JP2014199586A - Unevenness extraction device for multi-plane structure, unevenness extraction method for multi-plane structure, and program - Google Patents

Unevenness extraction device for multi-plane structure, unevenness extraction method for multi-plane structure, and program Download PDF

Info

Publication number
JP2014199586A
JP2014199586A JP2013074873A JP2013074873A JP2014199586A JP 2014199586 A JP2014199586 A JP 2014199586A JP 2013074873 A JP2013074873 A JP 2013074873A JP 2013074873 A JP2013074873 A JP 2013074873A JP 2014199586 A JP2014199586 A JP 2014199586A
Authority
JP
Japan
Prior art keywords
small
plane
planes
virtual plane
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013074873A
Other languages
Japanese (ja)
Other versions
JP6121216B2 (en
Inventor
佐藤 俊明
Toshiaki Sato
俊明 佐藤
秀樹 島村
Hideki Shimamura
秀樹 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasco Corp
Original Assignee
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corp filed Critical Pasco Corp
Priority to JP2013074873A priority Critical patent/JP6121216B2/en
Publication of JP2014199586A publication Critical patent/JP2014199586A/en
Application granted granted Critical
Publication of JP6121216B2 publication Critical patent/JP6121216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an unevenness extraction device for a multi-plane structure and an unevenness extraction program for the multi-plane structure, capable of extracting unevenness of a plurality of planes forming the multi-plane structure from single-timing point group data.SOLUTION: An unevenness extraction device divides a plurality of planes of a structure formed of the plurality of planes at the time of completion, for each predetermined distance in an interconnect line direction to set small segments, and repeats processing of extracting as a small plane a determination plane having the maximum number of points in a three-dimensional point group data in which normal line distances from determination planes set in the respective small segments are within a threshold value, and when the number of the small planes in the small segments is not more than the number of reference planes, sets virtual planes equal in number to the planes at the time of completion, and sets as common virtual planes the virtual planes in which the number of points in the point group in which normal line distances from the virtual planes are within a threshold value exceeds a reference inclusion rate, and when the number of points in the point group in which normal line distances from the common virtual planes are within a predetermined threshold value exceeds the reference inclusion rate in the adjacent small segment, combines these small segments.

Description

本発明は、多平面構造物の凹凸抽出装置、多平面構造物の凹凸抽出方法、及びプログラムに関する。   The present invention relates to a multiplanar structure unevenness extraction apparatus, a multiplanar structure unevenness extraction method, and a program.

道路及びその脇に形成された土手、トンネルやダムの壁面等の、竣工時に複数の平面で構成されていた構造物は、施工時には平坦に形成されていた上記平面に、時間の経過とともに凹凸が発生することがある。この凹凸の計測は、設計図等に基づいて竣工時の平面状態がわかれば、竣工時(設計時)と現在の二時期について、平面の各点の高さの差分を抽出することにより行うことができる。   Structures that consist of multiple planes at the time of completion, such as roads and banks formed on the sides of the road, tunnels, and dam walls, have unevenness over time on the plane that was formed flat at the time of construction. May occur. Measurement of this unevenness should be done by extracting the difference in height of each point on the plane between the time of completion (design time) and the current two periods if the state of the plane at the time of completion is known based on the design drawing etc. Can do.

しかし、竣工時の設計図の入手が困難であったり、設計図と施工形状が異なっていたりする場合があり、竣工時の平面状態を知ることが困難である場合が多い。   However, there are cases where it is difficult to obtain a design drawing at the time of completion, or the design drawing and the construction shape are different, and it is often difficult to know the plane state at the time of completion.

このため、単時期(現在)のデータから凹凸解析を行える技術が要望されている。このようなデータとしては、例えば点群データがあり、下記特許文献1、特許文献2には、点群データから対象物の輪郭に係るデータを生成する技術が開示されている。   For this reason, there is a demand for a technique that can perform unevenness analysis from single-time (current) data. Such data includes, for example, point cloud data, and the following Patent Document 1 and Patent Document 2 disclose techniques for generating data related to the contour of an object from the point cloud data.

特開2012-8867号公報JP 2012-8867 A 特開2012-13660号公報JP 2012-13660 A

しかし、上記従来の技術においは、多平面構造物を構成する複数の平面の凹凸を抽出するものではなかった。   However, in the above conventional technique, the unevenness of a plurality of planes constituting the multiplanar structure is not extracted.

本発明の目的は、単時期点群データから多平面構造物を構成する複数の平面の凹凸を抽出することができる多平面構造物の凹凸抽出装置及び多平面構造物の凹凸抽出プログラムを提供することにある。   An object of the present invention is to provide a multiplanar structure unevenness extraction apparatus and a multiplanar structure unevenness extraction program capable of extracting unevenness of a plurality of planes constituting a multiplanar structure from single time point cloud data. There is.

上記目的を達成するために、本発明の一実施形態は、多平面構造物の凹凸抽出装置であって、竣工時に複数の平面で構成されていた構造物の前記複数の平面上の複数の点において、凹凸計測手段が計測した3次元点群データを凹凸計測手段から取得して記憶手段に記憶させる点群データ取得手段と、前記竣工時の平面数及び平面の接続関係に関する情報に基づいて、前記複数の平面を、前記複数の平面の接続線方向に予め定めた距離毎に分割して小区間を設定するとともに、前記小区間に、隣接する前記小区間が連続番号となるように番号を設定する小区間設定手段と、前記3次元点群データを記憶手段から読み出し、前記各小区間において、前記3次元点群データから任意の3点を選択して判断平面を設定し、前記判断平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が最も多くなる前記判断平面を小平面として抽出する処理を、先に抽出した小平面からの法線距離が予め定めた閾値内にある前記点群中の点を他の小平面の抽出処理で使用しない条件で繰り返す小平面抽出手段と、前記各小区間における前記小平面の数が基準平面数以内であるか否かを判断する小平面判断手段と、前記抽出された小平面の数が基準平面数以内であると前記小平面判断手段が判断した第1の小区間について前記竣工時の平面数と同数の仮想平面を設定し、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が基準包含率を超えるように前記仮想平面の位置、傾斜角、傾斜方向を決定する仮想平面設定手段と、前記第1の小区間に対して前記番号が1多いまたは1少ない第2の小区間について前記第1の小区間と同じ仮想平面を設定したときに、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が前記基準包含率を超えるか否かを判断し、超える場合に前記第1、第2の小区間を結合して共通の仮想平面を有する小区間として記憶手段に記憶するとともに、前記小区間を結合する処理を前記番号の順序で繰り返す結合手段と、前記共通の仮想平面を有する小区間全体について、点群中の各点の前記仮想平面からの法線距離に基づいて画像情報を生成する画像情報生成手段と、を備えることを特徴とする。   In order to achieve the above object, one embodiment of the present invention is an unevenness extraction device for a multi-planar structure, and a plurality of points on the plurality of planes of the structure that are configured by a plurality of planes at the time of completion. In the point cloud data acquisition means for acquiring the 3D point cloud data measured by the unevenness measuring means from the unevenness measuring means and storing it in the storage means, and the number of planes at the time of completion and information on the connection relation of the planes, The plurality of planes are divided at predetermined distances in the connecting line direction of the plurality of planes to set subsections, and the subsections are numbered so that the adjacent subsections are serial numbers. A small section setting means to be set, and the three-dimensional point group data are read from the storage means, and in each of the small sections, an arbitrary three points are selected from the three-dimensional point group data to set a determination plane, and the determination plane Normal distance from The normal distance from the previously extracted small plane is within the predetermined threshold for the process of extracting the determination plane having the largest number of points in the point group within the predetermined threshold as a small plane. A small plane extracting means that repeats the points in the point group in a condition not to be used in other small plane extraction processing, and a small that determines whether or not the number of the small planes in each small section is within a reference plane number. A plane determining means, and setting the same number of virtual planes as the number of planes at the time of completion for the first small section determined by the small plane determining means that the number of the extracted small planes is within the reference plane number, Virtual plane setting means for determining the position, inclination angle, and inclination direction of the virtual plane so that the number of points in the point group whose normal distance from the virtual plane is within a predetermined threshold exceeds a reference coverage rate And the number is one more than the first subsection. When the same virtual plane as that of the first subsection is set for the second subsection less by 1, the number of points in the point group whose normal distance from the virtual plane is within a predetermined threshold is It is determined whether or not the reference coverage rate is exceeded, and if so, the first and second subsections are combined and stored in the storage means as a subsection having a common virtual plane, and the subsections are combined. Image information that generates image information based on the normal distance of each point in the point group from the virtual plane for the entire subsection having the common virtual plane and the combining means that repeats the processing to be performed in the order of the numbers Generating means.

上記小平面判断手段が、前記抽出された小平面の数が基準平面数を超えていると判断した小区間を前記小区間設定手段が予め定めた数に分割して分割小区間とし、前記分割小区間に前記結合手段の処理に使用する子番号を設定するとともに、前記小平面判断手段が、前記分割小区間における小平面の数が前記基準平面数以内であるか否かを判断し、前記小平面の数が前記基準平面数以内である分割小区間を元の小区間の代わりに前記結合手段の処理の対象とするのが好適である。   The small plane determining means divides the small section determined that the number of extracted small planes exceeds the number of reference planes into a predetermined number by the small section setting means, and sets the divided small sections. A small number used for processing of the combining means is set in a small section, and the small plane determining means determines whether or not the number of small planes in the divided small section is within the reference plane number, It is preferable that a divided small section whose number of small planes is within the reference number of planes is a target of processing of the combining means instead of the original small section.

また、実施形態に係る多平面構造物の凹凸抽出装置は、上記結合手段の代わりに、共通の仮想平面を全ての小区間に設定し、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が前記基準包含率を超えるか否かを判断し、超える場合には前記仮想平面を維持し、超えない場合には、予め定めたグループ化方法に従って前記小区間を複数のグループに分け、各グループについて前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が前記基準包含率を超えるか否かを判断する処理を繰り返す仮想平面分割手段を備えていてもよい。   Further, the unevenness extraction apparatus for a multi-planar structure according to the embodiment sets a common virtual plane in all the small sections instead of the above-mentioned coupling means, and the normal distance from the virtual plane is within a predetermined threshold. Whether or not the number of points in the point group exceeds the reference coverage, the virtual plane is maintained if it exceeds, and if not, the small plane is determined according to a predetermined grouping method. A process of dividing the section into a plurality of groups and determining whether the number of points in the point group whose normal distance from the virtual plane is within a predetermined threshold for each group exceeds the reference coverage rate. You may provide the virtual plane division means to repeat.

