JP2014201731A - Dispersion of resin fine particle, dispersion of resin fine particle including color material, and inkjet ink - Google Patents
Dispersion of resin fine particle, dispersion of resin fine particle including color material, and inkjet ink Download PDFInfo
- Publication number
- JP2014201731A JP2014201731A JP2013081627A JP2013081627A JP2014201731A JP 2014201731 A JP2014201731 A JP 2014201731A JP 2013081627 A JP2013081627 A JP 2013081627A JP 2013081627 A JP2013081627 A JP 2013081627A JP 2014201731 A JP2014201731 A JP 2014201731A
- Authority
- JP
- Japan
- Prior art keywords
- resin fine
- fine particle
- particle dispersion
- dispersion
- surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ink Jet (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Polymerisation Methods In General (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
本発明は樹脂微粒子分散体及び色材内包樹脂微粒子分散体に関する。さらにこれらの樹脂微粒子分散体及び色材内包樹脂微粒子分散体を含有するインクジェット用インクに関する。 The present invention relates to a resin fine particle dispersion and a coloring material-containing resin fine particle dispersion. Further, the present invention relates to an ink jet ink containing the resin fine particle dispersion and the coloring material-containing resin fine particle dispersion.
インクジェット用インクには、高い吐出安定性、記録物の光沢性、耐擦過性、カールの抑制、異色間同士の色の混じり合い(ブリード)の抑制といった、様々な特性が求められている。近年ではこれらの特性を満足すべく多岐に渡るインクジェット用インクの製造方法が提案されている。中でも乳化重合によって色材と樹脂とを含む着色微粒子分散体を得る方法は、インクジェット用インクの代表的な製造方法の1つとして挙げることができる。 Ink-jet inks are required to have various properties such as high ejection stability, gloss of recorded matter, scratch resistance, curl suppression, and color mixing between different colors (bleed). In recent years, a wide variety of ink jet ink production methods have been proposed to satisfy these characteristics. Among them, a method for obtaining a colored fine particle dispersion containing a coloring material and a resin by emulsion polymerization can be mentioned as one of typical methods for producing an inkjet ink.
乳化重合は疎水性モノマーを界面活性剤により水中で乳化し、重合する製造方法である。さらに上記疎水性モノマーに油性染料を予め溶解する事で、色材を内包する微粒子を製造することも検討されている。非特許文献1には、モノマーとしてスチレンを用い、界面活性剤としてポリオキシエチレンアルキルエーテルを用いて得られた樹脂微粒子分散体が開示されている。特許文献1では同様にポリオキシエチレンアルキルエーテルからなる色材内包樹脂微粒子が示されている。 Emulsion polymerization is a production method in which a hydrophobic monomer is emulsified in water with a surfactant and polymerized. Furthermore, it has been studied to produce fine particles encapsulating a coloring material by previously dissolving an oily dye in the hydrophobic monomer. Non-Patent Document 1 discloses a resin fine particle dispersion obtained by using styrene as a monomer and using polyoxyethylene alkyl ether as a surfactant. Similarly, Patent Document 1 discloses fine color material-containing resin fine particles made of polyoxyethylene alkyl ether.
一方、特許文献2には耐擦過性及び耐水性に優れたインク組成物が記載されている。このインク組成物は、着色剤と、ポリマー微粒子と、水溶性有機溶媒と、水とを少なくとも含んでなり、前記ポリマー微粒子は、造膜性を有し、その表面にカルボキシル基を有する。前記ポリマー微粒子は、その0.1重量%の水性エマルジョン3容量と、1mol/lの濃度の二価金属塩水溶液1容量とを接触させたとき、波長700nmの光の透過率が初期値の50%となる時間が1×104秒以下となるような二価金属塩との反応性を有する。更に特許文献3では脂肪酸ナトリウム等の脂肪酸塩を用いて乳化重合することでポリマー微粒子表面にカルボキシル基を導入する方法が示されている。 On the other hand, Patent Document 2 describes an ink composition having excellent scratch resistance and water resistance. The ink composition includes at least a colorant, polymer fine particles, a water-soluble organic solvent, and water. The polymer fine particles have a film-forming property and have a carboxyl group on the surface thereof. When the polymer fine particles are brought into contact with 3 volumes of an aqueous emulsion of 0.1% by weight and 1 volume of a divalent metal salt aqueous solution having a concentration of 1 mol / l, the light transmittance at a wavelength of 700 nm is an initial value of 50. The reactivity with the divalent metal salt is such that the time when the percentage is 1 × 10 4 seconds or less. Further, Patent Document 3 discloses a method for introducing a carboxyl group into the surface of polymer fine particles by emulsion polymerization using a fatty acid salt such as fatty acid sodium.
本発明者らは、非特許文献1及び特許文献1に記載されているポリオキシエチレンアルキルエーテルを乳化重合時の界面活性剤として使用し、得られた樹脂微粒子分散体をインクジェット用インクの調製に用いた。その結果、優れた吐出安定性が得られる事を確認した。具体的には、上記インクは、吐出周波数を高くしても吐出周波数が安定であり、吐出速度が低下することもなく優れている。また、長鎖の水溶性ポリオキシエチレンの立体反発により、樹脂微粒子同士の凝集が抑制され、優れた分散安定性を発現し、インクジェット用インクとして用いた場合、得られるインクの吐出性も良好である。しかし、樹脂微粒子表面に多価金属塩等との反応性基がない為、紙面上でのブリード抑制効果がなく、カラー画像などの印字品位は満足できるレベルではなかった。 The present inventors use polyoxyethylene alkyl ether described in Non-Patent Document 1 and Patent Document 1 as a surfactant during emulsion polymerization, and use the resulting resin fine particle dispersion for the preparation of ink jet ink. Using. As a result, it was confirmed that excellent discharge stability was obtained. Specifically, the above-described ink is stable even when the discharge frequency is increased, and the ink is excellent without decreasing the discharge speed. In addition, due to the steric repulsion of long-chain water-soluble polyoxyethylene, aggregation of resin fine particles is suppressed, and excellent dispersion stability is exhibited. When used as an inkjet ink, the resulting ink has good ejection properties. is there. However, since there are no reactive groups with the polyvalent metal salt or the like on the surface of the resin fine particles, there is no bleed suppressing effect on the paper surface, and the print quality of color images and the like was not satisfactory.
また、本発明者らは、特許文献2に開示されているスチレン−アクリル酸共重合体を分散剤として使用して樹脂微粒子分散体及び色材内包樹脂微粒子分散体を得、これらの分散体を含むインクジェット用インクについて、同様に性質を調べた。さらに、特許文献3に開示されている、脂肪酸塩により表面にカルボキシル基を導入した樹脂微粒子の分散体についてもインクジェット用インクとして用いて、同様にインクの性質を調べた。その結果、これらのインクは、優れたブリード抑制効果を示した。この優れたブリード抑制効果は、反応液中の多価金属塩等と界面活性剤としてのアクリル酸とが会合し、紙面上で樹脂微粒子が凝集するメカニズムに基づいている。しかし、これらのインクは、熱エネルギーにより液滴を吐出させる方式のインクジェット記録方法では満足できる吐出安定性を得る事はできなかった。具体的には吐出周波数の低下、吐出速度の低下、紙面上での着弾ズレなどの問題が発生した。 In addition, the present inventors obtained a resin fine particle dispersion and a colorant-encapsulating resin fine particle dispersion using the styrene-acrylic acid copolymer disclosed in Patent Document 2 as a dispersant. The properties of the ink-jet ink contained were similarly examined. Further, the dispersion of resin fine particles having a carboxyl group introduced into the surface with a fatty acid salt as disclosed in Patent Document 3 was also used as an inkjet ink, and the properties of the ink were similarly examined. As a result, these inks showed an excellent bleeding suppression effect. This excellent bleed suppression effect is based on a mechanism in which polyvalent metal salts and the like in the reaction solution associate with acrylic acid as a surfactant and the resin fine particles aggregate on the paper surface. However, these inks cannot achieve satisfactory ejection stability by an ink jet recording method in which droplets are ejected by thermal energy. Specifically, problems such as a decrease in discharge frequency, a decrease in discharge speed, and landing deviation on the paper surface occurred.
本発明は、このような従来技術の有する問題点に鑑みてなされたものである。すなわち、本発明の課題は、優れた吐出安定性と高いブリードの抑制効果とを同時に達成できるインクジェット用インクとを調製することが可能な、樹脂微粒子分散体及び色材内包樹脂微粒子分散体を提供することにある。 The present invention has been made in view of such problems of the prior art. That is, an object of the present invention is to provide a resin fine particle dispersion and a colorant-encapsulating resin fine particle dispersion capable of preparing an inkjet ink that can simultaneously achieve excellent ejection stability and a high bleeding suppression effect. There is to do.
上記の目的は以下の発明によって達成される。すなわち、本発明によれば、α,β−不飽和疎水性化合物と、下記一般式(1)で表される化合物と、酸価が80以上315以下の水溶性樹脂とを含む分散液中で、前記α,β−不飽和疎水性化合物を重合して得られることを特徴とする樹脂微粒子分散体が提供される。
一般式(1)
R1−O−(CH2CH2O)k−(CO)l−(R2)m−Xn
(式中、R1は炭素数が8以上18以下の、アルキル基又はアリール基を表し、R2は炭素数が1以上5以下のアルキレン基を表し、Xはアニオン性基を表し、kは30以上150以下の整数を表し、lは0又は1を表し、mは0又は1を表し、nは1以上の任意の整数を表す。)
The above object can be achieved by the following invention. That is, according to the present invention, in a dispersion containing an α, β-unsaturated hydrophobic compound, a compound represented by the following general formula (1), and a water-soluble resin having an acid value of 80 or more and 315 or less. A resin fine particle dispersion obtained by polymerizing the α, β-unsaturated hydrophobic compound is provided.
General formula (1)
R 1 -O- (CH 2 CH 2 O) k - (CO) l - (R 2) m -X n
(In the formula, R 1 represents an alkyl group or an aryl group having 8 to 18 carbon atoms, R 2 represents an alkylene group having 1 to 5 carbon atoms, X represents an anionic group, k is An integer of 30 or more and 150 or less, l represents 0 or 1, m represents 0 or 1, and n represents an arbitrary integer of 1 or more.
本発明によれば、優れた吐出安定性と高いブリードの抑制効果とを同時に達成できるインクジェット用インクを調整することが可能な、樹脂微粒子分散体及び色材内包樹脂微粒子分散体が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the resin fine particle dispersion and the color material inclusion resin fine particle dispersion which can adjust the inkjet ink which can achieve the outstanding discharge stability and the high suppression effect of bleeding simultaneously are provided.
以下、本発明についてより詳細に説明する。
本発明者等は、優れた吐出安定性と高いブリード抑制効果を両立できるインクジェット用インクを調製することが可能な、樹脂微粒子分散体及び色材内包樹脂微粒子分散体を得るために、重合を行なう方法及び重合の際に使用する界面活性剤について検討した。その結果、α,β−不飽和疎水性化合物と、下記一般式(1)で表される化合物と、酸価が80以上315以下の水溶性樹脂とを含む分散液中で、前記α,β−不飽和疎水性化合物を重合して得られる樹脂微粒子分散体が、インクジェット用インクの調製に用いた場合に、吐出安定性とブリード抑制効果に優れたインクを提供できる事を見出した。また、本発明者らは、α,β−不飽和疎水性化合物と、下記一般式(1)で表される化合物と、酸価が80以上315以下の水溶性樹脂と、色材とを含む分散液中で、前記α,β−不飽和疎水性化合物を重合して得られる色材内包樹脂微粒子分散体が、インクジェット用インクの調製に用いた場合に、吐出安定性とブリード抑制効果に優れたインクを調製できる事を見出した。
Hereinafter, the present invention will be described in more detail.
The present inventors perform polymerization in order to obtain a resin fine particle dispersion and a colorant-encapsulating resin fine particle dispersion capable of preparing an ink jet ink that can achieve both excellent ejection stability and a high bleeding suppression effect. The method and the surfactant used in the polymerization were investigated. As a result, in the dispersion containing the α, β-unsaturated hydrophobic compound, the compound represented by the following general formula (1), and a water-soluble resin having an acid value of 80 or more and 315 or less, the α, β -It has been found that a resin fine particle dispersion obtained by polymerizing an unsaturated hydrophobic compound can provide an ink excellent in ejection stability and bleeding suppression effect when used in the preparation of an inkjet ink. The present inventors also include an α, β-unsaturated hydrophobic compound, a compound represented by the following general formula (1), a water-soluble resin having an acid value of 80 or more and 315 or less, and a coloring material. When the colorant-containing resin fine particle dispersion obtained by polymerizing the α, β-unsaturated hydrophobic compound in the dispersion is used for the preparation of an inkjet ink, it has excellent ejection stability and bleed suppression effect. It was found that the ink can be prepared.
一般式(1)
R1−O−(CH2CH2O)k−(CO)l−(R2)m−Xn
(式中、R1は炭素数が8以上18以下の、アルキル基又はアリール基を表し、R2は炭素数が1以上5以下のアルキレン基を表し、Xはアニオン性基を表し、kは30以上150以下の整数を表し、lは0又は1を表し、mは0又は1を表し、nは1以上の任意の整数を表す。)
General formula (1)
R 1 -O- (CH 2 CH 2 O) k - (CO) l - (R 2) m -X n
(In the formula, R 1 represents an alkyl group or an aryl group having 8 to 18 carbon atoms, R 2 represents an alkylene group having 1 to 5 carbon atoms, X represents an anionic group, k is An integer of 30 or more and 150 or less, l represents 0 or 1, m represents 0 or 1, and n represents an arbitrary integer of 1 or more.
本発明者らは、上記樹脂微粒子分散体と色材内包樹脂微粒子分散体を用いて調製したインクジェット用インクが、優れた吐出安定性と高いブリードの抑制効果を同時に発現できる理由を下記の通り推測している。一般式(1)中のR1は、重合前の分散液中では後述する樹脂微粒子又は色材内包樹脂微粒子の原料となるα,β−不飽和疎水性化合物に吸着し、重合後は樹脂微粒子又は色材内包樹脂微粒子に吸着する機能を有するセグメントである。また、一般式(1)の化合物は30乃至150ユニットのオキシエチレンを含む。この長鎖のオキシエチレンは水溶性を発現するセグメントであり、重合により得られた樹脂微粒子又は色材内包樹脂微粒子の表面から水相に向って嵩高い長鎖のオキシエチレンを配向すると考えられる。このオキシエチレン鎖の立体反発が、静的及び動的に樹脂微粒子同士又は色材内包樹脂微粒子同士の凝集を防止する機能を発揮していると考えている。一般式(1)中のXnは、樹脂微粒子又は色材内包樹脂微粒子の最外殻に位置し、インクとして記録媒体に付与された際に、反応剤と反応して当該樹脂微粒子又は色材含有樹脂微粒子の凝集を導くための反応基点となるセグメントである。 The inventors presume why the inkjet ink prepared using the resin fine particle dispersion and the colorant-encapsulating resin fine particle dispersion can simultaneously exhibit excellent ejection stability and high bleeding suppression effect as follows. doing. R 1 in the general formula (1) is adsorbed to an α, β-unsaturated hydrophobic compound as a raw material of resin fine particles or colorant-containing resin fine particles described later in the dispersion before polymerization, and resin fine particles after polymerization. Alternatively, it is a segment having a function of adsorbing to the coloring material-containing resin fine particles. Also, the compound of general formula (1) contains 30 to 150 units of oxyethylene. This long-chain oxyethylene is a segment exhibiting water-solubility, and it is considered that the bulky long-chain oxyethylene is oriented from the surface of the resin fine particles or color material-containing resin fine particles obtained by polymerization toward the aqueous phase. It is considered that the steric repulsion of the oxyethylene chain exhibits a function of preventing aggregation of resin fine particles or coloring material-containing resin fine particles statically and dynamically. X n in the general formula (1) is located in the outermost shell of the resin fine particles or the color material-encapsulating resin fine particles, and reacts with the reactant when applied to the recording medium as ink, so that the resin fine particles or the color material This is a segment serving as a reaction base point for inducing aggregation of the contained resin fine particles.
