JP2014199169A - Heat exchanger and heat exchanger manufacturing method - Google Patents

Heat exchanger and heat exchanger manufacturing method Download PDF

Info

Publication number
JP2014199169A
JP2014199169A JP2013075515A JP2013075515A JP2014199169A JP 2014199169 A JP2014199169 A JP 2014199169A JP 2013075515 A JP2013075515 A JP 2013075515A JP 2013075515 A JP2013075515 A JP 2013075515A JP 2014199169 A JP2014199169 A JP 2014199169A
Authority
JP
Japan
Prior art keywords
heat transfer
welding
transfer tubes
side plate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013075515A
Other languages
Japanese (ja)
Other versions
JP6153060B2 (en
Inventor
佑太 辻
Yuta Tsuji
佑太 辻
藤澤 秀行
Hideyuki Fujisawa
秀行 藤澤
後藤 一幸
Kazuyuki Goto
一幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2013075515A priority Critical patent/JP6153060B2/en
Publication of JP2014199169A publication Critical patent/JP2014199169A/en
Application granted granted Critical
Publication of JP6153060B2 publication Critical patent/JP6153060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of welding side plate portions of a case to a plurality of heat transfer tubes in a state of high operability and high quality.SOLUTION: A heat exchanger HE1 comprises: a plurality of heat transfer tubes 1; and a case 2 accommodating therein these plurality of heat transfer tubes 1, a plurality of end portions of the heat transfer tubes 1 are inserted into a plurality of through-holes 28 provided in a side plate portion 21 of the case 2 and aligned in a constant direction at intervals, and the entire circumferences of these plurality of end portions of the heat transfer tubes 1 are welded to the side plate portion 21. The entire circumferences are welded thereto by reciprocating and meandering welding in which welded portions 81 and 82 of pathways running in a meandering fashion through the plurality of end portions of the heat transfer tubes 1 are provided to reciprocate in the constant direction. This reciprocating and meandering welding is such that the entire portions are connected with one stroke and one start point Ps and one end point Pe are provided for the welding.

Description

本発明は、伝熱管がケース内に収容された構成を有し、瞬間式給湯器用の熱交換器などとして用いるのに好適な熱交換器、およびその製造方法に関する。   The present invention relates to a heat exchanger having a configuration in which a heat transfer tube is housed in a case and suitable for use as a heat exchanger for an instantaneous water heater, and a method for manufacturing the same.

瞬間式ガス給湯器などで用いられる熱交換器は、ガスバーナで発生された燃焼ガスが導入されるケース内に複数の伝熱管が収容された構成とされている。このような熱交換器においては、ケースの側板部に設けられた複数の貫通孔に伝熱管の端部を挿入することにより、ケース外部から伝熱管内への入水および出湯を可能としている。各伝熱管については、ケースに対して適切に固定させる必要があり、そのための手段として、各伝熱管の端部の外周面をケースの側板部にロウ付け、または溶接する手段が採用されている(たとえば、特許文献1,2を参照)。   A heat exchanger used in an instantaneous gas water heater or the like has a configuration in which a plurality of heat transfer tubes are accommodated in a case into which combustion gas generated by a gas burner is introduced. In such a heat exchanger, the end of the heat transfer tube is inserted into a plurality of through holes provided in the side plate portion of the case, thereby allowing water to enter and exit from the case into the heat transfer tube. About each heat exchanger tube, it is necessary to fix to a case appropriately, and the means for brazing or welding the outer peripheral surface of the end of each heat exchanger tube to the side plate part of a case is adopted as the means for that. (For example, see Patent Documents 1 and 2).

しかしながら、ロウ付けでは、真空炉などの大掛りな設備が必要であって、製造コストが高価となり、また少量生産には余り適さない。これに対し、溶接では、そのような不利はない。ただし、従来においては、複数の伝熱管の端部をケースの側板部に溶接する場合に、この溶接を十分に満足し得る程度まで作業効率良く、かつ適切に行なうことを可能とする手段は、提案されていないのが実情である。   However, brazing requires a large facility such as a vacuum furnace, which increases the manufacturing cost and is not very suitable for small-scale production. In contrast, welding does not have such disadvantages. However, conventionally, when welding the end portions of a plurality of heat transfer tubes to the side plate portion of the case, means capable of performing the welding efficiently and appropriately to such an extent that this welding can be sufficiently satisfied, The actual situation is not proposed.

たとえば、図9に示すように、間隔を隔てて並んだ複数の伝熱管90をケースの側板部91に貫通させた状態において、これら複数の伝熱管90を側板部91に溶接する場合、同図仮想線89に示すように、複数の伝熱管90のそれぞれの全周を1箇所ずつ順番に溶接することが考えられる。同図において、符号Psは溶接の始点であり、符号Peは溶接の終点である。
ところが、このような手段では、溶接作業を複数回にわたって繰り返すこととなるために、1回の溶接作業を終了する都度、溶接の終点Peの酸化防止を図るためのアフタフローを行なう必要が生じる。これでは、複数の伝熱管90の全ての溶接を終えるのに要する作業時間が相当に長くなる。溶接開始時のプリフローを長くとる場合には、溶接作業時間はさらに長くなる。このようなことから、前記手段では、生産性が余り良好ではなく、熱交換器の製造コストが高くなる不具合がある。
また、溶接作業の所要時間をできる限り短くしようとして、溶接速度を速めると、溶接の品質が低下する不具合を招く。さらに、溶接の終点は、溶接部のうちで最も品質劣化を生じ易い箇所であるが、前記手段によれば、そのような溶接の終点が複数の伝熱管90と同数だけ生じる。したがって、溶接の品質を良好にする上でも、改善の余地がある。
For example, as shown in FIG. 9, when a plurality of heat transfer tubes 90 arranged at intervals are passed through the side plate portion 91 of the case, the plurality of heat transfer tubes 90 are welded to the side plate portion 91. As indicated by an imaginary line 89, it is conceivable to weld the entire circumference of each of the plurality of heat transfer tubes 90 one by one in order. In the figure, the symbol Ps is the welding start point, and the symbol Pe is the welding end point.
However, in such a means, since the welding operation is repeated a plurality of times, it is necessary to perform afterflow for preventing oxidation of the welding end point Pe every time one welding operation is completed. This considerably increases the work time required to complete the welding of the plurality of heat transfer tubes 90. When the preflow at the start of welding is made longer, the welding operation time becomes longer. For this reason, the above-described means has a problem that the productivity is not so good and the manufacturing cost of the heat exchanger becomes high.
Further, if the welding speed is increased in an attempt to shorten the time required for the welding operation as much as possible, there is a problem that the quality of the welding is deteriorated. Furthermore, the end point of welding is the place where the quality deterioration is most likely to occur in the welded portion, but according to the above means, the same number of end points of welding are generated as the plurality of heat transfer tubes 90. Therefore, there is room for improvement in improving the quality of welding.

特許第4646383号公報Japanese Patent No. 4646383 特許第3804727号公報Japanese Patent No. 3804727

本発明は、前記したような事情のもとで考え出されたものであり、ケースの側板部と複数の伝熱管とを作業性よく、かつ品質が良好な状態に溶接することが可能な熱交換器、およびそのような熱交換器を適切に製造することが可能な熱交換器の製造方法を提供することを、その課題としている。   The present invention has been conceived under the circumstances as described above, and is capable of welding the side plate portion of the case and the plurality of heat transfer tubes with good workability and good quality. An object of the present invention is to provide an exchanger and a method of manufacturing a heat exchanger that can appropriately manufacture such a heat exchanger.

上記の課題を解決するため、本発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

本発明の第1の側面により提供される熱交換器は、複数の伝熱管と、これら複数の伝熱管を内部に収容するケースと、を備えており、前記ケースの側板部には、互いに間隔を隔てて一定方向に並ぶ複数の貫通孔が設けられて、これら複数の貫通孔には、前記複数の伝熱管の端部が挿入されており、かつこれら複数の伝熱管の端部のそれぞれの全周が、前記側板部に溶接されている、熱交換器であって、前記溶接は、前記複数の伝熱管の端部どうしの間を蛇行状に縫う経路の溶接部が、前記一定方向において往復して設けられた往復蛇行状の溶接とされ、この往復蛇行状の溶接は、全体が一筆書き状に繋がり、溶接の始点および終点のそれぞれが1箇所ずつであることを特徴としている。   The heat exchanger provided by the first aspect of the present invention includes a plurality of heat transfer tubes and a case that accommodates the plurality of heat transfer tubes therein, and the side plate portions of the case are spaced apart from each other. A plurality of through-holes arranged in a fixed direction across the plurality of through-holes, end portions of the plurality of heat transfer tubes are inserted into the plurality of through-holes, and each of the end portions of the plurality of heat transfer tubes is inserted. The entire circumference is a heat exchanger that is welded to the side plate portion, and the welding is such that a weld portion of a path that sews between ends of the plurality of heat transfer tubes in a certain direction. The reciprocating meandering welding is provided in a reciprocating manner, and the reciprocating meandering welding is characterized in that the whole is connected in a single stroke, and each of the welding start point and end point is one place.