また、上記小平面判断手段が、前記抽出された小平面の数が基準平面数を超えていると判断した小区間があるときに報知情報を出力する報知手段を備えるのが好適である。   In addition, it is preferable that the small plane determination unit includes a notification unit that outputs notification information when there is a small section in which it is determined that the number of extracted small planes exceeds the reference plane number.

また、上記画像情報生成手段は、画像情報として不整三角形網を生成する構成としてもよい。   The image information generation means may generate an irregular triangle network as image information.

また、本発明の他の実施形態は、多平面構造物の凹凸抽出方法であって、竣工時に複数の平面で構成されていた構造物の前記複数の平面上の複数の点において、凹凸計測手段が計測した3次元点群データを凹凸計測手段から取得し、前記竣工時の平面数及び平面の接続関係に関する情報に基づいて、前記複数の平面を、前記複数の平面の接続線方向に予め定めた距離毎に分割して小区間を設定するとともに、前記小区間に、隣接する前記小区間が連続番号となるように番号を設定し、前記各小区間において、前記3次元点群データから任意の3点を選択して判断平面を設定し、前記判断平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が最も多くなる前記判断平面を小平面として抽出する処理を、先に抽出した小平面からの法線距離が予め定めた閾値内にある前記点群中の点を他の小平面の抽出処理で使用しない条件で繰り返し、前記各小区間における前記小平面の数が基準平面数以内であるか否かを判断し、前記抽出された小平面の数が基準平面数以内であると判断した第1の小区間について前記竣工時の平面数と同数の仮想平面を設定し、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が基準包含率を超えるように前記仮想平面の位置、傾斜角、傾斜方向を決定し、前記第1の小区間に対して前記番号が1多いまたは1少ない第2の小区間について前記第1の小区間と同じ仮想平面を設定したときに、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が前記基準包含率を超えるか否かを判断し、超える場合に前記第1、第2の小区間を結合して共通の仮想平面を有する小区間とするとともに、前記小区間を結合する処理を前記番号の順序で繰り返し、前記共通の仮想平面を有する小区間全体について、点群中の各点の前記仮想平面からの法線距離に基づいて画像情報を生成することを特徴とする。   Further, another embodiment of the present invention is a method for extracting unevenness of a multiplanar structure, wherein unevenness measuring means is provided at a plurality of points on the plurality of planes of the structure configured by a plurality of planes at the time of completion. Is obtained from the unevenness measuring means, and based on the information regarding the number of planes at the time of completion and the connection relation of the planes, the plurality of planes are determined in advance in the connecting line direction of the plurality of planes. In addition, a small section is set for each distance and a number is set in the small section so that the adjacent small sections become consecutive numbers. In each of the small sections, any number is selected from the three-dimensional point cloud data. 3 are selected to set a determination plane, and the determination plane having the largest number of points in the point group whose normal distance from the determination plane is within a predetermined threshold is extracted as a small plane. Processing from the small plane extracted earlier Whether or not the points in the point group whose line distance is within a predetermined threshold is not used in the extraction processing of other small planes, and the number of the small planes in each small section is within the reference plane number And setting the same number of virtual planes as the number of planes at the time of completion for the first subsection determined that the number of extracted small planes is within the reference plane number, and calculating from the virtual plane The position, inclination angle, and inclination direction of the virtual plane are determined so that the number of points in the point group whose line distance is within a predetermined threshold exceeds a reference coverage ratio, and the first subsection In the point group in which the normal distance from the virtual plane is within a predetermined threshold when the same virtual plane as the first subsection is set for the second subsection with the number 1 greater or less than 1 Judge whether or not the number of points exceeds the standard coverage rate. The first and second subsections are combined to form a subsection having a common virtual plane, and the process of combining the subsections is repeated in the order of the numbers so that the subsection has the common virtual plane. The image information is generated based on the normal distance from the virtual plane of each point in the point group as a whole.

また、本発明のさらに他の実施形態は、多平面構造物の凹凸抽出プログラムであって、コンピュータを、竣工時に複数の平面で構成されていた構造物の前記複数の平面上の複数の点において、凹凸計測手段が計測した3次元点群データを凹凸計測手段から取得して記憶手段に記憶させる点群データ取得手段、前記竣工時の平面数及び平面の接続関係に関する情報に基づいて、前記複数の平面を、前記複数の平面の接続線方向に予め定めた距離毎に分割して小区間を設定するとともに、前記小区間に、隣接する前記小区間が連続番号となるように番号を設定する小区間設定手段、前記3次元点群データを記憶手段から読み出し、前記各小区間において、前記3次元点群データから、任意の3点を選択して判断平面を設定し、前記判断平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が最も多くなる前記判断平面を小平面として抽出する処理を、先に抽出した小平面からの法線距離が予め定めた閾値内にある前記点群中の点を他の小平面の抽出処理で使用しない条件で繰り返す小平面抽出手段、前記各小区間における前記小平面の数が基準平面数以内であるか否かを判断する小平面判断手段、前記抽出された小平面の数が基準平面数以内であると前記小平面判断手段が判断した第1の小区間について前記竣工時の平面数と同数の仮想平面を設定し、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が基準包含率を超えるように前記仮想平面の位置、傾斜角、傾斜方向を決定する仮想平面設定手段、前記第1の小区間に対して前記番号が1多いまたは1少ない第2の小区間について前記第1の小区間と同じ仮想平面を設定したときに、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が前記基準包含率を超えるか否かを判断し、超える場合に前記第1、第2の小区間を結合して共通の仮想平面を有する小区間として記憶手段に記憶するとともに、前記小区間を結合する処理を前記番号の順序で繰り返す結合手段、前記共通の仮想平面を有する小区間全体について、点群中の各点の前記仮想平面からの法線距離に基づいて画像情報を生成する画像情報生成手段、として機能させることを特徴とする。   Still another embodiment of the present invention is a program for extracting unevenness of a multi-planar structure, wherein the computer is configured at a plurality of points on the plurality of planes of the structure configured by a plurality of planes when completed. Based on the point cloud data acquisition means for acquiring the three-dimensional point cloud data measured by the unevenness measuring means from the unevenness measuring means and storing it in the storage means, the number of planes at the time of completion and the connection relation of the planes, the plural Are divided at predetermined distances in the connecting line direction of the plurality of planes to set small sections, and numbers are set so that the adjacent small sections are consecutive numbers in the small sections. Small section setting means, reading the three-dimensional point group data from the storage means, and in each of the small sections, selecting any three points from the three-dimensional point group data to set a determination plane, and from the determination plane A process of extracting, as a small plane, the determination plane having the largest number of points in the point group whose line distance is within a predetermined threshold, a normal distance from the previously extracted small plane is a predetermined threshold A small plane extracting unit that repeats the points in the point group in a condition not to be used in other small plane extraction processing, and determines whether or not the number of the small planes in each small section is within a reference plane number A small plane determining means configured to set the same number of virtual planes as the number of planes at the time of completion for the first small section determined by the small plane determining means that the number of the extracted small planes is within a reference plane number. Virtual plane setting for determining the position, inclination angle, and inclination direction of the virtual plane so that the number of points in the point group whose normal distance from the virtual plane is within a predetermined threshold exceeds a reference coverage rate Means, the number is one more than the first subsection Or the number of points in the point group whose normal distance from the virtual plane is within a predetermined threshold when the same virtual plane as the first subsection is set for the second subsection less by one And the first and second subsections are combined and stored in the storage means as a subsection having a common virtual plane, and the subsection is Image information for generating image information based on a normal distance of each point in the point group from the virtual plane with respect to the entire small section having the common virtual plane, combining means for repeating the combining process in the order of the numbers It is made to function as a production | generation means.

本発明によれば、単時期点群データから多平面構造物を構成する複数の平面の凹凸を抽出することができる。   According to the present invention, it is possible to extract unevenness of a plurality of planes constituting a multiplanar structure from single time point cloud data.

実施形態にかかる多平面構造物の凹凸抽出装置の構成例のブロック図である。It is a block diagram of the example of composition of the unevenness extraction device of the multi-planar structure concerning an embodiment. 凹凸計測手段の構成例を示す図である。It is a figure which shows the structural example of an unevenness | corrugation measurement means. 複数の平面で構成されていた構造物の例を示す図である。It is a figure which shows the example of the structure comprised by the several plane. 実施形態に係る小平面抽出部が実行する処理の説明図である。It is explanatory drawing of the process which the small plane extraction part which concerns on embodiment performs. 実施形態にかかる多平面構造物の凹凸抽出装置の動作例のフロー図である。It is a flowchart of the operation example of the uneven | corrugated extraction apparatus of the multiplanar structure concerning embodiment. 実施形態にかかる多平面構造物の凹凸抽出装置の他の動作例のフロー図である。It is a flowchart of the other operation example of the uneven | corrugated extraction apparatus of the multiplanar structure concerning embodiment.

以下、本発明を実施するための形態(以下、実施形態という)を、図面に従って説明する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1には、実施形態にかかる多平面構造物の凹凸抽出装置の構成例のブロック図が示される。図1において、多平面構造物の凹凸抽出装置は、点群データ取得部10、小区間設定部12、小平面抽出部14、小平面判断部16、仮想平面設定部18、結合部20、仮想平面分割部22、画像情報生成部24、記憶部26及び通信部28を含んで構成されている。   FIG. 1 is a block diagram showing a configuration example of a multiplanar structure unevenness extraction apparatus according to an embodiment. In FIG. 1, the unevenness extraction device for a multi-planar structure includes a point cloud data acquisition unit 10, a small section setting unit 12, a small plane extraction unit 14, a small plane determination unit 16, a virtual plane setting unit 18, a combining unit 20, a virtual unit. The plane dividing unit 22, the image information generating unit 24, the storage unit 26, and the communication unit 28 are included.

点群データ取得部10は、竣工時に複数の平面で構成されていた構造物(多平面構造物)の前記複数の平面上の複数の点において、凹凸計測手段が計測した3次元点群データ(以後、点群ということがある)を取得して記憶部26に記憶させる。   The point cloud data acquisition unit 10 has three-dimensional point cloud data (measured by the unevenness measuring unit) at a plurality of points on the plurality of planes of a structure (multi-planar structure) constituted by a plurality of planes at the time of completion. Hereinafter, this may be referred to as a point cloud) and stored in the storage unit 26.

