JP2014198914A - Knitted fabric and clothing - Google Patents

Knitted fabric and clothing Download PDF

Info

Publication number
JP2014198914A
JP2014198914A JP2013073939A JP2013073939A JP2014198914A JP 2014198914 A JP2014198914 A JP 2014198914A JP 2013073939 A JP2013073939 A JP 2013073939A JP 2013073939 A JP2013073939 A JP 2013073939A JP 2014198914 A JP2014198914 A JP 2014198914A
Authority
JP
Japan
Prior art keywords
knitted fabric
elastic yarn
yarn
stress
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013073939A
Other languages
Japanese (ja)
Other versions
JP6154171B2 (en
Inventor
吉田 裕司
Yuji Yoshida
裕司 吉田
賢二 大屋
Kenji Oya
賢二 大屋
皓大 田中
Kodai Tanaka
皓大 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2013073939A priority Critical patent/JP6154171B2/en
Publication of JP2014198914A publication Critical patent/JP2014198914A/en
Application granted granted Critical
Publication of JP6154171B2 publication Critical patent/JP6154171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Knitting Of Fabric (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a knitted fabric containing elastic yarns, in which the temperature rises instantaneously upon elongation, which permanently generates heat upon elongation when undergone repeated elongation and recovery, and which is excellent in motion followability by wearing motion.SOLUTION: The knitted fabric is composed of elastic yarns and non-elastic yarns. The content of the elastic yarns is 30-60 g/m. The warp knitted fabric is elongated up to 80% and then is returned to the original length. The stress ratio which is obtained from stress of a forward path and stress of a backward path at a point of 50% in the middle of elongation and returning and is expressed by the following expression: stress ratio=(stress of a backward path at a point of 50% (N))/(stress of a forward path at a point of 50% (N)) is 0.60-0.80. The density ratio between the density in a warp direction and the density in a weft direction which is expressed by the following expression: a density ratio=(a density in a warp direction (course/inch))/(a density in a weft direction (wale/inch)) is 1.7-2.2. The elongation stresses in the warp direction and the weft direction when the knitted fabric is elongated 80% are 3.0-6.0 N. The instantaneous exothermic temperature when elongated in at least one of the warp and weft directions is 1.0°C or more.

Description

本発明は、伸長時瞬間的に温度が上昇し、かつ、伸長性及び着用感に優れる、弾性糸を含有する編地、及び該編地からなる衣服に関する。   The present invention relates to a knitted fabric containing an elastic yarn, which has a temperature that instantaneously rises when stretched and is excellent in stretchability and wearing feeling, and a garment made of the knitted fabric.

従来、身体にフィットするスポーツウェアとして弾性糸を含有し、伸長性に優れ着用感の良いウェア開発がおこなわれている。例えば、以下の特許文献1では、インナー、スポーツウェア、水着等に使用可能な伸長性及び伸長回復性に優れ、これにより、新しい機能である運動追随性及び着用感に優れる編地が提案され、これにより、ウェア着用運動時に肘抜けや膝抜け等の型崩れすることがなく、さらに、タイツではずり落ち、シャツではずり上がり等の不快感がなく着用感が良好となる。しかし、近年、特に冬季には、前記の機能に加え保温衣料等、着用時に温度が上昇する衣服が求められ、このため、セルロース等の吸湿発熱繊維を混合した布帛により衣服を製造し、着用時の人体からの不感蒸泄や発汗により発熱させる布帛(例えば、以下の特許文献2参照)の応用がなされているが、吸湿発熱繊維は、繊維の吸湿量が飽和に達すればそれ以上発熱することは無く、発熱時間が短いばかりでなく、吸湿量が飽和に達した後は、繊維中の水分により冷感を感じることさえあった。さらに、吸湿発熱以外の発熱布帛や発熱衣服として、面状発熱体や線状発熱体などのヒーターを衣服に組み込むことなどが知られているが、いずれも、電気により発熱するもので、衣服とした際は重くなり、電極も必要で動きにくい衣服となる。   2. Description of the Related Art Conventionally, sportswear that fits the body contains elastic yarn and has been developed for wear that has excellent extensibility and good wearing feeling. For example, in the following Patent Document 1, excellent stretchability and stretch recovery that can be used for inner, sportswear, swimwear, and the like, thereby proposing a knitted fabric that is excellent in exercise followability and wearing feeling, which are new functions, As a result, there is no loss of shape such as missing elbows or knees during wear wearing exercise, and there is no discomfort such as falling off with tights and rising off with shirts, resulting in good wearing feeling. In recent years, however, especially in winter, in addition to the above functions, clothing that increases in temperature when worn, such as a warming garment, is required. For this reason, clothing is manufactured from a fabric mixed with moisture-absorbing exothermic fibers such as cellulose. Application of a fabric that generates heat by insensitive excretion or sweating from the human body (for example, see Patent Document 2 below), but the moisture-absorbing heat-generating fiber generates more heat when the fiber's moisture absorption reaches saturation. Not only was the heat generation time short, but after the amount of moisture absorption reached saturation, there was even a feeling of cooling due to the moisture in the fibers. Furthermore, it is known to incorporate a heater such as a planar heating element or a linear heating element into a garment as a heating fabric or a heating garment other than hygroscopic heat generation. If you wear it, it will be heavy, and you will need an electrode, making it difficult to move.

また、最近では着用動作時の編地伸長時に発熱するという、これまでと全く違った発熱機能を持つ編地が提案されている(例えば、以下の特許文献3と4参照)。   Recently, there have been proposed knitted fabrics having a completely different heat generation function that generates heat when the knitted fabric is stretched during wearing (for example, see Patent Documents 3 and 4 below).

WO2011/070828WO2011 / 070828 特開2003−227043号公報JP 2003-227043 A 特開2011−195970号公報JP 2011-195970 A 特開2012−112078号公報JP 2012-1112078 A

しかしながら、運動追随性を向上させるためには、どちらかというと編地を低応力、高伸度化する必要があり、また、伸長発熱を向上させるには、どちらかというと高応力、低伸度化する必要があり、伸長時発熱するという機能と、運動追随性や着用感に優れる機能とは相反するため、これらの複合化は困難であった。
本発明が解決しようとする課題は、弾性糸を含有する編地において、伸長時瞬間的に温度が上昇し、編地の伸縮を繰り返せば持続的に伸長時発熱し、かつ、運動追随性及び着用感に優れる編地の提供、並びに、該編地を使用したインナー、スポーツウェアなどの衣服に縫製することにより、保温性、伸長部位の筋肉や関節を暖めることによる怪我の防止、及び脂肪燃焼効果を期待できる衣服を提供することである。
However, in order to improve the movement following ability, it is necessary to make the knitted fabric low stress and high elongation. In order to improve the elongation heat generation, it is rather high stress and low elongation. Since the function of generating heat when stretched is contradictory to the function of being excellent in movement following and wearing feeling, it has been difficult to combine them.
The problem to be solved by the present invention is that, in a knitted fabric containing elastic yarns, the temperature rises instantaneously when stretched, and if the knitted fabric is repeatedly expanded and contracted, heat is generated continuously when stretched, and movement followability and Providing a knitted fabric with excellent wearing feeling, sewing to clothes such as inner and sportswear using the knitted fabric, heat retention, prevention of injuries caused by warming muscles and joints of stretched parts, and fat burning It is to provide clothes that can be expected to be effective.

本発明者等は、上記課題を解決すべく鋭意検討し実験を重ねた結果、非弾性糸と弾性糸とからなる編地において、以下の構成を有することにより、伸長時の瞬間発熱温度が1.0℃以上とし、運動追随性に優れる編地とすることができることを見出し、本発明を完成するに至ったものである。
すなわち、本発明は以下の通りのものである。
As a result of intensive studies and repeated experiments to solve the above-mentioned problems, the present inventors have the following configuration in a knitted fabric composed of inelastic yarns and elastic yarns, so that the instantaneous heat generation temperature during elongation is 1 The present inventors have found that the knitted fabric can be made at a temperature of 0.0 ° C. or higher and has excellent motion following ability, and has completed the present invention.
That is, the present invention is as follows.

[1]弾性糸と非弾性糸とからなる編地であって、該弾性糸の含有量が30〜60g/m2であり、該経編地を80%まで伸長後元の長さに戻し、伸縮途中の50%時点での往路応力と復路応力とで求める下記式:
応力比=(50%時点の復路応力(N))/(50%時点の往路応力(N))
で表される応力比が0.60〜0.80であり、経方向密度と緯方向密度との下記式:
密度比=(経方向密度(コース/インチ))/(緯方向密度(ウェール/インチ))
で表される密度比が1.7〜2.2であり、かつ、該編地の80%伸長時の経方向及び緯方向の伸長応力が3.0〜6.0Nであり、さらに、経緯少なくとも一方向の伸長時瞬間発熱温度が1.0℃以上であることを特徴とする前記編地。
[1] an elastic yarn and non-elastic yarn comprising a knitted fabric, the content of the elastic yarn is 30 to 60 g / m 2, returns the該経knitted fabric elongation after original length up to 80% The following formula obtained from the outward stress and the backward stress at the time of 50% during expansion and contraction:
Stress ratio = (Return stress at 50% (N)) / (Outward stress at 50% (N))
The stress ratio represented by the formula is 0.60 to 0.80, and the following formula of the warp direction density and the weft direction density:
Density ratio = (Draft density (course / inch)) / (Latitudinal density (wale / inch))
The elongation ratio in the warp direction and the weft direction at 80% elongation of the knitted fabric is 3.0 to 6.0 N, and the weft The knitted fabric characterized by having an instantaneous heat generation temperature at least in one direction of elongation of 1.0 ° C or higher.

[2]前記編地を構成する組織中の該弾性糸と該非弾性糸との繊度比=(非弾性糸の繊度/弾性糸の繊度)が1.4〜2.5である、前記[1]に記載の編地。   [2] The fineness ratio of the elastic yarn to the inelastic yarn in the structure constituting the knitted fabric = (fineness of the inelastic yarn / fineness of the elastic yarn) is 1.4 to 2.5 [1] ] The knitted fabric described in].

[3]前記編地を経緯両方向に30%伸長させた時の編組織一単位中の弾性糸のシンカーループの長さと非弾性糸のニードルループの長さとを加えた長さLaと、該経編地を経緯いずれか1方向にさらに50%伸張させた場合の編組織一単位中の弾性糸のシンカーループの長さと非弾性糸のニードルループの長さとを加えた長さLbとの比=(Lb/La)が下式(1):
1.15≦Lb/La≦1.60 (1)
を満たす、前記[1]又は[2]に記載の編地。
[3] A length La obtained by adding the length of the sinker loop of the elastic yarn and the length of the needle loop of the inelastic yarn in one unit of the knitted structure when the knitted fabric is stretched by 30% in both directions. Ratio of the length of the elastic yarn sinker loop in one unit of the knitted fabric and the length of the needle loop of the inelastic yarn when the knitted fabric is further extended by 50% in any one direction of the history = (Lb / La) is the following formula (1):
1.15 ≦ Lb / La ≦ 1.60 (1)
The knitted fabric according to [1] or [2], wherein

[4]複数筬の経編地であり、弾性糸がアトラス組織にて編成されている、前記[1]〜[3]のいずれかに記載の編地。   [4] The knitted fabric according to any of [1] to [3], wherein the knitted fabric is a plurality of warp knitted fabrics and elastic yarns are knitted with an atlas structure.

[5]ダブル丸編地であり、弾性糸を含有するコースと非弾性糸のみのコースが1完全の編順で1本交互に配置されている、前記[1]〜[3]いずれかに記載の編地。   [5] In any of the above [1] to [3], which is a double circular knitted fabric, and a course containing only elastic yarn and a course containing only inelastic yarn are alternately arranged in one complete knitting order. The knitted fabric described.

[6]前記[1]〜[5]のいずれかに記載の編地を含み、身体に密着し、かつ、少なくとも関節部を覆う衣服。   [6] A garment that includes the knitted fabric according to any one of [1] to [5], is in close contact with the body, and covers at least a joint.

[7]ボトム類、トップス類、レッグ類、サポーター類及び手袋からなる群から選ばれる、前記[6]に記載の衣服。   [7] The garment according to [6], selected from the group consisting of bottoms, tops, legs, supporters, and gloves.

本発明の編地が配された衣服は、膝や腕の曲げ伸ばしにより該編地が1.0℃以上発熱して暖かく、保温性に優れると共に、ウェア伸長方向に追随して編地が伸長された際の運動追随性が良好で、着用中に型崩れすることがなく着用快適性に優れる製品となる。さらに、伸長部位の筋肉を暖めることにより怪我の防止効果や脂肪燃焼効果、筋肉温度低下による運動機能低下の防止を期待でき、さらに膝痛等の故障痛の防止及び緩和も期待できる。   The garment in which the knitted fabric of the present invention is arranged is warmed by heating the knitted fabric at a temperature of 1.0 ° C. or more due to bending and stretching of the knees and arms, and is excellent in heat retention, and the knitted fabric is stretched following the wear stretching direction. The product is excellent in the comfort of movement when worn, and does not lose its shape during wearing. In addition, by warming the muscles at the extension site, it can be expected to prevent injuries, fat burning effects, and prevent lowering of motor function due to lowering of muscle temperature, and also prevent and alleviate failure pain such as knee pain.