すなわち、本発明の分散体中の樹脂微粒子及び色材内包樹脂微粒子は、一般式(1)の化合物、R1のセグメントでα,β−不飽和疎水性化合物の重合体と吸着する。一般式(1)の化合物中のオキシエチレン鎖で樹脂微粒子同士又は色材内包樹脂微粒子同士の立体反発を発現し、分子末端に位置するXnのセグメントが高い反応性を有する。このような微粒子を含むため、本発明の樹脂微粒子分散体及び色材内包樹脂微粒子分散体は、インクジェット用インクとして適用した際、優れた吐出安定性と高いブリード抑制効果を発揮できる。 That is, the resin fine particles and the colorant-containing resin fine particles in the dispersion of the present invention are adsorbed with the polymer of the general formula (1) and the polymer of α, β-unsaturated hydrophobic compound at the R 1 segment. The oxyethylene chain in the compound of the general formula (1) expresses steric repulsion between the resin fine particles or between the colorant-containing resin fine particles, and the X n segment located at the molecular end has high reactivity. Since such fine particles are contained, the resin fine particle dispersion and the colorant-containing resin fine particle dispersion of the present invention can exhibit excellent ejection stability and a high bleed suppression effect when applied as an ink jet ink.
また、本発明で使用する酸価が80以上315以下の水溶性樹脂は、一般式(1)で表される化合物より一分子当たりの反応基点の密度が高いことから、その添加量が増えるほど得られる樹脂微粒子又は色材内包樹脂微粒子の反応性が高くなる。このため、一般式(1)の化合物に加え、酸価が80以上315以下の水溶性樹脂である界面活性剤を併用することにより、得られる樹脂微粒子分散体又は色材内包樹脂微粒子の反応性を制御することができる。 In addition, the water-soluble resin having an acid value of 80 or more and 315 or less used in the present invention has a higher density of reactive base points per molecule than the compound represented by the general formula (1). The reactivity of the obtained resin fine particles or color material-containing resin fine particles is increased. Therefore, in addition to the compound of the general formula (1), the reactivity of the resin fine particle dispersion or the colorant-encapsulating resin fine particles obtained by using a surfactant which is a water-soluble resin having an acid value of 80 or more and 315 or less is used. Can be controlled.
[樹脂微粒子分散体]
次に、本発明の樹脂微粒子分散体の構成要素及び製造工程に関して、詳細に説明する。尚、本発明において化合物又は水溶性樹脂の『CMC』とは、界面活性剤としての性質を有する化合物についての「臨界ミセル濃度」のことをいう。また、本発明において「(メタ)アクリレート」とは「アクリレート」及び「メタクリレート」の双方を意味し、「(メタ)アクリル」とは「アクリル」及び「メタクリル」の双方を意味する。
[Resin fine particle dispersion]
Next, the constituent elements and manufacturing process of the resin fine particle dispersion of the present invention will be described in detail. In the present invention, “CMC” of a compound or water-soluble resin means “critical micelle concentration” for a compound having properties as a surfactant. In the present invention, “(meth) acrylate” means both “acrylate” and “methacrylate”, and “(meth) acryl” means both “acryl” and “methacryl”.
(α,β−不飽和疎水性化合物)
本発明における「α,β−不飽和疎水性化合物」とは、α,β−不飽和化合物であり、かつ、疎水性化合物であるものを意味する。また、「α,β−不飽和化合物」とは、α位の炭素とβ位の炭素との間に不飽和結合(C=Cなど)を有する化合物を意味する。さらに、「疎水性化合物」とは、親水性基(例えば、酸性基、塩基性基、ヒドロキシ基、アルキレンオキサイド基など)を有しない化合物を意味する。α,β−不飽和疎水性化合物の具体例としては、スチレン、α−メチルスチレンなどの芳香族ビニル化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、i−ブチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレートなどの(メタ)アクリル酸アルキルエステル;エチレンなどを挙げることができる。
本発明で使用するα,β−不飽和疎水性化合物に求められる特性として、重合速度及び重合転化率が挙げられる。また、重合後の樹脂特性としては、ガラス転移温度、色材との親和性が挙げられる。これらの特性を調整するために、2種類以上のα,β−不飽和疎水性化合物を用いる事もできる。
(Α, β-unsaturated hydrophobic compounds)
The “α, β-unsaturated hydrophobic compound” in the present invention means an α, β-unsaturated compound and a hydrophobic compound. The “α, β-unsaturated compound” means a compound having an unsaturated bond (such as C═C) between the α-position carbon and the β-position carbon. Furthermore, the “hydrophobic compound” means a compound having no hydrophilic group (for example, acidic group, basic group, hydroxy group, alkylene oxide group, etc.). Specific examples of the α, β-unsaturated hydrophobic compound include aromatic vinyl compounds such as styrene and α-methylstyrene; methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i- Propyl (meth) acrylate, i-butyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, Examples include (meth) acrylic acid alkyl esters such as cyclohexyl (meth) acrylate and hexadecyl (meth) acrylate; ethylene and the like.
Properties required for the α, β-unsaturated hydrophobic compound used in the present invention include polymerization rate and polymerization conversion. Moreover, as a resin characteristic after superposition | polymerization, affinity with a glass transition temperature and a coloring material is mentioned. In order to adjust these characteristics, two or more kinds of α, β-unsaturated hydrophobic compounds can be used.
また、後述する、α,β−不飽和疎水性化合物と下記一般式(1)で表される化合物と酸価が80以上315以下の水溶性樹脂とを含む分散液の乳化状態を崩さない範囲でα,β−不飽和親水性化合物を適量添加して重合する事も可能である。α,β−不飽和親水性化合物の具体例としては、アクリル酸、メタクリル酸、アクリルアミド、アクリロニトリル、ビニルエーテル、酢酸ビニル、ビニルイミダゾール、マレイン酸誘導体等の親水性の重合性モノマーが挙げられる。 Moreover, the range which does not break the emulsification state of the dispersion liquid which contains the compound represented by the (alpha), (beta)-unsaturated hydrophobic compound and the following general formula (1) mentioned later, and an acid value 80-315 below. It is also possible to polymerize by adding an appropriate amount of α, β-unsaturated hydrophilic compound. Specific examples of the α, β-unsaturated hydrophilic compound include hydrophilic polymerizable monomers such as acrylic acid, methacrylic acid, acrylamide, acrylonitrile, vinyl ether, vinyl acetate, vinyl imidazole, and maleic acid derivatives.
(一般式(1)で表される化合物)
本発明では、下記一般式(1)で表される化合物と、酸価が80以上315以下の水溶性樹脂の両方を界面活性剤として用いて上記α,β−不飽和疎水性化合物の分散液を得、この分散液中でα,β−不飽和疎水性化合物を乳化重合する。
一般式(1)
R1−O−(CH2CH2O)k−(CO)l−(R2)m−Xn
(式中、R1は炭素数が8以上18以下の、アルキル基又はアリール基を表し、R2は炭素数が1以上5以下のアルキレン基を表し、Xはアニオン性基を表し、kは30以上150以下の整数を表し、lは0又は1を表し、mは0又は1を表し、nは1以上の任意の整数を表す。)
(Compound represented by the general formula (1))
In the present invention, a dispersion of the above α, β-unsaturated hydrophobic compound using both the compound represented by the following general formula (1) and a water-soluble resin having an acid value of 80 or more and 315 or less as a surfactant. In this dispersion, an α, β-unsaturated hydrophobic compound is emulsion-polymerized.
General formula (1)
R 1 -O- (CH 2 CH 2 O) k - (CO) l - (R 2) m -X n
(In the formula, R 1 represents an alkyl group or an aryl group having 8 to 18 carbon atoms, R 2 represents an alkylene group having 1 to 5 carbon atoms, X represents an anionic group, k is An integer of 30 or more and 150 or less, l represents 0 or 1, m represents 0 or 1, and n represents an arbitrary integer of 1 or more.
一般式(1)中、R1で表されるアルキル基の例としては、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基(セチル基)、ヘプタデシル基、オクタデシル基等が挙げられる。これらのアルキル基は直鎖状、分岐状、及び環状のいずれの構造であっても良い。アリール基の例としては、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、キシリル基等が挙げられる。 In the general formula (1), examples of the alkyl group represented by R 1 include octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group (cetyl group). , Heptadecyl group, octadecyl group and the like. These alkyl groups may have any of linear, branched, and cyclic structures. Examples of the aryl group include octylphenyl group, nonylphenyl group, decylphenyl group, xylyl group and the like.
一般式(1)で表される化合物のうちR1−O−(CH2CH2O)kの部分は、R1−OHで表されるアルコールと、エチレンオキシドとの縮合反応で合成することができる。オキシエチレン基(CH2CH2O)の繰り返し数kはR1−OHで表されるアルコールとエチレンオキシドとの仕込み比率で制御でき、kは30以上150以下であればよいが、より好ましくは50以上100以下の範囲である。 The R 1 —O— (CH 2 CH 2 O) k portion of the compound represented by the general formula (1) can be synthesized by a condensation reaction between an alcohol represented by R 1 —OH and ethylene oxide. it can. The repeating number k of the oxyethylene group (CH 2 CH 2 O) can be controlled by the charging ratio of the alcohol represented by R 1 —OH and ethylene oxide, and k may be from 30 to 150, more preferably 50. The range is 100 or less.
式(1)中、Xで表されるアニオン性基の例として、−COOM、−SO3M、−PO3HM、−PO3M2及び−SO2NH2からなる群より選ばれるアニオン性基が挙げられ、上記各式中、Mは水素原子又はアルカリ金属を表す。nは1以上の任意の整数であり、典型的にはn=1である。 In formula (1), as an example of the anionic group represented by X, an anionic group selected from the group consisting of —COOM, —SO 3 M, —PO 3 HM, —PO 3 M 2 and —SO 2 NH 2 Groups, and in the above formulas, M represents a hydrogen atom or an alkali metal. n is an arbitrary integer of 1 or more, and typically n = 1.
式(1)で表される化合物の製造方法の例としては、まず、上述のR1−O−(CH2CH2O)k−Hを合成し、この式の末端OH基にアクリロニトリルを付加させた後、酸化してカルボン酸を付加する方法が挙げられる。また、末端の−CH2CH2OHを白金触媒などで直接酸化する方法や末端の−CH2CH2OHの水酸基をアルカリでアルコラートにした後、モノクロロ酢酸ナトリウムを反応させる方法が挙げられる。これらの方法のうち、工業的にはモノクロロ酢酸ナトリウムによる反応が有利である。 As an example of a method for producing the compound represented by the formula (1), first, R 1 —O— (CH 2 CH 2 O) k —H described above is synthesized, and acrylonitrile is added to the terminal OH group of this formula. Then, it is oxidized to add a carboxylic acid. Further, there may be mentioned a method of directly oxidizing terminal —CH 2 CH 2 OH with a platinum catalyst or the like, and a method of reacting sodium monochloroacetate after the terminal —CH 2 CH 2 OH is converted to an alcoholate with an alkali. Among these methods, industrial reaction with sodium monochloroacetate is advantageous.
モノクロロ酢酸ナトリウムによる反応では、一般式(1)で表される化合物の−(CO)l−(R2)m−Xnの部分は−CH2COONaとなり、l=0、R2=CH2、m=1、X=COONa、n=1である。
一般式(1)中、l=1の場合、エステル結合が存在する。このような化合物の製造方法としては、上述のR1−O−(CH2CH2O)k−Hの末端の水酸基に酸無水物をハーフエステル化する反応が挙げられる。酸無水物の例としては、コハク酸無水物が挙げられる。コハク酸無水物を用いる反応では、一般式(1)で表される化合物の−(CO)l−(R2)m−Xnの部分は−CO−CH2−COONaとなり、l=1、R2=CH2、m=1、X=COONa、n=1である。
The reaction with sodium monochloroacetate, the general formula (1) represented by compounds - (CO) l - (R 2) portion of m -X n is -CH 2 COONa next, l = 0, R 2 = CH 2 , M = 1, X = COONa, n = 1.
In general formula (1), when l = 1, an ester bond is present. Examples of the method for producing such a compound include a reaction in which an acid anhydride is half-esterified to the hydroxyl group at the terminal of the above-mentioned R 1 —O— (CH 2 CH 2 O) k —H. Examples of acid anhydrides include succinic anhydride. In the reaction using succinic anhydride, the — (CO) 1 — (R 2 ) m —X n moiety of the compound represented by the general formula (1) is —CO—CH 2 —COONa, where l = 1. R 2 = CH 2 , m = 1, X = COONa, n = 1.
また、上述のR1−O−(CH2CH2O)k−Hの末端の水酸基にオキシ塩化リンを縮合脱水してもよい。この反応では、一般式(1)で表される化合物の−(CO)l−(R2)m−Xnの部分は−PO(OH)(ONa)となり、l=0、m=0、X=PO(OH)(ONa)、n=1である。 Further, phosphorus oxychloride may be condensed and dehydrated to the terminal hydroxyl group of the above-mentioned R 1 —O— (CH 2 CH 2 O) k —H. In this reaction, the moiety of — (CO) 1 — (R 2 ) m —X n of the compound represented by the general formula (1) becomes —PO (OH) (ONa), and l = 0, m = 0, X = PO (OH) (ONa), n = 1.
(水溶性樹脂)
次に、界面活性剤である酸価80〜315の水溶性樹脂について説明する。
本発明の必須の構成である水溶性樹脂は、少なくとも1種のα,β−不飽和疎水性化合物と少なくとも1種のα,β−不飽和親水性化合物を共重合して得られるビニル系共重合体であることが好ましい。
(Water-soluble resin)
Next, a water-soluble resin having an acid value of 80 to 315, which is a surfactant, will be described.
The water-soluble resin, which is an essential component of the present invention, is a vinyl copolymer obtained by copolymerizing at least one α, β-unsaturated hydrophobic compound and at least one α, β-unsaturated hydrophilic compound. A polymer is preferred.
α,β−不飽和疎水性化合物は、一般式(1)で表される化合物と同じものを使用でき、例えば、スチレン、α−メチルスチレン、ベンジルアクリレート、ベンジルメタクリレート、ビニルナフタレン、4−ビニル安息香酸、ビニル安息香酸のエステル化物、N−ビニルカルバゾール等の芳香族官能基を有するビニル系モノマー;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸エステル;N−メチロール(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド等のアクリルアミド系モノマー;N−ビニルアセトアミド、N−ビニルホルムアミド等が挙げられる。 As the α, β-unsaturated hydrophobic compound, the same compound as represented by the general formula (1) can be used. For example, styrene, α-methylstyrene, benzyl acrylate, benzyl methacrylate, vinyl naphthalene, 4-vinyl benzoate Vinyl monomers having an aromatic functional group such as acid, esterified vinyl benzoic acid, N-vinylcarbazole, etc .; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic (Meth) acrylic acid esters such as cyclohexyl acid; acrylamide monomers such as N-methylol (meth) acrylamide and N, N-dimethylaminopropyl (meth) acrylamide; N-vinylacetamide, N-vinylformamide and the like.
α,β−不飽和親水性化合物の例としては、アクリル酸、メタクリル酸、アクリルアミド、アクリロニトリル、ビニルエーテル、酢酸ビニル、ビニルイミダゾール、エチレン、マレイン酸誘導体等が挙げられる。 Examples of α, β-unsaturated hydrophilic compounds include acrylic acid, methacrylic acid, acrylamide, acrylonitrile, vinyl ether, vinyl acetate, vinyl imidazole, ethylene, maleic acid derivatives and the like.
酸価とは、樹脂1g中の酸性成分を中和するのに要する水酸化カリウムのmg数で表される。本発明で使用する親水性樹脂は、酸価が80以上315以下であることに加え、塩基を溶解した水に溶解したときに、溶解状態が安定なものが好ましい。酸価が315より大きい樹脂は、水溶性が高いため界面活性能が低下し好ましくない。一方、酸価が80より小さい樹脂は、疎水性が大きく、水への溶解性が低いため好ましくない。
酸価は樹脂中のモノマー成分比が既知であれば、計算して理論酸価を算出することができる。また、樹脂中のモノマー成分比が既知ではない場合は、実験的に中和測定から求めることも可能である。
The acid value is represented by the number of mg of potassium hydroxide required to neutralize the acidic component in 1 g of resin. The hydrophilic resin used in the present invention preferably has a stable dissolved state when dissolved in water in which the base is dissolved, in addition to having an acid value of 80 or more and 315 or less. A resin having an acid value of greater than 315 is not preferable because it has high water solubility and the surface activity is reduced. On the other hand, a resin having an acid value of less than 80 is not preferable because it has high hydrophobicity and low solubility in water.