ここで、凹凸計測手段は、図2に示されるように、レーザ計測装置100、座標計測装置102等を車両104に搭載して構成されている。レーザ計測装置100は、レーザ光を上記平面に照射し、反射光を受け取って平面の3次元点群データを計測する。ここで、3次元点群データとは、上記平面上の各点の3次元座標データの集合である。レーザ計測装置100は、上記レーザ光の反射光に基づいてレーザ計測装置100と上記平面上の各点との距離を測定し、この距離の測定値とレーザ光の照射方向及び座標計測装置102によって計測したレーザ計測装置100の位置の3次元座標に基づき、上記平面上の各点の3次元座標を決定する。なお、車両104には、各点の3次元座標を演算するためのコンピュータを搭載するのが好適であるが、レーザ計測結果、座標計測結果を車両104の外部のコンピュータに提供して各点の3次元座標を演算させてもよい。   Here, as shown in FIG. 2, the unevenness measuring means is configured by mounting a laser measuring device 100, a coordinate measuring device 102, and the like on a vehicle 104. The laser measuring device 100 irradiates the plane with laser light, receives reflected light, and measures three-dimensional point group data on the plane. Here, the three-dimensional point group data is a set of three-dimensional coordinate data of each point on the plane. The laser measuring device 100 measures the distance between the laser measuring device 100 and each point on the plane based on the reflected light of the laser light, and the measured value of this distance, the irradiation direction of the laser light, and the coordinate measuring device 102 Based on the measured three-dimensional coordinates of the position of the laser measuring device 100, the three-dimensional coordinates of each point on the plane are determined. The vehicle 104 is preferably equipped with a computer for calculating the three-dimensional coordinates of each point. However, the laser measurement result and the coordinate measurement result are provided to a computer outside the vehicle 104 to provide a computer for each point. Three-dimensional coordinates may be calculated.

以上のようにして凹凸計測手段が求めた平面上の各点の3次元点群データは、適宜な通信手段、あるいは適宜な記憶媒体を介して、多平面構造物の凹凸抽出装置の点群データ取得部10に渡され、点群データ取得部10が記憶部26に記憶させる。   The three-dimensional point cloud data of each point on the plane obtained by the unevenness measuring means as described above is the point cloud data of the unevenness extracting device for multiplanar structures via appropriate communication means or appropriate storage media. The point group data acquisition unit 10 stores the information in the storage unit 26.

小区間設定部12は、構造物の竣工時の平面数及び平面の接続関係(平面間の接続線など)に関する情報に基づいて、多平面構造物の複数の平面を、それらの接続線方向に予め定めた距離毎に分割して小区間を設定する。また、小区間設定部12は、上記小区間に、隣接する小区間が連続番号となるように番号を設定する。構造物の竣工時の平面数及び平面の接続関係は、竣工時の設計図や現在の構造物の状態から人が設定し、予め記憶部26に記憶させておく。小区間設定部12は、この記憶部26に記憶された構造物の竣工時の平面数及び平面の接続関係を記憶部26から読み出して取得する。また、小区間設定部12が設定した小区間及びその番号は、小区間に関する情報として記憶部26に記憶させる。   Based on the information regarding the number of planes at the time of completion of the structure and the connection relationship between the planes (such as connection lines between the planes), the small section setting unit 12 sets a plurality of planes of the multi-planar structure in the direction of the connection lines A small section is set by dividing each predetermined distance. In addition, the small section setting unit 12 sets a number such that adjacent small sections become consecutive numbers in the small section. The number of planes at the time of completion of the structure and the connection relationship between the planes are set by a person based on the design drawing at the time of completion and the current state of the structure, and are stored in the storage unit 26 in advance. The small section setting unit 12 reads the number of planes at the time of completion of the structure stored in the storage unit 26 and the connection relation of the planes from the storage unit 26 and acquires them. Further, the small section set by the small section setting unit 12 and its number are stored in the storage unit 26 as information regarding the small section.

図3には、複数の平面で構成されていた構造物の例が示されており、道路R1と、その片側に設けられた土手D1、土手D1の道路R1とは反対側に設けられた歩道R2及び歩道R2の土手D1とは反対側に設けられた土手D2により道路及びその周辺施設としての構造物が形成されている。   FIG. 3 shows an example of a structure composed of a plurality of planes. A road R1, a bank D1 provided on one side of the road R1, and a sidewalk provided on the opposite side of the bank D1 from the road R1. A structure as a road and its surrounding facilities is formed by the bank D2 provided on the opposite side of the bank D1 of R2 and the sidewalk R2.

図3に示された構造物では、道路R1と土手D1との間に接続線L1が存在し、土手D1と歩道R2との間に接続線L2が存在し、歩道R2と土手D2との間に接続線L3が存在する。図3の例では、小区間設定部12が、これらの接続線L1、L2、L3に沿って予め定めた距離毎に平面すなわち道路R1、土手D1、歩道R2、土手D2の面を分割して小区間Z1〜Z10を設定する。この場合、分割方向(小区間に番号を設定する方向)は図3に示された接続線L1、L2、L3に沿っていずれの方向であってもよい。図3の例では、上述のように、小区間にZ1、Z2、Z3、Z4…のように番号が設定されている。なお、図3では小区間が10個(Z1〜Z10)示されているが、小区間の数は、対象となる平面の長さに応じて適宜決定される。また、平面を小区間に分割する際の「予め定めた距離」についても任意に設定できるが、例えば、道路及びその周辺施設の場合には、10m程度の距離とするのが好適である。   In the structure shown in FIG. 3, there is a connection line L1 between the road R1 and the bank D1, there is a connection line L2 between the bank D1 and the sidewalk R2, and between the sidewalk R2 and the bank D2. There is a connection line L3. In the example of FIG. 3, the small section setting unit 12 divides the plane, that is, the plane of the road R1, the bank D1, the sidewalk R2, and the bank D2 for each predetermined distance along the connection lines L1, L2, and L3. Small sections Z1 to Z10 are set. In this case, the division direction (the direction in which numbers are set in the small sections) may be any direction along the connection lines L1, L2, and L3 shown in FIG. In the example of FIG. 3, as described above, numbers such as Z1, Z2, Z3, Z4... Are set in the small sections. In FIG. 3, 10 small sections (Z1 to Z10) are shown, but the number of small sections is appropriately determined according to the length of the target plane. Further, the “predetermined distance” when dividing the plane into small sections can be arbitrarily set. For example, in the case of a road and its surrounding facilities, a distance of about 10 m is preferable.

小平面抽出部14は、上記各小区間に関する情報及び3次元点群データを記憶部26から読み出し、各小区間において、上記3次元点群データから、任意の3点を選択して判断平面を設定し、この判断平面からの法線距離が予め定めた閾値内にある点群(3次元点群データ)中の点の数が最も多くなる判断平面を小平面として抽出する。小平面抽出部14は、以上の処理を、先に抽出した小平面からの法線距離が予め定めた閾値内にある点群中の点を他の小平面の抽出処理で使用しない条件で繰り返す。抽出した小平面に関するデータ(平面の方程式等)は、記憶部26に記憶させる。   The small plane extraction unit 14 reads out information on the respective small sections and the three-dimensional point group data from the storage unit 26, selects arbitrary three points from the three-dimensional point group data in each small section, and determines a determination plane. The determination plane having the largest number of points in the point group (three-dimensional point group data) whose normal distance from the determination plane is within a predetermined threshold is extracted as a small plane. The small plane extraction unit 14 repeats the above process under the condition that the points in the point group whose normal distance from the previously extracted small plane is within a predetermined threshold are not used in the extraction process of other small planes. . Data relating to the extracted small plane (such as plane equations) is stored in the storage unit 26.

図3に示された例では、上記小区間における3次元点群データには、各小区間Z1、Z2…において、道路R1、土手D1、歩道R2及び土手D2を構成する平面の3次元点群データが含まれる。   In the example shown in FIG. 3, the three-dimensional point cloud data in the small section includes three-dimensional point groups on the planes constituting the road R1, the bank D1, the sidewalk R2, and the bank D2 in each of the small sections Z1, Z2,. Contains data.

また、図4には、小平面抽出部14が実行する処理の説明図が示される。図4は、判断平面JP1、JP2を横から見た図であり、黒丸(●)及び白丸(○)として、記憶部26から読み出された3次元点群データの3次元座標位置が示されている。なお、図4では、説明の便宜上黒丸と白丸とを使用しているが、凹凸計測手段により計測された3次元点群データを表す点であるという意味で同じものである。   FIG. 4 is an explanatory diagram of processing executed by the small plane extraction unit 14. FIG. 4 is a side view of the determination planes JP1 and JP2, and the three-dimensional coordinate positions of the three-dimensional point cloud data read from the storage unit 26 are shown as black circles (●) and white circles (◯). ing. In FIG. 4, black circles and white circles are used for convenience of explanation, but they are the same in the sense that they represent 3D point group data measured by the unevenness measuring means.