このような構成によれば、各伝熱管をケースの側板部に溶接しているために、ロウ付け手段と比較して、少量生産などに適し、製造コストを低減する利点が得られることに加え、次のような効果がさらに得られる。
第1に、複数の伝熱管の各端部がケースの側板部に対して適切に溶接された構造が実現できるが、この溶接は、実質的に1回の溶接作業によって行なわれる。したがって、たとえば複数の伝熱管を個々に溶接する作業を複数回にわたって繰り返す場合とは異なり、溶接終了時のアフタフローは1回のみでよく、複数回行なう必要はない。また、溶接開始時のプリフローを行なう場合であっても、このプリフローは1回でよい。したがって、溶接作業時間を短くし、生産性を良好にすることにより、熱交換器の製造コストを低減することが可能である。
第2に、溶接終了時のアフタフローなどの所要時間を短縮できる分だけ、溶接作業に時間的な余裕をもたせることが可能となり、溶接進行速度(溶接トーチの移動速度)を遅くすることができる。溶接の品質は、溶接進行速度を速くするほど低くなる傾向があるが、本発明によれば、溶接進行速度を遅めにすることにより、溶接の品質を高めることができる。
第3に、溶接部のうち、溶接の終点は最も品質が悪化し易い箇所であるが、本発明によれば、溶接の終点の数は、最小数である。このことにより、溶接の品質をより高めることができる。
According to such a configuration, since each heat transfer tube is welded to the side plate portion of the case, it is suitable for small-scale production and the advantage of reducing the manufacturing cost can be obtained as compared with the brazing means. The following effects are further obtained.
First, a structure in which each end of the plurality of heat transfer tubes is appropriately welded to the side plate portion of the case can be realized, but this welding is performed substantially by a single welding operation. Therefore, unlike the case where, for example, the operation of individually welding a plurality of heat transfer tubes is repeated a plurality of times, the afterflow at the end of welding may be performed only once, and need not be performed a plurality of times. Further, even when the preflow at the start of welding is performed, this preflow may be performed once. Therefore, it is possible to reduce the manufacturing cost of the heat exchanger by shortening the welding operation time and improving the productivity.
Secondly, it is possible to allow time for welding work by the amount that can reduce the time required for after-flow at the end of welding, and the welding speed (moving speed of the welding torch) can be slowed down. . Although the quality of welding tends to decrease as the welding progress speed increases, according to the present invention, the welding quality can be improved by slowing the welding progress speed.
Third, among the welds, the end point of welding is the place where quality is most likely to deteriorate, but according to the present invention, the number of end points of welding is the minimum number. This can further improve the quality of welding.

本発明において、好ましくは、前記複数の伝熱管は、前記ケース内に位置決め固定される螺旋状または蛇行状の主管体部と、この主管体部に繋がって所定のx方向に延び、かつx方向に対して交差するz方向に離間した第1および第2の延設管体部と、を有しており、前記ケースの側板部には、前記複数の伝熱管の第1および第2の延設管体部をそれぞれ溶接するための第1および第2の領域が、前記側板部のz方向の中心線を挟んでz方向に離間した配置に設けられ、かつ前記第1および第2の領域は、ともに前記複数の貫通孔がx,z方向に対して交差するy方向に間隔を隔てて並んで設けられた領域とされており、前記第1および第2の領域における前記溶接の終点は、前記第1および第2の延設管体部の周囲のうち、前記側板部のz方向の中心線寄りの位置とされている。   In the present invention, it is preferable that the plurality of heat transfer tubes include a spiral or meandering main tube body that is positioned and fixed in the case, is connected to the main tube body portion, extends in a predetermined x direction, and is in the x direction. First and second extending tube portions spaced apart in the z direction intersecting with each other, and the side plate portion of the case includes first and second extending portions of the plurality of heat transfer tubes. 1st and 2nd area | regions for welding a tubular body part are provided in the arrangement | positioning spaced apart in the z direction on both sides of the center line of the z direction of the said side plate part, and the said 1st and 2nd area | region Are both regions in which the plurality of through holes are provided side by side in the y direction intersecting the x and z directions, and the end points of the welding in the first and second regions are , Z of the side plate portion of the periphery of the first and second extending tube portions There is a position of the center line toward the direction.

このような構成によれば、次のような効果が得られる。
すなわち、熱交換器を実際に使用する場合、この熱交換器に接続された配管経路においてウォータハンマが発生する場合がある。このようなウォータハンマが発生し、各伝熱管内の圧力が高くなると、後の実施形態において詳述するように、第1および第2の延設管体部とケースの側板部との溶接箇所のうち、側板部の縁部側(側板部のz方向の中心とは反対側)の部分には、溶接を剥離させる方向の引張応力が生じる。前記構成においては、溶接部のうち、最も品質低下を生じ易い溶接の終点が、そのような引張応力を生じる箇所を避けた位置にあり、溶接の終点に不当な応力を生じ難くすることができる。さらに、溶接の終点は、第1の延設管体部どうしの間や、第2の延設管体部どうしの間をも避けた位
置であるために、溶接の均一化を図る上でも好ましいものとなる。このようなことから、各伝熱管とケースの側板部との溶接強度を高め、また耐ウォータハンマ性能を向上させて、耐久性に優れたものとすることができる。
According to such a configuration, the following effects can be obtained.
That is, when a heat exchanger is actually used, a water hammer may be generated in a piping path connected to the heat exchanger. When such a water hammer is generated and the pressure in each heat transfer tube becomes high, as will be described in detail in a later embodiment, the welded portion between the first and second extending tube portions and the side plate portion of the case Among them, a tensile stress in a direction in which the welding is peeled off is generated at a portion on the edge side of the side plate portion (on the side opposite to the center in the z direction of the side plate portion). In the above-described configuration, the welding end point that is most likely to cause a deterioration in quality in the welded portion is located at a position that avoids such a place where tensile stress is generated, and it is possible to make it difficult to generate undue stress at the end point of welding. . Furthermore, since the end point of welding is a position that avoids the interval between the first extending tube portions and the interval between the second extending tube portions, it is preferable for achieving uniform welding. It will be a thing. For this reason, it is possible to increase the welding strength between each heat transfer tube and the side plate portion of the case, and to improve the water hammer resistance and to have excellent durability.

本発明において、好ましくは、前記ケースの側壁部には、前記ケースの外方に向けて膨出する筒状の周壁部、およびこの周壁部の先端部を塞ぐ先端壁部を有する一対の膨出部が形成され、これら一対の膨出部の前記先端壁部が、前記第1および第2の領域とされているとともに、前記一対の膨出部の前記周壁部には、前記複数の伝熱管への流体流入用または流出用のヘッダが外嵌されて接合されている。   In the present invention, preferably, the side wall portion of the case has a pair of bulges having a cylindrical peripheral wall portion that bulges outward from the case, and a distal end wall portion that closes the distal end portion of the peripheral wall portion. And the tip wall portions of the pair of bulging portions are the first and second regions, and the peripheral wall portions of the pair of bulging portions include the plurality of heat transfer tubes. A fluid inflow or outflow header is externally fitted and joined.

このような構成によれば、ヘッダの取り付けが容易であり、またヘッダをケースの側板部に直付けした構成であるために、構成の簡素化、部品点数の少数化を図ることができる。したがって、全体の製造コストを低減する上で、より好ましいものとなる。   According to such a configuration, the header can be easily attached, and the header is directly attached to the side plate portion of the case. Therefore, the configuration can be simplified and the number of parts can be reduced. Therefore, it is more preferable in reducing the entire manufacturing cost.

本発明の第2の側面により提供される熱交換器の製造方法は、ケースの側板部に設けられ、かつ互いに間隔を隔てて一定方向に並ぶ複数の貫通孔に、複数の伝熱管の端部を挿入する伝熱管挿入工程と、この伝熱管挿入工程の後において、前記複数の伝熱管の端部を前記側板部に溶接する溶接工程と、を有している、熱交換器の製造方法であって、前記溶接工程においては、前記複数の伝熱管の端部どうしの間を蛇行状に縫うようにして前記複数の伝熱管の端部のそれぞれの略半周ずつを順次溶接し、この溶接位置が前記複数の伝熱管の列の最端に位置する伝熱管の周囲に到達した際には、この伝熱管の端部の全周を溶接してから溶接進行方向を反転させ、その後は前記複数の伝熱管の端部のそれぞれの残りの略半周ずつを順次溶接し、前記複数の伝熱管の端部に対し、一筆書き状に繋がった溶接を施すことを特徴としている。   The heat exchanger manufacturing method provided by the second aspect of the present invention includes a plurality of through holes provided in the side plate portion of the case and arranged in a fixed direction at intervals from each other, and ends of the plurality of heat transfer tubes. A heat exchanger tube insertion step and a welding step of welding the end portions of the plurality of heat transfer tubes to the side plate portion after the heat transfer tube insertion step. In the welding step, the welding positions are sequentially welded approximately half a circumference of each of the end portions of the plurality of heat transfer tubes so as to meander between the end portions of the plurality of heat transfer tubes. When reaching the periphery of the heat transfer tube located at the end of the row of the plurality of heat transfer tubes, the welding progress direction is reversed after welding the entire periphery of the end of the heat transfer tube, and thereafter Weld the remaining approximately half of each end of the heat transfer tube in order, End of the heat transfer tube to the is characterized by performing welding led to single stroke manner.