The acid value can be calculated and the theoretical acid value can be calculated if the monomer component ratio in the resin is known. Further, when the monomer component ratio in the resin is not known, it can be experimentally determined from neutralization measurement.
(一般式(1)で表される化合物と水溶性樹脂との質量比)
本発明の樹脂微粒子分散体を構成する一般式(1)で表される化合物と水溶性樹脂との質量比は、30:70以上85:15以下の範囲であることが好ましく、さらに好ましくは50:50以上70:30以下の範囲である。
水溶性樹脂15質量部に対して一般式(1)の化合物が85質量部より多いと、得られる樹脂微粒子分散体をインクジェット用インクとした際、吐出安定性は優れるものの、反応性基の不足により凝集性が低下するため、ブリードの抑制が不十分となる場合がある。
逆に、水溶性樹脂70質量部に対して一般式(1)の化合物が30質量部より少ないと、得られる樹脂微粒子分散体中の反応性基が多くなるため、インクジェット用インクとしたときにブリード抑制効果は高いものの、吐出安定性が不十分となることがある。
(Mass ratio between the compound represented by the general formula (1) and the water-soluble resin)
The mass ratio of the compound represented by the general formula (1) constituting the resin fine particle dispersion of the present invention to the water-soluble resin is preferably in the range of 30:70 to 85:15, more preferably 50. : 50 or more and 70:30 or less.
When the amount of the compound of the general formula (1) is more than 85 parts by mass with respect to 15 parts by mass of the water-soluble resin, when the obtained resin fine particle dispersion is used as an inkjet ink, the ejection stability is excellent, but the reactive group is insufficient. As a result, the cohesiveness is lowered, and the suppression of bleeding may be insufficient.
On the contrary, when the amount of the compound of the general formula (1) is less than 30 parts by mass with respect to 70 parts by mass of the water-soluble resin, the number of reactive groups in the resulting resin fine particle dispersion increases. Although the bleed suppressing effect is high, the ejection stability may be insufficient.
分散液中の一般式(1)で表される化合物と水溶性樹脂との合計量(X)と、α,β−不飽和疎水性化合物を含む重合性モノマーの量(Y)との質量比X:Yは、1:100以上50:100以下であることが好ましい。X:Yの質量比がこの範囲内であれば、一般式(1)で表される化合物と水溶性樹脂とでα,β−不飽和疎水性化合物を確実に乳化でき、乳化重合の収率を高く保つことができ好ましい。 Mass ratio of total amount (X) of compound represented by general formula (1) and water-soluble resin in dispersion and amount (Y) of polymerizable monomer containing α, β-unsaturated hydrophobic compound X: Y is preferably 1: 100 or more and 50: 100 or less. If the mass ratio of X: Y is within this range, the α, β-unsaturated hydrophobic compound can be reliably emulsified with the compound represented by the general formula (1) and the water-soluble resin, and the yield of emulsion polymerization Can be kept high.
[重合工程]
(分散液の調製)
本発明では、α,β−不飽和疎水性化合物の重合に先立ち、α,β−不飽和疎水性化合物を一般式(1)で表される化合物と、酸価が80以上315以下の水溶性樹脂とを用いて分散させ、分散液を得る。分散液を得る方法は、公知の種々の手段を利用でき、中でも、せん断応力の高い攪拌機、又はキャビテーション効果のある超音波照射を利用することが好ましい。具体例として下記に示す方法を挙げることができる。一般式(1)及び酸価が80以上315以下の水溶性樹脂を水に溶解して水溶液を得た後、α,β−不飽和疎水性化合物を少量ずつ滴下し、機械的な攪拌を1時間以上行なう。その後、超音波照射により所望の粒径となるまで分散することが好ましい。粒径は一般式(1)の化合物及び酸価が80以上315以下の水溶性樹脂の添加量によって制御可能である。
[Polymerization process]
(Preparation of dispersion)
In the present invention, prior to the polymerization of the α, β-unsaturated hydrophobic compound, the α, β-unsaturated hydrophobic compound is converted into a compound represented by the general formula (1) and a water-soluble acid value of 80 or more and 315 or less. Disperse with a resin to obtain a dispersion. As a method for obtaining the dispersion, various known means can be used. Among them, it is preferable to use a stirrer having a high shear stress or ultrasonic irradiation having a cavitation effect. Specific examples include the following methods. A water-soluble resin having a general formula (1) and an acid value of 80 or more and 315 or less is dissolved in water to obtain an aqueous solution, and then an α, β-unsaturated hydrophobic compound is dropped little by little, and mechanical stirring is performed 1 Do more than an hour. Then, it is preferable to disperse | distribute until it becomes a desired particle size by ultrasonic irradiation. The particle size can be controlled by the amount of the compound of the general formula (1) and the water-soluble resin having an acid value of 80 or more and 315 or less.
上記水溶液中の一般式(1)の化合物及び水溶性樹脂の含有量は、それぞれCMCの1倍以上100倍以下の範囲が好ましい。CMCの1倍未満の場合、α,β−不飽和疎水性化合物の分散が不十分となり、分散液中の平均粒径が大きくなることや、粒径分布が広くなるなどの問題が生じる。また、乳化されなかったα,β−不飽和疎水性化合物のモノマーが粗大粒子のまま重合して、分散不可能な水不溶性の樹脂として析出が生じることがある。一方、一般式(1)の化合物や水溶性樹脂をCMCの100倍よりも多く含有させると、不経済であることに加え、得られる樹脂微粒子分散体を用いて調製したインクジェット用インクのブリード抑制効果が低減することがある。
分散方法に超音波照射を採用する場合、20kHz以上850kHz以下の周波数の超音波を用いることが好ましい。又、分散液の調製時、及び、分散体への超音波照射は1分乃至10時間行なうことが好ましい。
The content of the compound of the general formula (1) and the water-soluble resin in the aqueous solution is preferably in the range of 1 to 100 times that of CMC. When it is less than 1 time of CMC, the dispersion of the α, β-unsaturated hydrophobic compound becomes insufficient, causing problems such as an increase in the average particle size in the dispersion and a wide particle size distribution. Further, the monomer of the α, β-unsaturated hydrophobic compound that has not been emulsified may be polymerized as coarse particles, and precipitation may occur as a water-insoluble resin that cannot be dispersed. On the other hand, when the compound of the general formula (1) and the water-soluble resin are contained more than 100 times the CMC, in addition to being uneconomical, bleeding suppression of ink jet ink prepared using the obtained resin fine particle dispersion is suppressed. The effect may be reduced.
When adopting ultrasonic irradiation as the dispersion method, it is preferable to use ultrasonic waves having a frequency of 20 kHz to 850 kHz. In addition, it is preferable that the dispersion is prepared and the dispersion is irradiated with ultrasonic waves for 1 minute to 10 hours.
(重合工程)
本発明の樹脂微粒子分散体は、α,β−不飽和疎水性化合物と、一般式(1)で表される化合物と、酸価が80以上315以下の水溶性樹脂とを含む分散液中で、α,β−不飽和疎水性化合物を重合することにより得られる。この重合に際しては、分散液に重合開始剤を添加しておく事で重合時間の短縮を図ることができる。重合方法としては、加熱重合が一般的であるが、光重合も可能である。加熱重合の場合、反応温度としては40度以上100度以下が好ましく、反応時間としては1時間以上50時間以下が好ましい。
(Polymerization process)
The resin fine particle dispersion of the present invention is a dispersion containing an α, β-unsaturated hydrophobic compound, a compound represented by the general formula (1), and a water-soluble resin having an acid value of 80 or more and 315 or less. , Α, β-unsaturated hydrophobic compound. In this polymerization, the polymerization time can be shortened by adding a polymerization initiator to the dispersion. As a polymerization method, heat polymerization is generally used, but photopolymerization is also possible. In the case of heat polymerization, the reaction temperature is preferably from 40 to 100 degrees, and the reaction time is preferably from 1 to 50 hours.
(重合開始剤)
前述の重合工程では、水溶性の重合開始剤と油溶性の重合開始剤のいずれも使用可能である。水溶性の重合開始剤の具体的としては過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩;過酸化水素等の過酸塩が挙げられる。油溶性の重合開始剤の具体例としては2、2’−アゾビス−(2−イソブチロニトリル)や2、2’−アゾビス−(2−メチルブチロニトリル)などが挙げられる。
重合開始剤濃度は分散液中のα,β−不飽和疎水性化合物を含む重合性モノマーの全質量に対し0.01質量%以上10質量%以下が好ましく、0.03質量%以上5質量%以下がより好ましい。
(Polymerization initiator)
In the aforementioned polymerization step, either a water-soluble polymerization initiator or an oil-soluble polymerization initiator can be used. Specific examples of the water-soluble polymerization initiator include persulfates such as ammonium persulfate, potassium persulfate, and sodium persulfate; and peracid salts such as hydrogen peroxide. Specific examples of the oil-soluble polymerization initiator include 2,2′-azobis- (2-isobutyronitrile) and 2,2′-azobis- (2-methylbutyronitrile).
The concentration of the polymerization initiator is preferably 0.01% by mass or more and 10% by mass or less, and preferably 0.03% by mass or more and 5% by mass with respect to the total mass of the polymerizable monomer containing the α, β-unsaturated hydrophobic compound in the dispersion. The following is more preferable.
(ハイドロホーブ)
微小粒径の油滴を用いて疎水性モノマーを乳化重合する際、疎水性モノマーを含むモノマー油滴の粒径の不均一性が問題となる場合がある。比表面積の大きいモノマー油滴からモノマーが水中を拡散し、より比表面積の小さい油滴すなわち粗大モノマー粒子に吸収される。この現象はオストワルド熟成と呼ばれ、モノマー油滴の粒径が一層不均一となる。このオストワルド熟成を抑制する為に、疎水性モノマーに親和性のある水不溶性の化合物を添加する事が知られている。この化合物がハイドロホーブである。
(Hydrohove)
When emulsion polymerization of a hydrophobic monomer is performed using oil droplets having a small particle size, there may be a problem of non-uniform particle size of monomer oil droplets containing the hydrophobic monomer. The monomer diffuses from the monomer oil droplets having a large specific surface area in water, and is absorbed by the oil droplets having a smaller specific surface area, that is, coarse monomer particles. This phenomenon is called Ostwald ripening, and the particle size of the monomer oil droplets becomes more uneven. In order to suppress this Ostwald ripening, it is known to add a water-insoluble compound having an affinity for a hydrophobic monomer. This compound is a hydrophobe.
本発明では、予めα,β−不飽和疎水性化合物にハイドロホーブを添加してから、一般式(1)及び(2)の化合物を用いて分散液を調製し、重合することで、粒径の均一な樹脂微粒子分散体が得られる。本発明で使用できるハイドロホーブとしては、ヘキサデカン、メタクリル酸ドデシル、メタクリル酸ステアリル、クロロベンゼン、ドデシルメルカプタン、オリーブ油、青色染料(ソルベントブルー70)及びポリメチルメタクリレート等が挙げられる。
分散液を調製する際に使用するハイドロホーブの量は、α,β−不飽和疎水性化合物を含む重合性モノマー全質量に対し0.01質量%以上30質量%以下であることが好ましく、0.1質量%以上10質量%以下がより好ましい。
In the present invention, after adding a hydrophobe to an α, β-unsaturated hydrophobic compound in advance, a dispersion is prepared using the compounds of the general formulas (1) and (2) and polymerized to obtain a particle size. A uniform resin fine particle dispersion can be obtained. Examples of hydrophobes that can be used in the present invention include hexadecane, dodecyl methacrylate, stearyl methacrylate, chlorobenzene, dodecyl mercaptan, olive oil, blue dye (solvent blue 70), and polymethyl methacrylate.
The amount of hydrophobe used in preparing the dispersion is preferably 0.01% by mass or more and 30% by mass or less based on the total mass of the polymerizable monomer containing the α, β-unsaturated hydrophobic compound. More preferably, the content is 1% by mass or more and 10% by mass or less.
(pH調整剤)
本発明の樹脂微粒子分散体及び重合時の分散液中にpH調整剤を添加しても良い。本発明で使用できるpH調整剤としては、具体的には、炭酸水素ナトリウム、酢酸ナトリウム、リン酸2水素ナトリウム、リン酸2水素カリウム、3−(N−モルフォリノ)プロパンスルホン酸、メチル−3−アミノプロパンスルホン酸、2−(シクロヘキシルアミノ)エタンスルホン酸等が挙げられる。pH調整剤は、樹脂微粒子分散体のpHが5.5乃至11の範囲となるように添加することが好ましい。
(PH adjuster)
A pH adjuster may be added to the resin fine particle dispersion of the present invention and the dispersion during polymerization. Specific examples of the pH adjusting agent that can be used in the present invention include sodium hydrogen carbonate, sodium acetate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, 3- (N-morpholino) propanesulfonic acid, methyl-3- Aminopropanesulfonic acid, 2- (cyclohexylamino) ethanesulfonic acid, etc. are mentioned. The pH adjuster is preferably added so that the pH of the resin fine particle dispersion is in the range of 5.5 to 11.
(添加剤)
本発明の樹脂微粒子分散体を用いてインクジェット用インクを調製する際には、必要に応じて親水性有機溶剤、界面活性剤、pH調整剤、防腐剤及び水溶性樹脂等を添加することができる。
(Additive)
When preparing an inkjet ink using the resin fine particle dispersion of the present invention, a hydrophilic organic solvent, a surfactant, a pH adjuster, a preservative, a water-soluble resin, and the like can be added as necessary. .
[色材内包樹脂微粒子分散体]
本発明の色材内包樹脂微粒子分散体は、α,β−不飽和疎水性化合物と、一般式(1)で表される化合物と、酸価が80以上315以下の水溶性樹脂と、色材とを含む分散液中で、α,β−不飽和疎水性化合物を重合することにより得られる。重合の条件、重合開始剤、インクジェット用インクを調製する際の添加剤等は、上述の[樹脂微粒子分散体]、[重合工程]、(添加剤)と同様である。
[Color material-containing resin fine particle dispersion]
The coloring material-containing resin fine particle dispersion of the present invention includes an α, β-unsaturated hydrophobic compound, a compound represented by the general formula (1), a water-soluble resin having an acid value of 80 to 315, and a coloring material. It is obtained by polymerizing an α, β-unsaturated hydrophobic compound in a dispersion containing Polymerization conditions, a polymerization initiator, additives for preparing an ink jet ink, and the like are the same as those in the above [resin fine particle dispersion], [polymerization step], and (additive).
(色材)
本発明の色材内包樹脂微粒子分散体を構成する色材内包樹脂微粒子は、樹脂が色材を内包した構造を有する。予めα,β−不飽和疎水性化合物に色材を溶解してから重合反応をすることや、色材表面にα,β−不飽和疎水性化合物を吸着させてから重合反応をすることにより製造できる。本発明の色材内包樹脂微粒子分散体中の、色材の含有量はα,β−不飽和疎水性化合物の重合体の含有量に対して、質量比率で0.4倍以上20倍以下であることが好ましい。色材の含有量がこの範囲内であると、本発明の色材内包樹脂微粒子分散体を用いてインクジェット用インクを調製したときに、その保存安定性、発色性及び画像濃度が優れる。色材の含有量が、α,β−不飽和疎水性化合物の重合体の含有量に対して、0.4倍未満の場合、発色性や画像濃度が満足できないレベルとなることがある。一方、色材量が20倍より多いと記録物の光沢性や耐擦過性が低下することがある。
(Color material)
The color material-encapsulating resin fine particles constituting the color material-encapsulating resin fine particle dispersion of the present invention have a structure in which a resin encapsulates the color material. Produced by dissolving the coloring material in the α, β-unsaturated hydrophobic compound in advance and then performing the polymerization reaction, or by adsorbing the α, β-unsaturated hydrophobic compound to the surface of the coloring material and then performing the polymerization reaction. it can. The content of the color material in the color material-encapsulating resin fine particle dispersion of the present invention is 0.4 to 20 times by mass with respect to the content of the polymer of the α, β-unsaturated hydrophobic compound. Preferably there is. When the content of the color material is within this range, when an ink-jet ink is prepared using the color material-encapsulating resin fine particle dispersion of the present invention, its storage stability, color developability and image density are excellent. When the content of the color material is less than 0.4 times the content of the polymer of the α, β-unsaturated hydrophobic compound, the color developability and the image density may be unsatisfactory. On the other hand, if the amount of the color material is more than 20 times, the glossiness and scratch resistance of the recorded matter may be lowered.