小平面抽出部14は、3次元点群データを表す点から任意の3点p1、p2、p3を選択して判断平面JP1を設定し、この判断平面からの法線距離が予め定めた閾値Th(例えば5cm)内にある点群中の点の数を数える。なお、上記閾値Thは5cmに限られるものではない。その後、上記点の数が最も多くなる判断平面を小平面として抽出する。「点の数が最も多くなる」とは、3次元点群データを表す点から3点を選択する全ての組み合わせについて判断平面を設定したときに、全ての判断平面について求められる、判断平面からの法線距離が予め定めた閾値Th内にある点群中の点の数が最も多くなるという意味である。図4の例では、判断平面JP1が、上記点の数が最も多くなる判断平面に該当しており、小平面として抽出される。次に、小平面抽出部14は、上記判断平面JP1からの法線距離が予め定めた閾値内にある点群中の点を他の小平面の抽出処理で使用しない条件、すなわち判断平面JP1からの法線距離が予め定めた閾値内にある点群中の点以外の点について、上記同様の処理を繰り返す。具体的には、図4の3点p4、p5、p6を選択して判断平面JP2を設定し、この判断平面JP2からの法線距離が予め定めた閾値Th内にある点群中の点の数が最も多くなる場合に、上記判断平面JP2を小平面として抽出する。この場合、判断平面JP1と判断平面JP2のいずれからも法線距離が予め定めた閾値Th内にある点群中の点(図4の点pc)は、先に設定された判断平面JP1を小平面として抽出する処理に使用し、判断平面JP2を小平面として抽出する処理には使用しない。小平面抽出部14は、以後同様の処理を、所定数(たとえば20枚)抽出される、あるいは未処理の点の数が全体の10%以下になるまで繰り返す。   The small plane extraction unit 14 selects an arbitrary three points p1, p2, and p3 from the points representing the three-dimensional point cloud data and sets the determination plane JP1, and the normal distance from the determination plane is a predetermined threshold Th. Count the number of points in the point cloud within (for example, 5 cm). The threshold value Th is not limited to 5 cm. Thereafter, the judgment plane having the largest number of points is extracted as a small plane. “The number of points is the largest” means that the determination plane is obtained for all the determination planes when all the combinations for selecting three points from the points representing the three-dimensional point cloud data are set. This means that the number of points in the point group whose normal line distance is within a predetermined threshold Th is the largest. In the example of FIG. 4, the determination plane JP1 corresponds to the determination plane having the largest number of points, and is extracted as a small plane. Next, the small plane extraction unit 14 uses a condition in which a point in the point group whose normal distance from the determination plane JP1 is within a predetermined threshold is not used in the extraction processing of other small planes, that is, from the determination plane JP1. The same process is repeated for points other than the points in the point group in which the normal distance is within a predetermined threshold. Specifically, the determination plane JP2 is set by selecting the three points p4, p5, and p6 in FIG. 4, and the points in the point group whose normal distance from the determination plane JP2 is within a predetermined threshold Th. When the number is the largest, the determination plane JP2 is extracted as a small plane. In this case, a point in the point group (a point pc in FIG. 4) whose normal distance is within a predetermined threshold Th from both the determination plane JP1 and the determination plane JP2 is smaller than the previously determined determination plane JP1. It is used for the process of extracting as a plane, and is not used for the process of extracting the judgment plane JP2 as a small plane. The small plane extracting unit 14 thereafter repeats the same processing until a predetermined number (for example, 20) is extracted or the number of unprocessed points becomes 10% or less of the whole.

小平面判断部16は、上記各小区間における小平面の数(記憶部26から読み出した小平面の方程式の数等)が基準平面数以内であるか否かを判断する。基準平面数としては、例えば12面等とすることができるが、これに限定されず、多平面構造物の性状(建造物の種類や各平面の表面平滑度等)に応じて適宜決定することができる。なお、小平面判断部16が、小平面の数が基準平面数以内ではない(超えている)と判断した場合には、その旨を表す報知情報を出力する構成とするのが好適である。この報知情報は、適宜な出力装置(ディスプレイ、音声出力装置等)から出力される。あるいは、ログとして出力してもよい。   The small plane determination unit 16 determines whether or not the number of small planes in each of the small sections (the number of small plane equations read from the storage unit 26) is within the reference plane number. The number of reference planes can be, for example, twelve, but is not limited to this, and is appropriately determined according to the properties of the multi-planar structure (such as the type of building and the surface smoothness of each plane). Can do. When the small plane determination unit 16 determines that the number of small planes is not within (exceeds) the number of reference planes, it is preferable to output notification information indicating that fact. This notification information is output from an appropriate output device (display, audio output device, etc.). Alternatively, it may be output as a log.

また、小平面判断部16が、小区間における小平面の数が基準平面数以内ではない(超えている)と判断した場合には、小区間設定部12が当該小区間を予め定めた数に分割して分割小区間とし、分割小区間に結合部20の処理に使用する子番号を設定し、分割小区間を元の小区間の代わりに結合部20の処理の対象とするのが好適である。ここで、分割小区間は、小区間をいくつの分割小区間に分割するかによって決定するのが好適であり、小区間に分割する距離に予め定めた係数(例えば2つの分割小区間に分割する場合には、上記係数は0.5)を乗ずることにより定めることができる。   In addition, when the small plane determination unit 16 determines that the number of small planes in the small section is not within (exceeds) the number of reference planes, the small section setting unit 12 sets the small section to a predetermined number. It is preferable to divide into divided sub-sections, set a child number to be used for processing of the combining unit 20 in the divided sub-sections, and set the divided sub-sections as processing targets of the combining unit 20 instead of the original small sections. is there. Here, it is preferable that the divided subsection is determined according to how many divided subsections the subsection is divided into, and a coefficient (for example, divided into two divided subsections) predetermined for the distance to be divided into the subsections. In some cases, the coefficient can be determined by multiplying by 0.5).

図3の例では、小区間Z7が小区間における小平面の数が基準平面数以内ではないと判断された例であり、2つの分割小区間が生成されて、それぞれ子番号Z7−1とZ7−2が設定されている。   In the example of FIG. 3, the small section Z7 is an example in which it is determined that the number of small planes in the small section is not within the reference plane number. Two divided small sections are generated, and child numbers Z7-1 and Z7 are respectively generated. -2 is set.

なお、小平面判断部16が、小区間における小平面の数が基準平面数以内ではないと判断した場合に、上記分割小平面を生成する処理を行わず、当該小平面を結合部20の処理の対象から除外してもよい。   If the small plane determination unit 16 determines that the number of small planes in the small section is not within the reference plane number, the process of generating the divided small plane is not performed, and the small plane is processed by the combining unit 20. May be excluded from the target.

仮想平面設定部18は、抽出された小平面の数が上記基準平面数以内であると小平面判断部16が判断した第1の小区間(例えば図3の小区間Z1のように、抽出された小平面の数が上記基準平面数以内であると小平面判断部16が判断した小区間の内、小区間設定部12が設定した番号が最も小さいもの)について、竣工時の平面数と同数の仮想平面を設定し、この仮想平面からの法線距離が予め定めた閾値(小平面抽出部14が使用した閾値Thと同じとしてもよい)内にある点群中の点の数が基準包含率を超えるように仮想平面の位置、傾斜角、傾斜方向を決定する。上記基準包含率としては、例えば第1の小区間に含まれる点群中の点の数の60%とすることができるが、これには限定されず、多平面構造物の性状に応じて適宜決定することができる。また、仮想平面の数の設定は、竣工時の平面数(設計図)あるいは現在の構造物の状態から人が判断し、適宜な入力装置から仮想平面の数を入力して仮想平面設定部18が受け付ける構成とすることができる。図3の例では、道路R1、土手D1、歩道R2、土手D2の4面が設定される。また、仮想平面の位置、傾斜角、傾斜方向は、仮想平面の方程式の係数の変更等により変更する。決定した仮想平面(の方程式)は、記憶部26に記憶させる。   The virtual plane setting unit 18 extracts the first small section (for example, the small section Z1 in FIG. 3) that the small plane determination unit 16 determines that the number of extracted small planes is within the reference plane number. Of the small sections determined by the small plane determination unit 16 that the number of small planes is within the reference plane number, the number set by the small section setting unit 12 is the same as the number of planes at the time of completion. And the number of points in the point group whose normal distance from the virtual plane is within a predetermined threshold value (may be the same as the threshold value Th used by the small plane extraction unit 14) is included in the reference The position, inclination angle, and inclination direction of the virtual plane are determined so as to exceed the rate. The reference coverage ratio may be 60% of the number of points in the point group included in the first subsection, for example, but is not limited thereto, and is appropriately determined according to the properties of the multiplanar structure. Can be determined. The number of virtual planes is set by a person based on the number of planes (design drawing) at the time of completion or the current state of the structure, and the number of virtual planes is input from an appropriate input device. Can be configured to accept. In the example of FIG. 3, four surfaces of a road R1, a bank D1, a sidewalk R2, and a bank D2 are set. The position, inclination angle, and inclination direction of the virtual plane are changed by changing the coefficient of the equation of the virtual plane. The determined virtual plane (the equation thereof) is stored in the storage unit 26.

結合部20は、上記第1の小区間に対して番号(上記子番号がある場合には、子番号も含む)が1多いまたは1少ない第2の小区間(図3の例では、番号が1多い小区間Z2)について第1の小区間(Z1)と同じ仮想平面(共通の仮想平面)を設定したときに、共通の仮想平面からの法線距離が予め定めた閾値(小平面抽出部14が使用した閾値Thと同じとしてもよい)内にある点群中の点の数が基準包含率を超えるか否かを判断し、超える場合に第1、第2の小区間(Z1、Z2)を結合する。ここで、結合するとは、共通の仮想平面を有する小区間として記憶部26に共通の仮想平面の方程式及び結合された小区間の番号等を記憶するという意味である。なお、上記結合処理の対象となる小区間は、抽出された小平面の数が上記基準平面数以内であると小平面判断部16が判断した小区間または分割小区間であり、抽出された小平面の数が上記基準平面数以内では無い小区間または分割小区間が存在した場合には、当該小区間を処理から除外する。この場合には、番号が手前(1多いまたは1少ない)の小区間までで結合処理をいったん中止し、除外された小区間または分割小区間に対して次の番号(1多いまたは1少ない)の小区間または分割小区間から結合処理を再開する。図3の例では、小区間Z2が抽出された小平面の数が上記基準平面数以内では無い小区間である場合に、小区間Z1には結合せず、改めて小区間Z3(抽出された小平面の数が上記基準平面数以内であるとき)について仮想平面設定部18が新たに仮想平面の設定処理を行い、結合部20が小区間Z4との結合の可否を判断する   The combining unit 20 has a second sub-segment (in the example of FIG. 3, the number is 1 or less) that has a number (including the child number if there is a child number) relative to the first sub-segment. When the same virtual plane (common virtual plane) as the first small section (Z1) is set for one more small section Z2), the normal distance from the common virtual plane is a predetermined threshold (small plane extraction unit) 14 may be the same as the threshold value Th used), it is determined whether or not the number of points in the point group exceeds the reference coverage, and if so, the first and second subsections (Z1, Z2) ). Here, combining means that the storage unit 26 stores the common virtual plane equation and the number of the combined small sections as small sections having a common virtual plane. Note that the subsections to be subjected to the combination processing are subsections or divided subsections that are determined by the subplane determination unit 16 that the number of extracted subplanes is within the reference plane number, and the extracted subsections are the same. When there is a small section or a divided small section whose number of planes is not within the reference plane number, the small section is excluded from the processing. In this case, the joining process is temporarily stopped until the subsection with the previous number (one more or one less), and the next number (one more or one less) for the excluded subsection or divided subsection. The join process is resumed from the small section or the divided small section. In the example of FIG. 3, when the number of the small planes from which the small section Z2 is extracted is a small section that is not within the reference plane number, the small section Z1 (extracted small section) is not coupled to the small section Z1. When the number of planes is within the above-mentioned number of reference planes), the virtual plane setting unit 18 newly performs a virtual plane setting process, and the combining unit 20 determines whether or not the combination with the small section Z4 is possible.

