、286 kJ(H2+1/2O2=H2O+286 kJ)、化石燃料を代表する炭素(C)の燃焼エネルギーは炭素12gで394 kJ(C+O2=CO2+394 kJ)なので、同じ重さで比較すると水素は炭素の4.4倍のエネルギーを有し、かつ、炭素の燃焼のように二酸化炭素(CO2)は発生せず、廃棄物は水(H2O)のみである。これが地球環境にやさしいクリーンエネルギーとして脚光を浴びる理由である。我が国では、NEDO(新エネルギー・産業技術総合開発機構)が水素の効率的利用およびガスタービン発電システムの効率向上を目指し、秋田県田代町の三菱重工ロケットエンジン試験場において、1,700℃級ガスタービンの燃焼試験に成功している。この水素燃焼タービンは燃焼系に水素ガスと酸素ガスを入れるため、発生するガスは水蒸気のみで窒素酸化物は発生しない。ガスタービン入り口のガス温度を1,700℃まで上げることで発電効率を70%も夢でない。しかし温度が1700℃以上に成るとガスタービンの熱耐性がそこまで追いつかない。そこで水素ガスとLNGの混合などで燃焼温度を低く抑える試みが行われている。
そこで本発明では、水素―酸素燃焼室とガスタービンの間に熱緩衝域として熱媒ヒーターを配備して該タービンの熱風を緩和して熱破壊を回避させ、かつ、その吸熱による800℃以上の高温を利用して食塩を直接溶融した状態で電気分解して卑金属または水素化卑金属を製造している。
In the invention described in claim 2, the ultra-high temperature gas described in claim 1 means 1700 ° C. or higher related to hydrogen-oxygen combustion. The thermal efficiency of thermal power plants is the highest in Japan, at 45%. In the case of nuclear power generation, it is as low as 30%. In woody biomass power generation, which generates electricity by burning wood chips, it is a lower 20%. On the other hand, efforts to improve power generation efficiency continued, and in 2007, approximately 59% was achieved with 1500 ° C-class LNG combined cycle power generation. In 2016, the combustion chamber temperature was set to 1600 ° C, with an aim of 61% efficiency. ing. However, carbon dioxide emissions cannot be avoided because the fuel is LNG. However, the combustion temperature of hydrogen is as high as 3,000 ° C, the combustion energy is 2g of hydrogen, 286 kJ (H 2 + 1 / 2O 2 = H 2 O +286 kJ), the combustion energy of carbon (C), which is representative of fossil fuels Is 394 kJ at 12 g of carbon (C + O 2 = CO 2 +394 kJ), so hydrogen has 4.4 times the energy of carbon when compared with the same weight, and carbon dioxide (CO 2 ) does not occur and the waste is only water (H 2 O). This is the reason why it is in the limelight as clean energy friendly to the global environment. In Japan, NEDO (New Energy and Industrial Technology Development Organization) aims to efficiently use hydrogen and improve the efficiency of the gas turbine power generation system. Combustion of 1,700 ° C class gas turbines at the Mitsubishi Heavy Industries Rocket Engine Test Station in Tashiro-cho, Akita Prefecture Successfully tested. Since this hydrogen combustion turbine puts hydrogen gas and oxygen gas into the combustion system, the generated gas is only water vapor and no nitrogen oxides are generated. By raising the gas temperature at the gas turbine entrance to 1,700 ° C, power generation efficiency is no more than 70%. However, when the temperature exceeds 1700 ° C, the heat resistance of the gas turbine cannot keep up. Therefore, attempts are being made to keep the combustion temperature low by mixing hydrogen gas and LNG.
Therefore, in the present invention, a heat medium heater is provided as a heat buffer region between the hydrogen-oxygen combustion chamber and the gas turbine to relieve the hot air of the turbine to avoid thermal destruction, and more than 800 ° C. due to the endotherm. Base metal or hydrogenated base metal is produced by electrolysis in the state that salt is directly melted using high temperature.

請求項3記載の発明は、請求項1記載の卑金属がナトリウムまたはカルシウム或はマグネシウムであるが、この理由は、本発明での主原料は海洋塩であるので、先ず中高温ガス(600〜300℃)の廃熱で製塩を行い備蓄し、発電所の深夜電力や余剰電力とガスタービンの前段を流れる超高温ガス(1600〜1200℃)または後段から排気される高温ガス(1200〜600℃)で直接食塩を融解させて、金属ナトリウム、水素化ナトリウム、金属マグネシウムなどを製造する。また我が国で唯一自給率100%を誇る石灰岩は、格好なエネルギー源金属カルシウムや水素化カルシウムの原料である。これら石灰石中には約56%の炭酸カルシウム(CaCO3)が含まれているが、更に、多い95〜98%以上含まれているのが貝殻である。この貝殻は石灰岩のような鉄分やアルミニウムなどの不純物は全く無く至って純粋な炭酸カルシウムである。例えば帆立貝を例に取ると、国内では年間21万トンが廃棄物として出るが、水素化カルシウム(CaH2)製造として有望である。 In the invention described in claim 3, the base metal described in claim 1 is sodium, calcium, or magnesium because the main raw material in the present invention is marine salt. ℃) waste heat is generated and stored, and the midnight power and surplus power of the power plant and the super high temperature gas (1600 to 1200 ° C) flowing in the front stage of the gas turbine or the high temperature gas exhausted from the rear stage (1200 to 600 ° C) The sodium chloride is directly melted in to produce metallic sodium, sodium hydride, metallic magnesium, and the like. In Japan, limestone boasting the only self-sufficiency rate of 100% is a good source of calcium and metal hydride. These limestones contain about 56% calcium carbonate (CaCO 3 ), and more than 95-98% are shells. This shell is pure calcium carbonate without any impurities such as iron and aluminum like limestone. For example, in the case of scallops, 210,000 tonnes of waste is produced annually in Japan, but it is promising for calcium hydride (CaH 2 ) production.

