JP2014200805A - Piping groove mating structure and piping groove mating method - Google Patents

Piping groove mating structure and piping groove mating method Download PDF

Info

Publication number
JP2014200805A
JP2014200805A JP2013077423A JP2013077423A JP2014200805A JP 2014200805 A JP2014200805 A JP 2014200805A JP 2013077423 A JP2013077423 A JP 2013077423A JP 2013077423 A JP2013077423 A JP 2013077423A JP 2014200805 A JP2014200805 A JP 2014200805A
Authority
JP
Japan
Prior art keywords
groove
pipe
wire
pipes
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013077423A
Other languages
Japanese (ja)
Inventor
佳男 上本
Yoshio Uemoto
佳男 上本
英祐 若林
Eisuke Wakabayashi
英祐 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013077423A priority Critical patent/JP2014200805A/en
Publication of JP2014200805A publication Critical patent/JP2014200805A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piping groove mating structure and a piping groove mating method capable of easily adjusting centering and spacing of a piping groove part by few field work manhours.SOLUTION: The piping groove mating structure adjusts the centering and the spacing of the groove parts 101c and 101d before butt welding of mutual pipes 101a and 101b suspended so as to be movable in the axial direction, and comprises a plurality of wire hooking parts 102a and 102b mutually arranged at an equal interval in the same number along the circumferential direction in the vicinity of the groove parts 101c and 101d of the two pipes 101a and 101b, and a wire 103 is alternately hooked on the wire hooking part 102a of the pipe 101a and the wire hooking part 102b of the pipe 101b, and both ends of the wire 103 are pulled, and thereby, a distance between the mutual groove parts 101c and 101d is set in a predetermined value required for welding.

Description

本発明は、配管同士を溶接する際の配管開先合せ構造および配管開先合せ方法に関する。   The present invention relates to a pipe groove alignment structure and a pipe groove alignment method when welding pipes to each other.

大型プラントの現地での配管工事として、配管同士を接続する際の配管接続部の現地溶接作業に伴う配管開先合せにおいては、配管をチェーンブロックなどで吊り上げて、そのチェーンブロックを操作することで配管の開先部の芯出し(一方の配管の軸中心と他方の配管の軸中心を一致させること)および面間調整(溶接に必要な距離となるまで開先部同士を近づけること)を行っている。   As piping work at the site of a large plant, in pipe groove alignment accompanying on-site welding work of the pipe connection part when connecting pipes, the pipe is lifted with a chain block and the chain block is operated. Centering of the groove part of the pipe (Make the axis center of one pipe coincide with the axis center of the other pipe) and adjust the distance between the faces (make the groove parts close to each other until the distance required for welding) ing.

このようなチェーンブロックの操作による配管開先合せにおいては、開先部だけでなく配管全体の位置の微調整が必要となる非常に困難な作業であり、熟練の技術を要する作業となっている。   In the pipe groove alignment by the operation of such a chain block, it is a very difficult work that requires fine adjustment of not only the groove part but also the entire pipe position, and requires skill. .

特許文献1では、配管の開先部の隙間と内径段差を測定することのできるセンサおよびチェーンブロックを動かす油圧制御系を有した配管自動開先合せ装置が提案されている。この装置では、センサの測定データをもとにチェーンブロックを自動制御することで、配管の位置を自動調整することができ、配管工事における時間短縮とコスト低減を図っている。   Patent Document 1 proposes an automatic pipe groove aligning apparatus having a sensor capable of measuring a gap and an inner diameter step of a groove portion of a pipe and a hydraulic control system for moving a chain block. In this device, the position of the pipe can be automatically adjusted by automatically controlling the chain block based on the measurement data of the sensor, thereby reducing the time and cost of the piping work.

特開平6−193780号公報JP-A-6-193780

しかしながら、特許文献1に記載の装置では、複数のセンサが必要となり、これら複数のセンサの取付けなどに手間がかかるため、現地作業での工数が増加するという問題があった。   However, the apparatus described in Patent Document 1 requires a plurality of sensors, and it takes time to mount the plurality of sensors, which increases the number of man-hours required for field work.

本発明は、前記した従来の問題を解決するものであり、少ない現地作業工数で簡単に配管開先部の芯出しおよび面間調整を行うことが可能な配管開先合せ構造および配管開先合せ方法を提供することを課題とする。   The present invention solves the above-described conventional problems, and a pipe groove alignment structure and a pipe groove alignment that can easily center and adjust the face of a pipe groove with a small number of field work steps. It is an object to provide a method.

本発明は、軸方向に移動可能となるように支持された配管同士の突合せ溶接前の開先部の芯出しおよび面間調整を行う配管開先合せ構造であって、2つの配管の開先部の近傍に、周方向に沿って互いに同じ個数にて等間隔に配置された複数の架け部を備え、一方の前記配管の架け部と他方の前記配管の架け部にワイヤを交互に架けて、前記ワイヤを引張ることで、前記開先部同士を突き合せたことを特徴とする。
また、ワイヤに替えてバネを適用してもよい。
The present invention relates to a pipe groove alignment structure that performs centering of a groove portion before butt welding between pipes that are supported so as to be movable in the axial direction, and adjustment between the faces. A plurality of bridges arranged at equal intervals in the circumferential direction in the vicinity of the section, and the wires are alternately bridged between the bridge part of the one pipe and the bridge part of the other pipe. The groove portions are abutted with each other by pulling the wire.
Further, a spring may be applied instead of the wire.

本発明によれば、少ない現地作業工数で簡単に配管開先部の芯出しおよび面間調整を行うことが可能な配管開先合せ構造および配管開先合せ方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the piping groove alignment structure and piping groove alignment method which can perform centering of a piping groove part and surface adjustment easily with few field work man-hours can be provided.

第1実施形態に係る配管開先合せ構造を示す斜視図である。It is a perspective view which shows the piping groove alignment structure which concerns on 1st Embodiment. 配管のワイヤ架け部の配置を示す正面図である。It is a front view which shows arrangement | positioning of the wire linking part of piping. ワイヤ架け部を示す分解斜視図である。It is a disassembled perspective view which shows a wire-hanging part. 配管開先合せを行う際の作業工程図である。It is an operation process figure at the time of performing piping groove alignment. 配管開先合せを行う際の配管の状態を示す図である。It is a figure which shows the state of piping at the time of performing pipe groove alignment. (a)は開先面間距離が長いときの引張力を示す作用図、(b)は開先面間距離が短いときの引張力を示す作用図である。(A) is an effect | action figure which shows the tensile force when a groove surface distance is long, (b) is an action figure which shows the tensile force when a groove surface distance is short. 第2実施形態に係る配管開先合せ構造において、(a)は開先面間距離が長いときの引張力を示す作用図、(b)は開先面間距離が短いときの引張力を示す作用図である。In the pipe groove alignment structure according to the second embodiment, (a) is an action diagram showing a tensile force when the distance between the groove faces is long, and (b) shows a tensile force when the distance between the groove faces is short. It is an action figure. 第3実施形態に係る配管開先合せ構造を示し、(a)は正面図、(b)は上面図である。The piping groove alignment structure which concerns on 3rd Embodiment is shown, (a) is a front view, (b) is a top view.