色材として油性染料を用いる場合、油性染料をα,β−不飽和疎水性化合物に溶解してから重合を行うことができる。この重合方法については、Colloid and Polymer Science、2003年12月、282巻、p119−126に詳細な検討が報告されている。
また、色材表面にα,β−不飽和疎水性化合物を吸着させてから重合反応をする方法としては、色材分散体とα,β−不飽和疎水性化合物の分散体を個別に調整後、混合してから重合する製法が挙げられる。この製法については“Encapsulation of Carbon Black by Miniemulsion Polymerization”、Macromolecular Chemistry and Physics、2001年1月、202巻、p.51−60に詳細な検討が報告されている。
本発明の色材内包樹脂微粒子分散体に用いることができる色材としてはカーボンブラック、カラー顔料、油性染料等を挙げることができる。
When an oily dye is used as the coloring material, the oily dye can be polymerized after being dissolved in the α, β-unsaturated hydrophobic compound. A detailed study of this polymerization method is reported in Colloid and Polymer Science, December 2003, Vol. 282, p119-126.
In addition, as a method for carrying out the polymerization reaction after adsorbing the α, β-unsaturated hydrophobic compound to the surface of the color material, the color material dispersion and the dispersion of the α, β-unsaturated hydrophobic compound are individually adjusted. And a method of polymerizing after mixing. Regarding this production method, “Encapsulation of Carbon Black by Miniemulsion Polymerization”, Macromolecular Chemistry and Physics, January 2001, vol. 202, p. Detailed studies are reported in 51-60.
Examples of the color material that can be used in the color material-containing resin fine particle dispersion of the present invention include carbon black, a color pigment, and an oily dye.
本発明の色材内包樹脂微粒子分散体の色材として用いることのできるカーボンブラックとしては、例えば、ガスブラック、ファーネスブラック、ミディアムサーマルカーボンブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラックが挙げられる。具体的には、カラーブラック(Color Black)FWシリーズ、スペシャルブラック(Special Black)シリーズ、ハイブラック(HIBLACK)シリーズ、プリンテックス(Printex 以上デグサ ジャパン製)が挙げられる。色材としてカーボンブラックを用いる場合、その表面が、α,β−不飽和疎水性化合物やハイドロホーブに対し高い親和性を有することが好ましい。具体的には、カルボニル基又はフェノール性水酸基等の官能基で表面修飾されたカーボンブラック、ラクトン又はカルボン酸無水物で表面処理されたカーボンブラック、クロメン構造を表面に有したカーボンブラックであることが好ましい。また、アルキル基、フェニル基等の疎水性基を表面修飾したカーボンブラックであってもよい。 Examples of the carbon black that can be used as the coloring material of the coloring material-containing resin fine particle dispersion of the present invention include carbon black such as gas black, furnace black, medium thermal carbon black, acetylene black, and ketjen black. Specific examples include Color Black FW series, Special Black series, High Black series, Printex (printex and above, manufactured by Degussa Japan). When carbon black is used as a coloring material, the surface thereof preferably has a high affinity for α, β-unsaturated hydrophobic compounds and hydrophobes. Specifically, it may be carbon black surface-modified with a functional group such as a carbonyl group or a phenolic hydroxyl group, carbon black surface-treated with a lactone or a carboxylic acid anhydride, or carbon black having a chromene structure on the surface. preferable. Moreover, the carbon black which surface-modified hydrophobic groups, such as an alkyl group and a phenyl group, may be sufficient.
(カラー顔料)
本発明の色材内包樹脂微粒子分散体の色材として用いることのできるカラー顔料としては、例えば、アゾ顔料(アゾレーキ、不溶性アゾ顔料、縮合アゾ顔料、キレートアゾ顔料等を含む)、多環式顔料(例えばフタロシアニン顔料、ペリレン顔料、ペリノン顔料、チオインジゴ顔料、イソインドリノン顔料、キノフタロン顔料等)、ニトロ顔料、ニトロソ顔料等が挙げられる。また、カラー顔料は、上述のカーボンブラックと同様にα,β−不飽和疎水性化合物やハイドロホーブに対し高い親和性を有することが好ましい。
(Color pigment)
Examples of color pigments that can be used as the colorant of the colorant-encapsulating resin fine particle dispersion of the present invention include azo pigments (including azo lakes, insoluble azo pigments, condensed azo pigments, chelate azo pigments), polycyclic pigments ( Examples thereof include phthalocyanine pigments, perylene pigments, perinone pigments, thioindigo pigments, isoindolinone pigments and quinophthalone pigments), nitro pigments and nitroso pigments. The color pigment preferably has a high affinity for α, β-unsaturated hydrophobic compounds and hydrophobes as in the case of the carbon black described above.
(油性染料)
本発明の色材内包樹脂微粒子分散体の色材として用いることのできる油溶性染料としては、ブラック、イエロー、マゼンタ、シアン染料等を挙げることができる。例えば、油性染料としてカラーインデックス(COLOUR INDEX)に記載されているものであれば特に限定されない。また、本発明においてはカラーインデックスに記載のない新規の油性染料も用いることができる。
具体的には、ブラックの油性染料としてはDystar社のSolvent BLACK 5、CI Solvent BLACK 7等が挙げられる。また、シアン染料としてはC.I.ソルベントブルー33、38、42、45、53、65、67、70、104、114、115、135等が挙げられる。マゼンタ染料としてはC.I.ソルベントレッド25、31、86、92、97、118、132、160、186、187、219等が挙げられる。イエロー染料としてはC.I.ソルベントイエロー1、49、62、74、79、82、83、89、90、120、121、151、153、154等が挙げられる。
(Oil-based dye)
Examples of oil-soluble dyes that can be used as the color material of the color material-containing resin fine particle dispersion of the present invention include black, yellow, magenta, and cyan dyes. For example, any oil-based dye may be used as long as it is described in the color index (COOLUR INDEX). In the present invention, a novel oily dye not described in the color index can also be used.
Specific examples of black oil-based dyes include Solvent Black 5 and CI Solvent Black 7 from Dystar. Cyan dyes include C.I. I. Solvent blue 33, 38, 42, 45, 53, 65, 67, 70, 104, 114, 115, 135 etc. are mentioned. As the magenta dye, C.I. I. Solvent Red 25, 31, 86, 92, 97, 118, 132, 160, 186, 187, 219 and the like. Examples of yellow dyes include C.I. I. Solvent Yellow 1, 49, 62, 74, 79, 82, 83, 89, 90, 120, 121, 151, 153, 154 and the like.
(微粒子の平均粒径)
本発明の樹脂微粒子分散体中の樹脂微粒子及び色材内包樹脂微粒子分散体中の色材内包樹脂微粒子は、平均粒径が10nm以上500nm以下の範囲が好ましく、50nm以上300nm以下の範囲がより好ましい。平均粒径は日機装製「Microtrack UPA EX−150」等の粒度分析計を用いて、樹脂微粒子又は色材内容樹脂微粒子の体積平均のメジアン径であるD50の値を測定することで得られる。
(Average particle size of fine particles)
The resin fine particles in the resin fine particle dispersion of the present invention and the color material-containing resin fine particles in the color material-containing resin fine particle dispersion preferably have an average particle size in the range of 10 nm to 500 nm, more preferably in the range of 50 nm to 300 nm. . The average particle diameter can be obtained by measuring the value of D 50 , which is a volume average median diameter of resin fine particles or color material-containing resin fine particles, using a particle size analyzer such as “Microtrack UPA EX-150” manufactured by Nikkiso.
次に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、下記実施例によって限定されるものではない。なお、文中「部」及び「%」とあるのは、特に断りのない限り質量基準である。
まず、界面活性剤及び分散体の製造方法について説明する。
EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited by the following Example, unless the summary is exceeded. In the text, “parts” and “%” are based on mass unless otherwise specified.
First, a method for producing a surfactant and a dispersion will be described.
<界面活性剤1−1の製造>
反応容器にセチルアルコール(和光純薬工業製 試薬)2.42g(0.01モル)と、水分量が0.1質量%になるように少量のイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換してゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度35℃に保ち、攪拌しながらエチレンオキシド26.6g(0.60モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後,反応物を10℃に冷却して、粗ポリオキシエチレンセチルエーテル27.6gを得た。次いで、反応容器を60℃に保ちながら減圧して揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃にて2時間撹拌し、次いで濾過を行い、精製ポリオキシエチレンセチルエーテル21.1gを得た。
<Production of surfactant 1-1>
A reaction vessel was charged with 2.42 g (0.01 mol) of cetyl alcohol (a reagent manufactured by Wako Pure Chemical Industries) and a small amount of ion-exchanged water so that the water content was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Next, 26.6 g (0.60 mol) of ethylene oxide was injected over 8 hours with stirring while maintaining the pressure at 0.4 MPa and the temperature of 35 ° C., and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 27.6 g of crude polyoxyethylene cetyl ether. Next, the reaction vessel was depressurized while being kept at 60 ° C., and the volatilization loss was measured to determine the reaction rate of ethylene oxide. After adding 80 g of silica-based adsorbent (KYOWARD 500SH; manufactured by Kyowa Chemical Industry Co., Ltd.) to the residue in the reaction vessel, the mixture was stirred under reduced pressure at 70 ° C. for 2 hours, then filtered, and purified polyoxyethylene cetyl ether 21.1 g was obtained.
精製ポリオキシエチレンセチルエーテル21.1g(0.0073モル)と水酸化ナトリウム0.1gを反応容器に入れ、温度60℃で4時間攪拌した。その後、クロロ酢酸ナトリウム0.85g(0.0073モル)を添加して40℃で8時間加熱した後、冷却してから反応容器内の固形物を濾紙上に取り出した。これを、冷イオン交換水で洗浄して、C16H33O(CH2CH2O)n−CH2COONa(nは1以上の整数)の構造式で表される精製ポリオキシエチレンセチルエーテルカルボン酸ナトリウム(界面活性剤1−1)14.6gを得た。 Purified polyoxyethylene cetyl ether (21.1 g, 0.0073 mol) and sodium hydroxide (0.1 g) were placed in a reaction vessel and stirred at a temperature of 60 ° C. for 4 hours. Thereafter, 0.85 g (0.0073 mol) of sodium chloroacetate was added and heated at 40 ° C. for 8 hours. After cooling, the solid in the reaction vessel was taken out on a filter paper. This was washed with cold ion-exchanged water, and purified polyoxyethylene cetyl ether represented by the structural formula of C 16 H 33 O (CH 2 CH 2 O) n —CH 2 COONa (n is an integer of 1 or more). 14.6 g of sodium carboxylate (surfactant 1-1) was obtained.
<界面活性剤1−2>
溶媒としてメチルエチルケトン(以下MEKと記す)50g、モノマーとしてスチレン63g、アクリル酸ブチル25g及びアクリル酸12gを300mlフラスコ内に用意した。窒素気流下、撹拌しながら75℃まで昇温させた後、重合開始剤として2、2’−アゾビス(2−メチルブチロニトリル)1gを添加して重合を開始し、さらに7時間反応させた。反応後、フラスコを冷却し、MEKを100ml加えて希釈した。この反応液をヘキサン中に投入した結果、白色の生成物が得られた。この生成物の合成仕込み時のモノマー比は、スチレン/アクリル酸ブチル/アクリル酸=63/20/17、理論酸価92、GPCにより求めた分子量は9000であった。この生成物を水酸化カリウムでpH 8(0.8当量)になるように中和して、得られた樹脂を界面活性剤1−2とし、水に溶解して使用した。
<Surfactant 1-2>
50 g of methyl ethyl ketone (hereinafter referred to as MEK) as a solvent and 63 g of styrene, 25 g of butyl acrylate and 12 g of acrylic acid as monomers were prepared in a 300 ml flask. After raising the temperature to 75 ° C. with stirring under a nitrogen stream, 1 g of 2,2′-azobis (2-methylbutyronitrile) was added as a polymerization initiator to initiate polymerization, and the reaction was further continued for 7 hours. . After the reaction, the flask was cooled and diluted with 100 ml of MEK. As a result of charging this reaction liquid into hexane, a white product was obtained. The monomer ratio at the time of synthesizing this product was styrene / butyl acrylate / acrylic acid = 63/20/17, theoretical acid value 92, and molecular weight determined by GPC was 9000. The product was neutralized with potassium hydroxide to pH 8 (0.8 equivalent), and the resulting resin was used as surfactant 1-2, dissolved in water and used.
<樹脂微粒子分散体1の製造>
[分散体1−1の製造]
エチルメタクリレート9.0g、ヘキサデシルメタクリレート1.0g及び2,2’−アゾビス−(2−メチルブチロニトリル)0.5gを反応容器にて混合しマグネチックスターラーにより毎分100回転で1時間攪拌し、固形分を溶解して混合溶液を得た。この混合溶液を、界面活性剤1−1を0.3%及び界面活性剤1−2を0.3%含む水溶液70gに滴下して、毎分300回転で1時間攪拌した。次に、この溶液に超音波照射機(ブランソン製 S−150D デジタルソニファイアー)で20kHzの超音波を1時間照射して乳化し、分散体1−1を得た。
<Manufacture of resin fine particle dispersion 1>
[Production of Dispersion 1-1]
9.0 g of ethyl methacrylate, 1.0 g of hexadecyl methacrylate and 0.5 g of 2,2′-azobis- (2-methylbutyronitrile) were mixed in a reaction vessel and stirred for 1 hour at 100 rpm with a magnetic stirrer. The solid content was dissolved to obtain a mixed solution. This mixed solution was dropped into 70 g of an aqueous solution containing 0.3% of surfactant 1-1 and 0.3% of surfactant 1-2, and stirred at 300 rpm for 1 hour. Next, this solution was emulsified by irradiation with ultrasonic waves of 20 kHz for 1 hour with an ultrasonic irradiator (S-150D digital sonifier manufactured by Branson) to obtain dispersion 1-1.
[分散体1−2の製造]
カーボンブラック10g(デグサ製 商品名Printex85)を、界面活性剤1−1を1.3%及び界面活性剤1−2を1.3%含む混合水溶液110g中に添加して、マグネチックスターラーで600rpmにて2時間攪拌した。その後、この溶液に超音波照射機で20kHzの超音波を5時間照射して乳化し、分散体1−2を得た。
[Production of Dispersion 1-2]
10 g of carbon black (trade name Printex 85 manufactured by Degussa) was added to 110 g of a mixed aqueous solution containing 1.3% of surfactant 1-1 and 1.3% of surfactant 1-2, and 600 rpm with a magnetic stirrer. For 2 hours. Thereafter, the solution was irradiated with an ultrasonic wave of 20 kHz for 5 hours with an ultrasonic irradiator and emulsified to obtain a dispersion 1-2.
[樹脂微粒子分散体1の製造]
20.0gの分散体1−1と80.0gの分散体1−2を反応容器にて混合してマグネチックスターラーで600rpm、1時間攪拌した。その後、超音波照射機で20kHzの超音波を6分間照射して分散した。さらにマグネチックスターラーで600rpmにて1時間攪拌した。最後に超音波照射機で20kHzの超音波を6分間照射して分散液を得た。
この分散液を窒素雰囲気下で70℃に保ち、8時間重合反応を行なった。得られた反応液をシリンジフィルタ(ザルトリウス製 ミニザルト17594K 孔径5.0μm)でろ過して樹脂微粒子分散体1を得た。
[Production of Resin Fine Particle Dispersion 1]
20.0 g of Dispersion 1-1 and 80.0 g of Dispersion 1-2 were mixed in a reaction vessel and stirred with a magnetic stirrer at 600 rpm for 1 hour. After that, the ultrasonic wave was dispersed by irradiating 20 kHz ultrasonic waves for 6 minutes with an ultrasonic irradiator. Furthermore, it stirred at 600 rpm with the magnetic stirrer for 1 hour. Finally, a 20 kHz ultrasonic wave was irradiated for 6 minutes with an ultrasonic irradiator to obtain a dispersion.