請求項4に記載の発明は、請求項1記載の高温ガスは、該タービンの後段に備えた熱媒の吸熱による300℃〜800℃の範囲の高温であり、食塩を直接融解するには800℃以上必要であるが、融解温度を下げる目的で、塩化ナトリウム(NaCl)を約60%と塩化カルシウム(CaCl2)を約40%の混合塩にすると融点が200℃降下して600℃で溶融塩ができるために、、該タービンの後段に備えた熱媒の吸熱による300℃〜800℃の範囲の廃熱を利用する。 According to a fourth aspect of the present invention, the hot gas according to the first aspect of the present invention is a high temperature in the range of 300 ° C. to 800 ° C. due to the endotherm of the heat medium provided in the rear stage of the turbine. More than ℃ is necessary, but for the purpose of lowering the melting temperature, if the mixed salt of sodium chloride (NaCl) is about 60% and calcium chloride (CaCl 2 ) is about 40%, the melting point drops by 200 ° C and melts at 600 ° C In order to form a salt, waste heat in the range of 300 ° C. to 800 ° C. due to heat absorption of a heat medium provided in the subsequent stage of the turbine is used.

請求項5に記載の発明は、請求項1記載の中高温ガスは、蒸気タービンの後段から排気される300℃内外の中高温ガスは比較的低温排ガスのため、熱媒も油でよく、海洋塩の脱水分離、塩水の電気分解により生成した苛性ソーダの脱水、希硫酸の脱水など化合物の脱水用に好都合な温度である。 In the invention according to claim 5, the medium and high temperature gas according to claim 1 is exhausted from the rear stage of the steam turbine, and the medium and high temperature gas inside and outside of 300 ° C. is a relatively low temperature exhaust gas. This temperature is convenient for dehydration of compounds such as dehydration separation of salts, dehydration of caustic soda generated by electrolysis of salt water, and dehydration of dilute sulfuric acid.

請求項6に記載の発明は、高温用熱媒としての易融金属としてHg、Na、Na-K、Li、Pb、Pb-Biなどがあうが、鉛(Pb)以外は危険性を伴う金属である。この鉛はこれら易融金属の中で最も価格が安く、扱いも楽である。ただし、鉛が液体である温度範囲が350〜900(1,750)℃であるから、予め加熱を施し、溶融状態にしておかねば熱媒ヒーターとして働かない。そこで請求項1記載の熱媒として鉛(Pb)を使用するに際し、熱媒ヒーターのパイプを、2または3重管構造にして、始動段階では、内管にPbを流し、中管にはHTS(NaNO2, NaNO3,KNO3 などの混合物:200〜500℃)を流し、外管に油を循環させる。 In the invention described in claim 6, there are Hg, Na, Na-K, Li, Pb, Pb-Bi, etc. as the fusible metal as the heat medium for high temperature, but metals other than lead (Pb) are dangerous. It is. This lead is the cheapest and easy to handle among these fusible metals. However, since the temperature range in which lead is liquid is 350 to 900 (1,750) ° C., it does not work as a heat medium heater unless it is preliminarily heated and melted. Therefore, when using lead (Pb) as the heat medium according to claim 1, the heat medium heater pipe has a double or triple pipe structure, and Pb is allowed to flow through the inner pipe and HTS into the middle pipe at the start-up stage. (NaNO 2 , NaNO 3 , KNO 3 etc. mixture: 200-500 ° C.) is allowed to flow and oil is circulated through the outer tube.

請求項7に記載の発明は、請求項1記載の製法で生成した第2属金属または第1属及び2属金属の水素化物は高融点であるため自然冷却を余儀なくされる。しかし、この廃熱が勿体無い。そこでこれらの熱を熱媒ヒーターで吸熱し、この廃熱で食塩水の脱水を行い製塩を行う。 According to the seventh aspect of the present invention, since the Group 2 metal or the hydride of the Group 1 and Group 2 metal produced by the manufacturing method according to the first aspect has a high melting point, natural cooling is unavoidable. However, there is no waste of this waste heat. Therefore, the heat is absorbed by a heat medium heater, and salt water is dehydrated with this waste heat to produce salt.

請求項8に記載の発明は、福島県や宮城県などの津波災害を受けた地域の休眠中の原子力発電所を地域復興に役立たせるための提案である。原発1基から廃出される温熱海水は、1日600万トンあり、その温排水には760万キロカロリーの熱エネルギーが蓄熱されている。この熱を利用しなければならない。さらに、600万トンの海水には、単純計算すると真水540万トン、ナトリウム6.5万トン、硫酸1.7万トン、マグネシウム7.7千トンが含まれている。さらに海水を7℃上昇させるための蓄熱エネルギーは420億kcalである。非特許文献3によると、現在の市価を考慮して夫々の資源を単純計算すると、真水5.4億円、ナトリウム975億円、硫酸12億円、マグネシウム31億円および海水の蓄熱エネルギーは石油換算すると3.4億円と、合計原発1基で1日約1,000億円が利用されず、海に棄てられていることになる。これが福島第2原発では4基(440万kW)、女川原発では3基(217.4万kW)が休眠中で有る。とくに福島第2原発は、福島第1原発の廃炉作業用電力供給にも役立つと考える。そこで地域で復興に利用できる発電量を考慮して、復水器から廃棄される温排水の一部をフラッシュ減圧蒸留して得られた蒸留水を地区割り壁で仕切り、昼夜となく広範囲な塩害土壌の洗浄を行い、夜間は昼間製造した食塩を深夜電力と原子炉の廃熱とで溶融塩電気分解を行い金属ナトリウムを生産し備蓄又は電池用に販売し、昼間は電力を首都圏に送配電する一方、原子炉の廃熱を用い、深夜電力で製造する金属ナトリウム用原料としての食塩を製造する。 The invention according to claim 8 is a proposal for making use of a dormant nuclear power plant in a region affected by a tsunami disaster such as Fukushima Prefecture and Miyagi Prefecture for regional reconstruction. The hot seawater discharged from one nuclear power plant is 6 million tons per day, and 7.6 million kilocalories of thermal energy is stored in the hot wastewater. This heat must be used. Furthermore, 6 million tons of seawater contains 5.4 million tons of fresh water, 65,000 tons of sodium, 17,000 tons of sulfuric acid, and 77,000 tons of magnesium. Furthermore, the heat storage energy for raising seawater by 7 ℃ is 42 billion kcal. According to Non-Patent Document 3, if each resource is simply calculated in consideration of the current market price, the heat storage energy of fresh water 540 million yen, sodium 97.5 billion yen, sulfuric acid 1.2 billion yen, magnesium 3.1 billion yen and seawater This means that about 100 billion yen per day is not used and is abandoned by the sea. This is 4 units (4.4 million kW) at the Fukushima No. 2 plant and 3 units (2.174 million kW) at the Onagawa plant. In particular, the Fukushima No. 2 nuclear power plant is also useful for supplying power for decommissioning work at the Fukushima Daiichi nuclear power plant. Therefore, taking into account the amount of power generation that can be used for reconstruction in the region, distilled water obtained by flash vacuum distillation of a portion of the hot wastewater that is discarded from the condenser is partitioned by a partition wall, and a wide range of salt damage can be achieved day and night. The soil is washed, and salt produced during the daytime is electrolyzed with molten salt using midnight power and the waste heat of the reactor to produce metallic sodium and sold for stockpiling or batteries.In the daytime, power is sent to the Tokyo metropolitan area. While distributing electricity, the waste heat of the reactor is used to produce salt as a raw material for metallic sodium produced by midnight power.