以下、本実施形態に係る配管開先合せ構造および配管開先合せ方法について、図面を参照して説明する。なお、配管を吊り下げる装置としては、チャーンブロック、クレーンなど、配管を吊り下げられるものであってワイヤやバネで配管を引張ったときに配管を軸方向に移動させることができるものであれば、例えば配管を下側から支持する台車のようなものであってもよい。また、図1に示す配管開先合せに使用する配管101a,101bは、一例であって、双方が直管である必要はなく、例えば、一方が直管で他方がL字管であってもよく、本発明の配管開先合せ構造を適用できるものであれば、特に限定されるものではない。   Hereinafter, a pipe groove alignment structure and a pipe groove alignment method according to the present embodiment will be described with reference to the drawings. In addition, as a device for suspending a pipe, such as a churn block, a crane, etc., which can hang the pipe and can move the pipe in the axial direction when the pipe is pulled with a wire or a spring, For example, it may be a carriage that supports the pipe from below. Also, the pipes 101a and 101b used for pipe groove alignment shown in FIG. 1 are examples, and both need not be straight pipes. For example, one pipe may be a straight pipe and the other may be an L-shaped pipe. There is no particular limitation as long as the pipe groove alignment structure of the present invention can be applied.

(第1実施形態)
図1は第1実施形態に係る配管開先合せ構造を示す斜視図、図2は配管のワイヤ架け部を示す正面図、図3はワイヤ架け部を示す分解斜視図である。例えば、配管は、原子力、火力などの大型発電プラントなどに使用される大口径のものであり、炭素鋼、低合金鋼、ステンレス鋼などによって形成されている。
(First embodiment)
FIG. 1 is a perspective view showing a pipe groove alignment structure according to the first embodiment, FIG. 2 is a front view showing a wire linking part of the pipe, and FIG. 3 is an exploded perspective view showing the wire linking part. For example, the piping has a large diameter used in large power plants such as nuclear power and thermal power, and is formed of carbon steel, low alloy steel, stainless steel, or the like.

図1に示すように、第1実施形態に係る配管開先合せ構造は、配管101aに設けられた複数のワイヤ架け部(架け部)102aと、配管101bに設けられた複数のワイヤ架け部(架け部)102bとを備えている。なお、配管101aと配管101bとが対向する端面が、開先部(開先面)101c,101dとなっている。また、配管開先合せを行う2つの配管101a,101bは、互いに同じ口径を有している。   As shown in FIG. 1, the pipe groove alignment structure according to the first embodiment includes a plurality of wire framing parts (hanging parts) 102 a provided in the pipe 101 a and a plurality of wire linking parts provided in the pipe 101 b ( (Bridge part) 102b. Note that the end faces where the pipe 101a and the pipe 101b face each other are groove portions (groove surfaces) 101c and 101d. The two pipes 101a and 101b that perform pipe groove alignment have the same diameter.

ワイヤ架け部102aは、配管101aの開先部101cの近傍に、周方向に沿って複数個配置されている。このワイヤ架け部102aは、配管101aと溶接などによって接合される金属材料で形成されている。また、各ワイヤ架け部102aは、開先部101cから距離X(配管101b側のみ図示)の位置に形成されている。   A plurality of wire-hanging portions 102a are arranged in the vicinity of the groove portion 101c of the pipe 101a along the circumferential direction. The wire-hanging portion 102a is formed of a metal material that is joined to the pipe 101a by welding or the like. Each wire linking portion 102a is formed at a distance X (only the pipe 101b side is shown) from the groove portion 101c.

ワイヤ架け部102bは、配管101bの開先部101dの近傍に、周方向に沿ってワイヤ架け部102aの個数と同じ個数形成されている。このワイヤ架け部102bも、配管101bと溶接などによって接続される金属材料で形成されている。また、それぞれのワイヤ架け部102bは、開先部101dから距離Xの位置に形成されている。   The wire linking part 102b is formed in the vicinity of the groove part 101d of the pipe 101b in the same number as the wire linking part 102a along the circumferential direction. The wire-hanging portion 102b is also formed of a metal material that is connected to the pipe 101b by welding or the like. Further, each wire linking portion 102b is formed at a position of a distance X from the groove portion 101d.

なお、配管101a,101bの開先部101c,101dの近傍(距離X)とは、配管101a,101bの溶接および検査の支障にならない場所に設けることが好ましい。なお、検査とは溶接部の検査(超音波試験など)である。   It should be noted that the vicinity of the groove portions 101c and 101d (distance X) of the pipes 101a and 101b is preferably provided in a place that does not hinder the welding and inspection of the pipes 101a and 101b. The inspection refers to inspection of a welded part (such as an ultrasonic test).

図2に示すように、ワイヤ架け部102a,102bは、例えば、45度の角度で配置され、合計8個になるように構成されている。したがって、隣り合うワイヤ架け部102a,102bの距離Sは、それぞれ同じ長さに設定されている。   As shown in FIG. 2, the wire linking parts 102a and 102b are arranged at an angle of 45 degrees, for example, and are configured to be a total of eight. Accordingly, the distances S between the adjacent wire linking portions 102a and 102b are set to the same length.

このように、配管101aに設けられるワイヤ架け部102aと、配管101bに設けられるワイヤ架け部102bとは、互いに同じ個数(本実施形態では8個)によって構成されている。また、配管101aにおいて周方向に隣り合うワイヤ架け部102aの距離Sと、配管101bにおいて周方向に隣り合うワイヤ架け部102bの距離Sとは、同じに設定されている。   Thus, the wire linking part 102a provided in the pipe 101a and the wire linking part 102b provided in the pipe 101b are configured by the same number (eight in this embodiment). Further, the distance S between the wire linking parts 102a adjacent in the circumferential direction in the pipe 101a and the distance S between the wire linking parts 102b adjacent in the circumferential direction in the pipe 101b are set to be the same.

なお、本実施形態では、ワイヤ架け部102a,102bが8個の場合を例に挙げて説明しているが、7個以下であってもよく、9個以上であってもよく、複数個であればよい。また、ワイヤ架け部102a,102bは、偶数個に限定されるものではなく、奇数個であってもよい。   In the present embodiment, the case where the number of the wire linking portions 102a and 102b is eight is described as an example. However, the number may be seven or less, may be nine or more, and may be plural. I just need it. Further, the wire linking portions 102a and 102b are not limited to an even number, and may be an odd number.

図3に示すように、ワイヤ架け部102a,102bは、軸部121と、回転部材122と、から構成されている。   As shown in FIG. 3, the wire-hanging portions 102 a and 102 b are composed of a shaft portion 121 and a rotating member 122.