次に、結合部20は、上記小区間を結合する処理を小区間の番号の順序で繰り返す。図3の例では、小区間Z1とZ2を結合した後に、これらと同じ共通の仮想平面を小区間Z3にも設定し、この仮想平面からの法線距離が予め定めた閾値内にある点群中の点の数が基準包含率を超えるか否かを判断し、超える場合には、小区間Z3も結合する。以後、同様に小区間Z4以降について同じ処理を実行して行く。なお、上記仮想平面からの法線距離が予め定めた閾値内にある点群中の点の数が基準包含率以下の場合には、当該小区間の結合を行わず、その旨を表す報知情報を出力する構成とするのが好適である。結合した小区間の情報(結合した小区間の全ての番号と仮想平面の方程式等)は、記憶部26に記憶させる。   Next, the combining unit 20 repeats the process of combining the small sections in the order of the numbers of the small sections. In the example of FIG. 3, after joining the small sections Z1 and Z2, the same common virtual plane is also set to the small section Z3, and the point group whose normal distance from the virtual plane is within a predetermined threshold value It is determined whether or not the number of points exceeds the reference coverage, and if so, the subsection Z3 is also combined. Thereafter, similarly, the same processing is executed for the small section Z4 and thereafter. In addition, when the number of points in the point group whose normal distance from the virtual plane is within a predetermined threshold is equal to or less than the reference coverage rate, the notification information indicating that is not performed, and the small sections are not combined. Is preferably output. Information on the combined small sections (all the numbers of the combined small sections and equations of the virtual plane, etc.) is stored in the storage unit 26.

上記実施例では予め設定した小区間または分割小区間を結合する処理を行ったが、逆に、予め全ての小区間の仮想平面を設定し、これを分割する処理を行っても良い。この場合、仮想平面分割部22は、結合部20の代わりに、共通の仮想平面を全ての小区間に設定し、共通の仮想平面からの法線距離が予め定めた閾値内にある点群中の点の数が上記基準包含率を超えるか否かを判断し、超える場合には仮想平面を維持し、超えない場合には、予め定めたグループ化方法に従って上記小区間を複数のグループに分け、各グループについて仮想平面からの法線距離が予め定めた閾値内にある点群中の点の数が上記基準包含率を超えるか否かを判断する処理を繰り返す。   In the above embodiment, the process of combining the preset subsections or the divided subsections is performed, but conversely, the virtual planes of all the subsections may be set in advance and the process of dividing them may be performed. In this case, the virtual plane dividing unit 22 sets a common virtual plane for all the small sections instead of the combining unit 20, and the normal plane distance from the common virtual plane is within a predetermined threshold. It is determined whether or not the number of points exceeds the reference coverage rate, and if so, the virtual plane is maintained, and if not, the small section is divided into a plurality of groups according to a predetermined grouping method. The process of determining whether or not the number of points in the point group whose normal distance from the virtual plane is within a predetermined threshold for each group exceeds the reference inclusion rate is repeated.

図3の例では、小区間Z1からZ10の全てについて共通の仮想平面を設定し、仮想平面からの法線距離が予め定めた閾値内にある点群中の点の数が上記基準包含率を超えるか否かを判断する。上記点の数が上記基準包含率を超えるときには、上記共通の仮想平面を、小区間Z1からZ10についての仮想平面とする。一方、上記点の数が上記基準包含率を超えない場合には、小区間Z1からZ10を複数のグループに分ける。例えば小区間Z1からZ5を第1グループ、区間Z6からZ10を第2グループとし、それぞれのグループについて共通の仮想平面を設定し、それらの共通の仮想平面からの法線距離が予め定めた閾値内にある点群中の点の数が上記基準包含率を超えるか否かを判断する。以後、上記点の数が上記基準包含率を超えるまでグループへの分割を行い、グループ毎に共通の仮想平面を設定する。設定した共通の仮想平面の情報(グループに含まれる小区間の番号と共通の仮想平面の方程式等)は、記憶部26に記憶させる。   In the example of FIG. 3, a common virtual plane is set for all of the small sections Z1 to Z10, and the number of points in the point group whose normal distance from the virtual plane is within a predetermined threshold value represents the reference coverage rate. Judge whether or not it exceeds. When the number of points exceeds the reference coverage rate, the common virtual plane is set as a virtual plane for the small sections Z1 to Z10. On the other hand, when the number of the points does not exceed the reference inclusion rate, the small sections Z1 to Z10 are divided into a plurality of groups. For example, the small sections Z1 to Z5 are set as the first group, and the sections Z6 to Z10 are set as the second group, a common virtual plane is set for each group, and the normal distance from the common virtual plane is within a predetermined threshold. Whether or not the number of points in the point group exceeds the reference inclusion rate. Thereafter, division into groups is performed until the number of points exceeds the reference coverage rate, and a common virtual plane is set for each group. Information on the set common virtual plane (such as the number of the small section included in the group and the common virtual plane equation) is stored in the storage unit 26.

なお、グループに分ける方法は、予め決定しておく。上記の通り小区間の数を半分にしてもよいし、3分の1としてもよい。あるいは、10個の小区間を4個と6個に分割するように、異なる数の小区間を含むグループに分割してもよい。   Note that the method of dividing into groups is determined in advance. As described above, the number of small sections may be halved or may be one third. Or you may divide | segment into the group containing a different number of subsections so that ten subsections may be divided | segmented into 4 pieces and 6 pieces.

画像情報生成部24は、上記共通の仮想平面を有する小区間全体について、3次元点群データ中の各点の上記共通の仮想平面からの法線距離を演算し、算出した法線距離に基づいて画像情報を生成する。この画像情報としては、例えば不整三角形網(TIN)等が挙げられる。生成したTINをさらに加工し、等高線情報や上記法線距離を色で表現した画像情報としてもよい。   The image information generation unit 24 calculates the normal distance from the common virtual plane of each point in the three-dimensional point cloud data for the entire small section having the common virtual plane, and based on the calculated normal distance To generate image information. Examples of the image information include an irregular triangle network (TIN). The generated TIN may be further processed to obtain contour information and image information expressing the normal distance in color.

記憶部26は、ハードディスク装置、ソリッドステートドライブ(SSD)等の不揮発性メモリに、上記3次元点群データ、構造物の竣工時の平面数及び平面の接続関係、小区間及びその番号、小平面に関するデータ、仮想平面(の方程式)、共通の仮想平面を有する小区間に関する情報、上記閾値、基準平面数、基準包含率及びCPUの動作プログラム等の、上記各処理に必要な情報を記憶させる。なお、記憶部26としては、デジタル・バーサタイル・ディスク(DVD)、コンパクトディスク(CD)、光磁気ディスク(MO)、フレキシブルディスク(FD)、磁気テープ、電気的消去および書き換え可能な読出し専用メモリ(EEPROM)、フラッシュ・メモリ等を使用してもよい。   The storage unit 26 is stored in a non-volatile memory such as a hard disk device or a solid state drive (SSD), and the three-dimensional point cloud data, the number of planes at the time of completion of the structure and the connection relation of the planes, the subsections and their numbers, and the small planes. Information necessary for each of the above-described processes, such as data relating to, virtual plane (equation), information relating to a small section having a common virtual plane, the threshold value, the number of reference planes, a reference inclusion rate, and a CPU operation program. The storage unit 26 includes a digital versatile disk (DVD), a compact disk (CD), a magneto-optical disk (MO), a flexible disk (FD), a magnetic tape, and an electrically erasable and rewritable read-only memory ( EEPROM), flash memory or the like may be used.

通信部28は、USB(ユニバーサルシリアルバス)ポート、ネットワークポートその他の適宜なインターフェースにより構成され、上記凹凸計測手段等と通信し、情報のやりとりを行う。   The communication unit 28 includes a USB (Universal Serial Bus) port, a network port, and other appropriate interfaces, and communicates with the unevenness measuring unit and exchanges information.

なお、上記図1に示された多平面構造物の凹凸抽出装置は、CPU、ROM、RAM、不揮発性メモリ、I/O等を備え、装置全体の制御及び各種演算を行うコンピュータとして構成されている。   1 is configured as a computer that includes a CPU, a ROM, a RAM, a nonvolatile memory, an I / O, etc., and controls the entire apparatus and performs various calculations. Yes.

図5には、実施形態にかかる多平面構造物の凹凸抽出装置の動作例のフローが示される。図5において、点群データ取得部10が凹凸計測手段から3次元点群データを取得して記憶部26に記憶させる(S1)。   FIG. 5 shows a flow of an operation example of the unevenness extraction device for a multiplanar structure according to the embodiment. In FIG. 5, the point cloud data acquisition unit 10 acquires 3D point cloud data from the unevenness measuring means and stores it in the storage unit 26 (S1).

また、小区間設定部12が記憶部26から構造物の竣工時の平面数及び平面の接続関係に関する情報を読み出し、当該情報に基づいて、上記複数の平面を、複数の平面の接続線方向に予め定めた距離毎に分割して小区間を設定する。また、上記小区間には、隣接する小区間が連続番号となるように番号を設定する(S2)。設定された小区間及びその番号は、記憶部26に記憶させる。   Further, the small section setting unit 12 reads out information on the number of planes and the connection relation between the planes at the time of completion of the structure from the storage unit 26, and based on the information, the plurality of planes are connected in the connection line direction of the plurality of planes. A small section is set by dividing each predetermined distance. Further, numbers are set in the small sections so that adjacent small sections become consecutive numbers (S2). The set small section and its number are stored in the storage unit 26.