請求項9に記載の発明は、津波災害や放射能汚染地域から出た木材や伐採された樹木チップを処理するバイオマス火力発電所を無人島に設立することを提案する。バイオマス発電所の立地場所は原発と異なり火山島でも良い。一般には発電所は生産した電力を消費地に輸送するために、送電線を必要とした。ところが発電所の設置目的を“ナトリウムの備蓄”に限定すれば、電力を首都圏の電力消費地に輸送する送電線の必要はない。また島であれば原料の海水に事欠かない。木材チップの放射能汚染の心配も問題にならない。当該発電所の復水器から排出される温海水から得た蒸留水は飲料水や工業用水として近隣諸国にタンカーで移送すれば国際貢献に繋がる。またナトリウムは電力用燃料として備蓄することができる。 一般に、バイオマス発電の効率は高々20%であり、80%が廃熱として大気中に捨てられている。この廃熱を金属ナトリウムや苛性ソーダあるいは製塩に利用して効率を90%にあげることが、福島の出稼ぎ発電所であると考える。 The invention according to claim 9 proposes to establish a biomass thermal power plant on an uninhabited island for processing timber from a tsunami disaster or a radioactively contaminated area or a felled tree chip. Unlike the nuclear power plant, the location of the biomass power plant may be a volcanic island. In general, power plants required a transmission line to transport the produced power to the consumption area. However, if the purpose of installing the power plant is limited to “sodium stock”, there is no need for a transmission line to transport power to the power consumption areas in the Tokyo metropolitan area. If it is an island, there is no shortage of raw seawater. The concern about radioactive contamination of wood chips is not a problem. Distilled water obtained from warm seawater discharged from the condenser of the power plant will contribute to international contribution if it is transported to neighboring countries as drinking water or industrial water by tankers. Sodium can be stored as power fuel. In general, the efficiency of biomass power generation is at most 20%, and 80% is discarded as waste heat in the atmosphere. Using this waste heat for metallic sodium, caustic soda or salt production to increase the efficiency to 90% is considered to be a migrant power plant in Fukushima.

上記のように、本発明によれば、原子力発電や火力発電で冷却のために汲み上げた海水の有効利用の方法として、海に戻される莫大な量の温熱海水に蓄熱された熱エネルギーを廃熱すること無く、その熱で蒸留水と濃縮海水を回収し、その濃縮海水を、発電で得られた電力を用い、電気分解して、化石燃料の代替エネルギーと成り得る金属ナトリウムを製造することができる。そして金属ナトリウムを備蓄して、火力発電所で加水分解により発生させた水素で水素燃焼発電を行い、廃棄物として得られる苛性ソーダは化学工業用薬品として供給する。さらに金属ナトリウム製造過程で得られる副産物の真水、塩酸、硫酸、マグネシウムは従来大電力を用いて製造していた製品である。これが只同然で得られるのだから経済効果大である。とくに海水の濃縮物から得られる金属ナトリウムは石油の代替エネルギーとして、枯渇の心配もなく、地域偏存も無いエネルギー資源として、資源戦争の無い世界建設に貢献すると考える。 As described above, according to the present invention, as a method of effectively using seawater pumped up for cooling by nuclear power generation or thermal power generation, heat energy stored in a huge amount of hot seawater returned to the sea is waste heat. Without using water, distilled water and concentrated seawater can be recovered using the heat, and the concentrated seawater can be electrolyzed using the power generated by power generation to produce metallic sodium that can serve as alternative energy for fossil fuels. it can. Then, metal sodium is stored, hydrogen combustion power generation is performed with hydrogen generated by hydrolysis at a thermal power plant, and caustic soda obtained as waste is supplied as chemicals for the chemical industry. In addition, by-products such as fresh water, hydrochloric acid, sulfuric acid, and magnesium obtained during the metal sodium manufacturing process are products that have been manufactured using high power. Since this can be obtained in the same way, the economic effect is great. In particular, metallic sodium obtained from seawater concentrate is considered to contribute to the construction of a world free of resource warfare as an alternative energy source for oil, as an energy resource without fear of depletion, and without local unevenness.

火力発電所の廃棄温海水および廃熱を利用するための系統概略図。The system schematic for utilizing the waste warm seawater and waste heat of a thermal power plant.

以下、本発明の効果的な実施の形態を図1に基づいて詳細に説明する。 Hereinafter, an effective embodiment of the present invention will be described in detail with reference to FIG.