軸部121は、配管101a,101bの外面に溶接などで固定される基部121aと、基部121aから配管101a,101bの径方向外側に向けて延びる軸部121bと、回転部材122が軸部121bから抜け出るのを防止する抜け止め部121cと、を有している。   The shaft 121 includes a base 121a fixed to the outer surfaces of the pipes 101a and 101b by welding, a shaft 121b extending from the base 121a toward the radially outer side of the pipes 101a and 101b, and a rotating member 122 from the shaft 121b. And a retaining portion 121c that prevents the slipping out.

回転部材122は、略円筒形状を呈し、軸部121bに回転可能に支持される挿通孔122aが形成されている。また、回転部材122の外周面122bには、上端(軸部121bの先端)および下端(軸部121bの基端)から軸方向中央に向けて縮径する形状からなるくびれ部122cが形成されている。このくびれ部122cにワイヤ103(図1参照)が架けられる。   The rotating member 122 has a substantially cylindrical shape, and is formed with an insertion hole 122a that is rotatably supported by the shaft portion 121b. Further, the outer peripheral surface 122b of the rotating member 122 is formed with a constricted portion 122c having a shape that decreases in diameter from the upper end (the tip end of the shaft portion 121b) and the lower end (the base end of the shaft portion 121b) toward the center in the axial direction. Yes. A wire 103 (see FIG. 1) is hung on the constricted portion 122c.

なお、回転部材122は、軸部121bに対して回転可能に支持される構成であればよい。例えば、回転部材122と軸部121bとの間に、ベアリングなどを設けて、軸部121bに対する回転部材122の回転を滑らかに行わせる機構を設けてもよい。これにより、ワイヤ架け部102a,102bとワイヤ103(図1参照)との摩擦力をさらに低減することができる。   In addition, the rotation member 122 should just be the structure supported rotatably with respect to the axial part 121b. For example, a mechanism may be provided in which a bearing or the like is provided between the rotating member 122 and the shaft portion 121b to smoothly rotate the rotating member 122 relative to the shaft portion 121b. Thereby, the frictional force between the wire hangers 102a and 102b and the wire 103 (see FIG. 1) can be further reduced.

図1に戻って、配管101a,101bを溶接する前には、配管101a,101bの開先部101c,101d同士を突き合わせる配管開先合せを行う。すなわち、配管101aのすべてのワイヤ架け部102aと配管101bのすべてのワイヤ架け部102bとにワイヤ103を交互に架けた後、ワイヤ103の一端を固定するとともに、ワイヤ103の他端をワイヤ巻取り装置104に接続する。そして、ワイヤ巻取り装置104によりワイヤ103を巻き取ることにより、配管101a,101bが徐々に近づき、配管101a,101bの開先部101c,101dの芯出し(配管101aの軸中心と配管101bの軸中心を一致させること)が行われるとともに、開先部101c,101dの面間調整(溶接に必要な距離(所定値)となるまで近づけること)が行われる。   Returning to FIG. 1, before welding the pipes 101 a and 101 b, pipe groove alignment is performed in which the groove parts 101 c and 101 d of the pipes 101 a and 101 b are brought into contact with each other. That is, after the wires 103 are alternately laid on all the wire linking portions 102a of the piping 101a and all the wire linking portions 102b of the piping 101b, one end of the wire 103 is fixed, and the other end of the wire 103 is wound with the wire. Connect to device 104. Then, by winding the wire 103 with the wire winding device 104, the pipes 101a and 101b gradually approach, and the groove portions 101c and 101d of the pipes 101a and 101b are centered (the axis center of the pipe 101a and the axis of the pipe 101b). The center of the groove portions 101c and 101d is adjusted (closer until the distance (predetermined value) necessary for welding is reached).

なお、使用するワイヤ103は、ワイヤ架け部102a,102bに架けることができるものであれば、金属製のものであっても樹脂製のものであってもよく、適宜選択することができる。   Note that the wire 103 to be used may be made of metal or resin as long as it can be hung on the wire hangers 102a and 102b, and can be appropriately selected.

次に、配管101a,101bの開先合せの作業手順について図4および図5を参照して詳細に説明する。図4は配管開先合せを行う際の作業工程図、図5は配管開先合せを行う際の配管の状態を示す図である。   Next, a work procedure for groove alignment of the pipes 101a and 101b will be described in detail with reference to FIGS. FIG. 4 is a work process diagram when performing piping groove alignment, and FIG. 5 is a diagram showing a state of piping when performing piping groove alignment.

まず、図4の工程1に示すように、配管101a,101bをチェーンブロック(不図示)で吊り下げる(図1参照)。   First, as shown in step 1 of FIG. 4, the pipes 101a and 101b are suspended by a chain block (not shown) (see FIG. 1).

そして、図4の工程2に示すように、ワイヤ架け部102aにワイヤ103を架ける。例えば、図5(a)に示すように、配管101aのワイヤ架け部102a(A1)にワイヤ103を架ける。このとき、ワイヤ架け部102aに架けた後のワイヤ103が配管101b側に向くように、ワイヤ103をワイヤ架け部102aに架ける。   Then, as shown in step 2 of FIG. 4, the wire 103 is hung on the wire hanger 102a. For example, as shown in FIG. 5A, the wire 103 is laid on the wire linking portion 102a (A1) of the pipe 101a. At this time, the wire 103 is hung on the wire hanger 102a so that the wire 103 after hung on the wire hanger 102a faces the pipe 101b.

そして、図4の工程3に示すように、ワイヤ架け部102bにワイヤ103を架ける。例えば、図5(b)に示すように、ワイヤ架け部102a(A1)の近傍に位置する配管101bのワイヤ架け部102b(B1)にワイヤ103を架ける。このときも、ワイヤ架け部102bに架けた後のワイヤ103が配管101a側に向くように、ワイヤ103をワイヤ架け部102b(B1)に架ける。また、ワイヤ103が、ワイヤ架け部102b(B1)に1周巻き付かないように架ける。   Then, as shown in step 3 of FIG. 4, the wire 103 is laid on the wire linking portion 102b. For example, as shown in FIG. 5B, the wire 103 is laid on the wire linking part 102b (B1) of the pipe 101b located in the vicinity of the wire linking part 102a (A1). Also at this time, the wire 103 is hung on the wire hanger 102b (B1) so that the wire 103 hung on the wire hanger 102b faces the pipe 101a side. Further, the wire 103 is hung so as not to be wound once around the wire hanger 102b (B1).