非弾性糸のニードルループの長さと弾性糸のシンカーループの長さを測定する方法を説明する図である。It is a figure explaining the method to measure the length of the needle loop of an inelastic yarn, and the length of the sinker loop of an elastic yarn. 実施例8においてダブル丸編機で編成したスムース組織の編成図である。FIG. 10 is a knitting diagram of a smooth structure knitted by a double circular knitting machine in Example 8. 編地たるみ性を測定するための装置の概略図である。It is the schematic of the apparatus for measuring knitting fabric sagging property.

以下、本発明について詳細に説明する。
本発明の編地は、26〜40ゲージの複数筬の経編機、及び、28〜36ゲージの丸編機により製造される非弾性糸と弾性糸とからなる編地であって、該弾性糸の含有量が30〜60g/m2であり、該経編地を80%まで伸長後元の長さに戻し、伸縮途中の50%時点での往路応力と復路応力とで求める下記式:
応力比=(50%時点の復路応力(N))/(50%時点の往路応力(N))
で表される応力比が0.60〜0.80であり、経方向密度と緯方向密度との下記式:
密度比=(経方向密度(コース/インチ))/(緯方向密度(ウェール/インチ))
で表される密度比が1.7〜2.2であり、かつ、該編地の80%伸長時の経方向及び緯方向の伸長応力が3.0〜6.0Nであり、さらに、経緯少なくとも一方向の伸長時瞬間発熱温度が1.0℃以上であることを特徴とする。
Hereinafter, the present invention will be described in detail.
The knitted fabric of the present invention is a knitted fabric comprising inelastic yarns and elastic yarns produced by a 26 to 40 gauge multi-warp warp knitting machine and a 28 to 36 gauge circular knitting machine. The yarn content is 30 to 60 g / m 2 , the warp knitted fabric is stretched to 80% after being stretched, and the following formula is obtained from the outward stress and the backward stress at the time of 50% during stretching.
Stress ratio = (Return stress at 50% (N)) / (Outward stress at 50% (N))
The stress ratio represented by the formula is 0.60 to 0.80, and the following formula of the warp direction density and the weft direction density:
Density ratio = (Draft density (course / inch)) / (Latitudinal density (wale / inch))
The elongation ratio in the warp direction and the weft direction at 80% elongation of the knitted fabric is 3.0 to 6.0 N, and the weft The instantaneous heat generation temperature at least in one direction of elongation is 1.0 ° C. or more.

本発明における瞬間発熱温度とは、伸縮以外に外部からのエネルギー供給を受けず、風により伸長発熱温度が変化しないような環境下で、編地を60〜100%伸長し、次いで緩和してもとの長さに戻す工程を1回とする繰り返し伸縮を100回行う間に編地が示す最高温度をサーモグラフィで測定し、試験開始前の編地温度との差から算出された値である。
100回の60〜100%伸縮中又は伸縮完了直後に、編地温度が試験開始前編地温度より高くなれば、瞬間発熱していることを示す。本発明の編地は、この方法により測定した瞬間発熱温度が1.0℃以上あることが必要である。1.0℃未満の瞬間発熱温度では、ほとんど発熱を感じられない。瞬間発熱温度は好ましくは1.5℃以上、より好ましくは2.0℃以上である。瞬間発熱温度が高いほど好適であり、人体に悪影響を与えない範囲であれば上限は特に限定されないが、瞬間発熱温度を高くするために弾性繊維の含有量が多くなりすぎると編地がハイパワーとなって衣服として動き難くなるため、瞬間発熱温度は10℃以下であることが好ましい。また、編地経緯方向のうち、少なくとも一方向の60〜100%伸長時の瞬間発熱温度が1.0℃以上であればよく、編地の経方向と緯方向の両者とも瞬間発熱温度が1.0℃以上の編地の場合は、製品縫製時の型入れ方向を特に考慮しなくてもよいが、一方向のみ瞬間発熱する編地の場合は、人体の関節で特に皮膚伸びが大きい方向を、瞬間発熱が大きい編地の方向と一致させれば、運動動作時暖かい衣服を製造することができる。
In the present invention, the instantaneous heat generation temperature means that the knitted fabric is stretched by 60 to 100% and then relaxed in an environment in which the external heat supply other than expansion and contraction is not received and the heat generation temperature does not change due to wind. The maximum temperature indicated by the knitted fabric is measured by thermography during 100 times of repeated expansion and contraction with the process of returning to the length of 1 and calculated from the difference from the knitted fabric temperature before the start of the test.
If the knitted fabric temperature becomes higher than the knitted fabric temperature before the start of the test during 100 times of 60 to 100% stretching or immediately after completion of stretching, it indicates that instantaneous heat generation has occurred. The knitted fabric of the present invention is required to have an instantaneous heat generation temperature of 1.0 ° C. or higher measured by this method. At an instantaneous heat generation temperature of less than 1.0 ° C., almost no heat generation is felt. The instantaneous heat generation temperature is preferably 1.5 ° C. or higher, more preferably 2.0 ° C. or higher. The upper limit is not particularly limited as long as the instantaneous exothermic temperature is high, and the upper limit is not particularly limited as long as it does not adversely affect the human body, but if the elastic fiber content becomes too high to increase the instantaneous exothermic temperature, the knitted fabric will have high power. Therefore, the instantaneous heat generation temperature is preferably 10 ° C. or less. In addition, the instantaneous heat generation temperature at 60% to 100% elongation in at least one direction of the knitted fabric weft direction may be 1.0 ° C. or more, and the instantaneous heat generation temperature is 1 in both the warp direction and the weft direction of the knitted fabric. In the case of a knitted fabric of 0 ° C or higher, there is no need to take into account the direction of mold insertion when sewing the product, but in the case of a knitted fabric that generates heat instantaneously in only one direction, the direction where the skin elongation is particularly large at the joints of the human body Can be made to coincide with the direction of the knitted fabric having a large instantaneous heat generation, it is possible to manufacture warm clothes during exercise.

なお、伸長発熱温度測定時の伸長量設定は、初期長10.0cm、幅2.5cmの編地の9.8N荷重下での編地伸度により設定し、編地伸度が100%以上の場合の伸長量は100%、編地伸度が60%以上100%未満の場合の伸長量は、9.8N荷重下の伸度に0.9倍した値の伸長量とし、例えば、9.8N荷重下の編地伸度が80%の場合の伸長量は80×0.9=72%として設定する。9.8N荷重下の編地伸度が経方向又は緯方向のいずれか一方の編地伸度が60%以上となるよう設計することが必要であり、経方向と緯方向の両方とも伸度が60%未満の場合は、衣服着用時の突っ張り感が強過ぎて動き難く、肌に密着する衣服に適さないといえる。9.8N荷重下の編地伸度の測定法、発熱温度の測定法は、以下の実施例において具体的に説明する。   Note that the elongation amount at the time of measuring the exothermic temperature is set by the knitted fabric elongation under a 9.8 N load of a knitted fabric having an initial length of 10.0 cm and a width of 2.5 cm, and the knitted fabric elongation is 100% or more. The elongation amount is 100%, and when the knitted fabric elongation is 60% or more and less than 100%, the elongation amount is 0.9 times the elongation under the load of 9.8 N, for example, 9 The extension amount when the knitted fabric elongation under 8 N load is 80% is set as 80 × 0.9 = 72%. It is necessary to design the knitted fabric under a load of 9.8 N so that the knitted fabric in either the warp direction or the weft direction is 60% or more. If it is less than 60%, it can be said that it is not suitable for clothes that are in close contact with the skin because the tension when wearing clothes is too strong to move easily. The measurement method of the knitted fabric under a load of 9.8 N and the measurement method of the exothermic temperature will be specifically described in the following examples.

弾性糸を含有する従来の編地は、編地に伸縮性を持たせ衣服着用時に心地よいフィット感を付与するもので、これにより、スリムな審美性の衣服を得たり、運動機能を向上させたりするものであった。これに対し本発明の目的の一つは、伸縮により発熱をする編地を得るものであり、従来品とは全く異なる発想の編地である。60〜100%伸長時の瞬間発熱温度を1.0℃以上とするには、弾性糸の含有量、弾性糸と非弾性糸との繊度比、ループ数、編地の応力比等を適正な範囲とすること、すなわち、糸使い、ループ構造等の編地設計と、伸長発熱を効率的に発揮するための加工法を含めた編地製造方法とが重要である。本発明により初めて60〜100%伸長時の瞬間発熱温度が1.0℃以上である伸縮性編地が得られ、衣服として着用した時に、着用時の人体関節の伸長量である僅か30〜50%の伸長でも高く発熱し、着用時に発熱が実感できるようになったものである。   Conventional knitted fabrics that contain elastic yarns give the knitted fabric stretchability and give it a comfortable fit when wearing clothes, which makes it possible to obtain slim aesthetic garments and improve motor functions. It was something to do. On the other hand, one of the objects of the present invention is to obtain a knitted fabric that generates heat by expansion and contraction, and is a knitted fabric with a completely different concept from the conventional product. In order to set the instantaneous heat generation temperature at 60 to 100% elongation to 1.0 ° C. or more, the content of elastic yarn, the fineness ratio of elastic yarn to inelastic yarn, the number of loops, the stress ratio of knitted fabric, etc. are appropriate. It is important to set the range, that is, a knitted fabric design such as yarn use and loop structure, and a knitted fabric manufacturing method including a processing method for efficiently exhibiting extension heat generation. According to the present invention, an elastic knitted fabric having an instantaneous heat generation temperature of 1.0 ° C. or higher at 60 to 100% elongation is obtained for the first time. Even when it is stretched by a large percentage, it generates high heat, so that it can be felt when worn.

本発明における編地において、60〜100%伸長時の瞬間発熱温度を1.0℃以上とするには、弾性糸が伸長発熱に大きく寄与している為、弾性糸の含有率が重要であり、そのため、編地中に弾性糸を30〜60g/m2含有させることが必要である。弾性糸を多く含有するほど発熱温度が高くなるため、編地中の弾性糸の含有率は、好ましくは25〜45g/m2である。弾性糸の含有量が少ないと伸長発熱温度が低く、また、弾性糸の含有量が多くなり過ぎると編地重量が増し、編地がハイパワーとなって衣服として動き難くなるため、弾性糸の含有量は30〜60g/m2とするのがよい。 In the knitted fabric of the present invention, in order to make the instantaneous heat generation temperature at 60 to 100% elongation to be 1.0 ° C. or more, the elastic yarn greatly contributes to the elongation heat generation, so the elastic yarn content is important. Therefore, it is necessary to contain 30 to 60 g / m 2 of elastic yarn in the knitted fabric. The more the elastic yarn is contained, the higher the heat generation temperature. Therefore, the content of the elastic yarn in the knitted fabric is preferably 25 to 45 g / m 2 . If the elastic yarn content is low, the exothermic temperature is low, and if the elastic yarn content is too high, the weight of the knitted fabric increases and the knitted fabric becomes high power, making it difficult to move as a garment. The content is preferably 30 to 60 g / m 2 .

本発明の編地について、伸長発熱し、かつ運動追随性に優れる編地設計について検討した結果、本願発明者らは、これらの目的を達成する最適な編地の応力比、及び規定した応力比を達成する手段を見出した。
例えば、弾性糸は伸長される際発熱し、伸長緩和時吸熱され、完全な弾性体、すなわち、伸長時の伸度―応力曲線(S−Sカーブ)が全く重なっている様な弾性体は伸長時の発熱と伸長緩和時の吸熱温度はほぼ同じとなり、つまり、伸長時と伸長緩和時のサイクル全体で発熱量はほぼ0となる。本発明では、編地の伸長時の発熱温度に対して、伸長緩和時の吸熱を最小限に抑えるための編地応力比の規定、及び規定した応力比の範囲を達成するための手段を見出したものである。
Regarding the knitted fabric of the present invention, as a result of studying a knitted fabric design that is exothermic and excellent in movement follow-up, the inventors of the present application have found that the optimal knitted fabric stress ratio that achieves these objects, and the specified stress ratio. Found a means to achieve.
For example, an elastic yarn generates heat when it is stretched, absorbs heat when it is relaxed, and a perfect elastic body, that is, an elastic body in which the elongation-stress curve (SS curve) at the time of elongation completely overlaps. The heat generation temperature at the time and the endothermic temperature at the time of relaxation of elongation are substantially the same, that is, the heat generation amount is substantially zero for the entire cycle at the time of elongation and relaxation. In the present invention, the knitted fabric stress ratio for minimizing the endotherm at the time of stretching relaxation with respect to the heat generation temperature at the time of stretching of the knitted fabric, and means for achieving the specified stress ratio range are found. It is a thing.