図1は火力発電所の廃棄温海水および廃熱を利用するための系統概略図である(請求項1の説明図)。
本願発明は、火力発電の水素燃焼コンバインドサイクル発電で得られた熱風でガスタービンを回転し、かつボイラーで発生した熱により得られた水蒸気で水蒸気タービンを回転して発電機を駆動して発電するものである。先ず、耐熱温度が1,700℃以上のタービンを有する水素燃焼コンバインドサイクル発電施設は、水素発生施設25で備蓄金属ナトリウム22に真水15を滴下して発生した水素25を、水素燃焼コンバインドサイクル発電施設23に送り、酸素26と共に燃焼器27で燃焼させる。この水素発生施設24の中に石油(軽油又は灯油)30は金属ナトリウム22の加水分解を制御するための触媒としての働きも有している。コンバインドサイクル発電の特徴は、同じ出力の蒸気タービンより始動時間が短く、かつガスタービンの排気からも熱を回収するため、熱効率が高い。燃焼器27で燃焼した水素25と酸素26の高温ガスはガスタービン28を回転させて発電機21を駆動させてガスタービン発電を行った後、ボイラーを加熱した後、排ガスは圧縮機29で圧縮された後再び燃焼室に戻る。他方、ボイラー19で作られた水蒸気で、蒸気タービン20を回転させて発電機21を回転させて水蒸気タービン発電を行う。水蒸気タービン20を駆動させた水蒸気は、水蒸気入り口1から復水器2に入り低温水出口3から出て、夫々の発熱源に戻る1次冷却水4のループと、海から汲みあげた海水(2次冷却水)5は上部細管6と下部細管7の2方向に分かれ、下部細管7を貫流した冷たい海水(2次冷却水)5は温排水8となり海に放水される。他方、真水と濃縮海水を回収するための海水(2次冷却水)5は上部細管6に入る前に、フラッシュ減圧蒸留缶9の中の凝縮用コイル10を通り、上部細管6に入り、1次冷却水4で加熱され50〜100℃の高温海水11に蓄熱されてフラッシュ減圧蒸留缶9に入る。このフラッシュ減圧蒸留缶9は、高温海水11の温度に応じた飽和水蒸気圧に対応し減圧され、50℃では100mmHg、80℃では350mmHg、90℃では510mmHg、100℃では760mmHg(1気圧)の気圧で発生した水蒸気(濃縮塩水からの水蒸気)12はコイル10で冷却され、凝縮して露結した蒸留水13は真水受け皿14で集められ真水(蒸留水)15が得られる。一方減圧蒸留により脱水された高温海水(50〜100℃)11は約20〜30%の高濃度濃縮塩水16になり、硫酸製造工場(電気分解工場)17に送られる。この20〜30%濃縮塩水は脱Ca,脱Mg,イオン交換膜で硫酸を分離して希硫酸18を製造する。
火力発電での発電効率は高々50%で、40〜50%の熱が廃棄されている。そこで本発明では、火力発電所のガスタービンの前段を流れる超高温ガス(800℃以上)または後段から排気される高温ガス(800〜600℃)あるいは蒸気タービンの後段から排気される中高温ガス(600〜300℃)の温度雰囲気内に熱媒が充填されたパイプを備え、そのパイプの中の熱媒を介して卑金属塩を融解して、極力ジュール熱発生のための電力供給を抑制し、その分廃熱を利用して溶融塩を形成させている。本発明での主原料は海洋塩であるので、先ず発電用蒸気タービン20の後段から排気される中高温ガス(600〜300℃)の廃熱を中高温熱媒ヒーター35で吸収した熱を製塩工場36に送り、熱媒ヒーター37で濃縮海洋塩38を脱水してNaCl、CaCl2、MgCl2を分別回収する。この製塩工場で製造した食塩は備蓄され、必要に応じて金属ナトリウムや苛性ソーダ用原料として供給する。同時に中高温熱媒ヒーター35の廃熱は苛性ソーダ製造工場(食塩水の電気分解)39において、製塩工場36で製造した食塩に水15を加えて調合した30%食塩水を80℃内外で水溶液電気分解を行い苛性ソーダ32を製造する。一般に深夜は電力が余る。そこで深夜電力や余剰電力を用い、ガスタービンの前段を流れる超高温ガス(800℃以上)を用いるために、超高温熱媒ヒーター33で吸熱した熱媒(Pb)を介して高温溶融塩電気分解工場40に送り、製塩工場36で製造した食塩を超高温溶融塩熱媒ヒーター33により溶融塩電気分解炉42を加熱して金属ナトリウム22を製造する。他方ガスタービン28の後段から排気される高温ガス(800〜600℃)の廃熱を高温熱媒ヒーター34で吸収して高温溶融塩電気分解工場41に送り、苛性ソーダ32を溶融塩電気分解するか食塩と塩化カルシウムの混合塩を溶融塩電気分解して共に金属ナトリウム22を製造する。またこの工場で製造した金属ナトリウム22に水素25を化合させて水素化金属43を製造する。同様に金属マグネシウムも製造する。また我が国で唯一自給率100%を誇る石灰岩から、金属カルシウムや水素化カルシウムを製造する。
FIG. 1 is a schematic diagram of a system for using waste thermal seawater and waste heat of a thermal power plant (an explanatory diagram of claim 1).
In the present invention, the gas turbine is rotated by hot air obtained by hydrogen combustion combined cycle power generation of thermal power generation, and the steam turbine is rotated by steam generated by the heat generated in the boiler to drive the generator to generate power. Is. First, a hydrogen combustion combined cycle power generation facility having a turbine with a heat-resistant temperature of 1,700 ° C. or more is supplied with hydrogen 25 generated by dripping fresh water 15 into the storage metal sodium 22 in the hydrogen generation facility 25 to the hydrogen combustion combined cycle power generation facility 23. It is fed and burned in the combustor 27 together with the oxygen 26. In the hydrogen generation facility 24, petroleum (light oil or kerosene) 30 also functions as a catalyst for controlling the hydrolysis of the metallic sodium 22. The combined cycle power generation is characterized in that the start-up time is shorter than that of a steam turbine of the same output and heat is recovered from the exhaust of the gas turbine, so that the thermal efficiency is high. The high-temperature gas of hydrogen 25 and oxygen 26 combusted in the combustor 27 rotates the gas turbine 28 to drive the generator 21 to perform gas turbine power generation, and after heating the boiler, the exhaust gas is compressed by the compressor 29. After that, it returns to the combustion chamber again. On the other hand, steam produced by the boiler 19 is used to rotate the steam turbine 20 and the generator 21 to perform steam turbine power generation. The steam that has driven the steam turbine 20 enters the condenser 2 from the steam inlet 1, exits the low temperature water outlet 3, returns to the respective heat source, and the primary cooling water 4 loop, and seawater pumped from the sea ( The secondary cooling water (5) is divided into two directions, an upper narrow tube (6) and a lower narrow tube (7), and the cold seawater (secondary cooling water) (5) flowing through the lower narrow tube (7) becomes warm drainage (8) and is discharged into the sea. On the other hand, seawater (secondary cooling water) 5 for recovering fresh water and concentrated seawater passes through the condensing coil 10 in the flash vacuum distillation can 9 before entering the upper capillary 6 and enters the upper capillary 6. It is heated by the next cooling water 4 and stored in the high temperature seawater 11 at 50 to 100 ° C. and enters the flash vacuum distillation can 9. This flash vacuum distillation can 9 is depressurized according to the saturated water vapor pressure corresponding to the temperature of the high temperature seawater 11, and is 100 mmHg at 50 ° C, 350 mmHg at 80 ° C, 510 mmHg at 90 ° C, and 760 mmHg (1 atm) at 100 ° C. The water vapor (water vapor from the concentrated salt water) 12 generated in the above is cooled by the coil 10, and the condensed water 13 condensed is condensed in the fresh water receiving tray 14 to obtain fresh water (distilled water) 15. On the other hand, high-temperature seawater (50 to 100 ° C.) 11 dehydrated by distillation under reduced pressure becomes high-concentration concentrated brine 16 of about 20 to 30%, and is sent to a sulfuric acid production factory (electrolysis factory) 17. This 20-30% concentrated brine produces dilute sulfuric acid 18 by separating sulfuric acid with de-Ca, de-Mg, ion exchange membrane.
Thermal power generation efficiency is at most 50%, and 40-50% of heat is wasted. Therefore, in the present invention, an ultra-high temperature gas (800 ° C. or higher) flowing in the front stage of the gas turbine of the thermal power plant, a high temperature gas (800 to 600 ° C.) exhausted from the rear stage, or an intermediate high temperature gas exhausted from the rear stage of the steam turbine ( 600-300 ° C) with a pipe filled with a heat medium in the temperature atmosphere, melting the base metal salt via the heat medium in the pipe, suppressing the power supply for generating Joule heat as much as possible, The molten salt is formed by utilizing the waste heat. Since the main raw material in the present invention is marine salt, the salt production plant first absorbs the heat of the waste heat of the medium to high temperature gas (600 to 300 ° C.) exhausted from the rear stage of the power generation steam turbine 20 by the medium and high temperature heat medium heater 35. 36, the concentrated marine salt 38 is dehydrated by the heat medium heater 37, and NaCl, CaCl 2 and MgCl 2 are separated and recovered. The salt produced at this salt factory is stored and supplied as a raw material for metallic sodium and caustic soda as needed. At the same time, the waste heat from the medium / high temperature heating medium heater 35 is obtained at the caustic soda manufacturing plant (electrolysis of salt water) 39 by electrolyzing 30% salt water prepared by adding water 15 to the salt produced at the salt manufacturing plant 36 at 80 ° C inside and outside. To produce caustic soda 32. Generally, power is surplus at midnight. Therefore, high-temperature molten salt electrolysis is performed via the heat medium (Pb) that absorbs heat in the ultra-high-temperature heat medium heater 33 in order to use ultra-high-temperature gas (800 ° C or higher) flowing in the front stage of the gas turbine using midnight power or surplus power. The salt produced in the salt production factory 36 is sent to the factory 40, and the molten salt electrolysis furnace 42 is heated by the super high temperature molten salt heating medium heater 33 to produce the metallic sodium 22. On the other hand, the waste heat of the high-temperature gas (800 to 600 ° C.) exhausted from the rear stage of the gas turbine 28 is absorbed by the high-temperature heat medium heater 34 and sent to the high-temperature molten salt electrolysis factory 41 to electrolyze the caustic soda 32. Sodium metal 22 is produced by electrolyzing a mixed salt of sodium chloride and calcium chloride with molten salt. In addition, metal hydride 43 is produced by combining hydrogen 25 with metal sodium 22 produced in this factory. Similarly, magnesium metal is produced. In addition, it produces metal calcium and calcium hydride from limestone that boasts the 100% self-sufficiency in Japan.