This dispersion was kept at 70 ° C. under a nitrogen atmosphere, and a polymerization reaction was carried out for 8 hours. The obtained reaction liquid was filtered with a syringe filter (Minisart 17594K manufactured by Sartorius, pore size: 5.0 μm) to obtain resin fine particle dispersion 1.
<樹脂微粒子分散体2の製造>
エチルメタクリレート6.3g、ヘキサデシルメタクリレート0.7g、油性染料(チバ・スペシャルティ・ケミカルズ製 商品名Orasol Blue GL)3g及び2,2’−アゾビス−(2−メチルブチロニトリル)0.5gを反応容器にて混合した。次いで、マグネチックスターラーにより毎分100回転で1時間攪拌し、固形分を溶解して混合溶液を得た。この混合溶液を0.3%の界面活性剤1−1及び界面活性剤1−2を0.3%含む混合水溶液70gに滴下して、毎分300回転で1時間攪拌した。次に、この溶液に超音波照射機で20kHzの超音波を1時間照射して分散液を得た。この分散液を窒素雰囲気下で70℃に保ち、8時間重合反応を行なった。得られた反応液をシリンジフィルタ(ザルトリウス製 ミニザルト17594K 孔径5.0μm)でろ過して樹脂微粒子分散体2を得た。
<Manufacture of resin fine particle dispersion 2>
Reaction of 6.3 g of ethyl methacrylate, 0.7 g of hexadecyl methacrylate, 3 g of oil-based dye (trade name Orasol Blue GL, manufactured by Ciba Specialty Chemicals) and 0.5 g of 2,2′-azobis- (2-methylbutyronitrile) Mix in container. Next, the mixture was stirred with a magnetic stirrer at 100 revolutions per minute for 1 hour, and the solid content was dissolved to obtain a mixed solution. This mixed solution was dropped into 70 g of a mixed aqueous solution containing 0.3% of surfactant 1-1 and surfactant 1-2, and stirred at 300 rpm for 1 hour. Next, this solution was irradiated with ultrasonic waves of 20 kHz for 1 hour with an ultrasonic irradiator to obtain a dispersion. This dispersion was kept at 70 ° C. under a nitrogen atmosphere, and a polymerization reaction was carried out for 8 hours. The obtained reaction liquid was filtered with a syringe filter (Minisart 17594K manufactured by Sartorius, pore size: 5.0 μm) to obtain resin fine particle dispersion 2.
<界面活性剤2−1の製造>
反応容器にセチルアルコール2.42g(0.01モル)と、水分量が0.1質量%になるように少量のイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換してゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度を35℃に保ち、攪拌しながらエチレンオキシド13.4g(0.30モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後、反応物を10℃に冷却して、粗ポリオキシエチレンセチルエーテル15.0gを得た。次いで、反応容器を60℃に保ちながら減圧して、揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃にて2時間撹拌し、次いで濾過を行い、精製ポリオキシエチレンセチルエーテル12.5gを得た。
<Production of surfactant 2-1>
A reaction vessel was charged with 2.42 g (0.01 mol) of cetyl alcohol and a small amount of ion-exchanged water so that the water content was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Next, while maintaining the pressure at 0.4 MPa and the temperature at 35 ° C., 13.4 g (0.30 mol) of ethylene oxide was injected over 8 hours with stirring, and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 15.0 g of crude polyoxyethylene cetyl ether. Next, the reaction vessel was depressurized while being kept at 60 ° C., the volatilization loss was measured, and the reaction rate of ethylene oxide was determined. After adding 80 g of silica-based adsorbent (KYOWARD 500SH; manufactured by Kyowa Chemical Industry Co., Ltd.) to the residue in the reaction vessel, the mixture was stirred under reduced pressure at 70 ° C. for 2 hours, then filtered, and purified polyoxyethylene cetyl ether 12.5 g was obtained.
上記精製ポリオキシエチレンセチルエーテル12.5g(0.0080モル)と水酸化ナトリウム0.1gを反応容器に入れ、温度60℃で4時間攪拌した。その後、クロロ酢酸ナトリウム0.93g(0.0080モル)を添加して40℃で8時間加熱した後、冷却した。次いで反応容器内の固形物を濾紙上に取り出し、冷イオン交換水で洗浄して、精製ポリオキシエチレンセチルエーテルカルボン酸ナトリウム(界面活性剤2−1)11.7gを得た。 12.5 g (0.0080 mol) of the purified polyoxyethylene cetyl ether and 0.1 g of sodium hydroxide were placed in a reaction vessel and stirred at a temperature of 60 ° C. for 4 hours. Thereafter, 0.93 g (0.0080 mol) of sodium chloroacetate was added and heated at 40 ° C. for 8 hours, and then cooled. Subsequently, the solid in the reaction vessel was taken out on a filter paper and washed with cold ion exchange water to obtain 11.7 g of purified sodium polyoxyethylene cetyl ether carboxylate (surfactant 2-1).
<樹脂微粒子分散体3の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−1を2−1に変更した以外は、樹脂微粒子分散体2の製造と同様に行い、樹脂微粒子分散体3を得た。
<Manufacture of resin fine particle dispersion 3>
The resin fine particle dispersion 3 was obtained in the same manner as in the production of the resin fine particle dispersion 2, except that the surfactant 1-1 was changed to 2-1.
<界面活性剤3−1の製造>
反応容器にセチルアルコール2.42g(0.01モル)と、水分量が0.1質量%になるように少量のイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換してゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度を35℃に保ち、攪拌しながらエチレンオキシド66.3g(1.50モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後、反応物を10℃に冷却して、粗ポリオキシエチレンセチルエーテル65.2gを得た。次いで、反応容器を60℃に保ちながら減圧して、揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃にて2時間撹拌し、次いで濾過を行い、精製ポリオキシエチレンセチルエーテル59.4gを得た。
<Production of surfactant 3-1>
A reaction vessel was charged with 2.42 g (0.01 mol) of cetyl alcohol and a small amount of ion-exchanged water so that the water content was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Next, while maintaining the pressure at 0.4 MPa and the temperature at 35 ° C., 66.3 g (1.50 mol) of ethylene oxide was injected over 8 hours with stirring, and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 65.2 g of crude polyoxyethylene cetyl ether. Next, the reaction vessel was depressurized while being kept at 60 ° C., the volatilization loss was measured, and the reaction rate of ethylene oxide was determined. After adding 80 g of silica-based adsorbent (KYOWARD 500SH; manufactured by Kyowa Chemical Industry Co., Ltd.) to the residue in the reaction vessel, the mixture was stirred under reduced pressure at 70 ° C. for 2 hours, then filtered, and purified polyoxyethylene cetyl ether 59.4 g was obtained.
精製ポリオキシエチレンセチルエーテル59.4g(0.0087モル)、水酸化ナトリウム0.1gを反応容器に入れ、温度60℃で4時間攪拌した。その後、クロロ酢酸ナトリウム1.01g(0.0087モル)を添加して40℃で8時間加熱した後、冷却した。次いで、反応容器内の固形物を濾紙上に取り出し、冷イオン交換水で洗浄して、精製ポリオキシエチレンセチルエーテルカルボン酸ナトリウム(界面活性剤3−1)52.9gを得た。 Purified polyoxyethylene cetyl ether 59.4 g (0.0087 mol) and sodium hydroxide 0.1 g were put in a reaction vessel and stirred at a temperature of 60 ° C. for 4 hours. Thereafter, 1.01 g (0.0087 mol) of sodium chloroacetate was added and heated at 40 ° C. for 8 hours, and then cooled. Next, the solid in the reaction vessel was taken out on a filter paper and washed with cold ion exchange water to obtain 52.9 g of purified sodium polyoxyethylene cetyl ether carboxylate (surfactant 3-1).
<樹脂微粒子分散体4の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−1を3−1に変更した以外は、樹脂微粒子分散体2の製造と同様に行い、樹脂微粒子分散体4を得た。
<Manufacture of resin fine particle dispersion 4>
The resin fine particle dispersion 4 was obtained in the same manner as the production of the resin fine particle dispersion 2, except that the surfactant 1-1 was changed to 3-1.
<樹脂微粒子分散体5の製造>
エチルメタクリレート9.0g、ヘキサデシルメタクリレート1.0g、2,2’−アゾビス−(2−メチルブチロニトリル)0.5gを反応容器にて混合しマグネチックスターラーにより毎分100回転で1時間攪拌し、固形分を溶解して混合溶液を得た。この混合溶液を、界面活性剤1−1を0.3%及び界面活性剤1−2を0.3%含むの混合水溶液70gに滴下して、毎分300回転で1時間攪拌した。次に、この溶液に超音波照射機で20kHzの超音波を1時間照射して分散液を得た。この分散液を窒素雰囲気下で70℃に保ち、8時間重合反応を行なった。得られた反応液をシリンジフィルタ(ザルトリウス製 ミニザルト17594K 孔径5.0μm)でろ過して樹脂微粒子分散体5を得た。
<Manufacture of resin fine particle dispersion 5>
9.0 g of ethyl methacrylate, 1.0 g of hexadecyl methacrylate and 0.5 g of 2,2′-azobis- (2-methylbutyronitrile) were mixed in a reaction vessel and stirred for 1 hour at 100 rpm with a magnetic stirrer. The solid content was dissolved to obtain a mixed solution. This mixed solution was dropped into 70 g of a mixed aqueous solution containing 0.3% of surfactant 1-1 and 0.3% of surfactant 1-2, and stirred at 300 rpm for 1 hour. Next, this solution was irradiated with ultrasonic waves of 20 kHz for 1 hour with an ultrasonic irradiator to obtain a dispersion. This dispersion was kept at 70 ° C. under a nitrogen atmosphere, and a polymerization reaction was carried out for 8 hours. The obtained reaction liquid was filtered with a syringe filter (Minisart 17594K manufactured by Sartorius, pore size: 5.0 μm) to obtain resin fine particle dispersion 5.
<界面活性剤4−1の製造>
反応容器にオクチルアルコール(和光純薬工業製 試薬)1.30g(0.01モル)と、水分量が0.1質量%になるように少量のイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換しゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度を35℃に保ち、撹拌しながらエチレンオキシド26.6g(0.60モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後、反応物を10℃に冷却して、粗ポリオキシエチレンオクチルエーテル26.5gを得た。次いで、反応容器を60℃にて保ちながら減圧して、揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃にて2時間撹拌し、次いで濾過を行い、精製ポリオキシエチレンオクチルエーテル21.5gを得た。
<Production of surfactant 4-1>
A reaction vessel was charged with 1.30 g (0.01 mol) of octyl alcohol (a reagent manufactured by Wako Pure Chemical Industries, Ltd.) and a small amount of ion-exchanged water so that the water content was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Next, while maintaining the pressure at 0.4 MPa and the temperature at 35 ° C., 26.6 g (0.60 mol) of ethylene oxide was injected over 8 hours with stirring, and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 26.5 g of crude polyoxyethylene octyl ether. Next, the reaction vessel was depressurized while being kept at 60 ° C., the volatilization loss was measured, and the reaction rate of ethylene oxide was determined. After adding 80 g of silica-based adsorbent (KYOWARD 500SH; manufactured by Kyowa Chemical Industry Co., Ltd.) to the residue in the reaction vessel, the mixture was stirred at 70 ° C. for 2 hours under reduced pressure, then filtered, and purified polyoxyethylene octyl ether 21.5 g was obtained.
上記精製ポリオキシエチレンオクチルエーテル21.5g(0.0078モル)と水酸化ナトリウム0.1gを反応容器に入れ、温度60℃で4時間攪拌した。その後、クロロ酢酸ナトリウム0.90g(0.0078モル)を添加して40℃で8時間加熱した後、冷却した。次いで反応容器内の固形物を濾紙上に取り出した。これを、冷イオン交換水で洗浄して、C8H17O(CH2CH2O)n−CH2COONa(nは1以上の整数)の構造式で表される精製ポリオキシエチレンオクチルエーテルカルボン酸ナトリウム(界面活性剤4−1)18.7gを得た。 21.5 g (0.0078 mol) of the purified polyoxyethylene octyl ether and 0.1 g of sodium hydroxide were placed in a reaction vessel and stirred at a temperature of 60 ° C. for 4 hours. Thereafter, 0.90 g (0.0078 mol) of sodium chloroacetate was added and heated at 40 ° C. for 8 hours, and then cooled. Next, the solid matter in the reaction vessel was taken out on a filter paper. This was washed with cold ion-exchanged water, and purified polyoxyethylene octyl ether represented by the structural formula of C 8 H 17 O (CH 2 CH 2 O) n —CH 2 COONa (n is an integer of 1 or more). 18.7 g of sodium carboxylate (surfactant 4-1) was obtained.
<樹脂微粒子分散体6の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−1を界面活性剤4−1に変更した以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体6を得た。
<Manufacture of resin fine particle dispersion 6>
A resin fine particle dispersion 6 was obtained in the same manner as in the resin fine particle dispersion 2, except that the surfactant 1-1 was changed to the surfactant 4-1, in the production of the resin fine particle dispersion 2.
<界面活性剤5−1の製造>
ポリオキシエチレンオクチルフェニルエーテル(シグマ アルドリッヂ製 商品名Triton X−405)18.8g(0.010モル)と水酸化ナトリウム0.1gを反応容器に入れ、温度60℃で4時間攪拌した。その後、クロロ酢酸ナトリウム1.16g(0.010モル)を添加して40℃で8時間加熱した後、冷却してから反応容器内の固形物を濾紙上に取り出した。これを冷イオン交換水で洗浄して、C8H17−C6H4−O−(CH2CH2O)n−CH2COONa(nは1以上の整数)の構造式で表される精製ポリオキシエチレンオクチルフェニルエーテルカルボン酸ナトリウム(界面活性剤5−1)15.1gを得た。
<Production of surfactant 5-1>
18.8 g (0.010 mol) of polyoxyethylene octylphenyl ether (trade name Triton X-405, manufactured by Sigma Aldridge) and 0.1 g of sodium hydroxide were placed in a reaction vessel and stirred at a temperature of 60 ° C. for 4 hours. Thereafter, 1.16 g (0.010 mol) of sodium chloroacetate was added and heated at 40 ° C. for 8 hours. After cooling, the solid in the reaction vessel was taken out on a filter paper. This is washed with cold ion-exchanged water, and is represented by the structural formula C 8 H 17 —C 6 H 4 —O— (CH 2 CH 2 O) n —CH 2 COONa (n is an integer of 1 or more). Purified sodium polyoxyethylene octylphenyl ether carboxylate (surfactant 5-1) 15.1 g was obtained.
<樹脂微粒子分散体7の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−1を界面活性剤5−1に変更した以外は、樹脂微粒子分散体2の製造と同様に行い、樹脂微粒子分散体7を得た。
<Manufacture of resin fine particle dispersion 7>
In the production of the resin fine particle dispersion 2, a resin fine particle dispersion 7 was obtained in the same manner as in the production of the resin fine particle dispersion 2, except that the surfactant 1-1 was changed to the surfactant 5-1.
<界面活性剤6−1の製造>
セチルアルコール2.42g(0.01モル)を反応容器に入れ、原料中の水分量が0.1質量%になるように少量のイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換してゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度を35℃に保ち攪拌しながらエチレンオキシド26.6g(0.60モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後、反応物を10℃に冷却し、粗ポリオキシエチレンセチルエーテル27.6gを得た。次いで、反応容器を60℃に保ちながら減圧して、揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃にて2時間撹拌し、次いで濾過を行い、精製ポリオキシエチレンセチルエーテル21.1gを得た。
<Production of surfactant 6-1>
2.42 g (0.01 mol) of cetyl alcohol was placed in a reaction vessel, and a small amount of ion-exchanged water was added and mixed so that the water content in the raw material was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Subsequently, 26.6 g (0.60 mol) of ethylene oxide was injected over 8 hours while stirring at a pressure of 0.4 MPa and a temperature of 35 ° C., and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 27.6 g of crude polyoxyethylene cetyl ether. Next, the reaction vessel was depressurized while being kept at 60 ° C., the volatilization loss was measured, and the reaction rate of ethylene oxide was determined. After adding 80 g of silica-based adsorbent (KYOWARD 500SH; manufactured by Kyowa Chemical Industry Co., Ltd.) to the residue in the reaction vessel, the mixture was stirred under reduced pressure at 70 ° C. for 2 hours, then filtered, and purified polyoxyethylene cetyl ether 21.1 g was obtained.