このような構成によれば、本発明に係る熱交換器を適切に製造することができ、本発明に係る熱交換器について述べたのと同様な効果が得られる。   According to such a structure, the heat exchanger which concerns on this invention can be manufactured appropriately, and the effect similar to having described the heat exchanger which concerns on this invention is acquired.

本発明において、好ましくは、前記伝熱管挿入工程においては、前記伝熱管の端部を前記側板部の外側に突起状に突出した状態とし、前記溶接工程においては、前記側板部の外側から溶接を施し、前記貫通孔の周縁部に加え、前記伝熱管の端部の突出部分をも溶融させる。   In the present invention, preferably, in the heat transfer tube insertion step, an end portion of the heat transfer tube protrudes outwardly from the side plate portion, and in the welding step, welding is performed from the outside of the side plate portion. Then, in addition to the peripheral edge of the through hole, the protruding portion at the end of the heat transfer tube is also melted.

このような構成によれば、ケースの側板部の外側からの溶接であるために、ケースの内側から溶接を行なう場合と比較して、溶接トーチの自由度を大きくし、溶接作業が容易となる。また、伝熱管の端部の突出部分を溶接時に溶融させれば、この部分を溶加棒の代替部として利用することが可能となり、溶加棒を別途用いる必要を無くし、溶接作業がより容易となる。   According to such a configuration, since the welding is from the outside of the side plate portion of the case, the degree of freedom of the welding torch is increased and the welding operation is facilitated as compared with the case of welding from the inside of the case. . Also, if the protruding part at the end of the heat transfer tube is melted at the time of welding, this part can be used as an alternative part of the filler bar, eliminating the need to use a separate filler bar and making the welding work easier. It becomes.

本発明において、好ましくは、前記溶接工程おいて、前記複数の伝熱管の端部どうしの間の領域を溶接する際には、他の領域を溶接する際よりも入熱を少なくする。   In this invention, Preferably, in the said welding process, when welding the area | region between the edge parts of these heat exchanger tubes, heat input is reduced rather than when welding another area | region.

このような構成によれば、互いに接近して並んだ複数の伝熱管の周囲のうち、伝熱管どうしの間の領域の入熱が過剰にならないようにし、溶接の均一化を図るのに好ましいものとなる。   According to such a configuration, the heat input in the region between the heat transfer tubes out of the periphery of the plurality of heat transfer tubes arranged close to each other is preferable so as to achieve uniform welding. It becomes.

本発明のその他の特徴および利点は、添付図面を参照して以下に行なう発明の実施の形態の説明から、より明らかになるであろう。   Other features and advantages of the present invention will become more apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.

本発明に係る熱交換器の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the heat exchanger which concerns on this invention. (a)は、図1のIIa−IIa断面図であり、(b)は、(a)のIIb−IIb断面図であり、(c)は、(b)のIIc−IIc断面図である。(A) is IIa-IIa sectional drawing of FIG. 1, (b) is IIb-IIb sectional drawing of (a), (c) is IIc-IIc sectional drawing of (b). (a)は、図2(b)の要部拡大断面図であり、(b)は、(a)のIIIb−IIIb拡大断面図である。(A) is the principal part expanded sectional view of FIG.2 (b), (b) is the IIIb-IIIb expanded sectional view of (a). (a)は、図3(a)の一部を示す断面図であり、(b)は、(a)に示す構造を得るための溶接工程を示す断面図であり、(c)は、(b)のIVc−IVc断面図である。(A) is sectional drawing which shows a part of Fig.3 (a), (b) is sectional drawing which shows the welding process for obtaining the structure shown to (a), (c) is ( It is IVc-IVc sectional drawing of b). (a)〜(c)は、図1の熱交換器を製造する際の溶接作業工程の一例を示す要部説明図である。(A)-(c) is principal part explanatory drawing which shows an example of the welding operation process at the time of manufacturing the heat exchanger of FIG. 本発明の他の例を示す要部説明図である。It is principal part explanatory drawing which shows the other example of this invention. (a),(b)は、図1に示す熱交換器の作用を模式的に示す説明図である。(A), (b) is explanatory drawing which shows typically the effect | action of the heat exchanger shown in FIG. 本発明に係る熱交換器の他の例を示し、(a)は、平面断面図であり、(b)は、(a)のVIIIb−VIIIb断面図であり、(c)は、(b)のVIIIc−VIIIc断面図である。The other example of the heat exchanger which concerns on this invention is shown, (a) is a plane sectional view, (b) is a VIIIb-VIIIb sectional view of (a), (c) is (b) It is VIIIc-VIIIc sectional drawing. (a),(b)は、背景技術を示し、(a)は要部平面断面図であり、(b)は(a)の要部正面図である。(A), (b) shows background art, (a) is principal part plane sectional drawing, (b) is a principal part front view of (a).

以下、本発明の好ましい実施の形態について、図面を参照して具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.

図1および図2に示す熱交換器HE1は、たとえばガスバーナなどのバーナ(図示略)によって発生された燃焼ガスから熱回収を行なって湯水加熱を行なう用途に好適なものであり、たとえば給湯装置の潜熱回収用に用いられる熱交換器である。
この熱交換器HE1は、ケース2と、このケース2内に収容された複数の伝熱管1と、これら複数の伝熱管1の下端部および上端部に繋がった入水用および出湯用の一対のヘッダ3(3A,3B)とを具備している。
なお、本実施形態では、ケース2の左右幅方向が本発明でいう「x方向」、ケース2の前後幅方向が本発明でいう「y方向」、上下方向が本発明でいう「z方向」に相当し、図面において適宜示す。
A heat exchanger HE1 shown in FIGS. 1 and 2 is suitable for a purpose of performing hot water heating by recovering heat from a combustion gas generated by a burner (not shown) such as a gas burner. It is a heat exchanger used for latent heat recovery.
The heat exchanger HE1 includes a case 2, a plurality of heat transfer tubes 1 accommodated in the case 2, and a pair of headers for incoming and outgoing water connected to the lower end and the upper end of the plurality of heat transfer tubes 1. 3 (3A, 3B).
In the present embodiment, the lateral width direction of the case 2 is the “x direction” in the present invention, the longitudinal width direction of the case 2 is the “y direction” in the present invention, and the vertical direction is the “z direction” in the present invention. And is shown as appropriate in the drawings.

複数の伝熱管1のそれぞれは、主管体部11と、第1および第2の延設管体部10a,10bとを有している。主管体部11は、平面視長円状の複数の螺旋状管体であり、この螺旋状管体の軸長方向は上下方向である。複数の螺旋状管体は、互いにサイズが異なっており、略同心の重ね巻き状に配されている。主管体部11は、ケース2内においてスペーサ(図示略)などを用いて位置決め固定されている。第1および第2の延設管体部10a,10bは、主管体部11の上部および下部に一体的に繋がり、かつ略水平に延びている。   Each of the plurality of heat transfer tubes 1 includes a main tube portion 11 and first and second extending tube portions 10a and 10b. The main tube body portion 11 is a plurality of spiral tubes that are oblong in plan view, and the axial length direction of the spiral tube is the vertical direction. The plurality of spiral tubular bodies have different sizes from each other, and are arranged in a substantially concentric wrapping shape. The main pipe body portion 11 is positioned and fixed in the case 2 using a spacer (not shown) or the like. The first and second extending tube portions 10a and 10b are integrally connected to the upper and lower portions of the main tube portion 11 and extend substantially horizontally.

ケース2は、略直方体状であり、このケース2の本体部20(矩形筒状の胴体部)に加え、一対の側板部21,22を有している。本体部20および側板部21,22のそれぞれは、たとえばステンレスなどの金属板を用いて構成されている。ケース2の後壁部20cおよび前壁部20dには、燃焼ガス用の給気口25および排気口26が設けられている。給気口25からケース2内に流入した燃焼ガスは複数の伝熱管1の隙間を通過した後に排気口26に到達するが、その過程において前記燃焼ガスから各伝熱管1により熱回収がなされ、各伝熱管1内を流通する湯水が加熱される。ケース2の上壁部20aおよび下壁部20bには、伝熱管1との間に形成される隙間を小さくして熱交換効率を高めるための突出段部20',20”が適宜設けられている。   The case 2 has a substantially rectangular parallelepiped shape, and includes a pair of side plate portions 21 and 22 in addition to the main body portion 20 (rectangular cylindrical body portion) of the case 2. Each of the main body portion 20 and the side plate portions 21 and 22 is configured using a metal plate such as stainless steel, for example. The rear wall portion 20c and the front wall portion 20d of the case 2 are provided with an intake port 25 and an exhaust port 26 for combustion gas. The combustion gas flowing into the case 2 from the air supply port 25 reaches the exhaust port 26 after passing through the gaps between the plurality of heat transfer tubes 1. In this process, heat is recovered from the combustion gas by the heat transfer tubes 1. Hot water flowing through each heat transfer tube 1 is heated. The upper wall portion 20a and the lower wall portion 20b of the case 2 are appropriately provided with protruding step portions 20 ′, 20 ″ for reducing the gap formed between the heat transfer tube 1 and increasing the heat exchange efficiency. Yes.