石油や石炭が燃料として君臨できた理由は、それらが軽く、かつ長期貯蔵や長距離輸送ができたからである。しかし、石油も石炭も可採年数は限られ、しかも二酸化炭素を排出する。これとは対照的に、水素は可採年数が無限で、二酸化炭素を出さず、クリーンで環境にも優しい燃料である。ところが、水素自身は軽いにも拘らず、水素を貯蔵する容器(ボンベ)や吸蔵合金が重過ぎて運搬には不向きである。そこで、“水素”を“水素の元(ナトリウム)”に変換した。このナトリウムは、海水や岩塩として世界中に広く分布し、枯渇の心配も偏存の心配も無い。一方、原子力発電や火力発電では、冷却のために汲み上げた莫大な量の海水が、高温のまま海洋放棄されている。この蓄熱された熱エネルギーを利用し、蒸留水と濃縮海水を回収し、その濃縮海水を、電気分解して、化石燃料の代替エネルギーとしての金属ナトリウムを製造備蓄して、電力需要時に火力発電所で発生させた水素で水素燃焼発電を行う。廃棄物として得られる苛性ソーダは化学工業用薬品として供給する。さらに金属ナトリウム製造過程で得られる副産物の真水、塩酸、硫酸、マグネシウムは従来大電力を用いて製造していた製品である。これが只同然で得られため経済効果大である。とくに海水から得られる金属ナトリウムは石油の代替エネルギーとして、枯渇の心配もなく、地域偏存も無い電力を生み出す資源として、我が国の産業へ多大の貢献ができる。 The reason why oil and coal have reigned as fuel is that they are light and can be stored for a long time and transported over long distances. However, both oil and coal are available for a limited number of years and emit carbon dioxide. In contrast, hydrogen is a clean and environmentally friendly fuel that has an indefinite life and does not emit carbon dioxide. However, although hydrogen itself is light, containers (cylinders) for storing hydrogen and storage alloys are too heavy to be suitable for transportation. Therefore, “hydrogen” was converted to “source of hydrogen (sodium)”. This sodium is widely distributed around the world as seawater and rock salt, and there is no worry about depletion or uneven distribution. On the other hand, in nuclear power generation and thermal power generation, a huge amount of seawater pumped for cooling is abandoned at high temperatures. Using this stored thermal energy, distilled water and concentrated seawater are recovered, and the concentrated seawater is electrolyzed to produce and store metallic sodium as an alternative energy for fossil fuels. Hydrogen-fired power generation using hydrogen generated in Caustic soda obtained as waste is supplied as chemical industry chemicals. In addition, by-products such as fresh water, hydrochloric acid, sulfuric acid, and magnesium obtained during the metal sodium manufacturing process are products that have been manufactured using high power. Since this is almost the same, it has a great economic effect. In particular, metallic sodium obtained from seawater can greatly contribute to Japan's industry as an alternative energy source for oil, as a resource for generating electricity without worrying about depletion and without local distribution.