精製ポリオキシエチレンセチルエーテル21.1g(0.0073モル)を塩化メチレン60gに溶解した。さらに無水コハク酸0.73g(0.0073モル)とピリジン0.58g(0.0073モル)を添加し、室温にて攪拌しながら15時間反応させた。その後、1N塩酸水溶液にて抽出を2回行なった。得られた有機相を5%炭酸カリウム水溶液でさらに2回抽出した。次いで、得られた有機相を飽和塩化ナトリウム水溶液にて2回抽出を行なった。得られた有機相についてエバポレーターで溶媒を留去した。これを40℃、0.05MPaにて減圧乾燥し、C16H33O(CH2CH2O)n−CO−CH2CH2COONa(nは1以上の整数)の構造式で表される精製ポリオキシエチレンセチルエーテルコハク酸ナトリウム(界面活性剤6−1)17.3gを得た。 21.1 g (0.0073 mol) of purified polyoxyethylene cetyl ether was dissolved in 60 g of methylene chloride. Further, 0.73 g (0.0073 mol) of succinic anhydride and 0.58 g (0.0073 mol) of pyridine were added and reacted at room temperature with stirring for 15 hours. Then, extraction was performed twice with 1N hydrochloric acid aqueous solution. The resulting organic phase was further extracted twice with 5% aqueous potassium carbonate solution. Subsequently, the obtained organic phase was extracted twice with a saturated aqueous sodium chloride solution. About the obtained organic phase, the solvent was distilled off with an evaporator. This was dried under reduced pressure at 40 ° C. and 0.05 MPa, and represented by the structural formula of C 16 H 33 O (CH 2 CH 2 O) n —CO—CH 2 CH 2 COONa (n is an integer of 1 or more). 17.3 g of purified polyoxyethylene cetyl ether sodium succinate (surfactant 6-1) was obtained.
<樹脂微粒子分散体8の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−1を界面活性剤6−1に変更した以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体8を得た。
<Manufacture of resin fine particle dispersion 8>
A resin fine particle dispersion 8 was obtained in the same manner as in the resin fine particle dispersion 2, except that the surfactant 1-1 was changed to the surfactant 6-1 in the production of the resin fine particle dispersion 2.
<界面活性剤7−1の製造>
反応容器にセチルアルコール2.42g(0.01モル)と、水分量が0.1質量%になるように0.03gのイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換してゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度を35℃に保ち、攪拌しながらエチレンオキシド26.6g(0.60モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後、反応物を10℃に冷却し、粗ポリオキシエチレンセチルエーテル27.6gを得た。次いで、反応容器を60℃に保ちながらて減圧して、揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃にて2時間撹拌し、次いで濾過を行い、精製ポリオキシエチレンセチルエーテル21.1gを得た。
<Production of surfactant 7-1>
The reaction vessel was charged with 2.42 g (0.01 mol) of cetyl alcohol and 0.03 g of ion-exchanged water so that the water content was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Next, while maintaining the pressure at 0.4 MPa and the temperature at 35 ° C., 26.6 g (0.60 mol) of ethylene oxide was injected over 8 hours with stirring, and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 27.6 g of crude polyoxyethylene cetyl ether. Next, the pressure was reduced while maintaining the reaction vessel at 60 ° C., the volatilization loss was measured, and the reaction rate of ethylene oxide was determined. After adding 80 g of silica-based adsorbent (KYOWARD 500SH; manufactured by Kyowa Chemical Industry Co., Ltd.) to the residue in the reaction vessel, the mixture was stirred under reduced pressure at 70 ° C. for 2 hours, then filtered, and purified polyoxyethylene cetyl ether 21.1 g was obtained.
精製ポリオキシエチレンセチルエーテル21.1g(0.0073モル)にオキシ塩化リン1.12g(0.0073モル)を添加し、減圧下で塩化水素を除去しながら反応させた。反応終了後、冷水にて冷却し、精製して、C16H33O(CH2CH2O)n−PO(OH)(ONa)の構造式で表される精製ポリオキシエチレンセチルエーテルリン酸エステルナトリウム(界面活性剤7−1)14.4gを得た。 1.12 g (0.0073 mol) of phosphorus oxychloride was added to 21.1 g (0.0073 mol) of purified polyoxyethylene cetyl ether, and reacted while removing hydrogen chloride under reduced pressure. After completion of the reaction, the reaction mixture is cooled with cold water, purified, and purified polyoxyethylene cetyl ether phosphate represented by the structural formula of C 16 H 33 O (CH 2 CH 2 O) n —PO (OH) (ONa). 14.4 g of sodium ester (surfactant 7-1) was obtained.
<樹脂微粒子分散体9の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−1を界面活性剤7−1に変更した以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体9を得た。
<Manufacture of resin fine particle dispersion 9>
A resin fine particle dispersion 9 was obtained in the same manner as in the resin fine particle dispersion 2, except that the surfactant 1-1 was changed to the surfactant 7-1 in the production of the resin fine particle dispersion 2.
<樹脂微粒子分散体10の製造>
樹脂微粒子分散体1の製造において、分散体1−1の量を5.0gに、分散体1−2の量を95.0gに変更した以外は、樹脂微粒子分散体1と同様に製造して、樹脂微粒子分散体10を得た。
<Manufacture of resin fine particle dispersion 10>
The resin fine particle dispersion 1 was produced in the same manner as the resin fine particle dispersion 1 except that the amount of the dispersion 1-1 was changed to 5.0 g and the amount of the dispersion 1-2 was changed to 95.0 g. Resin fine particle dispersion 10 was obtained.
<樹脂微粒子分散体11の製造>
樹脂微粒子分散体1の製造において、分散体1−1の量を67.0gに、分散体1−2の量を33.0gに変更した以外は、樹脂微粒子分散体1と同様に製造して、樹脂微粒子分散体11を得た。
<Manufacture of resin fine particle dispersion 11>
The resin fine particle dispersion 1 was produced in the same manner as the resin fine particle dispersion 1 except that the amount of the dispersion 1-1 was changed to 67.0 g and the amount of the dispersion 1-2 was changed to 33.0 g. Resin fine particle dispersion 11 was obtained.
<界面活性剤2−2>
溶媒としてMEK50g、モノマーとしてスチレン59g、アクリル酸ブチル30g及びアクリル酸10gを300mlフラスコ内に用意した。窒素気流下、撹拌しながら75℃まで昇温させた後、重合開始剤として2、2’−アゾビス(2−メチルブチロニトリル)1gを添加して重合を開始し、さらに7時間反応させた。反応後、フラスコを冷却し、MEKを100ml加えて希釈した。この反応液をヘキサン中に投入した結果、白色の生成物が得られた。この生成物の合成仕込み時のモノマー比は、スチレン/アクリル酸ブチル/アクリル酸=60/25/15、理論酸価80、GPCにより求めた分子量は12000であった。この生成物を水酸化カリウムでpH 8(0.8当量)になるように中和して、得られた樹脂を界面活性剤2−2とし、水に溶解して使用した。
<Surfactant 2-2>
MEK 50 g as a solvent, styrene 59 g, butyl acrylate 30 g and acrylic acid 10 g as a monomer were prepared in a 300 ml flask. After raising the temperature to 75 ° C. with stirring under a nitrogen stream, 1 g of 2,2′-azobis (2-methylbutyronitrile) was added as a polymerization initiator to initiate polymerization, and the reaction was further continued for 7 hours. . After the reaction, the flask was cooled and diluted with 100 ml of MEK. As a result of charging this reaction liquid into hexane, a white product was obtained. The monomer ratio at the time of synthesizing this product was styrene / butyl acrylate / acrylic acid = 60/25/15, the theoretical acid value was 80, and the molecular weight determined by GPC was 12000. This product was neutralized with potassium hydroxide to pH 8 (0.8 equivalent), and the resulting resin was used as surfactant 2-2, dissolved in water and used.
<樹脂微粒子分散体12の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−2を界面活性剤2−2に変更した以外は、樹脂微粒子分散体2と同様に製造して、樹脂微粒子分散体12を得た。
<Manufacture of resin fine particle dispersion 12>
The resin fine particle dispersion 12 was obtained in the same manner as the resin fine particle dispersion 2 except that the surfactant 1-2 was changed to the surfactant 2-2 in the production of the resin fine particle dispersion 2.
<界面活性剤3−2>
溶媒としてMEK50g、モノマーとしてスチレン34g、アクリル酸ブチル28g及びアクリル酸39gを300mlフラスコ内に用意した。窒素気流下、撹拌しながら75℃まで昇温させた後、重合開始剤として2、2’−アゾビス(2−メチルブチロニトリル)1gを添加して重合を開始し、さらに7時間反応させた。反応後、フラスコを冷却し、MEKを100ml加えて希釈した。この反応液をヘキサン中に投入した結果、白色の生成物が得られた。この生成物の合成仕込み時のモノマー比は、スチレン/アクリル酸ブチル/アクリル酸=30/20/50、理論酸価302、GPCにより求めた分子量は7000であった。この生成物を水酸化カリウムでpH 8(0.8当量)になるように中和して、得られた樹脂を界面活性剤3−2とし、水に溶解して使用した。
<Surfactant 3-2>
MEK 50 g as a solvent, styrene 34 g, butyl acrylate 28 g and acrylic acid 39 g as a monomer were prepared in a 300 ml flask. After raising the temperature to 75 ° C. with stirring under a nitrogen stream, 1 g of 2,2′-azobis (2-methylbutyronitrile) was added as a polymerization initiator to initiate polymerization, and the reaction was further continued for 7 hours. . After the reaction, the flask was cooled and diluted with 100 ml of MEK. As a result of charging this reaction liquid into hexane, a white product was obtained. The monomer ratio at the time of synthesizing the product was styrene / butyl acrylate / acrylic acid = 30/20/50, the theoretical acid value 302, and the molecular weight determined by GPC was 7000. This product was neutralized with potassium hydroxide to pH 8 (0.8 equivalent), and the resulting resin was used as surfactant 3-2, dissolved in water and used.
<樹脂微粒子分散体13の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−2を界面活性剤3−2に変更した以外は、樹脂微粒子分散体2と同様に製造して、樹脂微粒子分散体13を得た。
<Manufacture of resin fine particle dispersion 13>
A resin fine particle dispersion 13 was obtained in the same manner as in the resin fine particle dispersion 2, except that the surfactant 1-2 was changed to the surfactant 3-2 in the production of the resin fine particle dispersion 2.
<樹脂微粒子分散体14の製造>
樹脂微粒子分散体1の製造において、分散体1−1の量を3.0gに、分散体1−2の量を97.0gに変更した以外は、樹脂微粒子分散体1と同様に製造し、樹脂微粒子分散体14を得た。
<Manufacture of resin fine particle dispersion 14>
In the production of the resin fine particle dispersion 1, it was produced in the same manner as the resin fine particle dispersion 1 except that the amount of the dispersion 1-1 was changed to 3.0 g and the amount of the dispersion 1-2 was changed to 97.0 g. A resin fine particle dispersion 14 was obtained.
<樹脂微粒子分散体15の製造>
樹脂微粒子分散体2の製造において、界面活性剤を含む混合水溶液として、界面活性剤1−1を0.51%及び界面活性剤1−2を0.09%含む混合水溶液70gを使用したこと以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体15を得た。
<Manufacture of resin fine particle dispersion 15>
In the production of the resin fine particle dispersion 2, as the mixed aqueous solution containing the surfactant, 70 g of the mixed aqueous solution containing 0.51% of the surfactant 1-1 and 0.09% of the surfactant 1-2 was used. Was produced in the same manner as the resin fine particle dispersion 2, and a resin fine particle dispersion 15 was obtained.
<樹脂微粒子分散体16の製造>
樹脂微粒子分散体2の製造において、界面活性剤を含む混合水溶液として、界面活性剤1−1を0.18%及び界面活性剤1−2を0.42%含む混合水溶液70gを使用したこと以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体16を得た。
<Manufacture of resin fine particle dispersion 16>
In the production of the resin fine particle dispersion 2, as the mixed aqueous solution containing the surfactant, 70 g of the mixed aqueous solution containing 0.18% of the surfactant 1-1 and 0.42% of the surfactant 1-2 was used. Was produced in the same manner as the resin fine particle dispersion 2, and a resin fine particle dispersion 16 was obtained.
<樹脂微粒子分散体17の製造>
樹脂微粒子分散体2の製造において、界面活性剤を含む混合水溶液として、界面活性剤1−1を0.06%及び界面活性剤1−2を0.54%含む混合水溶液70gを使用したこと以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体17を得た。
<Manufacture of resin fine particle dispersion 17>
In the production of the resin fine particle dispersion 2, as the mixed aqueous solution containing the surfactant, 70 g of the mixed aqueous solution containing 0.06% of the surfactant 1-1 and 0.54% of the surfactant 1-2 was used. Was produced in the same manner as the resin fine particle dispersion 2, and a resin fine particle dispersion 17 was obtained.
<樹脂微粒子分散体18の製造>
樹脂微粒子分散体2の製造において、界面活性剤を含む混合水溶液として、界面活性剤1−1を0.15%及び界面活性剤1−2を0.45%含む混合水溶液70gを使用したこと以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体18を得た。
<Manufacture of resin fine particle dispersion 18>
In the production of the resin fine particle dispersion 2, as the mixed aqueous solution containing the surfactant, 70 g of the mixed aqueous solution containing 0.15% of the surfactant 1-1 and 0.45% of the surfactant 1-2 was used. Was produced in the same manner as the resin fine particle dispersion 2, and a resin fine particle dispersion 18 was obtained.
<界面活性剤8−1の製造>
反応容器にセチルアルコール2.42g(0.01モル)と、水分量が0.1質量%になるように少量のイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換してゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度を35℃に保ち、撹拌しながらエチレンオキシド26.6g(0.60モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後、反応物を10℃に冷却して、粗ポリオキシエチレンセチルエーテル27.6gを得た。次いで、反応容器を60℃に保ちながら減圧して、揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃にて2時間撹拌した。次いで濾過を行い、C16H33O(CH2CH2O)nH(nは1以上の整数)の構造式で表される精製ポリオキシエチレンセチルエーテル(界面活性剤8−1)21.1gを得た。
<Manufacture of surfactant 8-1>
A reaction vessel was charged with 2.42 g (0.01 mol) of cetyl alcohol and a small amount of ion-exchanged water so that the water content was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Next, while maintaining the pressure at 0.4 MPa and the temperature at 35 ° C., 26.6 g (0.60 mol) of ethylene oxide was injected over 8 hours with stirring, and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 27.6 g of crude polyoxyethylene cetyl ether. Next, the reaction vessel was depressurized while being kept at 60 ° C., the volatilization loss was measured, and the reaction rate of ethylene oxide was determined. 80 g of a silica-based adsorbent (Kyoward 500SH; manufactured by Kyowa Chemical Industry) was added to the residue in the reaction vessel, and the mixture was stirred at 70 ° C. for 2 hours under reduced pressure. Next, filtration is performed, and purified polyoxyethylene cetyl ether (surfactant 8-1) represented by the structural formula of C 16 H 33 O (CH 2 CH 2 O) n H (n is an integer of 1 or more) 21. 1 g was obtained.
<樹脂微粒子分散体21の製造>
樹脂微粒子分散体2の製造において、界面活性剤を含む混合水溶液として、界面活性剤8−1のみを0.6%含む水溶液70gを使用したこと以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体21を得た。
<Manufacture of resin fine particle dispersion 21>
In the production of the resin fine particle dispersion 2, it was produced in the same manner as the resin fine particle dispersion 2 except that 70 g of an aqueous solution containing only 0.6% of the surfactant 8-1 was used as the mixed aqueous solution containing the surfactant. Resin fine particle dispersion 21 was obtained.
<樹脂微粒子分散体22の製造>
樹脂微粒子分散体2の製造において、界面活性剤を含む混合水溶液として、界面活性剤1−2のみを0.6%含む水溶液70gを使用したこと以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体22を得た。
<Manufacture of resin fine particle dispersion 22>
In the production of the resin fine particle dispersion 2, it was produced in the same manner as the resin fine particle dispersion 2, except that 70 g of an aqueous solution containing only 0.6% of the surfactant 1-2 was used as the mixed aqueous solution containing the surfactant. Resin fine particle dispersion 22 was obtained.