この工程2および工程3を繰り返し、すべてのワイヤ架け部102a,102bにワイヤ103を順番に架けていく。つまり、図5(c)に示すように、配管101a側では、ワイヤ架け部102a(A1)に隣り合うワイヤ架け部102a(A2)にワイヤ103を架け、配管101b側では、ワイヤ架け部102b(B1)に隣り合うワイヤ架け部102b(B2)にワイヤ103を架け、配管101a側では、ワイヤ架け部102a(A2)に隣り合うワイヤ架け部102a(A3)にワイヤ103を架け、配管101b側では、ワイヤ架け部102b(B2)に隣り合うワイヤ架け部102b(B3)に架かるように、ワイヤ架け部102aとワイヤ架け部102bとに交互にワイヤ103が架かるようにして、しかも架けたワイヤ103同士が交差しないようにして、すべてのワイヤ架け部102a,102bにワイヤ103を架ける。   The steps 2 and 3 are repeated, and the wires 103 are sequentially placed on all the wire linking portions 102a and 102b. That is, as shown in FIG. 5 (c), on the pipe 101a side, the wire 103 is laid on the wire linking part 102a (A2) adjacent to the wire linking part 102a (A1), and on the pipe 101b side, the wire linking part 102b ( B1), the wire 103 is laid on the adjacent wire linking part 102b (B2), and on the pipe 101a side, the wire 103 is laid on the wire linking part 102a (A3) adjacent to the wire linking part 102a (A2). The wires 103 are alternately laid on the wire linking portion 102a and the wire linking portion 102b so as to hang on the wire linking portion 102b (B3) adjacent to the wire linking portion 102b (B2), and the wires 103 The wires 103 are laid on all the wire linking portions 102a and 102b so as not to cross each other.

そして、図4の工程4に示すように、ワイヤ103の両端をワイヤ巻取り装置104に通す(接続する)。つまり、図5(d)に示すように、ワイヤ103の両端103a,103bをワイヤ巻取り装置104に通す(接続する)。なお、図1で示したように、ワイヤ103の一端を固定し、他端をワイヤ巻取り装置104に通すようにしてもよい。   Then, as shown in Step 4 of FIG. 4, both ends of the wire 103 are passed (connected) through the wire winding device 104. That is, as shown in FIG. 5D, both ends 103a and 103b of the wire 103 are passed (connected) through the wire winding device 104. As shown in FIG. 1, one end of the wire 103 may be fixed and the other end may be passed through the wire winding device 104.

そして、図4の工程5に示すように、ワイヤ巻取り装置104を作動させてワイヤ103を巻き取る。これにより、図5(e)に示すように、ワイヤ103の両端103a,103bが巻き取られることで、それぞれ矢印で示す方向にワイヤ103を引張る引張力が発生する。なお、ワイヤ巻取り装置104でワイヤ103を巻き取る際には、図1に示すように、ワイヤ103の両端103a、103b(図5(d)参照)が互いにクロスするようにすることが好ましい。また、ワイヤ103の両端103a,103bは、ワイヤ103を巻取る際に、ワイヤ103がワイヤ架け部102a,102bから外れない位置に設定する。   Then, as shown in Step 5 in FIG. 4, the wire winding device 104 is operated to wind the wire 103. As a result, as shown in FIG. 5 (e), when both ends 103a and 103b of the wire 103 are wound, a tensile force for pulling the wire 103 in the direction indicated by the arrow is generated. When winding the wire 103 with the wire winding device 104, it is preferable that both ends 103a and 103b (see FIG. 5D) of the wire 103 cross each other as shown in FIG. Further, both ends 103a and 103b of the wire 103 are set at positions where the wire 103 is not detached from the wire linking portions 102a and 102b when the wire 103 is wound.

そして、図4の工程6に示すように、配管101a,101bの開先部101c,101dが平行になり、かつ、開先部101c,101dの面間距離(開先面間距離)が所定値以下となるまでワイヤ103を巻き取る。なお、所定値とは、溶接するに当たって必要なクリアランスであり、例えば数mmに設定される。   As shown in step 6 of FIG. 4, the groove portions 101c and 101d of the pipes 101a and 101b are parallel to each other, and the distance between the grooves 101c and 101d (the distance between the groove surfaces) is a predetermined value. Wind the wire 103 until: The predetermined value is a clearance necessary for welding, and is set to several mm, for example.

つまり、図5(f)および図5(g)に示すように、ワイヤ103をワイヤ巻取り装置104で巻き取ることにより、配管101aと配管101bとの距離が徐々に近づく。このとき、配管101aの開先部101cと配管101bの開先部101dとの距離が長い側(図5(f)および図5(g)の図示上側の開先部101c,101d)において開先部101c,101d同士が近づく速度が速く、配管101aの開先部101cと配管101bの開先部101dとの距離が短い側(図示下側)において開先部101c,101d同士が近づく速さが遅くなる。したがって、ワイヤ103をワイヤ巻取り装置104で巻き取るにつれて、開先部101c、101d同士の距離が均一化される。   That is, as shown in FIG. 5F and FIG. 5G, the distance between the pipe 101a and the pipe 101b is gradually reduced by winding the wire 103 with the wire winding device 104. At this time, the groove is formed on the side where the distance between the groove portion 101c of the pipe 101a and the groove portion 101d of the pipe 101b is long (the groove portions 101c and 101d on the upper side in FIG. 5 (f) and FIG. 5 (g)). The speed at which the portions 101c and 101d approach each other is fast, and the speed at which the groove portions 101c and 101d approach each other on the side where the distance between the groove portion 101c of the pipe 101a and the groove portion 101d of the pipe 101b is short (the lower side in the drawing). Become slow. Therefore, as the wire 103 is wound by the wire winding device 104, the distances between the groove portions 101c and 101d are made uniform.

そして、最終的には、図5(h)に示すように、配管101a,101bの開先部101c,101d同士が平行になる。開先部101c,101d同士が平行になった後は、平行を維持したまま、開先部101c,101d同士が近づき、図5(i)に示すように、開先部101c,101dの面間距離が所定値CLとなる。   Finally, as shown in FIG. 5 (h), the groove portions 101c and 101d of the pipes 101a and 101b become parallel to each other. After the groove portions 101c and 101d become parallel to each other, the groove portions 101c and 101d approach each other while maintaining the parallelism, and as shown in FIG. 5 (i), between the surfaces of the groove portions 101c and 101d The distance is a predetermined value CL.

なお、配管開先合せをする際の配管101aと配管101bとを最初に離しておく距離は、開先部101cと開先部101dとが傾いた状態(配管101a,101bの軸芯が一致しない状態)で開先部101cと開先部101dとの距離が所定値に至ることのない長さを確保することが好ましい。   Note that the distance at which the pipe 101a and the pipe 101b are first separated when the pipes are aligned is such that the groove 101c and the groove 101d are inclined (the axes of the pipes 101a and 101b do not match). In the state), it is preferable to secure a length in which the distance between the groove portion 101c and the groove portion 101d does not reach a predetermined value.

次に、開先部101c,101dが平行になる原理について図6を参照して説明する。図6(a)は開先面間距離が長いときの引張力を示す作用図、(b)は開先面間距離が短いときの引張力を示す作用図である。   Next, the principle that the groove portions 101c and 101d are parallel will be described with reference to FIG. FIG. 6A is an operation diagram showing the tensile force when the groove surface distance is long, and FIG. 6B is an operation diagram showing the tensile force when the groove surface distance is short.