ケース2の側板部21には、2つの膨出部22(22A,22B)がプレス加工によっ
て一体的に形成されている。これらの膨出部22は、ヘッダ3の装着対象となる部分であるとともに、複数の伝熱管1の連結対象となる部分でもあり、本発明でいう「第1および第2の領域」の一例に相当し、側板部21の上下方向の中心線Laを挟んで上下に離間している。図3によく表われているように、各膨出部22の先端壁部22bには、複数の貫通孔28が比較的接近した間隔で略水平方向に並んで設けられており、これらの貫通孔28に、伝熱管1の端部(第1および第2の延設管体部10a,10bの端部)が挿入されて溶接されている。この溶接は、側板部21の外側から行なわれ、かつ側板部21の内面側に裏ビード部29が形成されるようにしてなされている。
Two bulging portions 22 (22A, 22B) are integrally formed on the side plate portion 21 of the case 2 by pressing. These bulging portions 22 are portions to be attached to the header 3 and are also portions to be connected to the plurality of heat transfer tubes 1, and are examples of “first and second regions” in the present invention. Correspondingly, the side plate portion 21 is vertically separated with a center line La in the vertical direction interposed therebetween. As clearly shown in FIG. 3, a plurality of through holes 28 are provided in the distal end wall portion 22 b of each bulging portion 22 in a substantially horizontal direction at relatively close intervals. Ends of the heat transfer tubes 1 (ends of the first and second extending tube portions 10a and 10b) are inserted into the holes 28 and welded. This welding is performed from the outside of the side plate portion 21 and the back bead portion 29 is formed on the inner surface side of the side plate portion 21.

裏ビード部29は、伝熱管1の外周を覆うようにして伝熱管1に一体化しており、かつ側板部21の内面からケース2の内方側に向けて突出している。裏ビード部29の先端部およびその近傍部分は、この裏ビード部29の先端側ほど伝熱管1の半径方向の厚みが漸減する形態となっている(図3(a)で示す伝熱管1の外面と裏ビード部29の表面とがなす角度αは、90°を超えている)。   The back bead portion 29 is integrated with the heat transfer tube 1 so as to cover the outer periphery of the heat transfer tube 1, and protrudes from the inner surface of the side plate portion 21 toward the inner side of the case 2. The distal end portion of the back bead portion 29 and the vicinity thereof have a form in which the radial thickness of the heat transfer tube 1 gradually decreases toward the distal end side of the back bead portion 29 (the heat transfer tube 1 shown in FIG. 3A). The angle α formed by the outer surface and the surface of the back bead portion 29 exceeds 90 °).

具体的には、前記した溶接は、図4(b),(c)に示すように、ケース2の側板部21の各貫通孔28に、伝熱管1の端部を挿入し、かつその一部を突出させた状態(突出部13を設けた状態)で行なう。突出寸法は、たとえば0.5mm〜2mm程度であるが、この寸法は、伝熱管1および側板部21の厚みや材質などに応じて適宜変更できる。溶接は、たとえばTIG溶接であり、側板部21の外側から片側溶接を行なう。この溶接に際しては、TIG溶接トーチ9を貫通孔28の周縁部に向けて対向させ、伝熱管1には直接対向させないようにする。このような設定状態でTIG溶接を開始すると、貫通孔28の周縁部とともに伝熱管1の突出部13をも溶融させることができる。突出部13は、貫通孔28の周縁部よりもTIG溶接トーチ9に接近しているために、この突出部13に対して適切にアーク熱を作用させることが可能であり、溶接後においては伝熱管1の端部は、側板部21の外面と略面一状の高さとされる。   Specifically, the welding described above is performed by inserting the end of the heat transfer tube 1 into each through hole 28 of the side plate portion 21 of the case 2 as shown in FIGS. This is performed in a state in which the portion is protruded (a state in which the protruding portion 13 is provided). The projecting dimension is, for example, about 0.5 mm to 2 mm, but this dimension can be appropriately changed according to the thickness and material of the heat transfer tube 1 and the side plate part 21. The welding is, for example, TIG welding, and one-side welding is performed from the outside of the side plate portion 21. In this welding, the TIG welding torch 9 is opposed to the peripheral edge of the through hole 28 and is not directly opposed to the heat transfer tube 1. When TIG welding is started in such a setting state, the protrusion 13 of the heat transfer tube 1 can be melted together with the peripheral edge of the through hole 28. Since the protrusion 13 is closer to the TIG welding torch 9 than the peripheral edge of the through hole 28, it is possible to cause the arc heat to act appropriately on the protrusion 13, and after the welding, the heat is transmitted. The end portion of the heat tube 1 is substantially flush with the outer surface of the side plate portion 21.

図2(c)の要部拡大図では、各伝熱管1の端部と側板部21との溶接部8(8A,8B)を、仮想線によって模式的に示している(後述の図5,図6,図8(c)も同様)。各溶接部8は、複数の伝熱管1の端部どうしの間を蛇行状に縫うようにして図面左側に進行した経路をもつ溶接部81と、図面右側に進行した経路をもつ溶接部82とからなる往復蛇行状の溶接部である。この往復蛇行状の溶接部8は、全体が一筆書き状に繋がっており、その始点Psおよび終点Peは1箇所ずつである。   In the main part enlarged view of FIG.2 (c), the welding part 8 (8A, 8B) of the edge part of each heat exchanger tube 1 and the side-plate part 21 is typically shown with the virtual line (after-mentioned FIG. 5, FIG. The same applies to FIGS. 6 and 8C). Each welded portion 8 includes a welded portion 81 having a path that proceeds to the left side of the drawing so as to sew between end portions of the plurality of heat transfer tubes 1, and a welded portion 82 that has a path that proceeds to the right side of the drawing. It is the reciprocating meandering welding part which consists of. The entire reciprocating meandering welded portion 8 is connected in a single stroke, and the start point Ps and the end point Pe are one by one.

前記の溶接部8は、図5に示すような溶接方法により得られる。
すなわち、図5(a)の仮想線で示すように、たとえば右端に位置する伝熱管1の外周の一部を始点Psとして溶接を開始する場合、まず複数の伝熱管1の端部どうしの間を蛇行状に縫うように溶接を左側に進行させていき、複数の伝熱管1の端部のそれぞれの下側または上側の略半周ずつを交互に溶接していく(往きの溶接部81の形成)。この溶接が左端に位置する伝熱管1まで進行した際には、この左端の伝熱管1の端部の全周を溶接してから溶接進行方向を反転させ、その後は同図(b)に示すように、やはり複数の伝熱管1の端部どうしの間を蛇行状に縫うように溶接を進行させていく(戻りの溶接部82の形成)。その際、各伝熱管1の端部のうち、往きの溶接部81によって溶接されなかった残りの略半周を溶接する。同図(c)に示すように、前記溶接が右端の伝熱管1の位置まで復帰した際には、始点Psを越え、右端の伝熱管1の下側の位置を終点Peとする。同図では、理解の容易のために始点Psと終点Peとの間の2つの溶接部が重ならないように示しているが、実際には、これら2つの溶接部は互いに重なるように溶接を施す。始点Ps上に重ねて溶接を施せば、始点Psに溶接不備がある場合であっても、この不備を修正することが可能である。
The weld 8 is obtained by a welding method as shown in FIG.
That is, as shown by the phantom line in FIG. 5A, for example, when welding is started with a part of the outer periphery of the heat transfer tube 1 located at the right end as the start point Ps, first, the end portions of the plurality of heat transfer tubes 1 are between the end portions. Welding is progressed to the left side so as to sew in a meandering manner, and the lower half or upper half of each end of the plurality of heat transfer tubes 1 are alternately welded (formation of the forward welded portion 81). ). When this welding progresses to the heat transfer tube 1 located at the left end, the welding progress direction is reversed after welding the entire circumference of the end of the heat transfer tube 1 at the left end, and thereafter, as shown in FIG. As described above, the welding is performed so as to sew the end portions of the plurality of heat transfer tubes 1 in a meandering manner (formation of the return welded portion 82). In that case, the remaining substantially half circumferences which were not welded by the outward welding part 81 among the edge parts of each heat exchanger tube 1 are welded. As shown in FIG. 2C, when the welding is returned to the position of the right end heat transfer tube 1, the start point Ps is exceeded and the lower end position of the right end heat transfer tube 1 is set as the end point Pe. In the figure, for ease of understanding, the two welds between the start point Ps and the end point Pe are shown not to overlap, but actually, the two welds are welded so that they overlap each other. . If welding is performed on the start point Ps, this deficiency can be corrected even if the start point Ps has a weld deficiency.