応力比については、最適な条件があり、すなわち、伸縮時の応力比は0.60〜0.80であることが極めて重要である。一般の編地の応力比は0.80超であるが、応力比が0.80より大きいと伸長時発熱しても伸長緩和時に吸熱現象が生じ、結果として発熱が小さくなりやすい。また、応力比が0.60未満の場合は、伸長時発熱は高くなるが、衣服とした際は運動追随性が十分でなく、肘や膝の関節部を曲げ伸ばした後に編地が変形して衣服が型崩れして好ましくない。応力比のコントロールは弾性糸の含有量、弾性糸そのものの応力比(弾性糸の伸長時、伸張50%での往復の応力性能)弾性糸と非弾性糸との繊度比、弾性糸のループ構造、弾性糸の編地中での配置、編地の滑り性により、応力比のコントロールが可能である。弾性糸と非弾性糸との繊度比については、繊度比が大きくなるほど応力比は小さくなり、さらに、一般的な弾性糸より小さい応力比の弾性糸を使用して編地作製する方法、あるいは、編地の染色仕上げ時でも応力比のコントロールが可能で、特に、ヒートセット時の加熱条件を強くするのが効果的で、通常のセット温度よりも若干高くして、190〜195℃でのヒートセットが好ましく、セット温度を高くできない場合は、セット時間を通常のセット時間より長くすればよく、例えば、70〜90秒程度とするのが好ましい。さらに、編地が滑りやすくなるように仕上げれば応力比が小さくなり易い。仕上げ剤で具体的に示すと、シリコン系の平滑剤は使用しないことが好ましく、例えば、ポリエステル系の仕上げ剤や、仕上げ剤を使用しないで仕上げることにより応力比を規定の範囲に収めやすい。なお、応力比は、編地を80%まで伸長後元の長さに戻し、伸縮途中の50%時点での往路応力と復路応力を求め、下記式:
応力比=(50%時点の復路応力(N))/(50%時点の往路応力(N))
により、少数点以下3桁目を四捨五入して求める。
尚、編地を80%まで伸長して伸縮途中の応力で応力比を求めるが、編地伸度が低くて80%まで伸長困難な場合は、60%まで伸長して伸長後元の長さに戻し、伸縮途中の50%時点での往路応力と復路応力から応力比を求める。
また、応力比を伸長、及び、回復50%時点での応力により求めるのは、編地伸長時に発熱した温度を伸長回復時に吸熱する程度を捉えやす、応力比が小さいほど吸熱温度が低く、高い伸長発熱温度が得られるからである。
There are optimum conditions for the stress ratio, that is, it is extremely important that the stress ratio during expansion and contraction is 0.60 to 0.80. The stress ratio of a general knitted fabric is more than 0.80. However, if the stress ratio is greater than 0.80, an endothermic phenomenon occurs at the time of elongation relaxation even if heat is generated during elongation, and as a result, heat generation tends to be small. In addition, when the stress ratio is less than 0.60, the heat generation at the time of stretching becomes high, but when it is used as a garment, the followability of movement is not sufficient, and the knitted fabric is deformed after bending and stretching the joints of elbows and knees. This is not preferable because the clothing loses its shape. The stress ratio is controlled by the elastic yarn content, the stress ratio of the elastic yarn itself (when the elastic yarn is stretched, the reciprocating stress performance at 50% stretch), the fineness ratio of the elastic yarn and the inelastic yarn, and the loop structure of the elastic yarn The stress ratio can be controlled by the arrangement of the elastic yarn in the knitted fabric and the slipperiness of the knitted fabric. As for the fineness ratio between the elastic yarn and the non-elastic yarn, the stress ratio decreases as the fineness ratio increases, and further, a method of making a knitted fabric using an elastic yarn having a stress ratio smaller than a general elastic yarn, or It is possible to control the stress ratio even during dyeing of the knitted fabric. In particular, it is effective to increase the heating conditions during heat setting. Heating at 190 to 195 ° C is slightly higher than the normal setting temperature. Setting is preferable, and when the setting temperature cannot be increased, the setting time may be longer than the normal setting time, and for example, it is preferably about 70 to 90 seconds. Furthermore, if the knitted fabric is finished so as to be slippery, the stress ratio tends to be small. Specifically, it is preferable not to use a silicon-based smoothing agent as a finishing agent. For example, the stress ratio is easily within a specified range by finishing without using a polyester-based finishing agent or a finishing agent. The stress ratio is obtained by returning the original length after stretching the knitted fabric to 80%, obtaining the forward stress and the return stress at the time of 50% during expansion and contraction, and the following formula:
Stress ratio = (Return stress at 50% (N)) / (Outward stress at 50% (N))
Calculate by rounding off the third decimal place.
Note that the knitted fabric is stretched to 80% and the stress ratio is determined by the stress during stretching. If the knitted fabric has a low elongation and it is difficult to stretch to 80%, it stretches to 60% and the original length after stretching. The stress ratio is obtained from the outward stress and the backward stress at the time of 50% during expansion and contraction.
In addition, the stress ratio is determined by the elongation and the stress at the time of recovery 50%, because it is easy to grasp the degree of heat absorption at the time of stretching recovery of the knitted fabric. The lower the stress ratio, the lower the endothermic temperature. This is because an exothermic temperature can be obtained.

本発明の編地は、衣服として着用時の動作により弾性糸が効率よく伸長されることも重要である。すなわち、弾性糸を含有する従来の編地では、弾性糸が編地中に蛇行や湾曲しており、編地伸長時に、まず弾性糸の蛇行又は湾曲が伸ばされ、弾性糸が真っ直ぐになる。さらに、ニードルループとシンカーループの交差部でループのズレも生じ、伸長方向によりニードルループ又はシンカーループが小さくなる、すなわち、ニードルループとシンカーループの長さの合計の変化に優先して、弾性糸の蛇行や湾曲が真っ直ぐになったり、ループ変形が生じ、それらの変化の後、弾性糸が伸長されるため、本発明の求める伸長時の発熱を得るには非常に効率の悪い構造である。   In the knitted fabric of the present invention, it is also important that the elastic yarn is efficiently stretched by the operation when worn as clothes. That is, in a conventional knitted fabric containing an elastic yarn, the elastic yarn is meandering or curved in the knitted fabric, and when the knitted fabric is stretched, the elastic yarn is first meandered or curved, and the elastic yarn becomes straight. Furthermore, a loop deviation also occurs at the intersection of the needle loop and the sinker loop, and the needle loop or the sinker loop becomes smaller depending on the extension direction, that is, the elastic yarn has priority over the total change in the length of the needle loop and the sinker loop. Since the elastic yarn is stretched after such changes, the elastic thread is stretched, and the structure is very inefficient to obtain the heat generated at the time of stretching required by the present invention.

これに対し本発明の編地では、編地中の弾性糸の蛇行や湾曲が極めて小さく、編地の伸長が効率よく弾性糸を伸長することになり、その結果、伸長時高い発熱の編地となる。従来編地と本発明の経編地とのこれらの構造的な差異は、次の方法により明確にできる。
編地を経又は緯方向のいずれか一方向に30%伸長し、他の方向の伸長率は0%として伸長させた時の、編組織一単位中の弾性糸のシンカーループの長さと非弾性糸のニードルループの長さとを加えた長さをLaとする。さらに、Laを測定した方向と同じ方向に編地を50%伸長させた場合の編組織一単位中の弾性糸のシンカーループの長さと非弾性糸のニードルループの長さとを加えた長さをLbとする。伸長時高い発熱の編地とするためには、1.15≦Lb/La≦1.60を満足することが好ましい。編組織や染色加工工程条件を調整することより、Lb/Laをこの範囲にすることができる。Lb/Laがこの範囲内であれば着用感を損なうことなく編地は伸長時に発熱する。なお、Lb/Laが1.15未満であれば、編地中の弾性糸の伸長率が低く、その結果、伸長時の発熱温度も実感できないほど低い。さらに、弾性糸の伸長及び伸長回復が悪く、伸長した編地が元に戻らず編地が波打って型崩れが生じ易い。また、1.60より大きいと、弾性糸のパワーが高くなりすぎるため着用し難かったり、動き難い衣服となるばかりでなく、編地の変形が大きく、弾性糸と共に非弾性糸の変形も大きくなりすぎる結果、伸長回復性が不足し、伸長緩和時に編地が波打ったり、洗濯による寸法変化が生じたりして、型崩れの原因となる。従って、LaとLbは、1.15≦Lb/La≦1.60を満足することが好ましく、より好ましくは1.20≦Lb/La≦1.55である。その結果、伸長により発熱するとともに、着用時及び洗濯時に型崩れのない衣服とすることが可能となる。
なお、編地を30%伸長してLaを測定した後、さらにLbを測定するために50%伸長するが、編地伸度が低くて伸長困難な場合は、初期長10.0cm、幅2.5cmの編地の22.05Nの荷重下の伸度まで編地を伸長してLbを測定すればよい。
On the other hand, in the knitted fabric of the present invention, the meandering and bending of the elastic yarn in the knitted fabric is extremely small, and the stretch of the knitted fabric efficiently stretches the elastic yarn. It becomes. These structural differences between the conventional knitted fabric and the warp knitted fabric of the present invention can be clarified by the following method.
Length and inelasticity of the sinker loop of elastic yarn in one unit of knitted fabric when the knitted fabric is stretched by 30% in either the warp or weft direction and the stretch rate in the other direction is 0% A length obtained by adding the length of the needle loop of the yarn is defined as La. Furthermore, the length obtained by adding the length of the sinker loop of the elastic yarn and the length of the needle loop of the non-elastic yarn in one unit of the knitted fabric when the knitted fabric is stretched 50% in the same direction as the La measurement direction. Let Lb. In order to obtain a knitted fabric with high heat generation during elongation, it is preferable that 1.15 ≦ Lb / La ≦ 1.60 is satisfied. Lb / La can be set within this range by adjusting the knitting structure and the dyeing process conditions. When Lb / La is within this range, the knitted fabric generates heat when stretched without impairing the feeling of wearing. In addition, if Lb / La is less than 1.15, the elongation rate of the elastic yarn in the knitted fabric is low, and as a result, the heat generation temperature at the time of elongation is too low to be felt. In addition, the elastic yarn is poorly stretched and recovered from elongation, and the stretched knitted fabric does not return to its original shape, and the knitted fabric is undulated and easily loses its shape. On the other hand, if it is larger than 1.60, the elastic yarn power becomes too high, which makes it difficult to wear and difficult to move, as well as large deformation of the knitted fabric and large deformation of the inelastic yarn together with the elastic yarn. As a result, the stretch recovery property is insufficient, and the knitted fabric undulates at the time of stretching relaxation, or a dimensional change due to washing occurs, which causes a loss of shape. Therefore, La and Lb preferably satisfy 1.15 ≦ Lb / La ≦ 1.60, and more preferably 1.20 ≦ Lb / La ≦ 1.55. As a result, it is possible to make clothes that do not lose shape when worn and washed while generating heat due to elongation.
In addition, after measuring the La by stretching the knitted fabric by 30%, it is further stretched by 50% in order to measure Lb. However, when the knitted fabric has a low elongation and is difficult to stretch, the initial length is 10.0 cm and the width is 2 The Lb may be measured by extending the knitted fabric to an elongation under a load of 22.05 N of a .5 cm knitted fabric.

本発明において、La及びLbは、編地のニードルループ側(テクニカルフェース)から撮影した拡大画像を用いて以下に記載する方法で測定した、編組織一単位中の弾性糸のシンカーループの長さと非弾性糸のニードルループの長さから求める。ここで、本来ならニードルループも弾性糸の長さを測定するのが好ましいが、弾性糸のニードルループは非弾性糸により覆われていることが多く、はっきりループ長を測定することが困難である。従って、非弾性糸のニードルループの下に隠れて弾性糸のニードルループが存在していると確認できる箇所を選択し、伸長時に弾性糸とほぼ同じ動きをする非弾性糸のニードルループの長さを測定して、編地伸長による弾性糸のニードルループ長変化の代用とする。無論、拡大画像を撮影する箇所として、非弾性糸に下に隠れて弾性糸のニードルループが存在しない箇所は選択しない。   In the present invention, La and Lb are the length of the sinker loop of the elastic yarn in one unit of the knitted fabric measured by the method described below using an enlarged image taken from the needle loop side (technical face) of the knitted fabric. Obtained from the length of the needle loop of the inelastic yarn. Here, it is preferable to measure the length of the elastic thread, but the needle loop of the elastic thread is often covered with an inelastic thread, and it is difficult to clearly measure the loop length. . Therefore, the length of the needle loop of the non-elastic yarn that is hidden under the needle loop of the non-elastic yarn and that can be confirmed that the needle loop of the elastic yarn is present is selected and moves almost the same as the elastic yarn when stretched. Is used as a substitute for the change in the needle loop length of the elastic yarn due to the stretch of the knitted fabric. Of course, a portion where the enlarged image is captured is not selected as a portion hidden under the non-elastic yarn and having no needle loop of the elastic yarn.

以下、各ループ長の測定方法について図1を参照して説明する。編地の経緯両方向へ30%伸長し、この状態で編地のニードルループ側を拡大観察する。図1に示すように、非弾性糸のニードルループの下部両側で観察可能なニードルループの最下部2カ所をそれぞれ、始点2と終点3とし、始点2から終点3に至るループ長を測定して、非弾性糸のニードルループ(1)の長さとする。シンカーループについては、図1に示すように、2ウェール間で観察されるニードルループとニードルループ間の弾性糸について、弾性糸の両端をシンカーループの始点5と終点6とし、その間の長さを測定し、弾性糸のシンカーループ(4)の長さとする。   Hereinafter, a method for measuring each loop length will be described with reference to FIG. The knitted fabric is stretched 30% in both directions of the knitted fabric, and in this state, the needle loop side of the knitted fabric is enlarged and observed. As shown in FIG. 1, the lowermost two points of the needle loop that can be observed on both lower sides of the needle loop of the inelastic yarn are set as the start point 2 and the end point 3, respectively, and the loop length from the start point 2 to the end point 3 is measured. , The length of the needle loop (1) of the inelastic yarn. As for the sinker loop, as shown in FIG. 1, regarding the elastic yarn between the needle loop and the needle loop observed between the two wales, both ends of the elastic yarn are set as the start point 5 and the end point 6 of the sinker loop, and the length between them is The length of the elastic thread sinker loop (4) is measured.