図6(a)に示すように、配管101aの開先部101cと、配管101bの開先部101dとが大きく離れている場合、つまり開先面間距離が長い場合には、ワイヤ架け部102aとワイヤ架け部102bとの間での、ワイヤ架け部102aに作用する引張力T1の水平分力はT2となる。なお、水平分力T2とは、配管101a,101bの軸方向成分であり、配管101a,101b同士を引き付ける力である。これに対して、図6(b)に示すように、配管101aの開先部101cと、配管101bの開先部101dとが近づいている場合、つまり開先面間距離が短い場合には、ワイヤ架け部102aとワイヤ架け部102bとの間での、ワイヤ架け部102aに作用する引張力T3の水平分力はT4となる。このように、開先面間距離が短くなるにつれて、配管101a,101b同士を引き付ける力は小さく(弱く)なる。   As shown in FIG. 6A, when the groove portion 101c of the pipe 101a and the groove portion 101d of the pipe 101b are greatly separated, that is, when the distance between the groove surfaces is long, the wire-hanging portion 102a. The horizontal component of the tensile force T1 acting on the wire linking part 102a between the wire linking part 102b and the wire linking part 102b is T2. The horizontal component force T2 is an axial component of the pipes 101a and 101b and is a force that attracts the pipes 101a and 101b. In contrast, as shown in FIG. 6B, when the groove portion 101c of the pipe 101a and the groove portion 101d of the pipe 101b are close to each other, that is, when the distance between the groove surfaces is short, The horizontal component of the tensile force T3 acting on the wire linking part 102a between the wire linking part 102a and the wire linking part 102b is T4. Thus, as the distance between the groove faces becomes shorter, the force that attracts the pipes 101a and 101b becomes smaller (weaker).

したがって、図5(e)ないし図5(h)で示したように、開先面間距離が長い開先部101c,101dが、開先面間距離が短い開先部101c,101dよりも、開先部101c,101d同士を近づける力が強くなるので、開先面間距離が長い開先部101c,101d同士が近づく速度が速くなり、開先面間距離が短い開先部101c,101d同士が近づく速度が遅くなるので、開先部101c,101d同士が次第に平行に近づいていくことになる。   Therefore, as shown in FIGS. 5 (e) to 5 (h), the groove portions 101c and 101d having a long distance between the groove surfaces are larger than the groove portions 101c and 101d having a short distance between the groove surfaces. Since the force to bring the groove portions 101c and 101d closer to each other becomes stronger, the speed at which the groove portions 101c and 101d having a longer distance between the groove surfaces approach each other becomes faster, and the groove portions 101c and 101d having a shorter distance between the groove surfaces become closer to each other. Since the speed at which the groove approaches becomes slower, the groove portions 101c and 101d gradually approach each other in parallel.

また、図6(a)では、配管101a,101bの軸芯が一致して、ワイヤ架け部102aと一方(図示上側)のワイヤ架け部102bとの間での引張力T1とその水平分力T2とで成す角度と、ワイヤ架け部102aと他方(図示下側)のワイヤ架け部102bとの間での引張力T1とその水平分力T2とで成す角度とが互いにθ1の場合を例に挙げて説明しているが、配管101a,101bの軸芯が一致せず、例えば、水平な配管101aに対して配管101bが下側に傾いている場合には(図5(e),(f),(g)参照)、上側の角度θ1が下側の角度θ1よりも小さくなり、上側の水平分力が下側の水平分力よりも大きくなるので、上側が下側よりも強く引かれることにより、平行になる。   In FIG. 6A, the axial centers of the pipes 101a and 101b coincide with each other, and the tensile force T1 between the wire linking portion 102a and one (the upper side in the drawing) wire linking portion 102b and the horizontal component force T2 thereof. And the angle formed by the tensile force T1 between the wire linking portion 102a and the other (the lower side in the drawing) wire linking portion 102b and the horizontal component force T2 thereof is given as an example. However, when the axes of the pipes 101a and 101b do not coincide with each other, and the pipe 101b is inclined downward with respect to the horizontal pipe 101a, for example (FIGS. 5E and 5F). , (G)), the upper angle θ1 is smaller than the lower angle θ1, and the upper horizontal component force is larger than the lower horizontal component force, so that the upper side is pulled stronger than the lower side. To be parallel.

なお、開先部101c,101d同士を所定値以下に近づけた後は、所定の治具を用いて所定値(クリアランス)CLを維持した状態で配管101a,101bを仮固定し、ワイヤ103を取外した後に溶接を行う。   After the groove portions 101c and 101d are close to a predetermined value or less, the pipes 101a and 101b are temporarily fixed using a predetermined jig while maintaining the predetermined value (clearance) CL, and the wire 103 is detached. After welding.

以上説明したように、第1実施形態に係る配管開先合せ構造によれば、2つの配管101a,101bの開先部101c,101dの近傍に、周方向に沿って互いに同じ個数にて等間隔に配置された複数のワイヤ架け部102a,102bを備え、配管101aのワイヤ架け部102aと配管101bのワイヤ架け部102bにワイヤ103を交互に架けて、ワイヤ103を引張り、開先部101c,101d同士を突き合せることで、少ない現地作業工数で簡単に配管101a,101bの芯出しおよび面間調整を行うことが可能になる。また、第1実施形態によれば、熟練の技術を要する作業も必要なくなる。   As described above, according to the pipe groove alignment structure according to the first embodiment, the same number of the pipes 101a and 101b are provided at equal intervals in the vicinity of the groove portions 101c and 101d in the circumferential direction. A plurality of wire-hanging portions 102a and 102b arranged on the wire 101, the wire 103 is alternately hung on the wire-hanging portion 102a of the pipe 101a and the wire-hanging portion 102b of the pipe 101b, the wire 103 is pulled, and the groove portions 101c and 101d By matching each other, the pipes 101a and 101b can be easily centered and the distance between the faces can be adjusted with a small number of field work steps. Further, according to the first embodiment, work requiring skilled techniques is not necessary.

また、第1実施形態によれば、ワイヤ架け部102a,102bは、軸方向S1(図1参照)に直交する軸部121bと、軸部121bに回転自在に支持される回転部材122と、を備えることで(図3参照)、ワイヤ103をワイヤ架け部102a,102bに架けて、ワイヤ巻取り装置104でワイヤ103を巻き取る際に、ワイヤ103とワイヤ架け部102a,102bとの摩擦による抵抗を低減できるので、ワイヤ103を巻き取る力を小さくできる。その結果、ワイヤ巻取り装置104が大型化するのを防止できる。   In addition, according to the first embodiment, the wire linking portions 102a and 102b include the shaft portion 121b orthogonal to the axial direction S1 (see FIG. 1) and the rotating member 122 rotatably supported by the shaft portion 121b. By providing (refer to FIG. 3), when the wire 103 is hung on the wire hangers 102a and 102b and the wire 103 is wound by the wire winding device 104, the resistance due to friction between the wire 103 and the wire hangers 102a and 102b Therefore, the force for winding the wire 103 can be reduced. As a result, it is possible to prevent the wire winding device 104 from becoming large.