次に、小平面抽出部14が、上記各小区間に関する情報及び3次元点群データを記憶部26から読み出し、各小区間において、上記3次元点群データから、任意の3点を選択して判断平面を設定し、この判断平面からの法線距離が予め定めた閾値内にある3次元点群データ中の点の数が最も多くなる判断平面を小平面として抽出する処理を繰り返す。このときには、上述したように、先に抽出した小平面からの法線距離が予め定めた閾値内にある点群中の点を他の小平面の抽出処理で使用しない条件で処理を繰り返す(S3)。抽出した小平面に関するデータ(平面の方程式等)は、記憶部26に記憶させる。   Next, the small plane extraction unit 14 reads out information on each of the small sections and the three-dimensional point group data from the storage unit 26, and selects any three points from the three-dimensional point group data in each of the small sections. A process of setting a determination plane and extracting a determination plane having the largest number of points in the three-dimensional point cloud data whose normal distance from the determination plane is within a predetermined threshold as a small plane is repeated. At this time, as described above, the process is repeated under the condition that the points in the point group whose normal distance from the previously extracted small plane is within the predetermined threshold are not used in the extraction process of other small planes (S3). ). Data relating to the extracted small plane (such as plane equations) is stored in the storage unit 26.

小平面判断部16は、上記各小区間における小平面の数が基準平面数以内であるか否かを判断する(S4)。小平面の数は、記憶部26から読み出した小平面の方程式の数である。   The small plane determination unit 16 determines whether or not the number of small planes in each of the small sections is within the reference plane number (S4). The number of facets is the number of facet equations read from the storage unit 26.

上記S4において、小平面判断部16が、小平面の数が基準平面数以内であると判断した場合には、当該小区間に仮想平面を設定する処理に移行する。一方、小区間における小平面の数が基準平面数を超えていると判断した場合には、その旨を表す報知情報を出力する(S5)。また、小区間設定部12が当該小区間を予め定めた数に分割して分割小区間とし(S6)、S4に戻る。   In S4, when the small plane determination unit 16 determines that the number of small planes is within the reference plane number, the process proceeds to processing for setting a virtual plane in the small section. On the other hand, when it is determined that the number of small planes in the small section exceeds the reference plane number, notification information indicating that fact is output (S5). Further, the small section setting unit 12 divides the small section into a predetermined number to form divided small sections (S6), and returns to S4.

ただし、例えば、分割小区間の長さが一定の値以下となる等の終了条件を予め設定しておき、当該終了条件を満たさない分割小区間は、結合部20の処理対象から除外する。この場合、その旨の報知情報を小平面判断部16が出力する構成とするのが好適である。図3の例では、分割小区間Z7−2が結合部20の処理対象から除外された分割小区間を表している。   However, for example, an end condition is set in advance such that the length of the divided subsection becomes equal to or less than a certain value, and the divided subsection that does not satisfy the end condition is excluded from the processing target of the combining unit 20. In this case, it is preferable that the small plane determination unit 16 outputs notification information to that effect. In the example of FIG. 3, the divided small section Z7-2 represents a divided small section that is excluded from the processing target of the combining unit 20.

上記S4の条件を満たした小区間または分割小区間は、結合部20の処理対象となり、各小区間または分割小区間に設定された番号または小番号の順序に従って結合部20の結合処理が実行される。仮想平面設定部18は、抽出された小平面の数が上記基準平面数以内であると小平面判断部16が判断した小区間の内、例えば図3の小区間Z1のように小区間設定部12が設定した番号が最も小さいものを第1の小区間とし、第1の小区間について、竣工時の平面数と同数の仮想平面を設定し、この仮想平面からの法線距離が予め定めた閾値内にある点群中の点の数が基準包含率を超えるように仮想平面の位置、傾斜角、傾斜方向を決定する(S7)。   The subsections or divided subsections that satisfy the condition of S4 are to be processed by the combining unit 20, and the combining unit 20 executes the combining process according to the number or subnumber order set for each subsection or divided subsection. The The virtual plane setting unit 18 is a small section setting unit such as the small section Z1 in FIG. 3 among the small sections determined by the small plane determination unit 16 that the number of extracted small planes is within the reference plane number. The smallest number set by 12 is set as the first subsection, and the same number of virtual planes as the number of planes at the time of completion are set for the first subsection, and the normal distance from the virtual plane is predetermined. The position, inclination angle, and inclination direction of the virtual plane are determined so that the number of points in the point group within the threshold exceeds the reference coverage rate (S7).

次に、結合部20が、上記第1の小区間に対して番号または子番号が1多いまたは1少ない(すなわち、第1の小区間に隣接している)第2の小区間について、第1の小区間と同じ仮想平面(共通の仮想平面)を設定したときに、第2の小区間において共通の仮想平面からの法線距離が予め定めた閾値内にある点群中の点の数が基準包含率を超えるか否かを判断する(S8)。   Next, the combining unit 20 sets the first or second sub-number with respect to the first sub-section to the first sub-section with respect to the second sub-section that is one more or one less (that is, adjacent to the first sub-section). When the same virtual plane (common virtual plane) as that of the small section is set, the number of points in the point group in which the normal distance from the common virtual plane is within a predetermined threshold in the second small section is It is determined whether or not the reference coverage rate is exceeded (S8).

S8において、上記点の数が基準包含率を超えている場合には、結合部20が、第1の小区間と第2の小区間以降の小区間を結合し、共通の仮想平面を有する小区間として記憶部26に共通の仮想平面の方程式及び結合された小区間の番号等を記憶する(S9)。次に、結合部20の処理対象としての小区間であって、上記第1の小区間から番号が連続している小区間が残っているか否かを判断し(S10)、残っている場合には、S8からの動作を繰り返す。この場合には、第2の小区間の代わりに、これと番号が連続している第3の小区間についてS8の判断を行い、以後上記番号が連続している小区間がなくなるまで同様に処理を繰り返す。   In S8, when the number of points exceeds the reference coverage rate, the combining unit 20 combines the first small section and the small sections after the second small section, and has a common virtual plane. As a section, the common virtual plane equation and the number of the combined subsection are stored in the storage unit 26 (S9). Next, it is determined whether or not there is a small section that is a processing target of the combining unit 20 and has a number that continues from the first small section (S10). Repeats the operation from S8. In this case, instead of the second sub-section, the determination in S8 is performed for the third sub-section having the same number as that of the second sub-section, and thereafter the same processing is performed until there are no more sub-sections having the same number. repeat.

S8において、上記点の数が基準包含率以下の場合には、結合部20がその旨の報知情報を出力し(S11)、S12の処理に移行する。   In S8, when the number of points is equal to or less than the reference coverage rate, the combining unit 20 outputs notification information to that effect (S11), and the process proceeds to S12.

S10において、上記番号が連続している小区間がなくなった場合には、結合部20は、結合部20の処理対象としての複数の小区間であって、番号が連続している小区間が残っているか否かを判断し(S12)、残っている場合には、S7からの動作を繰り返す。例えば、図3の例における小区間Z1からZ7−1までの処理が終了した場合、新たに番号が連続している小区間について(図3の例では小区間Z8から)新たに処理を実行する。すなわち、仮想平面設定部18が小区間Z8について仮想平面を設定し、これを共通の仮想平面として結合部20が小区間Z9以降との結合処理を実行する。   In S10, when there are no more sub-sections with consecutive numbers, the combining unit 20 has a plurality of sub-sections to be processed by the combining unit 20, and the sub-sections with consecutive numbers remain. (S12), and if it remains, the operation from S7 is repeated. For example, when the processing from the small sections Z1 to Z7-1 in the example of FIG. 3 is completed, a new process is executed for the small sections that are newly numbered (from the small section Z8 in the example of FIG. 3). . That is, the virtual plane setting unit 18 sets a virtual plane for the small section Z8, and the combining section 20 performs a combining process with the small section Z9 and subsequent sections using this as a common virtual plane.

以上のようにして結合された小区間について、画像情報生成部24が、3次元点群データ中の各点の上記共通の仮想平面からの法線距離を演算し、算出した法線距離に基づいて画像情報を生成する(S13)。   For the small sections combined as described above, the image information generation unit 24 calculates the normal distance from the common virtual plane of each point in the three-dimensional point cloud data, and based on the calculated normal distance Then, image information is generated (S13).

図6には、小区間を結合する処理(S9)の代わりに、仮想平面分割部22が実行する処理のフローが示される。図6において、図5のS7で第1の小区間について仮想平面設定部18が仮想平面を設定した後、仮想平面分割部22がこの仮想平面を共通の仮想平面として全ての小区間に設定する(S21)。   FIG. 6 shows a flow of processing executed by the virtual plane dividing unit 22 instead of the processing (S9) for combining the small sections. In FIG. 6, after the virtual plane setting unit 18 sets a virtual plane for the first small section in S7 of FIG. 5, the virtual plane dividing unit 22 sets this virtual plane as a common virtual plane for all the small sections. (S21).

次に、仮想平面分割部22は、共通の仮想平面からの法線距離が予め定めた閾値内にある点群中の点の数が上記基準包含率を超えるか否かを判断する(S22)。   Next, the virtual plane dividing unit 22 determines whether or not the number of points in the point group whose normal distance from the common virtual plane is within a predetermined threshold exceeds the reference inclusion rate (S22). .

S22において、上記点の数が上記基準包含率を超えると判断した場合には、S21で設定された共通の仮想平面を全ての小区間に適用する仮想平面として維持し、図5のS13に移行する(S25)。   If it is determined in S22 that the number of points exceeds the reference coverage rate, the common virtual plane set in S21 is maintained as a virtual plane applied to all small sections, and the process proceeds to S13 in FIG. (S25).

一方、S22において、上記点の数が上記基準包含率以下と判断した場合には、仮想平面分割部22が、予め定めたグループ化方法に従って上記小区間を複数のグループに分ける(S23)。   On the other hand, if it is determined in S22 that the number of points is equal to or less than the reference coverage rate, the virtual plane dividing unit 22 divides the small sections into a plurality of groups according to a predetermined grouping method (S23).

仮想平面分割部22は、グループ毎に、各グループに属する小区間の合計の長さ(小区間全体の長さ)が、予め定めた終了長さ以下であるか否かを判断する(S24)。S24において、小区間の合計の長さが、予め定めた終了長さより長い場合には、S21に移行し、当該グループについて共通の仮想平面からの法線距離が予め定めた閾値内にある点群中の点の数が上記基準包含率を超えるか否かを判断する処理を繰り返す。なお、S21に移行する際に、グループ毎に、各グループに属する小平面の一つ、例えば番号が最も小さい小区間を第1の小区間として仮想平面設定部18が共通の仮想平面を設定し直す構成としてもよい。   For each group, the virtual plane dividing unit 22 determines whether the total length of the small sections belonging to each group (the length of the entire small section) is equal to or less than a predetermined end length (S24). . In S24, when the total length of the small sections is longer than the predetermined end length, the process proceeds to S21, and the point group whose normal distance from the common virtual plane is within the predetermined threshold for the group. The process of determining whether or not the number of points exceeds the reference coverage rate is repeated. When shifting to S21, the virtual plane setting unit 18 sets a common virtual plane for each group, with one of the small planes belonging to each group, for example, the small section with the smallest number as the first small section. It is good also as composition to correct.