前記の溶接作業において、複数の伝熱管1の相互間領域を溶接する際には、他の領域(伝熱管1の上側や下側の領域)を溶接する際よりも入熱を少なくする。複数の伝熱管1の相互間領域は、溶接が重なり気味で実行されるために、この領域への入熱が過剰にならないようにするためである。   In the welding operation described above, when the regions between the plurality of heat transfer tubes 1 are welded, the heat input is less than when other regions (the regions above and below the heat transfer tube 1) are welded. The region between the plurality of heat transfer tubes 1 is for preventing the heat input to this region from being excessive because welding is performed in an overlapping manner.

図5に示した例では、複数の伝熱管1の相互間隔がかなり小さくされている。このため、溶接部8を複数の円弧状部分が繋がった形態とすることによって、伝熱管1の全周を適切に溶接することが可能である。これに対し、たとえば図6に示すように、複数の伝熱管1の相互間隔が比較的大きめである場合には、溶接部8の円弧状部分どうしの間に直線部83を形成してもよい。   In the example shown in FIG. 5, the mutual space | interval of the some heat exchanger tube 1 is made considerably small. For this reason, it is possible to weld appropriately the whole periphery of the heat exchanger tube 1 by making the welding part 8 into the form which the some circular arc-shaped part connected. On the other hand, for example, as shown in FIG. 6, when the interval between the plurality of heat transfer tubes 1 is relatively large, a linear portion 83 may be formed between the arc-shaped portions of the welded portion 8. .

図2(c)に示すように、上側の膨出部22Aにおける溶接部8(8A)の終点Peは、この伝熱管1の下側(中心線Laに接近する側)とされている。下側の膨出部22Bにおける溶接部8(8B)の終点Peは、伝熱管1の上側(中心線Laに接近する側)とされている。このことの意義については、後述する。   As shown in FIG. 2C, the end point Pe of the welded portion 8 (8A) in the upper bulged portion 22A is the lower side of the heat transfer tube 1 (the side approaching the center line La). The end point Pe of the welded portion 8 (8B) in the lower bulging portion 22B is the upper side of the heat transfer tube 1 (the side approaching the center line La). The significance of this will be described later.

前記した溶接では、図3および図4(a)に示した裏ビード部29を適切に形成することが可能である。伝熱管1の突出部13は、溶加棒としての役割を果たすこととなるため、裏ビード部29のボリュームを大きくし、側板部21の内面からケース2の内方への突出寸法を大きくすることが可能である。また、伝熱管1の相互間領域の母材が少ない部分においても溶接不良を生じないようにすることができる。   In the welding described above, the back bead portion 29 shown in FIGS. 3 and 4A can be appropriately formed. Since the protruding portion 13 of the heat transfer tube 1 serves as a filler rod, the volume of the back bead portion 29 is increased, and the protruding dimension from the inner surface of the side plate portion 21 to the inside of the case 2 is increased. It is possible. Moreover, it is possible to prevent poor welding even in a portion where the base material in the region between the heat transfer tubes 1 is small.

図3に示すように、ヘッダ3は、側板部21とは別体に形成されており、膨出部22に対応した開口部32を形成する開口縁部33を有する内部空洞状の本体部30と、この本体部30の後面側に連結された継手用管体部31とを有している。ヘッダ3は、その開口縁部33が膨出部22の周壁部22aに外嵌され、かつこの外嵌部分において溶接が施されていることにより、膨出部22への固定が図られている。ヘッダ3内のうち、先端壁部22bよりもケース2の外方側の領域は、各伝熱管1の内部に連通した湯水流通用のチャンバ36である。   As shown in FIG. 3, the header 3 is formed separately from the side plate portion 21, and has an internal hollow body portion 30 having an opening edge portion 33 that forms an opening portion 32 corresponding to the bulging portion 22. And a joint tube portion 31 connected to the rear surface side of the main body portion 30. The header 3 is fixed to the bulging portion 22 by the opening edge 33 being externally fitted to the peripheral wall portion 22a of the bulging portion 22 and being welded at the outer fitting portion. . In the header 3, a region on the outer side of the case 2 with respect to the tip wall portion 22 b is a hot water distribution chamber 36 communicating with the inside of each heat transfer tube 1.

本実施形態によれば、次のような作用が得られる。   According to this embodiment, the following operation is obtained.

まず、図2(c)に示した各溶接部8は、実質的に1回の溶接作業により設けられたものである。したがって、たとえば複数の伝熱管1を個々に溶接する作業を複数回にわたって繰り返す場合とは異なり、溶接終了時のアフタフローは1回のみでよく、複数回行なう必要はない。また、溶接開始時のプリフローを行なう場合であっても、このプリフローは1回でよい。したがって、溶接作業時間を短くし、熱交換器HE1の生産性を高めることが可能である。   First, each welding part 8 shown in FIG.2 (c) is provided by one welding operation substantially. Therefore, for example, unlike the case where the work of individually welding the plurality of heat transfer tubes 1 is repeated a plurality of times, the after-flow at the end of welding may be performed only once, and does not need to be performed a plurality of times. Further, even when the preflow at the start of welding is performed, this preflow may be performed once. Therefore, it is possible to shorten the welding operation time and increase the productivity of the heat exchanger HE1.

既述したように、溶接作業時間の短縮が図れる結果、溶接進行速度(溶接トーチ9の移動速度)については、その分だけ遅くすることが可能となる。このことにより、溶接部8の全体の品質を高めることが可能である。また、溶接部8のうち、終点Peは、品質が最も悪くなり易い箇所であるものの、各溶接部8における終点Peは、1箇所に過ぎず、伝熱管1の数と同数だけ設けられた構成にはない。したがって、このことによっても溶接部8の品質を高めることができる。   As described above, as a result of shortening the welding operation time, the welding progress speed (movement speed of the welding torch 9) can be reduced by that much. This makes it possible to improve the overall quality of the welded portion 8. In addition, although the end point Pe is the place where the quality is most likely to deteriorate among the welded parts 8, the end point Pe in each welded part 8 is only one place, and the same number as the number of the heat transfer tubes 1 is provided. Not. Therefore, the quality of the welded portion 8 can be improved also by this.

本実施形態の熱交換器HE1は、次に述べるように、耐ウォータハンマ性能を向上させて、耐久性がより優れたものとすることができる効果も得られる。   As will be described below, the heat exchanger HE1 of the present embodiment also has the effect of improving the water hammer resistance and making it more durable.

まず、伝熱管1に配管接続された配管経路にウォータハンマが生じた場合について、図
7を参照して説明する。ウォータハンマの非発生時には、熱交換器HE1は、同図(a)に示す状態にある。これに対し、ウォータハンマが発生し、伝熱管1内の圧力が相当に高くなると、主管体部11はケース2に固定されているために、第1および第2の延設管体部10a,10bは、同図(b)に示すように、上下方向に膨らむように変形し、側板部21をケース2の内側に撓ませる力F2を発生させる。その際、膨出部22の先端壁部22bも撓み変形を生じる。このため、膨出部22Aにおける第1の延設管体部10aの溶接箇所では、この第1の延設管体部10aよりも上側の部分に引張応力σが発生する。膨出部22Bにおける第2の延設管体部10bの溶接箇所では、この第2の延設管体部10bの下側の部分に引張応力σが発生する。前記した引張応力σが発生する箇所は、図2(c)の符号n1,n2で示す部分およびその近辺である(本実施形態とは異なり、仮に、側板部21に膨出部22A,22Bが設けられていない構成とされ、かつ側板部21に設けられた貫通孔に複数の伝熱管1が挿入して溶接されただけの構成の場合も同様な作用を生じる)。
First, the case where a water hammer occurs in the piping path connected to the heat transfer tube 1 will be described with reference to FIG. When the water hammer is not generated, the heat exchanger HE1 is in the state shown in FIG. On the other hand, when a water hammer is generated and the pressure in the heat transfer tube 1 becomes considerably high, the main tube portion 11 is fixed to the case 2, and thus the first and second extending tube portions 10 a, 10b is deformed so as to swell in the vertical direction and generates a force F2 that deflects the side plate portion 21 to the inside of the case 2 as shown in FIG. At that time, the tip wall portion 22b of the bulging portion 22 is also bent and deformed. Therefore, a tensile stress σ is generated in a portion above the first extending tube portion 10a at the welded portion of the first extending tube portion 10a in the bulging portion 22A. Tensile stress σ is generated in the lower portion of the second extending tube portion 10b at the welded portion of the second extending tube portion 10b in the bulging portion 22B. The locations where the tensile stress σ is generated are the portions indicated by reference numerals n1 and n2 in FIG. 2C and the vicinity thereof (unlike this embodiment, the bulging portions 22A and 22B are temporarily provided on the side plate portion 21. The same effect is also obtained in the case of a configuration in which the plurality of heat transfer tubes 1 are simply inserted and welded into the through holes provided in the side plate portion 21 and not provided.