カバーリング糸を使用している場合等、弾性糸が非弾性糸に覆われている場合は、弾性糸の所在する部位を推定して弾性糸の長さを測定する。この場合、非弾性糸で覆われている部分の弾性糸は直線状に存在するものとして測定する。また、弾性糸がウェルト組織によりシンカーループが2ウェール以上に跨っている場合は、シンカーループの途中に存在するニードルループに隠されている部分のシンカーループは測定せずに表面から観察されるシンカーループのみの長さを測定し、各ウェールのシンカーループ長の和をシンカーループ(d)長とする。   When the elastic yarn is covered with the non-elastic yarn, such as when using a covering yarn, the portion where the elastic yarn is located is estimated and the length of the elastic yarn is measured. In this case, the elastic yarn in the portion covered with the non-elastic yarn is measured as existing in a straight line. In addition, when the elastic yarn is a welt structure and the sinker loop extends over 2 wales, the sinker loop hidden from the needle loop existing in the middle of the sinker loop is observed from the surface without being measured. The length of only the loop is measured, and the sum of the sinker loop lengths of the respective wales is defined as the sinker loop (d) length.

弾性糸及び非弾性糸のどちらも、繊維束の幅方向中央部の長さを測定する。それぞれ測定後に非弾性糸のニードルループ(a)の長さに弾性糸のシンカーループ(d)の長さを加え、編組織一単位中のループの長さの合計を求めてLaとする。次いで、編地をさらに経方向又は緯方向へ50%伸長し、同様にして編組織一単位中のループの長さの合計を求めてLbとする。このような測定を経方向及び緯方向の両方で行ない、経方向伸長又は緯方向伸長いずれかの方向において、1.15≦Lb/La≦1.60となればよい。なお、一方向しか伸長できない編地の場合は、伸長可能な方向のみを測定してループの長さとする。
La及びLbの測定において、各ループの長さをミクロン(μm)単位で測定し、少なくとも小数点3桁目までの長さを求め、任意に10カ所測定した平均長さを求める。この平均長さに基づいてLb/Laを計算し、小数点3桁目を四捨五入する。
Both the elastic yarn and the non-elastic yarn measure the length of the center portion in the width direction of the fiber bundle. After each measurement, the length of the needle loop (a) of the inelastic yarn is added to the length of the sinker loop (d) of the elastic yarn, and the total length of the loops in one unit of the knitted structure is obtained as La. Next, the knitted fabric is further stretched by 50% in the warp direction or the weft direction, and the total length of the loops in one unit of the knitted structure is obtained in the same manner as Lb. Such measurement is performed in both the longitudinal direction and the weft direction, and it is sufficient that 1.15 ≦ Lb / La ≦ 1.60 in either the longitudinal direction or the longitudinal direction. In the case of a knitted fabric that can be stretched in only one direction, only the stretchable direction is measured and used as the loop length.
In the measurement of La and Lb, the length of each loop is measured in units of microns (μm), the length to at least the third digit of the decimal point is obtained, and the average length measured arbitrarily at 10 places is obtained. Lb / La is calculated based on this average length, and the third decimal place is rounded off.

また、編組織一単位とは、経編の場合、デンビー組織の様にニットループとシンカーループが一定の規則で繰り返される場合は、ニットループ1ループと、シンカーループ1ループとを加えた長さがLa又はLbとなり、また、コース方向にニットと挿入を1コース毎に繰り返す場合は、挿入部分のループもニットループとして扱い、ニットループ1ループと、挿入部分のループと、シンカーループ2ループとを加えた長さがLa、又はLbとなる。
丸編の場合、ニードルループとシンカーループとの組織で繰り返される一単位をいい、例えば、ウェール方向にニットとタックを1ウェール毎に繰り返す場合は、タックループもニードルループとして、ニットループ1ループとタックループ1ループとの和が一単位のニードルループであり、これに、シンカーループ2ループを加えた長さがLa又はLbとなる。なお、編組織がウェルトの場合は、非弾性糸によるニードルループの幅を、ウェルト組織時のニードルループ長とする。
In addition, in the case of warp knitting, the unit of the knitting structure is a length obtained by adding one knit loop and one sinker loop when a knit loop and a sinker loop are repeated according to a certain rule like a denby structure. Becomes La or Lb, and when knit and insertion are repeated in the course direction every course, the loop of the insertion part is also treated as a knit loop, and the loop of the knit loop, the loop of the insertion part, and the loop of the sinker loop 2 The length obtained by adding is La or Lb.
In the case of circular knitting, it means one unit that is repeated in the structure of the needle loop and sinker loop. For example, when knit and tack are repeated in every direction in the wale direction, the tack loop is also a needle loop, The sum of the tuck loop 1 loop is a needle loop of one unit, and the length obtained by adding the sinker loop 2 loop to this is La or Lb. When the knitted structure is a welt, the width of the needle loop made of inelastic yarn is the needle loop length in the welt structure.

また、経方向に50%伸長した場合、主にニードルループが伸長され、シンカーループの伸長は少ない。一方、緯方向に50%伸長した場合は、主にシンカーループが伸長されニードルループの伸長は少ないのが一般的である。従って、伸長時の発熱は、経方向の伸長時にはニードルループが大きく寄与し、逆に、緯方向の伸長時にはシンカーループが大きく寄与している。これらの各ループのみに注目し、La及びLb測定時のニードルループの変化量のみを取り出した場合、経方向50%伸長時のニードルループの変化量は、伸長前に比べて1.1〜1.6倍が好ましく、緯方向50%伸長時のシンカーループ変化量は伸長前に比べて、1.8〜4.0倍が好ましい。なお、この場合、編地伸長量よりも変化量が大きくなるのは、シンカーループが伸長により長くなるのは当然であるが、本発明の伸縮性緯編地ではニードルループ部分は伸長してもしっかり固定されていることが多く、ニードルループ部分が緯方向に伸長され難く、その分シンカーループが編地伸長量以上に伸ばされることになり、その結果、編地伸長量よりもシンカーループの変化量が多くなるのである。   When the warp direction is extended by 50%, the needle loop is mainly extended, and the sinker loop is little extended. On the other hand, when extending 50% in the weft direction, the sinker loop is generally extended and the needle loop is generally not extended. Therefore, the needle loop greatly contributes to the heat generation at the time of extension in the warp direction, and conversely, the sinker loop greatly contributes to the extension in the weft direction. When focusing only on each of these loops and taking out only the change amount of the needle loop at the time of La and Lb measurement, the change amount of the needle loop at the time of 50% elongation in the warp direction is 1.1 to 1 compared with that before the elongation. .6 times is preferable, and the amount of change in the sinker loop at the time of 50% elongation in the weft direction is preferably 1.8 to 4.0 times that before the elongation. In this case, the amount of change is larger than the amount of stretch of the knitted fabric. Naturally, the sinker loop becomes longer due to the stretch, but in the stretchable weft knitted fabric of the present invention, the needle loop portion is stretched. In many cases, the needle loop part is not easily stretched in the weft direction, and the sinker loop is stretched more than the stretch amount of the knitted fabric. As a result, the change of the sinker loop is larger than the stretch amount of the knitted fabric. The amount increases.

本発明による編地で、ループ長の変化比Lb/Laを1.15≦Lb/La≦1.65とするには、経編ではランナー長、シンカー形状の変更及びノックオーバー深さの調整、丸編では度目、編込み長(ループ長)の調整により弾性糸の湾曲や蛇行を減らすこと、さらに、特に染色加工時の密度コントロールにより可能である。すなわち、編地の生機は染色加工により密度が大きく増加し、生機の状態より1.3〜1.8倍程度密度アップすることが一般的である。これは、弾性糸を含有する従来の一般の編地は伸縮性付与が大きな目的で、密度アップをこの程度にすることにより、良好な伸縮性を有する編地が得られるからである。これに対し本発明の編地は、伸長時に発熱させることが第1の目的で、編地の伸長時、編地中の弾性糸が効率よく伸長される必要がある。従って、染色加工上がりの編地の弾性糸はほぼ真っ直ぐな状態となるよう設定する必要があり、反面、伸長性及び着用感に優れている必要があり、その為、染色加工後の編地は通常に仕上げるよりも粗密度に仕上げ、かつ、伸長性を低下させ過ぎないようにするため、生機を若干粗密度で編成すればよい。   In the knitted fabric according to the present invention, in order to set the change ratio Lb / La of the loop length to 1.15 ≦ Lb / La ≦ 1.65, in the warp knitting, the runner length, the change of the sinker shape, and the adjustment of the knockover depth, In circular knitting, it is possible to reduce the curvature and meandering of the elastic yarn by adjusting the stitch length (loop length), and also by controlling the density especially during dyeing. That is, the density of the knitting fabric machine is generally increased by the dyeing process, and is generally about 1.3 to 1.8 times higher than the density of the production machine. This is because the conventional general knitted fabric containing elastic yarn has a large purpose of imparting stretchability, and by increasing the density to this extent, a knitted fabric having good stretchability can be obtained. On the other hand, the first purpose of the knitted fabric of the present invention is to generate heat at the time of stretching, and the elastic yarn in the knitted fabric needs to be efficiently stretched when the knitted fabric is stretched. Therefore, it is necessary to set the elastic yarn of the knitted fabric after the dyeing process to be almost straight, and on the other hand, it is necessary to have excellent extensibility and a feeling of wearing. In order to finish to a coarse density rather than finish normally and not to reduce the extensibility too much, the raw machine may be knitted to a little coarse density.

本発明の編地について、さらに、伸長発熱し、かつ、伸長性、着用感が良好となる編地設計について検討した結果、本発明者らは、弾性糸と非弾性糸との繊度比が重要であることを見出した。すなわち、弾性糸の含有量が少なくても、非弾性糸との組み合わせ方によっては伸長発熱温度が高く、また逆に弾性糸の含有量が多くても非弾性糸との組み合わせ方によっては伸長発熱温度が高く、かつ、編地応力も高くなり過ぎない組み合わせがあり、これら弾性糸と非弾性糸の糸使いが重要である。染色仕上げ加工後、製品での編地を構成する弾性糸の組織と編地を構成する非弾性糸の組織との繊度比を1.4〜2.5とすることにより、好適に伸長発熱し、伸長性と着用感が良好となる編地とすることが可能で、繊度比が1.4未満では、編地がハイパワーとなって衣服とした際は動き難くなり、また、繊度比が2.5より大きい場合も、風合いが硬くなり、動き難い衣服となるとともに、伸長発熱温度が十分に上昇しない。   Regarding the knitted fabric of the present invention, as a result of studying the knitted fabric design that generates heat extensibility and has good stretchability and wearing feeling, the present inventors have found that the fineness ratio of the elastic yarn and the inelastic yarn is important. I found out. That is, even if the elastic yarn content is low, the elongation heat generation temperature is high depending on the combination with the non-elastic yarn, and conversely, even if the elastic yarn content is large, the elongation heat generation depends on the combination with the non-elastic yarn. There are combinations where the temperature is high and the knitted fabric stress is not too high, and the use of these elastic and inelastic yarns is important. After dyeing and finishing, by setting the fineness ratio of the elastic yarn structure constituting the knitted fabric in the product and the non-elastic yarn structure constituting the knitted fabric to 1.4 to 2.5, heat generation is suitably generated. It is possible to make a knitted fabric with good extensibility and wearing feeling. When the fineness ratio is less than 1.4, the knitted fabric becomes high power and difficult to move, and the fineness ratio is When the ratio is larger than 2.5, the texture becomes stiff and the clothes are hard to move, and the elongational heat generation temperature does not rise sufficiently.