一方、S24において、小区間の合計の長さが、予め定めた終了長さ以下である場合は、仮想平面分割部22の処理を終了し、図5のS13に移行する。   On the other hand, in S24, when the total length of the small sections is equal to or less than the predetermined end length, the process of the virtual plane dividing unit 22 is ended, and the process proceeds to S13 in FIG.

上述した、図5、図6の各ステップを実行するためのプログラムは、記録媒体に格納することも可能であり、また、そのプログラムを通信手段によって提供しても良い。その場合、例えば、上記説明したプログラムについて、「プログラムを記録したコンピュータ読み取り可能な記録媒体」の発明または「データ信号」の発明としてとらえてもよい。   The above-described program for executing the steps in FIGS. 5 and 6 can be stored in a recording medium, and the program may be provided by communication means. In this case, for example, the above-described program may be regarded as an invention of a “computer-readable recording medium on which a program is recorded” or an invention of a “data signal”.

10 点群データ取得部、12 小区間設定部、14 小平面抽出部、16 小平面判断部、18 仮想平面設定部、20 結合部、22 仮想平面分割部、24 画像情報生成部、26 記憶部、28 通信部、100 レーザ計測装置、102 座標計測装置、104 車両。   10 point group data acquisition unit, 12 small section setting unit, 14 small plane extraction unit, 16 small plane determination unit, 18 virtual plane setting unit, 20 combining unit, 22 virtual plane dividing unit, 24 image information generating unit, 26 storage unit , 28 communication unit, 100 laser measuring device, 102 coordinate measuring device, 104 vehicle.

Claims (7)

竣工時に複数の平面で構成されていた構造物の前記複数の平面上の複数の点において、凹凸計測手段が計測した3次元点群データを凹凸計測手段から取得して記憶手段に記憶させる点群データ取得手段と、
前記竣工時の平面数及び平面の接続関係に関する情報に基づいて、前記複数の平面を、前記複数の平面の接続線方向に予め定めた距離毎に分割して小区間を設定するとともに、前記小区間に、隣接する前記小区間が連続番号となるように番号を設定する小区間設定手段と、
前記3次元点群データを記憶手段から読み出し、前記各小区間において、前記3次元点群データから任意の3点を選択して判断平面を設定し、前記判断平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が最も多くなる前記判断平面を小平面として抽出する処理を、先に抽出した小平面からの法線距離が予め定めた閾値内にある前記点群中の点を他の小平面の抽出処理で使用しない条件で繰り返す小平面抽出手段と、
前記各小区間における前記小平面の数が基準平面数以内であるか否かを判断する小平面判断手段と、
前記抽出された小平面の数が基準平面数以内であると前記小平面判断手段が判断した第1の小区間について前記竣工時の平面数と同数の仮想平面を設定し、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が基準包含率を超えるように前記仮想平面の位置、傾斜角、傾斜方向を決定する仮想平面設定手段と、
前記第1の小区間に対して前記番号が1多いまたは1少ない第2の小区間について前記第1の小区間と同じ仮想平面を設定したときに、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が前記基準包含率を超えるか否かを判断し、超える場合に前記第1、第2の小区間を結合して共通の仮想平面を有する小区間として記憶手段に記憶するとともに、前記小区間を結合する処理を前記番号の順序で繰り返す結合手段と、
前記共通の仮想平面を有する小区間全体について、点群中の各点の前記仮想平面からの法線距離に基づいて画像情報を生成する画像情報生成手段と、
を備える多平面構造物の凹凸抽出装置。
A point group for acquiring three-dimensional point cloud data measured by the unevenness measuring means from the unevenness measuring means and storing it in the storage means at a plurality of points on the multiple planes of the structure constituted by a plurality of planes at the time of completion. Data acquisition means;
Based on the information regarding the number of planes at the time of completion and the connection relationship between the planes, the plurality of planes are divided into predetermined intervals in the connecting line direction of the plurality of planes, and small sections are set. Subsection setting means for setting a number so that the subsection adjacent to the section is a serial number;
The three-dimensional point group data is read from the storage means, and in each of the small sections, an arbitrary three points are selected from the three-dimensional point group data to set a determination plane, and a normal distance from the determination plane is determined in advance. The point where the normal distance from the previously extracted small plane is within the predetermined threshold value is the processing for extracting the determination plane having the largest number of points in the point group within the threshold as a small plane. A small plane extracting means for repeating the points in the group under conditions that are not used in the extraction processing of other small planes;
Small plane determination means for determining whether or not the number of the small planes in each of the small sections is within a reference plane number;
A virtual plane having the same number as the number of planes at the time of completion is set for the first small section determined by the small plane determination means that the number of the extracted small planes is within a reference plane number, Virtual plane setting means for determining the position, inclination angle, and inclination direction of the virtual plane so that the number of points in the point group whose normal distance is within a predetermined threshold exceeds a reference coverage rate;
The normal distance from the virtual plane is determined in advance when the same virtual plane as the first small section is set for the second small section having the number one greater or one less than the first small section. It is determined whether or not the number of points in the point group within the threshold exceeds the reference coverage rate, and if so, the first and second subsections are combined to have a common virtual plane. Combining means for storing the section as a section in the storage means and repeating the process of combining the small sections in the order of the numbers;
Image information generating means for generating image information based on a normal distance from the virtual plane of each point in the point group for the entire small section having the common virtual plane;
An apparatus for extracting irregularities of a multi-planar structure.
前記小平面判断手段が、前記抽出された小平面の数が基準平面数を超えていると判断した小区間を前記小区間設定手段が予め定めた数に分割して分割小区間とし、前記分割小区間に前記結合手段の処理に使用する子番号を設定するとともに、前記小平面判断手段が、前記分割小区間における小平面の数が前記基準平面数以内であるか否かを判断し、前記小平面の数が前記基準平面数以内である分割小区間を元の小区間の代わりに前記結合手段の処理の対象とする、請求項1に記載の多平面構造物の凹凸抽出装置。   The small plane determining means divides the small section determined that the number of extracted small planes exceeds the number of reference planes into a predetermined number by the small section setting means, and the divided small section A small number used for processing of the combining means is set in a small section, and the small plane determining means determines whether or not the number of small planes in the divided small section is within the reference plane number, The unevenness extraction apparatus for a multiplanar structure according to claim 1, wherein a divided small section whose number of small planes is within the reference number of planes is a target of processing of the coupling means instead of the original small section. 前記結合手段の代わりに、共通の仮想平面を全ての小区間に設定し、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が前記基準包含率を超えるか否かを判断し、超える場合には前記仮想平面を維持し、超えない場合には、予め定めたグループ化方法に従って前記小区間を複数のグループに分け、各グループについて前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が前記基準包含率を超えるか否かを判断する処理を繰り返す仮想平面分割手段を備える、請求項1または請求項2に記載の多平面構造物の凹凸抽出装置。   Instead of the combining means, a common virtual plane is set for all the small sections, and the number of points in the point group whose normal distance from the virtual plane is within a predetermined threshold is the reference coverage rate. If it exceeds, the virtual plane is maintained, and if not, the small section is divided into a plurality of groups according to a predetermined grouping method, and each group is separated from the virtual plane. 3. The virtual plane dividing unit that repeats the process of determining whether or not the number of points in the point group whose normal distance is within a predetermined threshold exceeds the reference coverage ratio is provided. The uneven | corrugated extraction apparatus of the multiplanar structure of description. 前記小平面判断手段が、前記抽出された小平面の数が基準平面数を超えていると判断した小区間があるときに報知情報を出力する報知手段を備える請求項1から請求項3のいずれか一項に記載の多平面構造物の凹凸抽出装置。   The said small plane determination means is provided with the alerting | reporting means which outputs alerting | reporting information, when there exists a small area which the number of the extracted small planes judged to exceed the reference | standard plane number. The uneven | corrugated extraction apparatus of the multi-planar structure as described in any one item. 前記画像情報生成手段は、画像情報として不整三角形網を生成する請求項1から請求項4のいずれか一項に記載の多平面構造物の凹凸抽出装置。     The unevenness extraction device for a multiplanar structure according to any one of claims 1 to 4, wherein the image information generation unit generates an irregular triangle network as image information. 竣工時に複数の平面で構成されていた構造物の前記複数の平面上の複数の点において、凹凸計測手段が計測した3次元点群データを凹凸計測手段から取得し、
前記竣工時の平面数及び平面の接続関係に関する情報に基づいて、前記複数の平面を、前記複数の平面の接続線方向に予め定めた距離毎に分割して小区間を設定するとともに、前記小区間に、隣接する前記小区間が連続番号となるように番号を設定し、
前記各小区間において、前記3次元点群データから任意の3点を選択して判断平面を設定し、前記判断平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が最も多くなる前記判断平面を小平面として抽出する処理を、先に抽出した小平面からの法線距離が予め定めた閾値内にある前記点群中の点を他の小平面の抽出処理で使用しない条件で繰り返し、
前記各小区間における前記小平面の数が基準平面数以内であるか否かを判断し、
前記抽出された小平面の数が基準平面数以内であると判断した第1の小区間について前記竣工時の平面数と同数の仮想平面を設定し、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が基準包含率を超えるように前記仮想平面の位置、傾斜角、傾斜方向を決定し、
前記第1の小区間に対して前記番号が1多いまたは1少ない第2の小区間について前記第1の小区間と同じ仮想平面を設定したときに、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が前記基準包含率を超えるか否かを判断し、超える場合に前記第1、第2の小区間を結合して共通の仮想平面を有する小区間とするとともに、前記小区間を結合する処理を前記番号の順序で繰り返し、
前記共通の仮想平面を有する小区間全体について、点群中の各点の前記仮想平面からの法線距離に基づいて画像情報を生成する、多平面構造物の凹凸抽出方法。
At a plurality of points on the plurality of planes of the structure constituted by a plurality of planes at the time of completion, three-dimensional point cloud data measured by the concavo-convex measurement unit is acquired from the concavo-convex measurement unit,
Based on the information regarding the number of planes at the time of completion and the connection relationship between the planes, the plurality of planes are divided into predetermined intervals in the connecting line direction of the plurality of planes, and small sections are set. Set the number so that the adjacent subsections are consecutive numbers in the section,
In each of the small sections, an arbitrary three points are selected from the three-dimensional point cloud data to set a judgment plane, and a normal distance from the judgment plane is within a predetermined threshold value. The process of extracting the determination plane having the largest number as a small plane is a process of extracting a point in the point group whose normal distance from the previously extracted small plane is within a predetermined threshold as another small plane Repeated under conditions not used in
Determining whether the number of facets in each of the subsections is within a reference number of planes;
The same number of virtual planes as the number of planes at the time of completion are set for the first subsection determined that the number of extracted small planes is within the reference plane number, and the normal distance from the virtual plane is determined in advance. Determining the position, inclination angle, and inclination direction of the virtual plane so that the number of points in the point group within the threshold exceeds the reference coverage rate,
The normal distance from the virtual plane is determined in advance when the same virtual plane as the first small section is set for the second small section having the number one greater or one less than the first small section. It is determined whether or not the number of points in the point group within the threshold exceeds the reference coverage rate, and if so, the first and second subsections are combined to have a common virtual plane. And repeat the process of combining the sub-intervals in the order of the numbers,
An unevenness extraction method for a multi-planar structure, wherein image information is generated based on a normal distance of each point in a point group from the virtual plane for the entire small section having the common virtual plane.
コンピュータを、
竣工時に複数の平面で構成されていた構造物の前記複数の平面上の複数の点において、凹凸計測手段が計測した3次元点群データを凹凸計測手段から取得して記憶手段に記憶させる点群データ取得手段、
前記竣工時の平面数及び平面の接続関係に関する情報に基づいて、前記複数の平面を、前記複数の平面の接続線方向に予め定めた距離毎に分割して小区間を設定するとともに、前記小区間に、隣接する前記小区間が連続番号となるように番号を設定する小区間設定手段、
前記3次元点群データを記憶手段から読み出し、前記各小区間において、前記3次元点群データから任意の3点を選択して判断平面を設定し、前記判断平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が最も多くなる前記判断平面を小平面として抽出する処理を、先に抽出した小平面からの法線距離が予め定めた閾値内にある前記点群中の点を他の小平面の抽出処理で使用しない条件で繰り返す小平面抽出手段、
前記各小区間における前記小平面の数が基準平面数以内であるか否かを判断する小平面判断手段、
前記抽出された小平面の数が基準平面数以内であると前記小平面判断手段が判断した第1の小区間について前記竣工時の平面数と同数の仮想平面を設定し、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が基準包含率を超えるように前記仮想平面の位置、傾斜角、傾斜方向を決定する仮想平面設定手段、
前記第1の小区間に対して前記番号が1多いまたは1少ない第2の小区間について前記第1の小区間と同じ仮想平面を設定したときに、前記仮想平面からの法線距離が予め定めた閾値内にある前記点群中の点の数が前記基準包含率を超えるか否かを判断し、超える場合に前記第1、第2の小区間を結合して共通の仮想平面を有する小区間として記憶手段に記憶するとともに、前記小区間を結合する処理を前記番号の順序で繰り返す結合手段、
前記共通の仮想平面を有する小区間全体について、点群中の各点の前記仮想平面からの法線距離に基づいて画像情報を生成する画像情報生成手段、
として機能させる多平面構造物の凹凸抽出プログラム。
Computer
A point group for acquiring three-dimensional point cloud data measured by the unevenness measuring means from the unevenness measuring means and storing it in the storage means at a plurality of points on the multiple planes of the structure constituted by a plurality of planes at the time of completion. Data acquisition means,
Based on the information regarding the number of planes at the time of completion and the connection relationship between the planes, the plurality of planes are divided into predetermined intervals in the connecting line direction of the plurality of planes, and small sections are set. Subsection setting means for setting a number so that the subsection adjacent to the section is a serial number;
The three-dimensional point group data is read from the storage means, and in each of the small sections, an arbitrary three points are selected from the three-dimensional point group data to set a determination plane, and a normal distance from the determination plane is determined in advance. The point where the normal distance from the previously extracted small plane is within the predetermined threshold value is the processing for extracting the determination plane having the largest number of points in the point group within the threshold as a small plane. A small plane extraction means for repeating the points in the group under conditions that are not used in the extraction processing of other small planes;
A small plane determining means for determining whether or not the number of the small planes in each of the small sections is within a reference plane number;
A virtual plane having the same number as the number of planes at the time of completion is set for the first small section determined by the small plane determination means that the number of the extracted small planes is within a reference plane number, A virtual plane setting means for determining a position, an inclination angle, and an inclination direction of the virtual plane so that the number of points in the point group whose normal distance is within a predetermined threshold exceeds a reference coverage rate;
The normal distance from the virtual plane is determined in advance when the same virtual plane as the first small section is set for the second small section having the number one greater or one less than the first small section. It is determined whether or not the number of points in the point group within the threshold exceeds the reference coverage rate, and if so, the first and second subsections are combined to have a common virtual plane. Combining means for storing the section as a section in the storage means and repeating the process of combining the small sections in the order of the numbers;
Image information generating means for generating image information based on a normal distance from the virtual plane of each point in the point group for the entire small section having the common virtual plane;
Asperity extraction program for multi-planar structures to function as
JP2013074873A 2013-03-29 2013-03-29 Multi-planar structure unevenness extraction apparatus, multiplanar structure unevenness extraction method, and program Active JP6121216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013074873A JP6121216B2 (en) 2013-03-29 2013-03-29 Multi-planar structure unevenness extraction apparatus, multiplanar structure unevenness extraction method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013074873A JP6121216B2 (en) 2013-03-29 2013-03-29 Multi-planar structure unevenness extraction apparatus, multiplanar structure unevenness extraction method, and program