また、第1実施形態によれば、回転部材122の外周面122bが軸部121bの両端から中央に向けて縮径するくびれ部122cを有するので(図3参照)、ワイヤ103を回転部材122で安定に保持できる。   In addition, according to the first embodiment, the outer peripheral surface 122b of the rotating member 122 has the constricted portion 122c whose diameter decreases from both ends of the shaft portion 121b toward the center (see FIG. 3). It can be held stably.

(第2実施形態)
図7は第2実施形態に係る配管開先合せ構造を示し、(a)は開先面間距離が長いときの引張力を示す作用図、(b)は開先面間距離が短いときの引張力を示す作用図である。なお、第2実施形態に係る配管開先合せ構造は、第1実施形態のワイヤ103に替えて、バネ201を適用したものである。また、第2実施形態では、第1実施形態のワイヤ架け部102a,102bに替えて、バネ架け部112a,112bを適用したものである。その他の構成については、第1実施形態と同様に構成されているものとする。
(Second Embodiment)
7A and 7B show a pipe groove alignment structure according to the second embodiment, wherein FIG. 7A is an operation diagram showing a tensile force when the distance between the groove surfaces is long, and FIG. 7B is a case when the distance between the groove surfaces is short. It is an effect | action figure which shows tensile force. Note that the pipe groove alignment structure according to the second embodiment is one in which a spring 201 is applied instead of the wire 103 of the first embodiment. Moreover, in 2nd Embodiment, it replaces with the wire linking part 102a, 102b of 1st Embodiment, and applies the spring suspending part 112a, 112b. About another structure, it shall be comprised similarly to 1st Embodiment.

図7に示すように、第2実施形態に係る配管開先合せ構造は、配管101aに設けられた複数のバネ架け部(架け部)112aと、配管101bに設けられた複数のバネ架け部(架け部)112bとを備えている。バネ架け部112a,112bの構成については、図3のワイヤ架け部102a,102bから回転機構を除いた構成であり、例えば、円柱状(棒状)の部材で構成されている。   As shown in FIG. 7, the pipe groove alignment structure according to the second embodiment includes a plurality of spring bridges (bridges) 112 a provided on the pipe 101 a and a plurality of spring bridges provided on the pipe 101 b ( (Bridge part) 112b. About the structure of the spring hanging part 112a, 112b, it is the structure which remove | excluded the rotation mechanism from the wire hanging part 102a, 102b of FIG. 3, for example, is comprised by the column-shaped (bar-shaped) member.

バネ201は、例えば、コイルスプリングにより構成され、一端がバネ架け部112aに架けられ、他端がバネ架け部112bに架けられている。なお、バネ架け部112aとバネ架け部112bとの間で1本のバネ201を架ける構成に限定されるものではなく、連続したバネで構成して、それぞれのバネ架け部112a,112bに交互に架けるようにしてもよい。   The spring 201 is constituted by, for example, a coil spring, and one end is hung on the spring hanging portion 112a and the other end is hung on the spring hanging portion 112b. In addition, it is not limited to the structure which mounts the one spring 201 between the spring mounting part 112a and the spring mounting part 112b, It comprises with a continuous spring, and each spring mounting part 112a, 112b alternately It may be constructed.

なお、バネ201のバネ力(ばね係数)は、バネ201が最も縮んだときに開先部101c,101d同士の距離が所定値CL(図5参照)になるように設定される。   The spring force (spring coefficient) of the spring 201 is set so that the distance between the groove portions 101c and 101d becomes a predetermined value CL (see FIG. 5) when the spring 201 is most contracted.

図7(a)に示すように、配管101aの開先部101cと、配管101bの開先部101dとが大きく離れている場合、つまり開先面間距離が長い場合には、バネ架け部112aとバネ架け部112bとの間での、バネ201に作用する引張力T5の水平分力はT6となる。これに対して、図7(b)に示すように、配管101aの開先部101cと、配管101bの開先部101dとが近づいている場合、つまり開先面間距離が短い場合には、バネ架け部112aとバネ架け部112bとの間での、バネ201に作用する引張力T7の水平分力はT8となる。このように、開先面間距離が短くなるにつれて、配管101a,101b同士を引き付ける力は小さく(弱く)なる。   As shown in FIG. 7A, when the groove portion 101c of the pipe 101a and the groove portion 101d of the pipe 101b are greatly separated, that is, when the distance between the groove surfaces is long, the spring hanging portion 112a. The horizontal component force of the tensile force T5 acting on the spring 201 between the spring mounting portion 112b and the spring mounting portion 112b is T6. In contrast, as shown in FIG. 7B, when the groove portion 101c of the pipe 101a and the groove portion 101d of the pipe 101b are close to each other, that is, when the distance between the groove surfaces is short, The horizontal component force of the tensile force T7 acting on the spring 201 between the spring hanging portion 112a and the spring hanging portion 112b is T8. Thus, as the distance between the groove faces becomes shorter, the force that attracts the pipes 101a and 101b becomes smaller (weaker).

したがって、ワイヤ103に替えてバネ201を適用した場合においても、図5(e)ないし図5(h)を参照して説明したように、開先面間距離が長い側の開先部101c,101d同士が近づく速度が速くなり(引張力が強くなり)、開先面間距離が短い側の開先部101c,101d同士が近づく速度が遅くなる(引張力が弱くなる)ので、開先部101c,101d同士が次第に平行に近づくことになる。   Therefore, even when the spring 201 is applied instead of the wire 103, as described with reference to FIGS. 5E to 5H, the groove portions 101c on the side where the distance between the groove surfaces is long, Since the speed at which 101d approaches each other increases (the tensile force increases), and the speed at which the groove portions 101c and 101d on the side where the distance between the groove faces becomes shorter decreases (the tensile force decreases), the groove portion 101c and 101d gradually approach parallel.

このように、第2実施形態に係る配管開先合せ構造によれば、2つの配管101a,101bの開先部101c,101dの近傍に、周方向に沿って互いに同じ個数にて等間隔に配置された複数のバネ架け部102a,102bを備え、配管101aのバネ架け部112aと配管101bのバネ架け部112bにそれぞれバネ201を交互に引掛けて開先部101c,101d同士を突き合せることで、少ない現地作業工数で簡単に配管101a,101bの芯出しおよび面間調整を行うことが可能になる。また、第2実施形態によれば、熟練の技術を要する作業も必要なくなる。   As described above, according to the pipe groove alignment structure according to the second embodiment, the same number of the pipes 101a and 101b are arranged at equal intervals in the vicinity of the groove parts 101c and 101d in the circumferential direction. A plurality of spring mounting portions 102a, 102b, and the springs 201 are alternately hooked on the spring mounting portions 112a of the piping 101a and the spring mounting portions 112b of the piping 101b, respectively, so that the groove portions 101c, 101d are brought into contact with each other. Therefore, the pipes 101a and 101b can be easily centered and the inter-surface adjustment can be easily performed with a small number of field work steps. Further, according to the second embodiment, work requiring skilled skills is not necessary.