なお、本願明細書中、編地を構成する弾性糸の組織、編地を構成する非弾性糸の組織とは以下のように定義する。
経編の場合、複数の筬により経編地を構成する組織で、弾性糸、非弾性糸ともに最もニートループが多い組織、また、弾性糸、非弾性糸が複数の筬を使用している場合も、最もニットループが多い筬による組織であり、さらに、それぞれ複数の筬を使用している際は、弾性糸の場合は最も太い弾性糸の筬による最もニットループが多い組織、非弾性糸の場合は最も細い非弾性糸の筬による最もニットループが多い組織について、それぞれ別々に繊度を測定する。
例えば、3枚筬組織で、フロント非弾性糸54dtのコード組織、ミドル非弾性糸33dtのデンビー組織、バック弾性糸33dtのアトラス組織の場合、経編地を構成する弾性糸の組織で使用している繊維は33dt、経編地を構成する非弾性糸の組織で使用している繊維は33dtで、これらの繊度比を求める。
丸編の場合には、編地を構成する組織(編順で示す各コースの組織)で、弾性糸で構成する最もニットループが多い組織、及び非弾性糸で構成する最もニットループが多い組織について、それぞれ別々に繊度を測定する。例えば、図2での弾性糸の緯編地を構成する組織とは、編順1又は3の組織であり、非弾性糸の緯編地を構成する組織とは、編順1〜4いずれかの組織である。非弾性糸が紡績糸である場合も同様である。弾性糸又は非弾性糸で構成する組織が2種以上の糸で構成され、同じニットループ数である場合には、最も繊度の小さい糸で構成される組織を、緯編地を構成する組織とする。さらに、弾性糸がカバーリング糸、撚糸、噴射加工糸等の被覆弾性糸である場合は、被覆弾性糸の弾性糸と非弾性糸との繊度比を求める。被覆弾性糸で使用されている非弾性糸が2種以上の場合は、最も細い非弾性糸と弾性糸との繊度比を求めればよい。さらに、弾性糸が2種以上の場合は、ニットループが最も多い弾性糸と非弾性糸との繊度比を求め、弾性糸が2種以上で、ニットループ数が同じ場合には、最も太い弾性糸と非弾性糸との繊度比を求める。
In the present specification, the structure of the elastic yarn constituting the knitted fabric and the structure of the non-elastic yarn constituting the knitted fabric are defined as follows.
In the case of warp knitting, a structure in which a warp knitted fabric is constituted by a plurality of wrinkles, and a structure having the most neat loops for both elastic yarns and inelastic yarns, and when elastic yarns and inelastic yarns use a plurality of wrinkles However, when using a plurality of folds, each of the knitted loops has a structure with the most knitted loops due to the thickest elastic yarn folds. In this case, the fineness is measured separately for each tissue having the most knit loops due to the thinnest inelastic yarns.
For example, in the case of a three-ply structure, a cord structure of the front inelastic thread 54dt, a denby structure of the middle inelastic thread 33dt, and an atlas structure of the back elastic thread 33dt, it is used as the elastic yarn structure constituting the warp knitted fabric. The fiber used is 33 dt, and the fiber used in the inelastic yarn structure constituting the warp knitted fabric is 33 dt.
In the case of circular knitting, the structure constituting the knitted fabric (the structure of each course shown in the knitting order) has the most knitted loops composed of elastic yarns and the most knitted loops composed of inelastic yarns. For each, measure the fineness separately. For example, the structure constituting the weft knitted fabric of the elastic yarn in FIG. 2 is the structure of the knitting order 1 or 3, and the structure constituting the weft knitted fabric of the non-elastic yarn is any of the knitting orders 1 to 4. Organization. The same applies when the inelastic yarn is a spun yarn. When the structure composed of elastic yarn or inelastic thread is composed of two or more kinds of yarns and has the same number of knit loops, the structure composed of the yarn with the smallest fineness is the structure constituting the weft knitted fabric To do. Furthermore, when the elastic yarn is a covered elastic yarn such as a covering yarn, a twisted yarn, or an injection-processed yarn, the fineness ratio between the elastic yarn and the inelastic yarn of the covered elastic yarn is obtained. When there are two or more types of inelastic yarns used in the coated elastic yarn, the fineness ratio between the thinnest inelastic yarn and the elastic yarn may be obtained. Furthermore, when there are two or more types of elastic yarns, the fineness ratio between the elastic yarns with the largest number of knit loops and the non-elastic yarns is determined. When there are two or more types of elastic yarns and the number of knit loops is the same, the thickest elasticity is obtained. The fineness ratio between the yarn and the inelastic yarn is determined.

本発明による編地では、弾性糸と非弾性糸との繊度比を1.4〜2.5とするが、通常の経編地の繊度比は2.8〜5.0程度であるため、本発明の編地は弾性糸の繊度が非弾性糸の繊度に比較して大きいのが特徴であり、この編地を通常に編成して仕上げた場合、風合いが硬く、編地応力が高くなりすぎることがある。そこで、本発明の編地を製造する場合、編成時に弾性糸を通常より多く伸長して、編地中の弾性糸を見掛け上細くなる様に編成することが重要であり、また、編地の密度を若干下げて編成するのが好ましい。具体的には、通常の編地に比べ、経編の場合は非弾性糸のランナーを数%多くし、弾性糸のランナーを短く、丸編の場合は、非弾性糸の編込み長を数%長くし、弾性糸の伸長率を多くするのが好ましい。   In the knitted fabric according to the present invention, the fineness ratio of the elastic yarn and the inelastic yarn is 1.4 to 2.5, but the fineness ratio of a normal warp knitted fabric is about 2.8 to 5.0, The knitted fabric of the present invention is characterized in that the fineness of the elastic yarn is larger than the fineness of the non-elastic yarn, and when this knitted fabric is normally knitted and finished, the texture is hard and the knitted fabric stress is high. It may be too much. Therefore, when producing the knitted fabric of the present invention, it is important to stretch the elastic yarn more than usual at the time of knitting so that the elastic yarn in the knitted fabric becomes apparently thin. It is preferable that the knitting is performed at a slightly lower density. Specifically, in comparison with normal knitted fabric, in the case of warp knitting, the number of inelastic yarn runners is increased by a few percent, the elastic yarn runner is shortened, and in the case of circular knitting, the inelastic yarn knitting length is several. It is preferable to increase the elongation percentage of the elastic yarn by increasing the length by%.

さらに、染色加工時、通常よりも編地を若干伸長気味に仕上げることが好ましく、目安として編地密度設定は、プレセット時に幅方向は生地幅の中央部の密度(ウェール/インチ)が、編機のゲージの2倍となるよう設定し、編地長さ方向の密度(コース/インチ)はウェールの約倍の密度として設定し、染色後に編地の伸長発熱温度、80%伸長時の応力、応力比等を仮評価し、仕上げ時の密度条件を設定する。例えば、伸長発熱温度が1℃未満の場合は密度を低下させ、応力が高い場合は密度を増加させる、応力比が高い場合は、加熱セット条件を強くする等、仮評価により条件設定する。これらの方法によっても通常の編地より粗密度になっており、これにより、弾性糸の含有量は少し低下するが編地中の弾性糸は伸長されたままとなる結果、通常の経編地では、弾性糸原糸の繊度と、染色加工後の弾性糸の繊度とを比較すると、染色加工後の弾性糸の繊度は、原糸の繊度と同じかそれより数%細くなっているのに対し、本発明の編地では、弾性糸原糸の繊度と染色加工後の繊度を比較した場合、染色加工後、10〜20%程度弾性糸が細くなり、伸長発熱温度の低下は少ないのに編地応力は低くすることが可能となっている。さらに、染色加工時に重要なことは、ヒートセット時、セット温度を高くする、セット時間を長くするなど、熱処理条件を強くして、編地を伸長したままセットして、編地中の弾性糸をなるべく細くすることである。また、これらの編地を伸長してセットする目安としては、初期長10.0cm、幅2.5cmにサンプリングした編地の9.8N荷重下での編地伸度を、最大でも150%以内となるよう設定することが好ましい。   Furthermore, it is preferable that the knitted fabric is slightly stretched more than usual at the time of dyeing. As a guideline, the knitted fabric density is set so that the density in the center of the fabric width (wale / inch) is set in the width direction during presetting. The density (course / inch) in the knitted fabric length direction is set to be approximately twice the density of the wale, and the exothermic temperature of the knitted fabric after dyeing and the stress at 80% elongation. Temporarily evaluate the stress ratio, etc., and set the density conditions for finishing. For example, conditions are set by provisional evaluation, such as decreasing the density when the exothermic temperature is less than 1 ° C., increasing the density when the stress is high, and increasing the heating set condition when the stress ratio is high. These methods also give a coarser density than a normal knitted fabric, and as a result, the elastic yarn content is slightly reduced, but the elastic yarn in the knitted fabric remains stretched. When comparing the fineness of the elastic yarn and the fineness of the elastic yarn after the dyeing process, the fineness of the elastic yarn after the dyeing process is equal to the fineness of the original yarn or a few percent thinner than that. In the knitted fabric of the present invention, when the fineness of the elastic yarn raw yarn and the fineness after dyeing are compared, the elastic yarn becomes thin by about 10 to 20% after dyeing, and the knitted fabric has a small decrease in elongation heat generation temperature. The stress can be lowered. Furthermore, what is important during dyeing is that the elastic yarn in the knitted fabric is set while the knitted fabric is stretched by increasing the heat treatment conditions such as increasing the set temperature and lengthening the set time during heat setting. Is as thin as possible. In addition, as a guideline for setting these knitted fabrics by stretching, the knitted fabric elongation under a 9.8N load of the knitted fabric sampled to an initial length of 10.0 cm and a width of 2.5 cm is within 150% at the maximum. It is preferable to set so that.

本発明による糸の繊度比の求め方は、弾性糸と非弾性糸との断面積の比で求める。断面積は、測定する編地を構成する組織中の非弾性糸と弾性糸の断面を観察して断面積を求め、それぞれの断面積についてマルチフィラメントの場合はフィラメント数分の和を、非弾性糸と弾性糸別々に求めた数値を繊度とする。この際、糸の断面は円形、楕円形、W型、三角形、L型等種々の形があり、電子顕微鏡等での観察のみでは断面積を測定できない場合が多く、そのため、断面積を容易に求めるには、糸の断面観察時、面積と重量の判っているほぼ均一な用紙に断面を拡大して印刷し、印刷後に断面通りに裁断して裁断後の用紙の重量を測定し裁断前の用紙の重さと拡大率の比で断面積を求めることが可能である。この場合、弾性糸と非弾性糸とを同じ倍率で観察して用紙に印刷して断面を裁断し、弾性糸と非弾性糸の断面積を比較すれば繊度比が容易に求めやすくなる。また、紡績糸の場合も同様に、断面を印刷後に、1本1本の繊維の断面を裁断し、裁断面での繊維数(単糸数)の和を断面積とする。断面積を測定する部位は、ニードルループ部分とシンカーループ部分とで行い、測定はループを変えて、ニードルループ、シンカーループそれぞれ10ヶ所の断面で求めた平均を断面積、及び繊度比とする。なお、ニードルループ部分、シンカーループ部分とも、同じループでありながら伸ばされていたり、変形等により形状が異なるループが存在している場合、この場合は、編地中最も多い形状の部位で測定し、下記式:
繊度比=(非弾性糸の断面積)/(弾性糸の断面積)
により求める。
また、用紙に断面を印刷し、断面を切り取って繊度比を求める場合は下記式:
繊度比=(非弾性糸の断面を切り取った用紙の重量)/(弾性糸の断面を切り取った用紙の重量)
により求める。
The method for obtaining the fineness ratio of the yarn according to the present invention is obtained by the ratio of the cross-sectional areas of the elastic yarn and the inelastic yarn. The cross-sectional area is determined by observing the cross-sections of the inelastic yarn and elastic yarn in the tissue constituting the knitted fabric to be measured. For each cross-sectional area, in the case of multifilaments, the sum of the number of filaments is inelastic. The value obtained separately for the yarn and the elastic yarn is defined as the fineness. At this time, the cross section of the yarn has various shapes such as a circle, an ellipse, a W shape, a triangle, and an L shape. In many cases, the cross sectional area cannot be measured only by observation with an electron microscope or the like. To determine the cross-section of the yarn, enlarge the cross-section on an almost uniform paper with a known area and weight, cut it according to the cross-section after printing, and measure the weight of the paper after cutting. The cross-sectional area can be obtained by the ratio between the weight of the paper and the enlargement ratio. In this case, the fineness ratio can be easily obtained by observing the elastic yarn and the non-elastic yarn at the same magnification, printing on paper, cutting the cross section, and comparing the cross-sectional areas of the elastic yarn and the non-elastic yarn. Similarly, in the case of spun yarn, after printing the cross section, the cross section of each single fiber is cut, and the sum of the number of fibers (number of single yarns) in the cut cross section is taken as the cross sectional area. The cross-sectional area is measured at the needle loop portion and the sinker loop portion, and the measurement is performed by changing the loop, and the average obtained from the cross-sections at 10 locations of the needle loop and the sinker loop is taken as the cross-sectional area and the fineness ratio. If the needle loop part and the sinker loop part are the same loop but are stretched, or there are loops with different shapes due to deformation, etc., in this case, measure at the most shaped part of the knitted fabric. , The following formula:
Fineness ratio = (cross-sectional area of inelastic yarn) / (cross-sectional area of elastic yarn)
Ask for.
In addition, when printing a cross section on paper and cutting the cross section to obtain the fineness ratio, the following formula:
Fineness ratio = (weight of paper from which cross section of inelastic yarn is cut) / (weight of paper from which cross section of elastic yarn is cut)
Ask for.