Publications (2)

Publication Number Publication Date
JP2014199586A true JP2014199586A (en) 2014-10-23
JP6121216B2 JP6121216B2 (en) 2017-04-26

Family

ID=52356434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013074873A Active JP6121216B2 (en) 2013-03-29 2013-03-29 Multi-planar structure unevenness extraction apparatus, multiplanar structure unevenness extraction method, and program

Country Status (1)

Country Link
JP (1) JP6121216B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202128A (en) * 2000-12-28 2002-07-19 Masayuki Yoshida Measuring and surveying method using digital image
JP2003317081A (en) * 2002-04-25 2003-11-07 Sony Corp System and method for three-dimensional model generation, and computer program
WO2005088244A1 (en) * 2004-03-17 2005-09-22 Sony Corporation Plane detector, plane detecting method, and robot apparatus with plane detector
JP2006178696A (en) * 2004-12-22 2006-07-06 Nippon Telegr & Teleph Corp <Ntt> Plane detection apparatus and method, and plane detection program
JP2010009236A (en) * 2008-06-25 2010-01-14 Toyota Central R&D Labs Inc Plane area estimation device and program
JP2011069747A (en) * 2009-09-26 2011-04-07 Sohatsu System Kenkyusho:Kk Tunnel data processing system and tunnel data processing method
JP2013053915A (en) * 2011-09-02 2013-03-21 Pasuko:Kk Data analysis device, data analysis method and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202128A (en) * 2000-12-28 2002-07-19 Masayuki Yoshida Measuring and surveying method using digital image
JP2003317081A (en) * 2002-04-25 2003-11-07 Sony Corp System and method for three-dimensional model generation, and computer program
WO2005088244A1 (en) * 2004-03-17 2005-09-22 Sony Corporation Plane detector, plane detecting method, and robot apparatus with plane detector
JP2006178696A (en) * 2004-12-22 2006-07-06 Nippon Telegr & Teleph Corp <Ntt> Plane detection apparatus and method, and plane detection program
JP2010009236A (en) * 2008-06-25 2010-01-14 Toyota Central R&D Labs Inc Plane area estimation device and program
JP2011069747A (en) * 2009-09-26 2011-04-07 Sohatsu System Kenkyusho:Kk Tunnel data processing system and tunnel data processing method
JP2013053915A (en) * 2011-09-02 2013-03-21 Pasuko:Kk Data analysis device, data analysis method and program

Also Published As

Publication number Publication date
JP6121216B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
US8988431B2 (en) Conservative cell and portal graph generation
EP1927954B1 (en) Terrain modeling based on curved surface area
CN1734503B (en) Stretch-driven mesh parameterization method using spectral analysis
JP6359868B2 (en) 3D data display device, 3D data display method, and 3D data display program
JP5566353B2 (en) Data analysis apparatus, data analysis method, and program
WO2013057760A1 (en) Digital elevation model generating system and method of generating a digital elevation model
CN104778741A (en) Method and device for converting two-dimensional figure into three-dimensional figure
Altantsetseg et al. 3d surface reconstruction of stone tools by using four-directional measurement machine
CN105468375A (en) Surface structure light point cloud data oriented corresponding point search structure construction method
CN109003333B (en) Interactive grid model cutting method and device based on texture and modeling equipment
JP2014089104A (en) Cubic volume estimation device, cubic volume estimation system, cubic volume estimation method and cubic volume estimation program
CN116659460B (en) Rapid generation method for laser point cloud slice of road cross section
KR102144198B1 (en) Method and system for re-sampling of point cloud using voronoi tessellation and k-nearest neighbor algorithm
JP6121216B2 (en) Multi-planar structure unevenness extraction apparatus, multiplanar structure unevenness extraction method, and program
JP2007170821A (en) Three-dimensional displacement measurement method
CN102467754B (en) Construction method of coal mine geological three-dimensional model and system thereof
JP6514901B2 (en) Survey data processing device
JP2001142515A (en) Cutting simulation method
JP2007264952A (en) Ground-analyzing mesh generation method and ground-analyzing mesh generation program
CN105678840A (en) Rapid generation custom road implement method on the basis of three-dimensional terrain software system
Lesparre et al. Simplified 3D city models from LiDAR
JP2006059061A (en) Three-dimensional data processing method, device and program
CN106373190B (en) Three-dimensional channel and section display method based on sparse scatter data
JP2014179016A (en) Data analyzing device, data analyzing method, and program
US11163920B2 (en) Method for modeling structure in variable terrain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170329

R150 Certificate of patent or registration of utility model

Ref document number: 6121216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250