これに対し、本実施形態の熱交換器HE1においては、溶接の不具合が最も生じ易い溶接の終点Peは、前記した符号n1,n2の近辺を避けた位置にあるため、終点Peに前記した引張応力σが作用しないようにし、耐ウォータハンマ性能を高めることができる。また、終点Peは、伝熱管1の相互間領域をも避けた位置であるため、溶接の均一性を高める上でも好ましいものとなる。   On the other hand, in the heat exchanger HE1 of the present embodiment, the welding end point Pe that is most likely to cause a welding failure is located at a position that avoids the vicinity of the above-described symbols n1 and n2, and thus the tension described above for the end point Pe. By preventing the stress σ from acting, the water hammer resistance can be improved. Moreover, since the end point Pe is a position which avoids the area | region between the heat exchanger tubes 1, it becomes a thing preferable also when improving the uniformity of welding.

伝熱管1と側板部21との溶接は、側板部21の外側からの片側溶接であるために、側板部21の内側において溶接を行なう場合とは異なり、TIG溶接トーチ9が伝熱管1の螺旋状管体の部分に干渉するようなことが回避される。側板部21をケース2の本体部20に組み付けた後であっても、前記溶接作業を容易に行なうことが可能である。したがって、熱交換器HE1の生産性をより高め、その製造コストを低減することができる。   Since the welding between the heat transfer tube 1 and the side plate portion 21 is one-side welding from the outside of the side plate portion 21, unlike the case of welding inside the side plate portion 21, the TIG welding torch 9 is a spiral of the heat transfer tube 1. Interfering with the portion of the tubular tube is avoided. Even after the side plate portion 21 is assembled to the main body portion 20 of the case 2, the welding operation can be easily performed. Therefore, the productivity of the heat exchanger HE1 can be further increased and the manufacturing cost can be reduced.

側板部21の内面側に形成された裏ビード部29は、伝熱管1の外周を覆うようにして伝熱管1に一体化し、かつケース2の内方側に突出しているために、たとえば単なる隅肉溶接などと比較すると、その溶接強度を高くし、耐久性により優れたものとすることができる。また、裏ビード部29の先端部およびその近傍部分は、先端側ほど伝熱管1の半径方向の厚みが漸減しているために、応力集中を生じ易い断面急変箇所は存在しない。その結果、伝熱管1と側板部21との接合箇所の強度がより高くなる。   The back bead portion 29 formed on the inner surface side of the side plate portion 21 is integrated with the heat transfer tube 1 so as to cover the outer periphery of the heat transfer tube 1 and protrudes inward of the case 2. Compared with meat welding or the like, the welding strength can be increased and the durability can be improved. Moreover, since the radial direction thickness of the heat exchanger tube 1 is gradually decreasing toward the front end side of the front end portion of the back bead portion 29 and the vicinity thereof, there is no cross-sectional sudden change portion at which stress concentration easily occurs. As a result, the strength of the joint portion between the heat transfer tube 1 and the side plate portion 21 is further increased.

ヘッダ3内のチャンバ36には、伝熱管1の端部が突出していないために、チャンバ36の容積が伝熱管1の存在によって狭められないようにすることができる。また、チャンバ36内と伝熱管1内との間を湯水が流通する際の抵抗を小さくする効果も得られる。   Since the end of the heat transfer tube 1 does not protrude into the chamber 36 in the header 3, the volume of the chamber 36 can be prevented from being reduced by the presence of the heat transfer tube 1. In addition, an effect of reducing resistance when hot water flows between the chamber 36 and the heat transfer tube 1 can be obtained.

その他、本実施形態によれば、側板部21に対するヘッダ3の取り付けも、側板部21の外側において簡易に行なえることとなる。ヘッダ3を側板部21に直接取り付けた構成であるため、全体の部品点数も少なくし、熱交換器HE1の製造コストを低減する上でより好ましく、さらには全体の小型化を図る上でも好ましいものとなる。   In addition, according to the present embodiment, the attachment of the header 3 to the side plate portion 21 can be easily performed outside the side plate portion 21. Since the header 3 is directly attached to the side plate portion 21, it is preferable to reduce the total number of parts, reduce the manufacturing cost of the heat exchanger HE1, and further to reduce the overall size. It becomes.

図8は、本発明の他の実施形態を示している。同図において、前記実施形態と同一または類似の要素には、前記実施形態と同一の符号を付している。   FIG. 8 shows another embodiment of the present invention. In the figure, the same or similar elements as those in the above embodiment are given the same reference numerals as in the above embodiment.

図8においては、前記実施形態とは異なり、ケース2の左右幅方向が、本発明でいう「x方向」に相当するが、上下方向が「y方向」であり、ケース2の前後幅方向が「z方向」である。
本実施形態の熱交換器HE2は、各伝熱管1の主管体部11が、略水平な姿勢の蛇行状管体部とされており、複数の伝熱管1は、上下高さ方向に並んでいる。第1および第2の
延設管体部10a,10bは、ケース2の左右幅方向に延びているが、これらはケース2の前後幅方向に間隔を隔てている。このため、ケース2の側板部21に設けられた2つの膨出部22(22A,22B)は、ケース2の前後幅方向の中心線Lbを挟んでケース2の前後幅方向に離間した配置とされている。各膨出部22における複数の貫通孔28および伝熱管1の端部(第1および第2の延設管体部10a,10b)の配列方向は、上下方向である。
In FIG. 8, unlike the above embodiment, the lateral width direction of the case 2 corresponds to the “x direction” in the present invention, but the vertical direction is the “y direction”, and the longitudinal width direction of the case 2 is “Z direction”.
In the heat exchanger HE2 of the present embodiment, the main tube portion 11 of each heat transfer tube 1 is a meandering tube portion having a substantially horizontal posture, and the plurality of heat transfer tubes 1 are arranged in the vertical height direction. Yes. The first and second extending tube portions 10 a and 10 b extend in the left-right width direction of the case 2, but they are spaced apart in the front-rear width direction of the case 2. For this reason, the two bulging portions 22 (22A, 22B) provided on the side plate portion 21 of the case 2 are arranged so as to be separated in the front-rear width direction of the case 2 across the center line Lb of the case 2 in the front-rear width direction Has been. The arrangement direction of the plurality of through holes 28 in each bulging portion 22 and the end portions of the heat transfer tubes 1 (first and second extending tube portions 10a, 10b) is the vertical direction.

複数の伝熱管1の端部と側板部21との溶接部8(8C,8D)は、先の実施形態の溶接部8(8A,8B)と同様な往復蛇行状の溶接部であり、全体が一筆書き状に繋がり、その始点Psおよび終点Peは1箇所ずつである。ただし、複数の伝熱管1の相互間隔は比較的広いために、図6を参照して説明したような溶接方法が採用されている。前側の膨出部22Aにおける溶接の終点Peは、第1の延設管体部10aの後側(中心線Lb寄りの位置)である。これに対し、後側の膨出部22Bにおける溶接の終点Peは、第2の延設管体部10bの前側(中心線Lb寄りの位置)である。   The welded portions 8 (8C, 8D) between the end portions of the plurality of heat transfer tubes 1 and the side plate portions 21 are reciprocating meandering welded portions similar to the welded portions 8 (8A, 8B) of the previous embodiment. Are connected in a single stroke, and the start point Ps and the end point Pe are one by one. However, since the mutual space | interval of the some heat exchanger tube 1 is comparatively wide, the welding method as demonstrated with reference to FIG. 6 is employ | adopted. The welding end point Pe in the front bulging portion 22A is the rear side (position near the center line Lb) of the first extending tube portion 10a. On the other hand, the welding end point Pe in the rear bulge portion 22B is the front side (position near the center line Lb) of the second extending tube portion 10b.

本実施形態の熱交換器HE2においても、複数の伝熱管1の端部を側板部21に溶接する作業の時間短縮や、溶接の終点Peの少数化などによる溶接品質の向上を図ることが可能である。ウォータハンマ発生時には、前記した熱交換器HE1と同様に、第1および第2の延設管体部10a,10bが膨らんで側板部21を内側に引っ張って撓ませ、かつ各膨出部22の先端壁部22bも撓ませる。このことにより、伝熱管1と側板部21との溶接部分に引張応力が生じるが、第1および第2の延設管体部10bが膨らむ方向はケース2の前後幅方向であるため、符号n1で示す第1の延設管体部10aの前側、および符号n2で示す第2の延設管体部10bの後側に引張応力が発生する。これに対し、溶接の終点Peは、そのような部分とは反対側に設けられているために、やはり溶接の終点Peに引張応力が集中することはなく、耐ウォータハンマ性能を高めることが可能である。   Also in the heat exchanger HE2 of this embodiment, it is possible to improve the welding quality by shortening the work time for welding the end portions of the plurality of heat transfer tubes 1 to the side plate portion 21 and by reducing the number of welding end points Pe. It is. When the water hammer is generated, similarly to the heat exchanger HE1 described above, the first and second extending tube portions 10a and 10b are inflated to pull the side plate portion 21 inward to bend, and the bulging portions 22 The tip wall portion 22b is also bent. As a result, tensile stress is generated in the welded portion between the heat transfer tube 1 and the side plate portion 21, but the direction in which the first and second extending tubular body portions 10 b swell is the front-rear width direction of the case 2, so Tensile stress is generated on the front side of the first extended tubular body portion 10a indicated by and the rear side of the second extended tubular body portion 10b indicated by reference numeral n2. On the other hand, since the welding end point Pe is provided on the side opposite to such a portion, the tensile stress is not concentrated on the welding end point Pe, and the water hammer resistance can be improved. It is.