本発明の編地及び衣服は、伸長発熱とともにウェアでの運動追随性が良好で、型崩れすることなく、着用感が良好である事を目的とし、これらの目的を達成するため、弾性糸の含有量、応力比、繊度比、Lb/La等の他に、特に運動追随性を良好とするため、編地の80%伸長時の経方向、及び、緯方向の伸長応力が3.0〜6.0Nとするのが好ましく、伸長応力が3.0N未満では編地応力が低すぎて運動追随性が不十分で型崩れし易く、6.0Nより大きいと、動き難く着用感に優れないウェアとなるため、編地の80%伸長時の経方向、及び、緯方向の伸長応力を3.0〜6.0Nとすればよく、このため、弾性糸の繊度とともに、編地の密度比、編地のループ数の限定により達成可能となる。
編地の密度比は、特に運動追随性を良好とするためには編地経方向と編地緯方向の伸度バランスが重要であり、伸度バランスを最適とするために経方向密度と緯方向密度との下記式:
密度比=(経方向密度(コース/インチ))/(緯方向密度(ウェール/インチ))により求める密度比を、1.7〜2.2の特定の範囲に設定することにより、伸長発熱と運動追随性とのバランスを最適化できるのである。すなわち、通常の編地の密度比は、1.6以下の編地が多く、このため、本願では特にコース方向(経方向)の密度アップが重要で、これにより、密度比を1.7〜2.2の範囲内とするのが好ましく、密度比が1.7未満では、経方向伸度が低く、運動追随性が不良で型崩れや、着用でずれやすいウェアとなり、密度比が2.2より大きい場合は、経方向、または、経緯両方向とも伸長発熱し難い編地となり、本願の目的は達成されない。従い密度比は、1.7〜2.2、より好ましくは、1.8〜2.1とするのがよい。得られた密度比は小数点2桁まで求め、2桁目を四捨五入して密度比とする。
The knitted fabric and garment of the present invention have good heat followability with wear as well as stretching heat generation, and are intended to have a good wearing feeling without being out of shape. In addition to the content, stress ratio, fineness ratio, Lb / La, etc., in order to particularly improve the movement followability, the warp direction and the weft direction elongation stress at the time of 80% elongation of the knitted fabric are 3.0 to 6.0N is preferable. If the elongation stress is less than 3.0N, the knitted fabric stress is too low and the movement followability is insufficient, and the shape tends to lose its shape. If it is larger than 6.0N, the movement is difficult and the wearing feeling is not excellent. For this reason, the warp direction and the weft direction elongation stress at 80% elongation of the knitted fabric should be 3.0 to 6.0 N. For this reason, along with the fineness of the elastic yarn, the density ratio of the knitted fabric This can be achieved by limiting the number of loops of the knitted fabric.
As for the density ratio of the knitted fabric, the elongation balance between the knitted fabric warp direction and the knitted fabric weft direction is important in order to improve the movement followability, and in order to optimize the elongation balance, The following formula with directional density:
By setting the density ratio obtained by density ratio = (passage direction density (course / inch)) / (weft direction density (wale / inch)) to a specific range of 1.7 to 2.2, The balance with exercise tracking can be optimized. That is, the density ratio of ordinary knitted fabrics is often 1.6 or less, and in this application, it is particularly important to increase the density in the course direction (warp direction). If the density ratio is less than 1.7, the warp elongation is low, the followability of the movement is poor, and the wear becomes easy to lose shape or wear, and the density ratio is 2. When it is larger than 2, the warp direction or the weft direction is a knitted fabric that hardly generates heat and the object of the present application is not achieved. Therefore, the density ratio should be 1.7 to 2.2, more preferably 1.8 to 2.1. The obtained density ratio is obtained up to two decimal places, and the second digit is rounded off to obtain the density ratio.

本発明編地では、密度比等に加え、編地の経方向密度(コース/インチ)と編地の緯方向密度(ウェール/インチ)との積であるループ数も重要であり、ループ数を特定の範囲内に入れることにより、伸長発熱と編地の応力とのバランスを最適化できるのであり、すなわち、ループ数が5000〜12000の範囲内が好ましく、弾性糸の含有量、弾性糸と非弾性糸との繊度比が規定の範囲内であっても伸張発熱温度が低かったり、編地が高応力となったりすることがある。ループ数が12000より多い場合は編地が高応力となり、動き難い衣服となる、特に、ループ数が5000未満の場合は、衣服とした際に突っ張り感が高いとともに、編地の通気性も高くなることがあり、編地の伸長発熱温度そのものが低いことに加え、伸長発熱しても通気性が高い事より外気の流入が多く暖かく感じない。これらより、ループ数は好ましくは5000〜12000とし、より好ましくは5500〜11500とすればよい。これらループ数のコントロールは、繊度比、編機のゲージとともに、染色加工時の性量コントロールにより可能で、ループ数を大きくするには、繊度比を小さくする、編機ゲージを密にする、染色加工で編地を幅入れ、追い込み加工により達成し易い。特に、編地のウェールを50〜80ウェール/インチとなるよう設計するのが好ましい。また、さらに重要なことは、弾性糸の編成時、通常よりもランナーを短くして編成することであるが、ただ、ランナーを短くし過ぎると糸切れ等のトラブルも発生するので、可能な範囲でランナーを短くすればよい。   In the knitted fabric of the present invention, in addition to the density ratio, the number of loops, which is the product of the warp direction density (course / inch) of the knitted fabric and the weft direction density (wale / inch) of the knitted fabric, is also important. The balance between the exothermic heat generation and the stress of the knitted fabric can be optimized by entering within a specific range, that is, the number of loops is preferably within the range of 5000 to 12000, the content of elastic yarn, the elastic yarn and non-elasticity Even if the fineness ratio with the elastic yarn is within a specified range, the stretching heat generation temperature may be low, or the knitted fabric may be highly stressed. When the number of loops is more than 12,000, the knitted fabric is highly stressed and is difficult to move. Particularly, when the number of loops is less than 5000, the knitted fabric has a high feeling of tension and has high air permeability of the knitted fabric. In addition to the low exothermic temperature of the knitted fabric itself, the exothermic inflow of the outside air does not feel warm due to the high air permeability even when the exothermic heat is generated. From these, the number of loops is preferably 5000 to 12000, more preferably 5500 to 11500. The number of loops can be controlled by controlling the fineness ratio and knitting machine gauge as well as the quality control during dyeing. To increase the number of loops, the fineness ratio is reduced, the knitting machine gauge is dense, and the dyeing is performed. It is easy to achieve by making the knitted fabric wide by processing and chasing. In particular, it is preferable to design the knitted fabric to have a wal of 50 to 80 wal / inch. More importantly, when knitting elastic yarn, it is knitting with a shorter runner than usual, but if the runner is too short, troubles such as yarn breakage will occur, so the possible range Then you can shorten the runner.

本発明による編地は、26〜40ゲージの複数筬の経編機、及び、28〜36ゲージの丸編機により釜径30〜40インチ程度の大口径のシングル丸編機、ダブル丸編機、釜径4インチ程度ストッキング編機、釜径13〜17インチの小寸編機等、26〜40ゲージ程度の丸編機、及び、ハイゲージの横編機により製造される非弾性糸と弾性糸とからなる編地であって、経編では通常のシングルトリコット編機、ダブルトリコット編機、シングルラッセル編機、ダブルラッセル編機により編成可能で、編組織については通常の組織により編成が可能であるが 本発明の編地は、特に、弾性糸はアトラス組織とするのが好ましく、特に、ループ構造として、アトラス組織中の閉じ目によるループが50%以上のアトラス組織が好ましく、さらに好ましくは、すべて閉じ目のアトラス組織が好ましい。
すべて閉じ目のアトラス組織とは、例えば、10/21/23/12、10/32/45/23等であり、通常のアトラス組織では閉じ目と開き目の組み合わせであり、このループ構造では伸長回復性に優れ、応力比も高くなるのに対し、すべて閉じ目のアトラス組織となっていることにより、伸長時にループのひずみが大きく応力比を0.6〜0.8とすることが可能とし易い。また、通常のアトラス組織で応力比を0.6〜0.8の編地を製造した場合、伸長発熱性には優れるが、運動追随性が不十分となるが、全て閉じ目のアトラス組織とすることにより、応力比では捉えきれない瞬間的な伸長回復性に優れることが判り、応力比が0.6〜0.8の範囲でも伸長発熱性と運動追随性に優れることを見出した。なお、非弾性糸の組織については、デンビー、コード、アトラス等の開き目、あるいは閉じ目と、任意に選定できる。
The knitted fabric according to the present invention is a single circular knitting machine or a double circular knitting machine having a large diameter of about 30 to 40 inches with a 26 to 40 gauge multi-warp warp knitting machine and a 28 to 36 gauge circular knitting machine. Non-elastic yarns and elastic yarns manufactured by stockings knitting machines with a hook diameter of about 4 inches, small knitting machines with a hook diameter of 13-17 inches, circular knitting machines of about 26-40 gauge, and high gauge flat knitting machines In warp knitting, it can be knitted with a normal single tricot knitting machine, double tricot knitting machine, single raschel knitting machine or double raschel knitting machine, and the knitting structure can be knitted with a normal structure However, in the knitted fabric of the present invention, it is particularly preferable that the elastic yarn has an atlas structure. In particular, as the loop structure, an atlas structure having a loop of 50% or more in the atlas structure is more preferable. Preferably, all closed atlases are preferred.
The all-closed atlas structure is, for example, 10/21/23/12, 10/32/45/23, etc., and a normal atlas structure is a combination of a closed opening and an opening, and this loop structure is elongated. While it has excellent recoverability and a high stress ratio, it has a closed atlas structure, so that the strain of the loop is large when stretched and the stress ratio can be adjusted to 0.6 to 0.8. easy. In addition, when a knitted fabric having a stress ratio of 0.6 to 0.8 is manufactured with a normal atlas structure, the exothermic extensibility is excellent, but the movement followability is insufficient, By doing this, it was found that the instantaneous stretch recovery property that could not be captured by the stress ratio was excellent, and it was found that the stretch exothermic property and the motion following property were excellent even when the stress ratio was in the range of 0.6 to 0.8. In addition, about the structure | tissue of an inelastic thread | yarn, it can select arbitrarily with the opening or closing eyes of Denby, a cord, an atlas, etc.

また、緯編でも通常のシングル丸編機、ダブル丸編機、ハイゲージの横編機により編成可能で、編組織については通常の組織により編成が可能であるが、特に、ダブル丸編地であり、弾性糸を含有するコースと非弾性糸のみのコースが1完全の編順で、1本交互に配置されていることが好ましい。図2の例では、編順1〜4が1完全であり、この1編順の中で弾性糸を含有するコースが編順1、及び3であり、非弾性糸のみのコースが、編順2、及び4で、図2の場合はこれら弾性糸を含有するコースと非弾性糸のみのコースが1本交互となっている。さらに好ましくは、基本とする編組織はスムースが好ましく、これにより、弾性糸は編順の1本交互に配置されているにもかかわらず、編地中では弾性糸のループが連続していることになり、全てのコースで弾性糸を含む組織では応力比が高くなり過ぎ応力比が0.8より高くなるが、本願組織により、応力比を0.6〜0.8とすることが可能となり、さらに、応力比が本願発明の範囲でも、弾性糸のループが繋がっている事より応力比で捉えきれない瞬間的な伸長回復性に優れることが判り、伸長発熱に優れ、かつ、運動追随性に優れるウェアとなることを見出した。
本発明の編地は、編組織や、糸使いを変更したり、樹脂プリント等を施したりすることにより、点状、直線状、曲線状等の部分的にパワーが異なる高パワー部と低パワー部とを混在させてもよい。この場合、編地中の一部分でも本性能を満足すればよい。例えば、膝など伸長発熱効果が欲しい部分のみ高伸長発熱編地を配し、膝回り等は高パワーの定伸長編地を配置することも可能で、この場合、膝の動きで暖かくなり、また、低伸長部で膝関節の保護等を狙った製品とすることが可能となる。
In addition, weft knitting can be knitted with ordinary single circular knitting machines, double circular knitting machines, and high gauge flat knitting machines. The knitting structure can be knitted with ordinary structures. The course containing elastic yarn and the course of only non-elastic yarn are preferably arranged alternately in one complete knitting order. In the example of FIG. 2, the knitting orders 1 to 4 are one complete, the course containing the elastic yarn in the one knitting order is the knitting orders 1 and 3, and the course of only the inelastic yarn is the knitting order. 2 and 4, in the case of FIG. 2, the course containing these elastic yarns and the course containing only the inelastic yarn are alternately arranged. More preferably, the basic knitting structure is preferably smooth, whereby the elastic yarn loops are continuous in the knitted fabric even though the elastic yarns are alternately arranged one by one in the knitting order. The stress ratio becomes too high in the structure including the elastic yarn in all the courses, and the stress ratio becomes higher than 0.8. However, the stress ratio can be set to 0.6 to 0.8 by the present application structure. Furthermore, even when the stress ratio is within the range of the present invention, it can be seen that the elastic yarn loops are connected, and it is understood that it has excellent instantaneous stretch recovery that cannot be grasped by the stress ratio, excellent in exothermic heat generation, and motion tracking It was found that it becomes the wear which is excellent in.
The knitted fabric of the present invention has a high power portion and a low power that are partially different in power, such as dotted, linear, curved, etc., by changing the knitting structure, yarn usage, resin printing, etc. May be mixed. In this case, it is only necessary to satisfy this performance even in a part of the knitted fabric. For example, it is possible to place a high-strength exothermic knitted fabric only on the part that wants an exothermic heat effect, such as the knee, and a high-power constant stretch knitted fabric around the knee, etc. It becomes possible to make a product aimed at protecting the knee joint, etc., in the low extension part.