<界面活性剤9−1の製造>
セチルアルコール24.2g(0.10モル)を反応容器に入れ、原料中の水分量が0.1質量%になるように少量のイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換してゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度を35℃に保ち、攪拌しながらエチレンオキシド4.6g(0.10モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後、反応物を10℃に冷却して、粗ポリオキシエチレンセチルエーテル15.0gを得た。次いで、反応容器を60℃に保ちながら減圧して、揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃にて2時間撹拌し、次いで濾過を行い、精製ポリオキシエチレンセチルエーテル12.5gを得た。
<Production of surfactant 9-1>
24.2 g (0.10 mol) of cetyl alcohol was placed in a reaction vessel, and a small amount of ion-exchanged water was added and mixed so that the amount of water in the raw material was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Next, while maintaining the pressure at 0.4 MPa and the temperature at 35 ° C., 4.6 g (0.10 mol) of ethylene oxide was injected over 8 hours with stirring, and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 15.0 g of crude polyoxyethylene cetyl ether. Next, the reaction vessel was depressurized while being kept at 60 ° C., the volatilization loss was measured, and the reaction rate of ethylene oxide was determined. After adding 80 g of silica-based adsorbent (KYOWARD 500SH; manufactured by Kyowa Chemical Industry Co., Ltd.) to the residue in the reaction vessel, the mixture was stirred under reduced pressure at 70 ° C. for 2 hours, then filtered, and purified polyoxyethylene cetyl ether 12.5 g was obtained.
上記精製ポリオキシエチレンセチルエーテル12.5g(0.0080モル)と水酸化ナトリウム0.1gを反応容器に入れ、温度60℃で4時間攪拌した。その後、クロロ酢酸ナトリウム0.93g(0.0080モル)を添加して40℃で8時間加熱した後、冷却した。次いで反応容器内の固形物を濾紙上に取り出し、冷イオン交換水で洗浄して、精製ポリオキシエチレンセチルエーテルカルボン酸ナトリウム(界面活性剤9−1)11.7gを得た。 12.5 g (0.0080 mol) of the purified polyoxyethylene cetyl ether and 0.1 g of sodium hydroxide were placed in a reaction vessel and stirred at a temperature of 60 ° C. for 4 hours. Thereafter, 0.93 g (0.0080 mol) of sodium chloroacetate was added and heated at 40 ° C. for 8 hours, and then cooled. Next, the solid matter in the reaction vessel was taken out on a filter paper and washed with cold ion exchange water to obtain 11.7 g of purified sodium polyoxyethylene cetyl ether carboxylate (surfactant 9-1).
<樹脂微粒子分散体23の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−1を界面活性剤9−1に変更した以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体23を得た。
<Manufacture of resin fine particle dispersion 23>
A resin fine particle dispersion 23 was obtained in the same manner as in the resin fine particle dispersion 2, except that the surfactant 1-1 was changed to the surfactant 9-1 in the production of the resin fine particle dispersion 2.
<界面活性剤10−1>
反応容器にヘキシルアルコール(和光純薬工業製 試薬)1.02g(0.01モル)と、水分量が0.1質量%になるように少量のイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換しゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度を35℃に保ち、攪拌しながらエチレンオキシド26.6g(0.60モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後、反応物を10℃に冷却し、粗ポリオキシエチレンセチルエーテル27.6gを得た。次いで、反応容器を60℃に保ちながら減圧して、揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃で2時間撹拌し、次いで濾過を行い、精製ポリオキシエチレンヘキシルエーテル24.8gを得た。
<Surfactant 10-1>
A reaction vessel was charged with 1.02 g (0.01 mol) of hexyl alcohol (a reagent manufactured by Wako Pure Chemical Industries, Ltd.) and a small amount of ion-exchanged water so that the water content was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Next, while maintaining the pressure at 0.4 MPa and the temperature at 35 ° C., 26.6 g (0.60 mol) of ethylene oxide was injected over 8 hours with stirring, and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 27.6 g of crude polyoxyethylene cetyl ether. Next, the reaction vessel was depressurized while being kept at 60 ° C., the volatilization loss was measured, and the reaction rate of ethylene oxide was determined. After adding 80 g of silica-based adsorbent (KYOWARD 500SH; manufactured by Kyowa Chemical Industry Co., Ltd.) to the residue in the reaction vessel, the mixture was stirred under reduced pressure at 70 ° C. for 2 hours, then filtered, and purified polyoxyethylene hexyl ether 24 .8 g was obtained.
上記精製ポリオキシエチレンヘキシルエーテル21.8g(0.008モル)と水酸化ナトリウム0.1gを反応容器に入れ、温度60℃で4時間攪拌した。その後、クロロ酢酸ナトリウム0.93g(0.008モル)を添加して40℃で8時間加熱した後、冷却してから反応容器内の固形物を濾紙上に取り出した。これを冷イオン交換水で洗浄して、C6H13O(CH2CH2O)n−CH2COONa(nは1以上の整数)の構造式で表される精製ポリオキシエチレンヘキシルエーテルカルボン酸ナトリウム(界面活性剤10−1)14.6gを得た。 21.8 g (0.008 mol) of the purified polyoxyethylene hexyl ether and 0.1 g of sodium hydroxide were placed in a reaction vessel and stirred at a temperature of 60 ° C. for 4 hours. Thereafter, 0.93 g (0.008 mol) of sodium chloroacetate was added and heated at 40 ° C. for 8 hours. After cooling, the solid in the reaction vessel was taken out on a filter paper. This was washed with cold ion-exchanged water, and purified polyoxyethylene hexyl ether carboxyl represented by the structural formula of C 6 H 13 O (CH 2 CH 2 O) n —CH 2 COONa (n is an integer of 1 or more). 14.6 g of sodium acid (surfactant 10-1) was obtained.
<樹脂微粒子分散体24の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−1を界面活性剤10−1に変更した以外は、樹脂微粒子分散体2と同様に製造して、樹脂微粒子分散体24を得た。
<Manufacture of resin fine particle dispersion 24>
The resin fine particle dispersion 24 was obtained in the same manner as the resin fine particle dispersion 2 except that the surfactant 1-1 was changed to the surfactant 10-1 in the production of the resin fine particle dispersion 2.
<界面活性剤11−1>
反応容器に1−エイコサノール(東京化成工業製 試薬)2.99g(0.01モル)と、水分量が0.1質量%になるように少量のイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換しゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度を35℃に保ち、撹拌しながらエチレンオキシド26.6g(0.60モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後、反応物を10℃に冷却し、粗ポリオキシエチレンエイコシルエーテル27.6gを得た。次いで、反応容器を60℃に保ちながら減圧して、揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃で2時間撹拌し、次いで濾過を行い、精製ポリオキシエチレンエイコシルエーテル26.0gを得た。
<Surfactant 11-1>
A reaction vessel was charged with 2.99 g (0.01 mol) of 1-eicosanol (manufactured by Tokyo Chemical Industry Co., Ltd.) and a small amount of ion-exchanged water so that the water content was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Next, while maintaining the pressure at 0.4 MPa and the temperature at 35 ° C., 26.6 g (0.60 mol) of ethylene oxide was injected over 8 hours with stirring, and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 27.6 g of crude polyoxyethylene eicosyl ether. Next, the reaction vessel was depressurized while being kept at 60 ° C., the volatilization loss was measured, and the reaction rate of ethylene oxide was determined. After adding 80 g of silica-based adsorbent (KYOWARD 500SH; manufactured by Kyowa Chemical Industry Co., Ltd.) to the residue in the reaction vessel, the mixture was stirred under reduced pressure at 70 ° C. for 2 hours, then filtered, and purified polyoxyethylene eicosyl ether 26.0 g was obtained.
上記精製ポリオキシエチレンエイコシルエーテル23.4g(0.008モル)と水酸化ナトリウム0.1gを反応容器に入れ、温度60℃で4時間攪拌した。その後、クロロ酢酸ナトリウム0.93g(0.008モル)を添加して40℃で8時間加熱した後、冷却してから反応容器内の固形物を濾紙上に取り出した。これを冷イオン交換水で洗浄して、C20H41−O−(CH2CH2O)n−CH2COONa(nは1以上の整数)の構造式で表される精製ポリオキシエチレンエイコシルエーテルカルボン酸ナトリウム(界面活性剤11−1)14.6gを得た。 23.4 g (0.008 mol) of the purified polyoxyethylene eicosyl ether and 0.1 g of sodium hydroxide were placed in a reaction vessel and stirred at a temperature of 60 ° C. for 4 hours. Thereafter, 0.93 g (0.008 mol) of sodium chloroacetate was added and heated at 40 ° C. for 8 hours. After cooling, the solid in the reaction vessel was taken out on a filter paper. This was washed with cold ion-exchanged water, and purified polyoxyethylene eicoethylene represented by the structural formula of C 20 H 41 —O— (CH 2 CH 2 O) n —CH 2 COONa (n is an integer of 1 or more). 14.6 g of sodium silethercarboxylate (surfactant 11-1) was obtained.
<樹脂微粒子分散体25の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−1を界面活性剤11−1に変更した以外は、樹脂微粒子分散体2と同様に製造して、樹脂微粒子分散体25を得た。
<Manufacture of resin fine particle dispersion 25>
A resin fine particle dispersion 25 was obtained in the same manner as in the resin fine particle dispersion 2, except that the surfactant 1-1 was changed to the surfactant 11-1 in the production of the resin fine particle dispersion 2.
<界面活性剤12−1の製造>
反応容器にセチルアルコール(和光純薬工業製 試薬)2.42g(0.01モル)と、水分量が0.1質量%になるように少量のイオン交換水を仕込んで混合した。次いでトルエン20gを添加後、温度25℃で無水塩化第二スズ4gを仕込み、反応容器の空間部分を窒素ガスで置換しゲージ圧を0.05MPaにした。次いで、圧力を0.4MPa、温度を35℃に保ち、攪拌しながらエチレンオキシド88.67g(2.00モル)を8時間かけて圧入し、圧入後1時間反応を継続した。その後、反応物を10℃に冷却し、粗ポリオキシエチレンセチルエーテル80gを得た。次いで、反応容器を60℃に保ちながら減圧して揮発減量を測定し、エチレンオキシドの反応率を求めた。反応容器内の残留物にシリカ系吸着剤(キョーワード500SH;協和化学工業製)80gを添加した後、減圧下、70℃にて2時間撹拌し、次いで濾過を行い、精製ポリオキシエチレンセチルエーテル75gを得た。
<Manufacture of surfactant 12-1>
A reaction vessel was charged with 2.42 g (0.01 mol) of cetyl alcohol (a reagent manufactured by Wako Pure Chemical Industries) and a small amount of ion-exchanged water so that the water content was 0.1% by mass. Next, after adding 20 g of toluene, 4 g of anhydrous stannic chloride was charged at a temperature of 25 ° C., and the space portion of the reaction vessel was replaced with nitrogen gas to make the gauge pressure 0.05 MPa. Next, while maintaining the pressure at 0.4 MPa and the temperature at 35 ° C., 88.67 g (2.00 mol) of ethylene oxide was injected over 8 hours with stirring, and the reaction was continued for 1 hour after the injection. Thereafter, the reaction product was cooled to 10 ° C. to obtain 80 g of crude polyoxyethylene cetyl ether. Next, the reaction vessel was depressurized while being kept at 60 ° C., and the volatilization loss was measured to determine the reaction rate of ethylene oxide. After adding 80 g of silica-based adsorbent (KYOWARD 500SH; manufactured by Kyowa Chemical Industry Co., Ltd.) to the residue in the reaction vessel, the mixture was stirred under reduced pressure at 70 ° C. for 2 hours, then filtered, and purified polyoxyethylene cetyl ether 75 g was obtained.
上記精製ポリオキシエチレンセチルエーテル72.2g(0.008モル)と水酸化ナトリウム0.1gを反応容器に入れ、温度60℃で4時間攪拌した。その後、クロロ酢酸ナトリウム0.93g(0.008モル)を添加して40℃で8時間加熱した後、冷却した。次いで、反応容器内の固形物を濾紙上に取り出し、冷イオン交換水で洗浄して、精製ポリオキシエチレンセチルエーテルカルボン酸ナトリウム14.6gを得た。 72.2 g (0.008 mol) of the purified polyoxyethylene cetyl ether and 0.1 g of sodium hydroxide were placed in a reaction vessel and stirred at a temperature of 60 ° C. for 4 hours. Thereafter, 0.93 g (0.008 mol) of sodium chloroacetate was added and heated at 40 ° C. for 8 hours, and then cooled. Next, the solid in the reaction vessel was taken out on a filter paper and washed with cold ion exchange water to obtain 14.6 g of purified sodium polyoxyethylene cetyl ether carboxylate.
<樹脂微粒子分散体26の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−1を界面活性剤12−1に変更した以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体26を得た。
<Manufacture of resin fine particle dispersion 26>
A resin fine particle dispersion 26 was obtained in the same manner as in the resin fine particle dispersion 2 except that the surfactant 1-1 was changed to the surfactant 12-1 in the production of the resin fine particle dispersion 2.
<界面活性剤4−2の製造>
溶媒としてMEK50g、モノマーとしてスチレン28g、アクリル酸ブチル63g及びアクリル酸10gを300mlフラスコ内に用意した。窒素気流下、撹拌しながら75℃まで昇温させた後、重合開始剤として2、2’−アゾビス(2−メチルブチロニトリル)1gを添加して重合を開始し、さらに7時間反応させた。反応後、フラスコを冷却し、MEKを100ml加えて希釈した。この反応液をヘキサン中に投入した結果、白色の生成物が得られた。この生成物の合成仕込み時のモノマー比は、スチレン/アクリル酸ブチル/アクリル酸=30/55/15、理論酸価75、GPCにより求めた分子量は8000であった。この生成物を水酸化カリウムでpH 8(0.8当量)になるように中和して、得られた樹脂を界面活性剤4−2とし、水に溶解して使用した。
<Production of surfactant 4-2>
MEK 50 g as a solvent, 28 g of styrene as a monomer, 63 g of butyl acrylate and 10 g of acrylic acid were prepared in a 300 ml flask. After raising the temperature to 75 ° C. with stirring under a nitrogen stream, 1 g of 2,2′-azobis (2-methylbutyronitrile) was added as a polymerization initiator to initiate polymerization, and the reaction was further continued for 7 hours. . After the reaction, the flask was cooled and diluted with 100 ml of MEK. As a result of charging this reaction liquid into hexane, a white product was obtained. The monomer ratio at the time of synthesizing this product was styrene / butyl acrylate / acrylic acid = 30/55/15, theoretical acid value 75, and molecular weight determined by GPC was 8,000. This product was neutralized with potassium hydroxide to pH 8 (0.8 equivalent), and the resulting resin was used as surfactant 4-2, dissolved in water and used.
<樹脂微粒子分散体27の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−2を界面活性剤4−2に変更した以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体27を得た。
<Manufacture of resin fine particle dispersion 27>
A resin fine particle dispersion 27 was obtained in the same manner as in the resin fine particle dispersion 2 except that the surfactant 1-2 was changed to the surfactant 4-2 in the production of the resin fine particle dispersion 2.