1 水蒸気入り口
2 復水器
3 低温水出口
4 夫々の発熱源に戻る1次冷却水
5 海から汲みあげた海水(2次冷却水)
6 上部細管
7 下部細管
8 温排水
9 フラッシュ減圧蒸留缶
10 凝縮用コイル
11 高温海水(50〜100℃)
12 水蒸気(濃縮塩水からの水蒸気)
13 凝縮して露結した蒸留水
14 真水受け皿
15 真水
16 高濃度濃縮塩水(20〜30%)
17 硫酸製造工場(電気分解工場)
18 希硫酸
19 ボイラー
20 蒸気タービン
21 発電機
22 金属ナトリウム(Na)
23 水素燃焼コンバインドサイクル発電施設
24 水素発生施設
25 水素
26 酸素
27 燃焼器
28 ガスタービン
29 圧縮機
30 軽油
31 苛性ソーダ
32 苛性ソーダ貯蔵庫
33 超高温熱媒ヒーター
34 高温熱媒ヒーター
35 中高温熱媒ヒーター
36 製塩工場
37 製塩用熱媒ヒーター
38 濃縮海洋塩
39 苛性ソーダ製造工場(食塩水の電気分解)
40 超高温溶融塩電気分解工場
41 高温溶融塩電気分解工場(NaOH or 食塩塩化カルシウム混合塩)
42 溶融塩電気分解炉
43 水素化金属
44 塩酸
36 製塩工場
37 製塩用熱倍ヒーター
38 濃縮海洋塩
39 苛性ソーダ製造工場(食塩水の電気分解)
40 高温溶融塩電気分解工場
41 中温溶融塩電気分解工場(NaOH or 食塩塩化カルシウム混合塩)
42 電気分解炉
43 水素化金属
44 塩酸
1 Steam inlet 2 Condenser
3 Low temperature water outlet 4 Primary cooling water returning to the respective heat source 5 Seawater pumped from the sea (secondary cooling water)
6 Upper narrow tube 7 Lower thin tube 8 Warm drainage 9 Flash vacuum distillation can 10 Condensation coil 11 High temperature seawater (50-100 ° C)
12 Water vapor (water vapor from concentrated salt water)
13 Condensed and condensed distilled water 14 Fresh water tray 15 Fresh water 16 Concentrated salt water (20-30%)
17 Sulfuric acid production plant (electrolysis plant)
18 Dilute sulfuric acid 19 Boiler 20 Steam turbine 21 Generator 22 Metal sodium (Na)
23 Hydrogen Combustion Combined Cycle Power Generation Facility 24 Hydrogen Generation Facility 25 Hydrogen 26 Oxygen 27 Combustor 28 Gas Turbine 29 Compressor 30 Light Oil 31 Caustic Soda 32 Caustic Soda Storage 33 Super High Temperature Heat Medium Heater 34 High Temperature Heat Medium Heater 35 Medium High Temperature Heat Medium Heater 36 Salt Factory 37 Heat medium heater for salt production 38 Concentrated marine salt 39 Caustic soda production plant (electrolysis of saline solution)
40 Ultra High Temperature Molten Salt Electrolysis Plant 41 High Temperature Molten Salt Electrolysis Plant (NaOH or calcium chloride mixed salt)
42 Molten salt electrolysis furnace 43 Metal hydride 44 Hydrochloric acid 36 Salt production plant 37 Salt-making heat doubler heater 38 Concentrated marine salt 39 Caustic soda production plant (electrolysis of salt water)
40 High-temperature molten salt electrolysis plant 41 Medium-temperature molten salt electrolysis plant (NaOH or calcium chloride mixed salt)
42 Electrolysis furnace 43 Metal hydride 44 Hydrochloric acid

Claims (9)