本発明は、上述した実施形態の内容に限定されない。本発明に係る熱交換器の各部の具体的な構成は、本発明の意図する範囲内で種々に設計変更自在である。   The present invention is not limited to the contents of the above-described embodiment. The specific configuration of each part of the heat exchanger according to the present invention can be variously modified within the range intended by the present invention.

溶接部8の始点Psおよび終点Peの位置は、上述の実施形態で示した位置とは異なる位置とすることができる。本発明が意図する複数の伝熱管とケースの側板部との溶接は、要は、所定の往復蛇行状の一筆書き状に繋がった構成とされ、始点および終点が1箇所ずつとされていればよい。   The positions of the start point Ps and the end point Pe of the welded portion 8 can be different from the positions shown in the above embodiment. The welding of a plurality of heat transfer tubes intended by the present invention and the side plate portion of the case is basically configured to be connected to a predetermined stroke of a reciprocating meandering shape, and the starting point and the ending point are set to one place each. Good.

上述した実施形態では、ケース2の側板部21に設けられた膨出部22の先端壁部22bに伝熱管1を溶接しているが、本発明はこれに限定されない。側板部21に膨出部22を設けるようなことなく側板部21と伝熱管1とを溶接させる場合であっても、本発明を適用し、本発明が意図する作用を得ることが可能である。溶接は、TIG溶接に限定されず、たとえば他のアーク溶接を用いることも可能であり、その具体的な種類は問わない。伝熱管と側板部との溶接を、隅肉溶接とする場合においても、本発明が意図する作用が得られる。   In the embodiment described above, the heat transfer tube 1 is welded to the distal end wall portion 22b of the bulging portion 22 provided on the side plate portion 21 of the case 2, but the present invention is not limited to this. Even when the side plate portion 21 and the heat transfer tube 1 are welded without providing the bulging portion 22 on the side plate portion 21, it is possible to apply the present invention and obtain the intended effect of the present invention. . Welding is not limited to TIG welding, and other arc welding can be used, for example, and the specific type thereof is not limited. Even when the welding of the heat transfer tube and the side plate portion is fillet welding, the effect intended by the present invention can be obtained.

ケース内に流入させる熱交換対象媒体としては、燃焼ガス以外の流体とすることができる。本発明に係る熱交換器は、潜熱回収用に限らないことは勿論のこと、湯水加熱用途以外の種々の用途に用いられるものとすることができる。   The heat exchange target medium flowing into the case may be a fluid other than the combustion gas. The heat exchanger according to the present invention can be used not only for recovering latent heat but also for various uses other than hot water heating.

HE1,HE2 熱交換器
Pa 溶接の始点
Ps 溶接の終点
1 伝熱管
10a,10b 延設管体部
11 主管体部(伝熱管の)
3(3A,3B) ヘッダ
21 側板部(ケースの)
22(22A,22B) 膨出部(第1および第2の領域)
28 貫通孔
2 ケース
8 往復蛇行状の溶接部
81,82 往きおよび戻りの溶接部
HE1, HE2 Heat exchanger Pa Welding start point Ps Welding end point 1 Heat transfer tube 10a, 10b Extended tube portion 11 Main tube portion (of heat transfer tube)
3 (3A, 3B) Header 21 Side plate (case)
22 (22A, 22B) bulge portion (first and second regions)
28 Through-hole 2 Case 8 Reciprocating meandering welds 81, 82 Forward and return welds

HE1,HE2 熱交換器
溶接の始点
溶接の終点
1 伝熱管
10a,10b 延設管体部
11 主管体部(伝熱管の)
3(3A,3B) ヘッダ
21 側板部(ケースの)
22(22A,22B) 膨出部(第1および第2の領域)
28 貫通孔
2 ケース
8 往復蛇行状の溶接部
81,82 往きおよび戻りの溶接部
HE1, HE2 heat exchanger P s welding start point P e welding end point 1 the heat transfer tube 10a, 10b extending設管body 11 main body portion (of the heat transfer tube)
3 (3A, 3B) Header 21 Side plate (case)
22 (22A, 22B) bulge portion (first and second regions)
28 Through-hole 2 Case 8 Reciprocating meandering welds 81, 82 Forward and return welds

Claims (6)

複数の伝熱管と、これら複数の伝熱管を内部に収容するケースと、を備えており、
前記ケースの側板部には、互いに間隔を隔てて一定方向に並ぶ複数の貫通孔が設けられて、これら複数の貫通孔には、前記複数の伝熱管の端部が挿入されており、かつこれら複数の伝熱管の端部のそれぞれの全周が、前記側板部に溶接されている、熱交換器であって、
前記溶接は、前記複数の伝熱管の端部どうしの間を蛇行状に縫う経路の溶接部が、前記一定方向において往復して設けられた往復蛇行状の溶接とされ、
この往復蛇行状の溶接は、全体が一筆書き状に繋がり、溶接の始点および終点のそれぞれが1箇所ずつであることを特徴とする、熱交換器。
A plurality of heat transfer tubes, and a case for accommodating the plurality of heat transfer tubes inside,
The side plate portion of the case is provided with a plurality of through holes arranged in a fixed direction at intervals from each other, and the end portions of the plurality of heat transfer tubes are inserted into the plurality of through holes, and these A heat exchanger in which the entire circumference of each end of the plurality of heat transfer tubes is welded to the side plate portion,
The welding is a reciprocating meandering welding in which a welding portion of a path that sews between end portions of the plurality of heat transfer tubes in a meandering manner is provided in a reciprocating manner in the fixed direction,
The reciprocating meandering welding is connected to the whole in a single stroke, and each of the welding start point and end point is one heat exchanger.
請求項1に記載の熱交換器であって、
前記複数の伝熱管は、前記ケース内に位置決め固定される螺旋状または蛇行状の主管体部と、この主管体部に繋がって所定のx方向に延び、かつx方向に対して交差するz方向に離間した第1および第2の延設管体部と、を有しており、
前記ケースの側板部には、前記複数の伝熱管の第1および第2の延設管体部をそれぞれ溶接するための第1および第2の領域が、前記側板部のz方向の中心線を挟んでz方向に離間した配置に設けられ、かつ前記第1および第2の領域は、ともに前記複数の貫通孔がx,z方向に対して交差するy方向に間隔を隔てて並んで設けられた領域とされており、
前記第1および第2の領域における前記溶接の終点は、前記第1および第2の延設管体部の周囲のうち、前記側板部のz方向の中心線寄りの位置とされている、熱交換器。
The heat exchanger according to claim 1,
The plurality of heat transfer tubes include a spiral or meandering main tube portion positioned and fixed in the case, a z direction connected to the main tube portion, extending in a predetermined x direction, and intersecting the x direction. And first and second extending pipe parts spaced apart from each other,
The side plate portion of the case has first and second regions for welding the first and second extending tube portions of the plurality of heat transfer tubes, respectively, with a center line in the z direction of the side plate portion. The first and second regions are provided so as to be spaced apart from each other in the z direction and are arranged side by side in the y direction where the plurality of through holes intersect the x and z directions. It is considered as an area,
The end point of the welding in the first and second regions is a position near the center line in the z direction of the side plate portion around the first and second extending tube portions. Exchanger.
請求項2に記載の熱交換器であって、
前記ケースの側壁部には、前記ケースの外方に向けて膨出する筒状の周壁部、およびこの周壁部の先端部を塞ぐ先端壁部を有する一対の膨出部が形成され、
これら一対の膨出部の前記先端壁部が、前記第1および第2の領域とされているとともに、前記一対の膨出部の前記周壁部には、前記複数の伝熱管への流体流入用または流出用のヘッダが外嵌されて接合されている、熱交換器。
The heat exchanger according to claim 2,
The side wall portion of the case is formed with a pair of bulging portions having a cylindrical peripheral wall portion that bulges outwardly of the case and a distal end wall portion that closes the distal end portion of the peripheral wall portion,
The tip wall portions of the pair of bulging portions are the first and second regions, and the peripheral wall portions of the pair of bulging portions are for fluid inflow to the plurality of heat transfer tubes. Or a heat exchanger in which an outflow header is fitted and joined.
ケースの側板部に設けられ、かつ互いに間隔を隔てて一定方向に並ぶ複数の貫通孔に、複数の伝熱管の端部を挿入する伝熱管挿入工程と、
この伝熱管挿入工程の後において、前記複数の伝熱管の端部を前記側板部に溶接する溶接工程と、
を有している、熱交換器の製造方法であって、
前記溶接工程においては、前記複数の伝熱管の端部どうしの間を蛇行状に縫うようにして前記複数の伝熱管の端部のそれぞれの略半周ずつを順次溶接し、この溶接位置が前記複数の伝熱管の列の最端に位置する伝熱管の周囲に到達した際には、この伝熱管の端部の全周を溶接してから溶接進行方向を反転させ、その後は前記複数の伝熱管の端部のそれぞれの残りの略半周ずつを順次溶接し、前記複数の伝熱管の端部に対し、一筆書き状に繋がった溶接を施すことを特徴とする、熱交換器の製造方法。
A heat transfer tube insertion step of inserting end portions of the plurality of heat transfer tubes into a plurality of through holes provided in the side plate portion of the case and arranged in a fixed direction at intervals from each other;
After this heat transfer tube insertion step, a welding step of welding the end portions of the plurality of heat transfer tubes to the side plate portion,
A heat exchanger manufacturing method comprising:
In the welding step, the substantially half circumferences of the end portions of the plurality of heat transfer tubes are sequentially welded so as to meander between the end portions of the plurality of heat transfer tubes in a meandering manner. When reaching the periphery of the heat transfer tube located at the extreme end of the row of heat transfer tubes, the welding progress direction is reversed after welding the entire circumference of the end of the heat transfer tube, and then the plurality of heat transfer tubes A method of manufacturing a heat exchanger, comprising: sequentially welding the remaining approximately half of each of the end portions of the plurality of heat transfer tubes, and performing welding connected to the ends of the plurality of heat transfer tubes in a single stroke.
請求項4に記載の熱交換器の製造方法であって、
前記伝熱管挿入工程においては、前記伝熱管の端部を前記側板部の外側に突起状に突出した状態とし、
前記溶接工程においては、前記側板部の外側から溶接を施し、前記貫通孔の周縁部に加え、前記伝熱管の端部の突出部分をも溶融させる、熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 4, Comprising:
In the heat transfer tube insertion step, the end portion of the heat transfer tube is in a protruding state on the outside of the side plate portion,
In the welding process, a method of manufacturing a heat exchanger, wherein welding is performed from the outside of the side plate portion, and the protruding portion of the end portion of the heat transfer tube is melted in addition to the peripheral portion of the through hole.
請求項4または5に記載の熱交換器の製造方法であって、
前記溶接工程おいて、前記複数の伝熱管の端部どうしの間の領域を溶接する際には、他
の領域を溶接する際よりも入熱を少なくする、熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 4 or 5,
The method of manufacturing a heat exchanger, wherein, in the welding step, when the regions between the end portions of the plurality of heat transfer tubes are welded, the heat input is less than when the other regions are welded.
JP2013075515A 2013-03-30 2013-03-30 Heat exchanger and manufacturing method thereof Active JP6153060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075515A JP6153060B2 (en) 2013-03-30 2013-03-30 Heat exchanger and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075515A JP6153060B2 (en) 2013-03-30 2013-03-30 Heat exchanger and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014199169A true JP2014199169A (en) 2014-10-23
JP6153060B2 JP6153060B2 (en) 2017-06-28