本発明の編地に使用する弾性糸は、ポリウレタン系又はポリエーテルエステル系の弾性糸であることができ、例えば、ポリウレタン系弾性糸としては、乾式紡糸又は溶融紡糸したものが使用でき、ポリマーや紡糸方法は特に限定されない。弾性糸の破断伸度は400%〜1000%程度であり、かつ、伸縮性に優れ、染色加工時のプレセット工程の通常処理温度180℃近辺で伸縮性を損なわないことが好ましい。また、弾性糸としては、特殊ポリマーや粉体添加により、高セット性、抗菌性、吸湿、吸水性等の機能性を付与した弾性糸も使用可能である。弾性糸の繊度に関しては、20〜80dtex程度の繊維の使用が可能で、編地製造が容易で伸長発熱温度も高く、さらに、運動追随性も良好な編地とするため、30〜60dtex程度の弾性繊維の使用が好ましい。また、弾性糸に非弾性糸を巻きつけたカバーリング糸、撚糸した糸、及び非弾性糸と弾性糸とを空気噴射等により混繊した混繊糸等、これら被覆弾性糸の使用も可能である。   The elastic yarn used in the knitted fabric of the present invention can be a polyurethane-based or polyether ester-based elastic yarn. For example, as the polyurethane-based elastic yarn, those obtained by dry spinning or melt spinning can be used. The spinning method is not particularly limited. The breaking elongation of the elastic yarn is about 400% to 1000%, is excellent in stretchability, and it is preferable that the stretchability is not impaired near the normal processing temperature of 180 ° C. in the presetting process during dyeing. As the elastic yarn, an elastic yarn imparted with functions such as high setting property, antibacterial property, moisture absorption and water absorption by addition of a special polymer or powder can be used. Regarding the fineness of the elastic yarn, fibers of about 20 to 80 dtex can be used, the knitted fabric is easy to manufacture, the elongation heat generation temperature is high, and the knitted fabric has good motion following properties. The use of elastic fibers is preferred. It is also possible to use these covered elastic yarns, such as covering yarn in which inelastic yarn is wound around elastic yarn, twisted yarn, and mixed yarn in which inelastic yarn and elastic yarn are mixed by air injection or the like. is there.

さらに本発明の編地は、弾性糸に無機物質を含有することが可能で、含有する無機物質の性能を加味した編地とすることができ、例えば、酸化チタンを含有させると、編地の発熱を酸化チタンに蓄え、遠赤外線効果による保温性を付与することができる。無機物質の含有法としては、弾性糸の紡糸原液に無機物質を含有させて紡糸する方法が最も簡単である。本発明でいう無機物質とは、酸化チタン等のセラミックス、カーボン、カーボンブラック等の無機物単体及び/又は無機化合物をいい、弾性糸の紡糸の障害とならない様、微粉末状が好ましい。これら無機物質は弾性糸に1〜10重量%含有されていることが好ましく、無機物質を含有することにより、編地の発熱時保温効果をより効果的に発揮することが可能となる。なお、無機物質は少ないと保温効果が小さく、多すぎると紡糸時や伸長時に糸切れすることがあるため、1〜10重量%の含有が好ましく、より好ましくは2〜5重量%の含有である。   Furthermore, the knitted fabric of the present invention can contain an inorganic substance in the elastic yarn, and can be a knitted fabric that takes into account the performance of the contained inorganic substance. For example, when titanium oxide is contained, Heat generation can be stored in titanium oxide, and heat retention by the far-infrared effect can be imparted. As the method of containing an inorganic substance, the simplest method is to add an inorganic substance to a spinning dope for elastic yarn and perform spinning. The term “inorganic substance” as used herein refers to ceramics such as titanium oxide, inorganic substances such as carbon and carbon black, and / or inorganic compounds, and is preferably finely powdered so as not to hinder spinning of elastic yarns. These inorganic substances are preferably contained in the elastic yarn in an amount of 1 to 10% by weight. By containing the inorganic substance, it becomes possible to more effectively exhibit the heat retention effect during heat generation of the knitted fabric. If the inorganic substance is small, the heat retention effect is small, and if it is too large, the yarn may break during spinning or stretching, so the content is preferably 1 to 10% by weight, more preferably 2 to 5% by weight. .

本発明の編地に用いられる弾性糸は、ポリウレタン系弾性糸やポリエーテルエステル系弾性糸が挙げられるが、伸長発熱温度を上げるには、弾性糸の分子量を上げる方法がある。他の方法としては、応力比を小さくした弾性糸の使用が好ましく、例えば、特開2001−140127号公報に示される、第1級アミン又は第2級アミンのいずれかの1官能性アミン、水酸基、及び第3級窒素又は複素環状窒素から選ばれる少なくとも1種を含む窒素含有化合物と有機ジイソシアナートとが反応して得られる、1分子あたりの平均ウレア結合単位数が4〜40個であるウレタンウレア化合物;特許第4343446号公報に示される、第1級アミン及び第2級アミンのうちの少なくとも1種から選ばれる2官能性アミノ基、第3級窒素及び複素環状窒素のうちの少なくとも1種から選ばれる窒素含有基を含む窒素含有化合物と、有機ジイソシアナート、モノ又はジアルキルモノアミン、アルキルモノアルコール、及び有機モノイソシアナートからなる群から選ばれる少なくとも1種の化合物とを反応させて得られるウレア化合物;特開平7−316922号公報に示される、ポリアクロニトリル系ポリマー、低分子ジオール、及びポリマージオールの混合物と、有機ジイソシアナートとの反応で得られる末端水酸基構造であるポリウレタン;あるいはスチレン−無水マレイン酸共重合体等を添加して紡糸する方法がある。上記末端水酸基構造であるポリウレタンとしては、炭素原子数2〜10の直鎖状又は分岐状アルキレン基若しくは二価の脂環式炭化水素の両末端に水酸基を有する低分子ジオール及び数平均分子量400〜3000の高分子ジオールの混合物(モル比1〜99)と有機ジイソシアナートとの反応物であって、末端が水酸基でありウレタン基濃度が3ミリ当量/g以上である数平均分子量10000〜40000のポリウレタン重合体であることが好ましい。これらを単独で又は2種以上混合して弾性糸中に添加すればよいが、添加量が少ないと伸長発熱温度効果が低く、逆に添加量が多いと、編地伸長回復性が低下し、着用、洗濯により型崩れが生じやすくなるため、添加量は、弾性糸重量に対して2.0〜15.0%、好ましくは2.5〜8.0%とする。   Examples of the elastic yarn used in the knitted fabric of the present invention include a polyurethane-based elastic yarn and a polyether ester-based elastic yarn. There are methods for increasing the molecular weight of the elastic yarn in order to increase the elongation heat generation temperature. As another method, it is preferable to use an elastic yarn having a reduced stress ratio. For example, as shown in JP 2001-140127 A, a monofunctional amine or a hydroxyl group of either a primary amine or a secondary amine is used. And an average number of urea bond units per molecule obtained by reacting a nitrogen-containing compound containing at least one selected from tertiary nitrogen and heterocyclic nitrogen with an organic diisocyanate is 4 to 40 Urethane urea compound; as shown in Japanese Patent No. 4343446, at least one of a bifunctional amino group selected from at least one of a primary amine and a secondary amine, a tertiary nitrogen and a heterocyclic nitrogen Nitrogen-containing compounds containing nitrogen-containing groups selected from species, organic diisocyanates, mono- or dialkyl monoamines, alkyl monoalcohols, and organic A urea compound obtained by reacting with at least one compound selected from the group consisting of noisocyanates; a mixture of a polyacrylonitrile-based polymer, a low molecular diol, and a polymer diol disclosed in JP-A-7-316922 And a polyurethane having a terminal hydroxyl group structure obtained by reaction with an organic diisocyanate; or a method of spinning by adding a styrene-maleic anhydride copolymer or the like. Examples of the polyurethane having a terminal hydroxyl group structure include a low molecular diol having a hydroxyl group at both ends of a linear or branched alkylene group having 2 to 10 carbon atoms or a divalent alicyclic hydrocarbon, and a number average molecular weight of 400 to 400. A number average molecular weight of 10,000 to 40,000, which is a reaction product of a mixture of 3000 high molecular diols (molar ratio 1 to 99) and an organic diisocyanate, having a terminal hydroxyl group and a urethane group concentration of 3 meq / g or more. The polyurethane polymer is preferred. These may be added to the elastic yarn alone or in combination of two or more, but if the addition amount is small, the elongation exothermic temperature effect is low, and conversely, if the addition amount is large, the knitted fabric stretch recovery is reduced, Since it becomes easy to lose shape due to wearing and washing, the addition amount is 2.0 to 15.0%, preferably 2.5 to 8.0%, based on the weight of the elastic yarn.

本発明に用いる非弾性糸としては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル系繊維、ポリアミド系繊維、並びにポリプロピレン等のポリオレフィン系繊維、さらに、キュプラ、レーヨン、綿、竹繊維等のセルロース系繊維、羊毛等の獣毛繊維等、あらゆる繊維の使用が可能である。また、これらのブライト糸、セミダル糸、フルダル糸等を任意に使用でき、繊維の断面形状についても、丸型、楕円型、W型、繭型、中空糸等任意の断面形状の繊維が使用可能であり、繊維の形態についても特に限定されず、原糸、仮撚等の捲縮加工糸が使用でき、非弾性糸の太さは20〜110dt、好ましくは、30〜90dtの非弾性糸の使用が好適である。さらに、長繊維でも紡績糸でもよく、また、2種以上の繊維を撚糸、カバーリング、エアー混繊等により混合した複合糸の使用も可能である。さらには、繊維自体での混合ではなく、編機上での2種以上の繊維の混合も無論可能である。   Examples of inelastic yarns used in the present invention include polyester fibers such as polyethylene terephthalate and polytrimethylene terephthalate, polyamide fibers, and polyolefin fibers such as polypropylene, and cellulose fibers such as cupra, rayon, cotton, and bamboo fibers. Any fiber such as wool fiber such as wool can be used. Also, these bright yarns, semi-dal yarns, full dull yarns, etc. can be used arbitrarily, and the fibers can have any cross-sectional shape such as round, elliptical, W-shaped, saddle-shaped, hollow fiber, etc. The shape of the fiber is not particularly limited, and crimped yarn such as raw yarn and false twist can be used. The thickness of the inelastic yarn is 20 to 110 dt, preferably 30 to 90 dt. Use is preferred. Further, it may be a long fiber or a spun yarn, and a composite yarn obtained by mixing two or more kinds of fibers by twisting, covering, air blending, or the like can be used. Furthermore, it is of course possible to mix two or more types of fibers on the knitting machine instead of mixing the fibers themselves.

本発明に用いる非弾性糸、特に、ポリエステル系繊維、ポリアミド系繊維、セルロース系繊維の場合には、無機物質を0.3〜5重量%含有していることが好ましい。無機物質を含有することにより、弾性編地の発熱時、保温効果をより効果的に発揮することが可能となる。なお、無機物質は、少ないと保温効果が小さく、多すぎると紡糸時や伸長時に糸切れすることがあるため、0.5〜5重量%の含有がより好ましく、さらに好ましくは0.4〜3重量%の含有である。   In the case of inelastic yarns used in the present invention, particularly polyester fibers, polyamide fibers, and cellulose fibers, it is preferable to contain 0.3 to 5% by weight of an inorganic substance. By containing the inorganic substance, it is possible to more effectively exhibit the heat retaining effect when the elastic knitted fabric generates heat. If the inorganic substance is small, the heat retention effect is small, and if it is too large, yarn breakage may occur at the time of spinning or stretching. Therefore, the content is more preferably 0.5 to 5% by weight, and further preferably 0.4 to 3%. It is contained by weight%.

本発明の編地では、非弾性糸にセルロース等の吸湿発熱する素材を使用すれば、着用時吸湿により発熱し、運動することによっても発熱することになり、本発明の効果をより高めることが可能である。さらに、紡績糸の使用や起毛により発熱した熱を逃がし難くでき、保温効果を高めることも可能である。   In the knitted fabric of the present invention, if a material that absorbs moisture and heat, such as cellulose, is used for the non-elastic yarn, it will generate heat due to moisture absorption when worn, and it will also generate heat when exercised, thereby further enhancing the effect of the present invention. Is possible. Furthermore, it is possible to make it difficult to release the heat generated by using spun yarn or raising, and it is possible to enhance the heat retaining effect.

本発明の編地の染色仕上げ方法としては、通常の染色仕上げ工程を使用でき、使用する繊維素材に応じた染色条件とし、使用する染色機も液流染色機、ウインス染色機およびパドル染色機など任意であり、吸水性や柔軟性を向上させる加工剤や、保温性を高める加工剤の使用も可能である。   As a dyeing finishing method of the knitted fabric of the present invention, a normal dyeing finishing process can be used, and dyeing conditions according to the fiber material to be used are used, and a dyeing machine to be used is a liquid dyeing machine, a wins dyeing machine, a paddle dyeing machine, etc. It is optional, and it is possible to use a processing agent that improves water absorption and flexibility and a processing agent that improves heat retention.

本発明の経編地は、スパッツ、スポーツタイツ、コンプレッションタイツ、ガードル等のスポーツ、インナー用等ボトム類、肌着、スポーツシャツ、コンプレッションシャツ等のトップス類、パンティーストッキング、ソックス、タイツ、レギンス等のレッグ類、肘サポーター、膝サポーター、腰サポーター、足首カバー、アームカバー、レッグカバー、ニーカバー、エルボーカバー、等のサポーター類、手袋等の、着用動作時に編地が伸長される関節部を覆う衣服に縫製すれば、日常の動作、運動により暖かい衣服となる。   Warp knitted fabric of the present invention includes sports such as spats, sports tights, compression tights, girdles, bottoms such as inners, underwear, sports shirts, compression shirts, tops, pantyhose, socks, tights, leggings, etc. Sewers, elbow supporters, knee supporters, waist supporters, ankle covers, arm covers, leg covers, knee covers, elbow covers, and other supporters, gloves, etc. If it does, it becomes warm clothes by daily movement and exercise.