火力発電所の表面復水器から廃棄される温海水あるいは鉄鋼スラグ中の消石灰または貝殻などを、火力発電所のタービン駆動の廃熱または余熱を用いて該温海水に溶存する周期表1属および2属元素から成る金属または水素化金属を電解生成するに際し、火力発電所のガスタービンの前段を流れる超高温ガスまたは後段から排気される高温ガスあるいは高温鉄鋼スラグなどを巡回パイプ内の熱媒を介して溶融塩電気分解炉を加熱させ、or/and火力発電所の蒸気タービンの後段から排気される中高温ガスを巡回パイプ内の熱媒を介して、海洋塩の脱水分離を行うことを特徴とする廃棄温海水や産業廃棄物からのエネルギー資源回収方法。 Periodic table 1 genus in which warm seawater discarded from the surface condenser of a thermal power plant or slaked lime or shells in steel slag is dissolved in the warm seawater using the waste heat or residual heat of the turbine drive of the thermal power plant When electrolytically generating metal or metal hydride consisting of group 2 elements, heat medium in the circulating pipe is used for the high temperature gas flowing in the front stage of the gas turbine of the thermal power plant, the high temperature gas exhausted from the rear stage, or the high temperature steel slag. The molten salt electrolysis furnace is heated through the medium, and the high-temperature gas exhausted from the rear stage of the steam turbine of the or / and thermal power plant is dehydrated and separated from the marine salt through the heat medium in the circulation pipe. Energy resource recovery method from waste warm seawater and industrial waste. 請求項1記載の超高温ガスは水素酸素燃焼にかかわる1700℃以上を意味し、該タービンの前段に備えた熱媒に吸熱させて該タービンの熱風を緩和して熱破壊を回避させ、かつ、その吸熱による800℃以上の高温を利用して食塩を直接溶融した状態で電気分解して卑金属または水素化卑金属を製造することを特徴とする請求項1記載の廃棄温海水や産業廃棄物からのエネルギー資源回収方法。 The ultra-high temperature gas according to claim 1 means 1700 ° C. or higher involved in hydrogen-oxygen combustion, absorbs heat to a heat medium provided in the previous stage of the turbine, relaxes hot air of the turbine, avoids thermal destruction, and A base metal or a hydrogenated base metal is produced by electrolysis in a state in which salt is melted directly using a high temperature of 800 ° C or higher due to its endotherm, from waste warm seawater or industrial waste according to claim 1 Energy resource recovery method. 請求項1記載の卑金属がナトリウムまたはカルシウム或はマグネシウムであることを特徴とする請求項1および請求項2記載の廃棄温海水や産業廃棄物からのエネルギー資源回収方法。 3. The method for recovering energy resources from waste warm seawater or industrial waste according to claim 1 or 2, wherein the base metal according to claim 1 is sodium, calcium or magnesium. 請求項1記載の高温ガスは、該タービンの後段に備えた熱媒の吸熱による300℃〜800℃の範囲の高温であり、食塩と塩化カルシウム混合塩または苛性ソーダあるいは消石灰や貝殻などを直接融解した状態で電気分解して金属ナトリウムまたは水素化ナトリウムあるいは金属カルシウム又は水素化カルシウムを製造することを特徴とする請求項1および請求項2および請求項3記載の廃棄温海水や産業廃棄物からのエネルギー資源回収方法。 The high-temperature gas according to claim 1 is a high temperature in a range of 300 ° C. to 800 ° C. due to heat absorption of a heat medium provided in the latter stage of the turbine, and directly melts salt and calcium chloride mixed salt or caustic soda or slaked lime or shells. 4. Energy from waste warm seawater and industrial waste according to claim 1, 2 and 3, characterized by producing metal sodium, sodium hydride, metal calcium or calcium hydride by electrolysis in a state Resource recovery method. 請求項1記載の中高温ガスは、蒸気タービンの後段から排気される300℃内外の中高温ガスを巡回パイプ内の熱媒(油)を介して、海洋塩の脱水分離、濃縮塩水の電気分解による苛性ソーダの製造、海洋水から製塩苛性ソーダの脱水、希硫酸の脱水などを行うことを特徴とする請求項1記載の廃棄温海水や産業廃棄物からのエネルギー資源回収方法。 The medium and high temperature gas according to claim 1 is composed of a medium and high temperature gas exhausted from the latter stage of the steam turbine, and dehydrated separation of marine salt and electrolysis of concentrated salt water through a heat medium (oil) in the circulation pipe. The method for recovering energy resources from waste warm seawater or industrial waste according to claim 1, wherein the production of caustic soda by water, dehydration of salt caustic soda from marine water, dehydration of dilute sulfuric acid, and the like are performed. 請求項1記載の熱媒として鉛(Pb)を使用するに際し、鉛が液体である温度範囲が350〜900(1,750)℃だから、熱媒ヒータのパイプを、2または3重管構造にして、始動段階では、内管にPbを流し、中管にHTS(NaNO2, NaNO3,KNO3 などの混合物:200〜500℃)を流し、外管に油を循環させることを特徴とする請求項1記載の廃棄温海水や産業廃棄物からのエネルギー資源回収方法。 When using lead (Pb) as the heating medium according to claim 1, since the temperature range in which lead is liquid is 350 to 900 (1,750) ° C., the pipe of the heating medium heater has a double or triple pipe structure, In the starting stage, Pb is allowed to flow through the inner pipe, HTS (a mixture of NaNO 2 , NaNO 3 , KNO 3 etc .: 200 to 500 ° C.) is allowed to flow through the inner pipe, and oil is circulated through the outer pipe. A method for recovering energy resources from waste warm seawater or industrial waste according to 1. 請求項1記載の製法で生成した金属や水素化金属を冷却する際に、冷却のための廃熱を熱媒パイプで食塩水に伝達して製塩を行うことを特徴とする請求項1記載の廃棄温海水や産業廃棄物からのエネルギー資源回収方法。 2. The method according to claim 1, wherein when cooling the metal or metal hydride generated by the production method according to claim 1, salt heat is produced by transferring waste heat for cooling to the salt water through a heat medium pipe. Energy resource recovery method from waste warm seawater and industrial waste. 津波災害を受けた地域の原子力発電所を地域復興に役立たせるために、復水器から排出された温海水から得た蒸留水で昼夜となく広範囲な塩害土壌の洗浄を行い、夜間は昼間製造した食塩を深夜電力と原子炉の廃熱とで溶融塩電気分解を行い金属ナトリウムを生産し、昼間は電力を首都圏に送配電する一方、原子炉の廃熱を用い食塩を製造することを特徴とする請求項1記載の廃棄温海水や産業廃棄物からのエネルギー資源回収方法。 In order to make the nuclear power plant in the area affected by the tsunami useful for regional recovery, washing of salt-damaged soil was performed extensively with distilled water obtained from the warm seawater discharged from the condenser, daytime and nighttime production. The molten salt is electrolyzed with midnight power and the waste heat of the reactor to produce metallic sodium.In the daytime, power is sent to the Tokyo metropolitan area, while the waste heat from the reactor is used to produce salt. The method for recovering energy resources from waste warm seawater or industrial waste according to claim 1. 津波災害や放射能汚染地域から出た木材や伐採された樹木チップを無人島に設置したバイオマス火力発電所に輸送し、当該発電所の復水器から排出される温海水から得た蒸留水は飲料水や工業用水として輸出し、得られた電力と廃熱とを製塩と備蓄用金属ナトリウム製造に用いる出稼ぎ発電所であることを特徴とする請求項1記載の廃棄温海水や産業廃棄物からのエネルギー資源回収方法。 Distilled water obtained from tsunami disasters and radioactively contaminated areas and wood chips that have been cut down to a biomass-fired power plant installed on an uninhabited island and obtained from warm seawater discharged from the condenser of the power plant It is a migrant power plant that is exported as drinking water or industrial water, and uses the obtained electric power and waste heat for producing salt and metal sodium for storage. Energy resource recovery methods.
JP2013082118A 2013-04-10 2013-04-10 How to use hot wastewater and hot waste heat from thermal power plants Active JP6089251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013082118A JP6089251B2 (en) 2013-04-10 2013-04-10 How to use hot wastewater and hot waste heat from thermal power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082118A JP6089251B2 (en) 2013-04-10 2013-04-10 How to use hot wastewater and hot waste heat from thermal power plants