Family

ID=52356182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075515A Active JP6153060B2 (en) 2013-03-30 2013-03-30 Heat exchanger and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6153060B2 (en)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3120400A (en) * 1960-07-27 1964-02-04 Babcock & Wilcox Co Welded tubular attachment to a pressure member and method of making same
US3291962A (en) * 1966-03-31 1966-12-13 Bahcock & Wilcox Company Weldment and method of making same
JPS4879144A (en) * 1972-01-24 1973-10-24
JPS5113739B1 (en) * 1969-11-06 1976-05-01
JPS5418437A (en) * 1977-07-08 1979-02-10 Owens Corning Fiberglass Corp Method of welding pipe members
JPS5435146A (en) * 1977-08-25 1979-03-15 Mitsubishi Heavy Ind Ltd Seal welding method of tube plate and tube
JPS574388A (en) * 1980-05-09 1982-01-09 Westinghouse Electric Corp Continuous welding equipment
JPS5747597A (en) * 1980-07-14 1982-03-18 Westinghouse Electric Corp Method of continuously welding tube row to tube plate
JPS5772777A (en) * 1980-08-19 1982-05-07 Framatome Sa Method of continuous automatic welding construction
JPS57159272A (en) * 1981-03-26 1982-10-01 Mitsubishi Heavy Ind Ltd Method and device for automatic welding of tube panel and header
JPS6257768A (en) * 1985-09-06 1987-03-13 Nippon Steel Corp All position automatic arc welding method
JP2000213425A (en) * 1999-01-20 2000-08-02 Hino Motors Ltd Egr cooler
JP2005274045A (en) * 2004-03-25 2005-10-06 Noritz Corp Heat source device
JP2009162461A (en) * 2008-01-10 2009-07-23 Rinnai Corp Heat exchanger for latent heat
JP2011027363A (en) * 2009-07-28 2011-02-10 Paloma Industries Ltd Joint structure and method of constructing the same
CN102151958A (en) * 2011-02-16 2011-08-17 天津津滨石化设备有限公司 Method for welding heat exchanger tube plate and welding joint of heat exchange tube
JP2012002464A (en) * 2010-06-18 2012-01-05 Noritz Corp Heat exchanger, and water heating device including the same
JP2013047575A (en) * 2011-08-27 2013-03-07 Noritz Corp Heat exchanger and hot water device having the same
JP2014070844A (en) * 2012-09-29 2014-04-21 Noritz Corp Heat exchanger and method for manufacturing the same
JP2014109396A (en) * 2012-11-30 2014-06-12 Noritz Corp Heat exchanger and heat exchanger manufacturing method

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3120400A (en) * 1960-07-27 1964-02-04 Babcock & Wilcox Co Welded tubular attachment to a pressure member and method of making same
US3291962A (en) * 1966-03-31 1966-12-13 Bahcock & Wilcox Company Weldment and method of making same
JPS5113739B1 (en) * 1969-11-06 1976-05-01
JPS4879144A (en) * 1972-01-24 1973-10-24
JPS5418437A (en) * 1977-07-08 1979-02-10 Owens Corning Fiberglass Corp Method of welding pipe members
JPS5435146A (en) * 1977-08-25 1979-03-15 Mitsubishi Heavy Ind Ltd Seal welding method of tube plate and tube
JPS574388A (en) * 1980-05-09 1982-01-09 Westinghouse Electric Corp Continuous welding equipment
JPS5747597A (en) * 1980-07-14 1982-03-18 Westinghouse Electric Corp Method of continuously welding tube row to tube plate
JPS5772777A (en) * 1980-08-19 1982-05-07 Framatome Sa Method of continuous automatic welding construction
JPS57159272A (en) * 1981-03-26 1982-10-01 Mitsubishi Heavy Ind Ltd Method and device for automatic welding of tube panel and header
JPS6257768A (en) * 1985-09-06 1987-03-13 Nippon Steel Corp All position automatic arc welding method
JP2000213425A (en) * 1999-01-20 2000-08-02 Hino Motors Ltd Egr cooler
JP2005274045A (en) * 2004-03-25 2005-10-06 Noritz Corp Heat source device
JP2009162461A (en) * 2008-01-10 2009-07-23 Rinnai Corp Heat exchanger for latent heat
JP2011027363A (en) * 2009-07-28 2011-02-10 Paloma Industries Ltd Joint structure and method of constructing the same
JP2012002464A (en) * 2010-06-18 2012-01-05 Noritz Corp Heat exchanger, and water heating device including the same
CN102151958A (en) * 2011-02-16 2011-08-17 天津津滨石化设备有限公司 Method for welding heat exchanger tube plate and welding joint of heat exchange tube
JP2013047575A (en) * 2011-08-27 2013-03-07 Noritz Corp Heat exchanger and hot water device having the same
JP2014070844A (en) * 2012-09-29 2014-04-21 Noritz Corp Heat exchanger and method for manufacturing the same
JP2014109396A (en) * 2012-11-30 2014-06-12 Noritz Corp Heat exchanger and heat exchanger manufacturing method

Also Published As

Publication number Publication date
JP6153060B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP6202391B2 (en) Heat exchanger and manufacturing method thereof
JP6086197B2 (en) Heat exchanger and manufacturing method thereof
US10175008B2 (en) Heat exchanger
JP2018138851A (en) Heat exchanger and manufacturing method thereof
CN206410587U (en) Radiating tube is got ready with reinforcement
JP6406614B2 (en) Heat exchanger header and heat exchanger provided with the same
JP6098990B2 (en) Manufacturing method of heat exchanger
CN206410584U (en) Diplopore gets radiating tube ready
JP2012251673A (en) Heat exchanger
JP6153060B2 (en) Heat exchanger and manufacturing method thereof
KR20140054727A (en) Combustion gas pipe for heat exchange
JP2021085581A (en) Heat exchanger and water heating device including the same
JP4224768B2 (en) EGR cooler and manufacturing method thereof
JP6132130B2 (en) Manufacturing method of heat exchanger
CN207300027U (en) Heat exchanger and fin
JP6150380B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
CN110108137A (en) A kind of heat exchanger and the gas heater with the heat exchanger
JP2013160085A (en) Heat exchanger
JP6119212B2 (en) Heat exchanger
JP5652706B2 (en) Heat exchanger
JP6409453B2 (en) Manufacturing method of heat exchanger
JP2013011410A (en) Fin tube type heat exchanger and hot water device having the same
CN210602337U (en) Heat exchanger and heat pump water heater system with same
JP6252761B2 (en) Heat exchanger with silence function
JPH06201285A (en) Cross-fin heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6153060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170521

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250