また、第2実施形態によれば、ワイヤ103やワイヤ巻取り装置104などが不要になり、配管開先合せに必要な機器を簡略化できる。   Further, according to the second embodiment, the wire 103, the wire take-up device 104 and the like are not necessary, and equipment necessary for pipe groove alignment can be simplified.

(第3実施形態)
図8は第3実施形態に係る配管開先合せ構造を示し、(a)は正面図、(b)は上面図である。第3実施形態では、ワイヤ架け部102a,102bを配管101a,101bに直接に設ける構成に替えて、配管101a,101bに対して着脱可能なワイヤ架け部102a,102bとしたものである。
(Third embodiment)
FIG. 8 shows a pipe groove alignment structure according to the third embodiment, wherein (a) is a front view and (b) is a top view. In the third embodiment, instead of the configuration in which the wire hangers 102a and 102b are provided directly on the pipes 101a and 101b, the wire hangers 102a and 102b that can be attached to and detached from the pipes 101a and 101b are used.

図8(a)に示すように、第3実施形態に係る配管開先合せ構造は、カバー部301a,301bと、滑り止めシート(滑り止め部)STと、から構成されている。   As shown to Fig.8 (a), the pipe groove alignment structure which concerns on 3rd Embodiment is comprised from cover part 301a, 301b and antiskid sheet | seat (slip prevention part) ST.

カバー部301aは、図8(a)の正面視において略半円形状を呈し、配管101a,101bの外周面に沿って形成されている。また、カバー部301aの外周面301cには、ワイヤ架け部102a,102bが周方向に沿って等間隔に配置されている。   The cover portion 301a has a substantially semicircular shape when viewed from the front in FIG. 8A, and is formed along the outer peripheral surfaces of the pipes 101a and 101b. In addition, on the outer peripheral surface 301c of the cover portion 301a, wire linking portions 102a and 102b are arranged at equal intervals along the circumferential direction.

カバー部301bは、図8(a)の正面視において略半円形状を呈し、配管101a,101bの外周面に沿って形成されている。また、カバー部301bの外周面301dには、ワイヤ架け部102a,102bが周方向に沿って等間隔に配置されている。   The cover portion 301b has a substantially semicircular shape when viewed from the front in FIG. 8A, and is formed along the outer peripheral surfaces of the pipes 101a and 101b. In addition, on the outer peripheral surface 301d of the cover portion 301b, wire-hanging portions 102a and 102b are arranged at equal intervals along the circumferential direction.

なお、図8(a)では、後記するボルトBおよびナットNが位置するワイヤ架け部102a,102bの図示を省略している(図8(b)についても同様)。また、ワイヤ架け部102a,102bが、カバー部301aとカバー部301bとの連結部(ボルトBおよびナットNの部分)に位置しないように、ワイヤ架け部102a,102bの位置を調節することが好ましい。   In FIG. 8A, illustration of wire linking portions 102a and 102b where bolts B and nuts N, which will be described later, are omitted (the same applies to FIG. 8B). In addition, it is preferable to adjust the positions of the wire linking portions 102a and 102b so that the wire linking portions 102a and 102b are not located at the connecting portion (the bolt B and the nut N portion) between the cover portion 301a and the cover portion 301b. .

図8(b)に示すように、カバー部301aは、ワイヤ架け部102a,102bの位置とはオフセットした位置に両側方に突出するフランジ部301e,301eが形成されている。また、カバー部301bについても、カバー部301aと同様にして、フランジ部301e,301eに対応する位置に、フランジ部301f,301fが形成されている(図8(a)参照)。   As shown in FIG. 8 (b), the cover portion 301a is formed with flange portions 301e and 301e projecting on both sides at positions offset from the positions of the wire linking portions 102a and 102b. Also, the cover portion 301b is formed with flange portions 301f and 301f at positions corresponding to the flange portions 301e and 301e in the same manner as the cover portion 301a (see FIG. 8A).

滑り止めシートSTは、ゴムなどの摩擦抵抗の大きな弾性材料(ワイヤ103による引張力が発生したときにカバー部301a,301bが位置がずれない抵抗を有する材料)で形成され、配管101a,101bとカバー部301a,301bとの間に介装されている。滑り止めシートSTを配管101a,101bとカバー部301a,301bとの間に積層した状態において、一方のフランジ部301eおよびフランジ部301fと、他方のフランジ部301eおよびフランジ部301fと、をそれぞれボルトBおよびナットNを介して締付ける。これにより、ワイヤ架け部102a,102bにワイヤ103を架けて、ワイヤ巻取り装置104でワイヤ103を巻き取ったとしても、カバー部301a,301bが配管101a,101bから抜け出るのを防止できる。   The non-slip sheet ST is formed of an elastic material having a large frictional resistance such as rubber (a material having a resistance that the positions of the cover portions 301a and 301b are not shifted when a tensile force is generated by the wire 103), and the pipes 101a and 101b. It is interposed between the cover portions 301a and 301b. In the state where the non-slip sheet ST is laminated between the pipes 101a and 101b and the cover portions 301a and 301b, the one flange portion 301e and the flange portion 301f and the other flange portion 301e and the flange portion 301f are respectively connected to the bolt B. And tighten through the nut N. Thereby, even if the wire 103 is hung on the wire hangers 102a and 102b and the wire 103 is wound up by the wire winding device 104, the cover portions 301a and 301b can be prevented from coming out of the pipes 101a and 101b.

第3実施形態によれば、配管101a,101bにワイヤ架け部102a,102bを溶接などで固定する必要がなくなり、ワイヤ架け部102,102bが固定された専用の配管を用いる必要がなくなる。   According to the third embodiment, there is no need to fix the wire hangers 102a and 102b to the pipes 101a and 101b by welding or the like, and there is no need to use a dedicated pipe to which the wire hangers 102 and 102b are fixed.

なお、ワイヤ架け部102a,102bを配管101a,101bに対して着脱可能にする機構としては、第3実施形態に限定されるものではなく、電磁石などを介してワイヤ架け部102a,102bが固定されたカバー部を適用するようにしてもよい。   The mechanism for making the wire hangers 102a and 102b detachable from the pipes 101a and 101b is not limited to the third embodiment, and the wire hangers 102a and 102b are fixed via an electromagnet or the like. A cover portion may be applied.