Publications (2)

Publication Number Publication Date
JP2014202199A true JP2014202199A (en) 2014-10-27
JP6089251B2 JP6089251B2 (en) 2017-03-08

Family

ID=52352848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082118A Active JP6089251B2 (en) 2013-04-10 2013-04-10 How to use hot wastewater and hot waste heat from thermal power plants

Country Status (1)

Country Link
JP (1) JP6089251B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162308B1 (en) * 2016-10-27 2017-07-12 日中東北物産有限会社 Salt production system
CN109707471A (en) * 2018-12-04 2019-05-03 中冶焦耐(大连)工程技术有限公司 A kind of fused magnesium fusing lump afterheat utilizes method and system
CN112562879A (en) * 2020-12-03 2021-03-26 东北大学 Energy cascade utilization multi-element energy supply system based on nuclear energy
JP2022088392A (en) * 2015-06-10 2022-06-14 ブリサ インターナショナル リミテッド ライアビリティー カンパニー System and method for biomass growth and processing
CN114890491A (en) * 2022-03-24 2022-08-12 河北丰越能源科技有限公司 System for seawater desalination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331681A (en) * 2006-06-19 2007-12-27 Masataka Murahara Marine resource energy extraction/production marine factory
EP2123798A1 (en) * 2007-02-19 2009-11-25 Toho Titanium CO., LTD. Apparatus for producing metal by molten salt electrolysis, and process for producing metal using the apparatus
JP2013057291A (en) * 2011-09-08 2013-03-28 M Hikari Energy Kaihatsu Kenkyusho:Kk Method of using seawater cooling water of nuclear power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331681A (en) * 2006-06-19 2007-12-27 Masataka Murahara Marine resource energy extraction/production marine factory
EP2123798A1 (en) * 2007-02-19 2009-11-25 Toho Titanium CO., LTD. Apparatus for producing metal by molten salt electrolysis, and process for producing metal using the apparatus
JP2013057291A (en) * 2011-09-08 2013-03-28 M Hikari Energy Kaihatsu Kenkyusho:Kk Method of using seawater cooling water of nuclear power plant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022088392A (en) * 2015-06-10 2022-06-14 ブリサ インターナショナル リミテッド ライアビリティー カンパニー System and method for biomass growth and processing
JP6162308B1 (en) * 2016-10-27 2017-07-12 日中東北物産有限会社 Salt production system
JP2018070402A (en) * 2016-10-27 2018-05-10 日中東北物産有限会社 Salts manufacturing system
CN109707471A (en) * 2018-12-04 2019-05-03 中冶焦耐(大连)工程技术有限公司 A kind of fused magnesium fusing lump afterheat utilizes method and system
CN109707471B (en) * 2018-12-04 2024-01-30 中冶焦耐(大连)工程技术有限公司 Method and system for utilizing waste heat of fused magnesium melting lump
CN112562879A (en) * 2020-12-03 2021-03-26 东北大学 Energy cascade utilization multi-element energy supply system based on nuclear energy
CN112562879B (en) * 2020-12-03 2024-05-14 东北大学 Energy cascade utilization multi-element energy supply system based on nuclear energy
CN114890491A (en) * 2022-03-24 2022-08-12 河北丰越能源科技有限公司 System for seawater desalination
CN114890491B (en) * 2022-03-24 2023-02-10 河北丰越能源科技有限公司 System for seawater desalination

Also Published As

Publication number Publication date
JP6089251B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
Bundschuh et al. State-of-the-art of renewable energy sources used in water desalination: Present and future prospects
Gude Energy storage for desalination processes powered by renewable energy and waste heat sources
JP6089251B2 (en) How to use hot wastewater and hot waste heat from thermal power plants
KR102447646B1 (en) Oil and gas well generation seawater treatment system
JP5970664B2 (en) Use of seawater cooling water in nuclear power plants and thermal power plants
US7726127B2 (en) Solar power for thermochemical production of hydrogen
US20110048006A1 (en) Solar desalinization plant
WO2009104820A1 (en) Solar thermal energy storage method
JP2014237118A (en) Desalination apparatus of sea water effectively using solar energies
KR101924533B1 (en) Power generating and desalination composite plant
Tawalbeh et al. Salinity gradient solar ponds hybrid systems for power generation and water desalination
WO2009104813A1 (en) Method of converting solar heat energy
Mburu Geothermal energy utilization
CN1800590A (en) Electricity generating method and apparatus
JP2013057291A (en) Method of using seawater cooling water of nuclear power plant
CN103016074B (en) The water that heat energy combines with natural cold-energy, electricity, salt combined production device
JP6311089B2 (en) Compressed air power generation method for decommissioning or out of operation nuclear power plants
Yaghoubi et al. Thermal energy optimization using salt-based phase change materials obtained from the desalination of saline water
CN103557602A (en) Floating platform type focusing solar energy comprehensive utilization system and method
Alhajria et al. Concentrated solar thermal cogeneration for zero liquid discharge seawater desalination in the Middle East: case study on Kuwait
JP2002168101A (en) Composite energy system
JP6097956B2 (en) Underwater welding method for repaired capillaries for nuclear power generation
WO2018105166A1 (en) System for producing renewable energy using deep water (deep sea water), and hydrogen and water obtained by system
CN210134980U (en) Hybrid cycle system based on nuclear power station thermoelectric generation
JP2010059803A (en) Temperature difference power generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6089251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250