<界面活性剤5−2の製造>
溶媒としてMEK50g、モノマーとしてスチレン11g、アクリル酸ブチル47g及びアクリル酸42gを300mlフラスコ内に用意した。窒素気流下、撹拌しながら75℃まで昇温させた後、重合開始剤として2、2’−アゾビス(2−メチルブチロニトリル)1gを添加して重合を開始し、さらに7時間反応させた。反応後、フラスコを冷却し、MEKを100ml加えて希釈した。この反応液をヘキサン中に投入した結果、白色の生成物が得られた。この生成物の合成仕込み時のモノマー比は、スチレン/アクリル酸ブチル/アクリル酸=10/35/55、理論酸価325、GPCにより求めた分子量は10000であった。この生成物を水酸化カリウムでpH 8(0.8当量)になるように中和し、得られた樹脂を界面活性剤5−2とし、水に溶解して使用した。
<Production of surfactant 5-2>
MEK 50 g as a solvent, styrene 11 g, butyl acrylate 47 g and acrylic acid 42 g as a monomer were prepared in a 300 ml flask. After raising the temperature to 75 ° C. with stirring under a nitrogen stream, 1 g of 2,2′-azobis (2-methylbutyronitrile) was added as a polymerization initiator to initiate polymerization, and the reaction was further continued for 7 hours. . After the reaction, the flask was cooled and diluted with 100 ml of MEK. As a result of charging this reaction liquid into hexane, a white product was obtained. The monomer ratio at the time of synthesizing the product was styrene / butyl acrylate / acrylic acid = 10/35/55, the theoretical acid value 325, and the molecular weight determined by GPC was 10,000. This product was neutralized with potassium hydroxide to pH 8 (0.8 equivalent), and the resulting resin was used as surfactant 5-2, dissolved in water and used.
<樹脂微粒子分散体28の製造>
樹脂微粒子分散体2の製造において、界面活性剤1−2を界面活性剤5−2に変更した以外は、樹脂微粒子分散体2と同様に製造し、樹脂微粒子分散体28を得た。
<Manufacture of resin fine particle dispersion 28>
A resin fine particle dispersion 28 was obtained in the same manner as in the resin fine particle dispersion 2 except that the surfactant 1-2 was changed to the surfactant 5-2 in the production of the resin fine particle dispersion 2.
<樹脂微粒子分散体の平均粒径>
次に、上記樹脂粒子分散体の粒径の測定方法を説明する。
樹脂微粒子分散体1〜28の平均粒径は、粒度分布測定機(日機装製 マイクロトラック UPA EX−150)を使用して、樹脂微粒子の体積平均のメジアン径であるD50の値を測定した。
<Average particle diameter of resin fine particle dispersion>
Next, a method for measuring the particle size of the resin particle dispersion will be described.
The average particle size of the resin fine particle dispersions 1 to 28 was measured using a particle size distribution analyzer (Nikkiso Microtrac UPA EX-150) to measure the value of D50, which is the volume average median diameter of the resin fine particles.
次にインクの製造方法について説明する。
<インク1の製造>
樹脂微粒子分散体1を42.0g、グリセリンを5g、2−ピロリドンを5g及びポリエチレングリコール(平均分子量1,000)5gを混合し、全量が100gとなるように更に水43.0gを加えた。混合物をマグネチックスターラーにより100rpmで1日攪拌した後、シリンジフィルタ(ザルトリウス製 ミニザルト17594K 孔径5.0μm)でろ過してインク1を得た。
Next, an ink manufacturing method will be described.
<Manufacture of ink 1>
42.0 g of resin fine particle dispersion 1, 5 g of glycerin, 5 g of 2-pyrrolidone and 5 g of polyethylene glycol (average molecular weight 1,000) were mixed, and 43.0 g of water was further added so that the total amount became 100 g. The mixture was stirred with a magnetic stirrer at 100 rpm for 1 day, and then filtered with a syringe filter (Sartorius Mini-Salto 17594K pore size 5.0 μm) to obtain ink 1.
<インク2〜9、12、13、15〜18、21〜28の製造>
樹脂微粒子分散体2を80.5g、グリセリンを5g、2−ピロリドンを5g及びポリエチレングリコール(平均分子量1,000)5gを混合し、全量が100gとなるように更に水4.5gを加えた。混合物をマグネチックスターラーにより100rpmで1日攪拌した後、シリンジフィルタ(ザルトリウス製 ミニザルト17594K 孔径5.0μm)でろ過してインク2を得た。
また、樹脂微粒子分散体2の代わりに、それぞれ樹脂微粒子分散体3〜9、12、13、15〜18、21〜28を用いたこと以外は同様にして、インク3〜9、12、13、15〜18、21〜28を得た。
<Manufacture of inks 2-9, 12, 13, 15-18, 21-28>
80.5 g of resin fine particle dispersion 2, 5 g of glycerin, 5 g of 2-pyrrolidone and 5 g of polyethylene glycol (average molecular weight 1,000) were mixed, and 4.5 g of water was further added so that the total amount became 100 g. The mixture was stirred with a magnetic stirrer at 100 rpm for 1 day, and then filtered with a syringe filter (Minisart 17594K, pore size 5.0 μm, manufactured by Sartorius) to obtain ink 2.
Further, in place of the resin fine particle dispersion 2, the ink fine particles 3 to 9, 12, 13, 13, 18 to 28 were used in the same manner except that the resin fine particle dispersions 3 to 9, 12, 13, 15 to 18, 21 to 28 were used. 15-18, 21-28 were obtained.
<インク10の製造>
樹脂微粒子分散体10を37.3g、グリセリンを5g、2−ピロリドンを5g及びポリエチレングリコール(平均分子量1,000)5gを混合し、全量が100gとなるように更に水47.7gを加えた。混合物をマグネチックスターラーにより100rpmで1日攪拌した後、シリンジフィルタ(ザルトリウス製 ミニザルト17594K 孔径5.0μm)でろ過してインク10を得た。
<Manufacture of ink 10>
37.3 g of resin fine particle dispersion 10, 5 g of glycerin, 5 g of 2-pyrrolidone and 5 g of polyethylene glycol (average molecular weight 1,000) were mixed, and 47.7 g of water was further added so that the total amount became 100 g. The mixture was stirred with a magnetic stirrer at 100 rpm for 1 day, and then filtered with a syringe filter (Sartorius Mini-Salto 17594K pore size 5.0 μm) to obtain ink 10.
<インク11の製造>
樹脂微粒子分散体11を85.0g、グリセリンを5g、2−ピロリドンを5g及びポリエチレングリコール(平均分子量1,000)5gを混合し、全量100gを調整した。混合物をマグネチックスターラーにより100rpmで1日攪拌した後、シリンジフィルタ(ザルトリウス製 ミニザルト17594K 孔径5.0μm)でろ過してインク11を得た。
<Manufacture of ink 11>
85.0 g of resin fine particle dispersion 11, 5 g of glycerin, 5 g of 2-pyrrolidone and 5 g of polyethylene glycol (average molecular weight 1,000) were mixed to prepare a total amount of 100 g. The mixture was stirred with a magnetic stirrer at 100 rpm for 1 day, and then filtered with a syringe filter (Sartorius Mini-Salto 17594K pore size 5.0 μm) to obtain ink 11.
<インク14の製造>
樹脂微粒子分散体14を35.0g、グリセリンを5g、2−ピロリドンを5g及びポリエチレングリコール(平均分子量1,000)5gを混合し、全量が100gとなるように更に水50.0gを加えた。混合物をマグネチックスターラーにより100rpmで1日攪拌した後、シリンジフィルタ(ザルトリウス製 ミニザルト17594K 孔径5.0μm)でろ過してインク14を得た。
<Manufacture of ink 14>
35.0 g of resin fine particle dispersion 14, 5 g of glycerin, 5 g of 2-pyrrolidone and 5 g of polyethylene glycol (average molecular weight 1,000) were mixed, and 50.0 g of water was further added so that the total amount became 100 g. The mixture was stirred with a magnetic stirrer at 100 rpm for 1 day, and then filtered with a syringe filter (Sartorius Mini-Salto 17594K pore size 5.0 μm) to obtain ink 14.
[実施例1]
上記インク1の吐出安定性及びブリードの抑制を、以下に示す方法及び基準により評価した。結果を表1に示す。
[Example 1]
The ejection stability of the ink 1 and suppression of bleeding were evaluated by the following methods and criteria. The results are shown in Table 1.
<吐出安定性>
上記したインク1〜18、21〜28についてインクジェットプリンター(キヤノン製 PIXUS MX7600)を用いて1時間連続吐出してその平均吐出速度を測定した。
〔評価基準〕
AA 15m/秒以上
A 12m/秒以上 15m/秒未満
B 10m/秒以上 12m/秒未満
C 10m/秒未満
<Discharge stability>
The above inks 1 to 18, 21 to 28 were continuously discharged for 1 hour using an ink jet printer (PIXUS MX7600, manufactured by Canon), and the average discharge speed was measured.
〔Evaluation criteria〕
AA 15 m / second or more A 12 m / second or more and less than 15 m / second B 10 m / second or more and less than 12 m / second C Less than 10 m / second
<ブリードの抑制>
以下の組成の反応液をインクジェットプリンター(キヤノン製 PIXUS MX7600)のPGI−2Clearのインクタンクに充填し、反応液をPPC紙(キヤノン製)に塗布した。その後、上記したインク1〜18、21〜28を用い、100%デューティの背景色にて『電驚』の文字を5ポイントで印字した。
[反応液の組成]
・硝酸カルシウム・4水和物 16g
・グリセロール 20g
・アセチレングリコールエチレンオキサイド付加物
(商品名:アセチレノールE100) 1g
・脱イオン水 63g
〔評価基準〕
AA:ブリーディングを視認できず、『電驚』の文字もきれいに印字されている。
A:ブリーディングは殆ど目立たず、『電驚』の文字の判読も容易である。
B:『電驚』の文字の輪郭は崩れているものの、判読は可能である。
C:『電驚』の文字全体が滲み、判読は困難である。
<Suppression of bleed>
A reaction liquid having the following composition was filled in a PGI-2Clear ink tank of an ink jet printer (PIXUS MX7600 manufactured by Canon Inc.), and the reaction liquid was applied to PPC paper (manufactured by Canon Inc.). Thereafter, using the inks 1 to 18 and 21 to 28 described above, the letters “Emaze” were printed at 5 points with a background color of 100% duty.
[Composition of reaction solution]
・ Calcium nitrate tetrahydrate 16g
・ Glycerol 20g
・ Acetylene glycol ethylene oxide adduct (trade name: acetylenol E100) 1 g
・ 63 g of deionized water
〔Evaluation criteria〕
AA: The bleeding cannot be visually recognized, and the characters “Denatsu” are printed neatly.
A: Bleeding is hardly conspicuous, and it is easy to read the word “Denatsu”.
B: Although the outline of the word “Denki” is broken, it can be read.
C: The whole character of “Denatsu” blurs and is difficult to interpret.
[実施例2〜18]
インク1に代えて、それぞれインク2〜18を用いて各インクの吐出安定性及びブリードの抑制を評価した。結果を表1に示す。
[Examples 2 to 18]
Instead of ink 1, each of inks 2 to 18 was used to evaluate the ejection stability of each ink and the suppression of bleeding. The results are shown in Table 1.
[比較例1〜8]
インク1に代えて、それぞれインク21〜28を用いて各インクの吐出安定性及びブリードの抑制を評価した。結果を表1に示す。
[Comparative Examples 1-8]
Instead of the ink 1, the ink 21 to 28 was used, respectively, and the ejection stability of each ink and the suppression of bleeding were evaluated. The results are shown in Table 1.
Claims (7)
一般式(1)
R1−O−(CH2CH2O)k−(CO)l−(R2)m−Xn
(式中、R1は炭素数が8以上18以下の、アルキル基又はアリール基を表し、R2は炭素数が1以上5以下のアルキレン基を表し、Xはアニオン性基を表し、kは30以上150以下の整数を表し、lは0又は1を表し、mは0又は1を表し、nは1以上の任意の整数を表す。) In a dispersion containing an α, β-unsaturated hydrophobic compound, a compound represented by the following general formula (1), and a water-soluble resin having an acid value of 80 or more and 315 or less, the α, β-unsaturation is performed. A resin fine particle dispersion obtained by polymerizing a hydrophobic compound.
General formula (1)
R 1 -O- (CH 2 CH 2 O) k - (CO) l - (R 2) m -X n
(In the formula, R 1 represents an alkyl group or an aryl group having 8 to 18 carbon atoms, R 2 represents an alkylene group having 1 to 5 carbon atoms, X represents an anionic group, k is An integer of 30 or more and 150 or less, l represents 0 or 1, m represents 0 or 1, and n represents an arbitrary integer of 1 or more.
(式中、Mは水素原子又はアルカリ金属を表す)。 X in the general formula (1) is, -COOM, -SO 3 M, -PO 3 HM, claim 1 or an anionic group selected from the group consisting of -PO 3 M 2 and -SO 2 NH 2 The resin fine particle dispersion according to 2.
(In the formula, M represents a hydrogen atom or an alkali metal).
一般式(1)
R1−O−(CH2CH2O)k−(CO)l−(R2)m−Xn
(式中、R1は炭素数が8以上18以下の、アルキル基又はアリール基を表し、R2は炭素数が1以上5以下のアルキレン基を表し、Xはアニオン性基を表し、kは30以上150以下の整数を表し、lは0又は1を表し、mは0又は1を表し、nは1以上の任意の整数を表す。) In a dispersion containing an α, β-unsaturated hydrophobic compound, a compound represented by the following general formula (1), a water-soluble resin having an acid value of 80 or more and 315 or less, and a colorant, the α, A color material-containing resin fine particle dispersion obtained by polymerizing a β-unsaturated hydrophobic compound.
General formula (1)
R 1 -O- (CH 2 CH 2 O) k - (CO) l - (R 2) m -X n
(In the formula, R 1 represents an alkyl group or an aryl group having 8 to 18 carbon atoms, R 2 represents an alkylene group having 1 to 5 carbon atoms, X represents an anionic group, k is An integer of 30 or more and 150 or less, l represents 0 or 1, m represents 0 or 1, and n represents an arbitrary integer of 1 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013081627A JP2014201731A (en) | 2013-04-09 | 2013-04-09 | Dispersion of resin fine particle, dispersion of resin fine particle including color material, and inkjet ink |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013081627A JP2014201731A (en) | 2013-04-09 | 2013-04-09 | Dispersion of resin fine particle, dispersion of resin fine particle including color material, and inkjet ink |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014201731A true JP2014201731A (en) | 2014-10-27 |
Family
ID=52352467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013081627A Pending JP2014201731A (en) | 2013-04-09 | 2013-04-09 | Dispersion of resin fine particle, dispersion of resin fine particle including color material, and inkjet ink |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014201731A (en) |
-
2013
- 2013-04-09 JP JP2013081627A patent/JP2014201731A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6310701B2 (en) | Colored resin particle dispersion and inkjet ink | |
US5760124A (en) | Ink compositions | |
CN105693917B (en) | Copolymer, ink and ink reservoir | |
EP3118269B1 (en) | Colored resin particle dispersion, method for producing same, and inkjet ink | |
WO2006137393A1 (en) | Microencapsulated material, microencapsulated color material, process for production of the material, ink composition, ink-jet recording method, and recorded material | |
JP2007182536A (en) | Photocurable ink set | |
JP2017019969A5 (en) | ||
WO2019116906A1 (en) | Ink-set and printed matter production method | |
EP2896665B1 (en) | Colored resin particle dispersion and inkjet ink | |
JP2008195769A (en) | Block polymer compound, liquid composition and ink for ink jet | |
JP5905705B2 (en) | Ink set | |
JP6622717B2 (en) | Polymer binder for inkjet ink | |
JP2015000881A (en) | Resin particle dispersion and inkjet ink | |
JP2014201731A (en) | Dispersion of resin fine particle, dispersion of resin fine particle including color material, and inkjet ink | |
JP2002105272A (en) | Colored resin emulsion, ink for ink jet printing, and color filter | |
JP2014201730A (en) | Dispersion of resin fine particle, dispersion of resin fine particle including color material, and inkjet ink | |
JP5844238B2 (en) | Ink composition, image forming method and printed matter | |
JP3790537B2 (en) | Water-based ink for inkjet recording | |
JP2010222446A (en) | Method for manufacturing colored microparticle dispersion, method for manufacturing ink for use in inkjet, colored microparticle dispersion, and ink for use in inkjet | |
JP2008088367A (en) | Composition containing polymer compound, its production method and image formation method | |
JP2020033512A (en) | Aqueous inkjet ink resin dispersion, aqueous inkjet ink composition, and method of manufacturing aqueous inkjet ink resin dispersion | |
JP2014055200A (en) | Coloring material-encapsulating particulate dispersion, ink for inkjet recording, ink set for inkjet recording, and production method of coloring material-encapsulating particulate dispersion | |
JP7166532B2 (en) | Coloring material dispersion | |
JP7056156B2 (en) | Ink and image formation method | |
JP6231889B2 (en) | Colored resin particle dispersion and inkjet ink |