101a,101b 配管
101c,101d 開先部
102a,102b ワイヤ架け部(架け部)
103 ワイヤ
104 ワイヤ巻取り装置
112a,112b バネ架け部(架け部)
121b 軸部
122 回転部材
122b 外周面
122c くびれ部
201 バネ
301a,301b カバー部
ST 滑り止めシート(滑り止め部)
101a, 101b Piping 101c, 101d Groove 102a, 102b Wire linking (hanging)
103 Wire 104 Wire take-up device 112a, 112b Spring bridge (bridge)
121b Shaft portion 122 Rotating member 122b Outer peripheral surface 122c Constricted portion 201 Spring 301a, 301b Cover portion ST Non-slip sheet (anti-slip portion)

Claims (6)

軸方向に移動可能となるように支持された配管同士の突合せ溶接前の開先部の芯出しおよび面間調整を行う配管開先合せ構造であって、
2つの配管の開先部の近傍に、周方向に沿って互いに同じ個数にて等間隔に配置された複数の架け部を備え、
一方の前記配管の架け部と他方の前記配管の架け部にワイヤを交互に架けて、前記ワイヤを引張ることで、前記開先部同士を突き合せたことを特徴とする配管開先合せ構造。
A pipe groove alignment structure that performs centering of the groove and adjusting the surface before butt welding between pipes supported so as to be movable in the axial direction,
In the vicinity of the groove portion of the two pipes, provided with a plurality of bridge portions arranged at equal intervals in the same number along the circumferential direction,
A pipe groove alignment structure characterized in that the groove portions are butted against each other by pulling the wires by alternately laying wires on a bridge portion of one of the pipes and a bridge portion of the other of the pipes.
前記架け部は、
前記配管の軸方向に直交する軸部と、
前記軸部に回転自在に支持される回転部材と、を備えることを特徴とする請求項1に記載の配管開先合せ構造。
The bridge is
A shaft portion orthogonal to the axial direction of the pipe;
The piping groove alignment structure according to claim 1, further comprising: a rotating member that is rotatably supported by the shaft portion.
前記回転部材の外周面には、前記軸部の両端から中央に向けて縮径するくびれ部が形成されていることを特徴とする請求項2に記載の配管開先合せ構造。   The pipe groove alignment structure according to claim 2, wherein a constricted portion whose diameter decreases from both ends of the shaft portion toward the center is formed on the outer peripheral surface of the rotating member. 軸方向に移動可能となるように支持された配管同士の突合せ溶接前の開先部の芯出しおよび面間調整を行う配管開先合せ構造であって、
2つの配管の開先部の近傍に、周方向に沿って互いに同じ個数にて等間隔に配置された複数の架け部を備え、
一方の前記配管の架け部と他方の前記配管の架け部にバネを交互に架けて、前記バネの引張力で前記開先部同士を突き合せたことを特徴とする配管開先合せ構造。
A pipe groove alignment structure that performs centering of the groove and adjusting the surface before butt welding between pipes supported so as to be movable in the axial direction,
In the vicinity of the groove portion of the two pipes, provided with a plurality of bridge portions arranged at equal intervals in the same number along the circumferential direction,
A piping groove alignment structure characterized in that springs are alternately laid on one of the piping sections of the piping and the other of the piping sections, and the groove sections are abutted against each other by the tensile force of the springs.
前記配管の周囲に着脱可能に配置され、前記架け部が固定されるカバー部と、
前記配管と前記カバー部との間に配置される滑り止め部と、
を備えることを特徴とする請求項1から請求項4のいずれか1項に記載の配管開先合せ構造。
A cover part that is detachably disposed around the pipe and to which the bridge part is fixed;
A non-slip portion disposed between the pipe and the cover portion;
The pipe groove alignment structure according to any one of claims 1 to 4, further comprising:
吊り下げられた配管同士の突合せ溶接前の開先部の芯出しおよび面間調整を行う配管開先合せ方法であって、
それぞれの前記配管の開先部の近傍において周方向に等間隔で互いに同じ個数配置された複数個の架け部に、ワイヤを一方の前記配管の架け部と他方の前記配管の架け部とに交互に引掛けて、前記ワイヤを引張ったときの開先部の距離が短くなるにつれて前記配管同士の引張力が小さくなる力を利用して開先部の芯出しおよび面間調整を行うことを特徴とする配管開先合せ方法。
A pipe groove alignment method for centering the groove and adjusting the gap before butt welding between the suspended pipes,
In the vicinity of the groove portion of each of the pipes, wires are alternately provided to a plurality of bridge portions arranged at equal intervals in the circumferential direction between one of the pipe bridge portions and the other of the pipe bridge portions. The groove portion is centered and the inter-surface adjustment is performed using a force that decreases the tensile force between the pipes as the distance between the groove portions when the wire is pulled is shortened. Piping groove alignment method.
JP2013077423A 2013-04-03 2013-04-03 Piping groove mating structure and piping groove mating method Pending JP2014200805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077423A JP2014200805A (en) 2013-04-03 2013-04-03 Piping groove mating structure and piping groove mating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077423A JP2014200805A (en) 2013-04-03 2013-04-03 Piping groove mating structure and piping groove mating method

Publications (1)

Publication Number Publication Date
JP2014200805A true JP2014200805A (en) 2014-10-27

Family

ID=52351746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077423A Pending JP2014200805A (en) 2013-04-03 2013-04-03 Piping groove mating structure and piping groove mating method

Country Status (1)

Country Link
JP (1) JP2014200805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6259543B1 (en) * 2017-10-02 2018-01-10 嘉正 佐藤 Double air supply / exhaust tube disconnection tool and double air supply / exhaust tube disconnection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6259543B1 (en) * 2017-10-02 2018-01-10 嘉正 佐藤 Double air supply / exhaust tube disconnection tool and double air supply / exhaust tube disconnection method

Similar Documents

Publication Publication Date Title
RU2561942C2 (en) Pipeline laying system
CN105921996B (en) A kind of large-sized unit shaft coupling centralising device and centering method
CN104297081B (en) A kind of adjustable fluid pressure line vibration testing device of support stiffness
KR102089205B1 (en) Practice device and practice method of seal construction
JP2014200805A (en) Piping groove mating structure and piping groove mating method
JP2011052408A (en) Guide device for tapered pile
JP2012189159A (en) Piping vibration reduction device
JP5368491B2 (en) Output confirmation method and output confirmation device for wire rope flaw detector
JP5432794B2 (en) Magnetizing apparatus and in-pipe moving apparatus
WO2018126196A1 (en) Tubular protector assembly
CN111115429B (en) Underwater pipeline pulling-out clamp, pulling-out device and pulling-out method
KR100374851B1 (en) Shaft centering device arrangement for condensate pump
JP5974571B2 (en) Stabilizing jig for slant pile
JP6250215B1 (en) How to update existing piping
JP5670263B2 (en) Support fixing tool and support fixing device
JP2010060477A (en) Implement for pipe inspection
JP2017116237A (en) Inspection device and inspection method for stoker furnace
JP6432975B2 (en) PC steel direction change method and PC steel direction change jig
KR20120007445U (en) Jig for confirming circularity of large pipe
US20140130324A1 (en) Method for abutting parts formed, at least in part, as hollow profiles
TW202001044A (en) Device for levelling an offshore foundation construction
JP6339409B2 (en) In-pipe self-propelled device and piping inspection device
WO2014095091A1 (en) Miniature crawler and a miniature inspector using the same
JP6661389B2 (en) Support
JP6585379B2 (en) Temporary fixing jig for sliding bearing