特に、コンプレッションウェアやスポーツシャツ、すなわち、ジョギング、各種ゲーム、ウォ−キング等、主に運動時に肌に密着させて着用し、運動機能の向上、怪我の防止や保温を狙った長袖又は半袖等の袖付きシャツ、膝上、膝下又は足首までのスパッツ等では、目付けが150〜300g/m2程度の編地からなり、弾性糸を40〜50g/m2含有し、弾性糸と非弾性糸との繊度比を1.2〜2.2、応力比を0.50〜0.70程度の編地とし、この編地を肘、膝、股下、足首等の関節部へ使用すれば、特に高い発熱効果が得られるため、これら関節部に少なくとも本発明の編地が使用される様に縫製することが好ましい。より関節保護効果等を高める為に、関節部近傍に低伸度の部位を設けることも可能であり、低伸度部位の製造方法としては、編地編成時に鎖編や挿入組織により伸びなくする方法、製品縫製前に伸びにくいテープ状物を縫合又は接着により組み合わせる方法、縫い目で止める方法等があり、これらの方法により、関節保護等の機能が付加される。 In particular, compression wear and sports shirts, such as jogging, various games, walking, etc. are mainly worn close to the skin during exercise, such as long sleeves or short sleeves aimed at improving exercise function, preventing injury or keeping warm. sleeved shirt, on the knee, in the spats, etc. up to the knee or ankle, weight per unit area is made from 150~300g / m 2 about of the knitted fabric, the elastic yarn 40~50g / m 2 contain, and the elastic yarn and non-elastic yarn If the knitted fabric has a fineness ratio of 1.2 to 2.2 and a stress ratio of about 0.50 to 0.70, and this knitted fabric is used for joints such as elbows, knees, inseam, and ankles, it is particularly high. Since a heat generation effect is obtained, it is preferable to sew so that at least the knitted fabric of the present invention is used for these joint portions. In order to further enhance the joint protection effect, etc., it is possible to provide a portion with low elongation near the joint, and as a method for producing the low elongation portion, it is not stretched by chain stitch or insertion tissue during knitting of the knitted fabric There are a method, a method of combining tape-like objects which are difficult to stretch before sewing a product by sewing or adhesion, a method of fastening with a seam, and the like, and a function such as joint protection is added by these methods.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、実施例における評価は以下の方法により行なった。
(1)サンプリング
以下の測定を行う場所は基本的にランダムで数箇所行なうが、編組織、糸使い、樹脂プリントの有無等によって布帛性能が部分的に異なる編地においては、本発明の性能を満たす部分が確認できない場合、本発明の性能が発現する可能性が高い箇所を優先して測定することができ、経方向と緯方向それぞれの測定を行えるようサンプリングすればよい。
編組織、糸使い、樹脂プリントの有無等が均一である編地においては、サンプリング箇所はランダムでよく、経方向と緯方向それぞれの測定を行えるようサンプリングすればよい。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples. In addition, evaluation in an Example was performed with the following method.
(1) Sampling Basically, the following measurement is performed at random at several locations. However, in the case of a knitted fabric whose fabric performance is partially different depending on the knitting structure, yarn use, presence / absence of resin printing, etc., the performance of the present invention is used. When a satisfying portion cannot be confirmed, it is possible to preferentially measure a portion where the performance of the present invention is highly likely to be expressed, and it is sufficient to perform sampling in such a way that measurement in the longitudinal direction and the weft direction can be performed.
In a knitted fabric with uniform knitting structure, use of yarn, presence / absence of resin print, and the like, sampling locations may be random, and sampling may be performed so that measurement in the warp direction and the weft direction can be performed.

(2)瞬間発熱温度
瞬間発熱温度の測定は、下記の繰り返し伸縮試験機を使用し、伸長及び緩和(戻し)を規定速度で規定回数繰り返す間の最も高い試料表面温度を測定して求め、編地経方向、及び、緯方向の瞬間発熱温度を測定し、高い方向を瞬間発熱温度とする。
繰り返し伸縮機:デマッチャー試験機((株)大栄科学精器製作所製)
試料の大きさ:長さ100mm(把持部除く)、幅60mm
測定環境:温度20℃、湿度65%RHの恒温恒湿条件。伸縮以外に外部からのエネルギー供給を受けない状態で測定する。
伸長量:2.5cm幅の編地の9.8N荷重下での編地伸度により設定し、編地伸度が100%以上の場合の伸長量は、100%、編地伸度が60%以上100%未満の場合の伸長量は、9.8N荷重下の伸度と同じとする。
繰り返し伸縮サイクル:2回/秒
発熱温度測定:繰り返し伸長100回中、及び伸長終了後の試料表面温度を連続的にサーモグラフィで測定する。サーモグラフィの放射率は1.0に設定する。
発熱温度評価:測定する試料表面が最高温となったときの温度を読み取り、伸縮前の温度と比べ上昇した温度を瞬間発熱温度とする。
編地伸度:長さ100mm(把持部除く)、幅25mmでテンシロン引張り試験機((株)オリエンテック製 RTC−1210A)を使用し、下記条件で伸長し、9.8N荷重下での伸度を測定する。
初荷重0.01N
引張り速度及び回復速度:300mm/分
引張り長:9.8N荷重まで伸長
測定:上記条件で伸長し、9.8N荷重での経方向および緯方向それぞれの伸度を求める。
(2) Instantaneous exothermic temperature The instantaneous exothermic temperature is measured by measuring the highest sample surface temperature during the specified number of repetitions of stretching and relaxation (returning) using the following repeated stretch tester. Measure the instantaneous heat generation temperature in the graticule direction and the weft direction, and set the higher direction as the instantaneous heat generation temperature.
Repeating expansion and contraction machine: Dematcher testing machine (manufactured by Daiei Scientific Instruments)
Sample size: length 100 mm (excluding gripping part), width 60 mm
Measurement environment: constant temperature and humidity conditions of temperature 20 ° C. and humidity 65% RH. Measured with no external energy supply other than expansion and contraction.
Elongation amount: Set based on the knitted fabric elongation under a 9.8N load of a knitted fabric having a width of 2.5 cm. When the knitted fabric elongation is 100% or more, the elongation amount is 100% and the knitted fabric elongation is 60. The elongation amount in the case of% or more and less than 100% is the same as the elongation under a load of 9.8 N.
Repeated expansion and contraction cycle: 2 times / second Exothermic temperature measurement: Sample surface temperature is continuously measured by thermography during 100 times of repeated stretching and after completion of stretching. The emissivity of the thermography is set to 1.0.
Exothermic temperature evaluation: The temperature when the surface of the sample to be measured reaches the maximum temperature is read, and the temperature that is higher than the temperature before expansion / contraction is defined as the instantaneous exothermic temperature.
Elongation of knitted fabric: 100mm in length (excluding gripping part), 25mm in width using a Tensilon tensile tester (Orientec Co., Ltd. RTC-1210A), stretched under the following conditions, stretched under 9.8N load Measure the degree.
Initial load 0.01N
Tensile speed and recovery speed: 300 mm / min Tensile length: Elongation to 9.8 N load Measurement: Elongation under the above conditions, and determine the elongation in the warp direction and the latitudinal direction at 9.8 N load.

(3)弾性糸含有量
編地中の弾性糸含有量(g/m2)を、次の方法により求め、小数点一桁を四捨五入する。
編地中の非弾性糸を溶解等により除去し、弾性糸のみの重量を測定して単位面積当りの重量に換算する。非弾性糸を除去することが困難であれば、重量測定後の編地から、弾性糸を溶解等により除去し、非弾性糸のみの重量を測定して、重量減少した分を弾性糸重量とする。
(3) Elastic yarn content The elastic yarn content (g / m 2 ) in the knitted fabric is obtained by the following method and rounded to one decimal place.
The inelastic yarn in the knitted fabric is removed by dissolution or the like, and the weight of only the elastic yarn is measured and converted to the weight per unit area. If it is difficult to remove the non-elastic yarn, the elastic yarn is removed from the knitted fabric after the weight measurement by dissolving, etc., and the weight of only the non-elastic yarn is measured. To do.

(4)応力比、及び80%伸長時の応力
応力比を次の方法により測定する。
試料の大きさ:長さ100mm(把持部除く)、幅25mm
引張り試験機:テンシロン引張り試験機((株)オリエンテック製 RTC−1210A)
初荷重:0.01N
引張り速度、及び回復速度:300mm/分
引張り長、及び測定:80%伸長まで伸長し、同じ速度で伸長後元の長さに戻し(回復させ)、この条件で伸長、回復を3回繰り返し、3回目の伸縮途中の50%時点での往路応力と復路応力を求め、下記式により求める。なお、(1)の瞬間発熱温度測定時に測定した伸度が60〜80%の編地の場合は、60%まで伸長して、伸縮途中の50%時点での往路応力と復路応力を求め、下記式より小数点以下3桁目を四捨五入して求める。また、3回目の80%伸長時の応力を、伸長応力とする。
応力比=(50%時点の復路応力(N))/(50%時点の往路応力(N))
(4) Stress ratio and stress at 80% elongation The stress ratio is measured by the following method.
Sample size: length 100 mm (excluding gripping part), width 25 mm
Tensile tester: Tensilon tensile tester (RTC-1210A manufactured by Orientec Co., Ltd.)
Initial load: 0.01N
Tensile speed and recovery speed: 300 mm / min Tensile length and measurement: Elongate to 80% elongation, return to the original length after stretching at the same speed (recover), and repeat stretching and recovery three times under these conditions, The forward path stress and the backward path stress at the time of 50% during the third expansion / contraction are determined and determined by the following formula. In the case of a knitted fabric with an elongation measured at the time of instantaneous heat generation temperature measurement of (1) of 60 to 80%, it stretches to 60%, and the outward stress and the backward stress at the time of 50% during expansion and contraction are obtained. Calculate by rounding off the third decimal place from the following formula. Further, the stress at the third 80% elongation is defined as elongation stress.
Stress ratio = (Return stress at 50% (N)) / (Outward stress at 50% (N))

(5)編地たるみ性
運動追随性を、以下に説明する編地たるみ性にて評価した。
図3に示す大栄科学精器(株)製のデマッチャー疲労試験機(DC−3型)を使用し、試験機の固定試料把持部1aに20cm角にサンプリングした試料を試料固定枠1bに固定し試験機に設置する。突き上げ丸棒1dの最大突き上げ高さは試料固定枠1bから上方に6cmとなるように突き上げ丸棒の高さを調整する。次に、(株)ライブラリー社製高速度カメラ「ひまわりGE200」を三脚にて試料固定枠と水平位置、及び、試料固定枠前面から20cmの位置に設置する。
デマッチャー疲労試験機を1分間に500回の突き上げ動作を行うように設定し、稼働500回目の突き上げ動作を1秒間に200コマの条件で撮影する。
撮影した動画より、突き上げ動作500回後の丸棒下降時に丸棒の先端が試料固定枠の下端を通過した時点を0として、そこから、0.05秒以内の試料固定枠からの最大試料たるみを、(株)ライブラリー社製動画解析ソフト「Move−tr/2D」を使用し編地のたる長を測定し、編地たるみが3.0mm以下を合格とし、たるみが少ないほど運動追随性に優れる。
(5) Knitting fabric sagability The movement following property was evaluated by the knitting fabric sagability described below.
Using a Dematcher fatigue tester (DC-3 type) manufactured by Daiei Kagaku Seiki Co., Ltd. shown in FIG. 3, a sample sampled 20 cm square is fixed to the sample fixing frame 1b on the fixed sample gripping portion 1a of the testing machine. Install on the testing machine. The height of the push-up round bar is adjusted so that the maximum push-up height of the push-up round bar 1d is 6 cm upward from the sample fixing frame 1b. Next, a high-speed camera “Himawari GE200” manufactured by Library Co., Ltd. is installed on a tripod at the sample fixing frame and the horizontal position, and at a position 20 cm from the front surface of the sample fixing frame.
The Dematcher fatigue tester is set to perform 500 push-up operations per minute, and the 500th push-up operation is photographed at 200 frames per second.
From the captured video, the point when the tip of the round bar passes the lower end of the sample fixing frame when the round bar descends after 500 push-up operations is set to 0, and the maximum sample sag from the sample fixing frame within 0.05 seconds from there. , Measured the length of the knitted fabric using the moving image analysis software "Move-tr / 2D" manufactured by Library Co., Ltd. Excellent.

[実施例1]
32ゲージのシングルトリコット編機を使用し、フロント筬に非弾性糸のポリエステル56dtex/36f、バックに弾性糸33dtex(商品名ロイカSF:旭化成せんい(株)製)を使用し、次に示す弾性糸が全て閉じ目のアトラス組織にて編成した。
フロント 23/10
バック 10/21/23/12
編成できた編地を連続精練機でリラックス及び精練を行い、次いで190℃で90秒間ほぼ生機の巾でプレセットを行い、その後、液流染色機でポリエステルの染色を行った。染色後にポリエステル系の吸水柔軟仕上げ剤を付与して、染色後とほぼ同密度で170℃60秒間仕上げセットを行い編地とした。
得られた編地の性能を評価した結果を以下の表1に示す。実施例1の本発明の編地では、伸長時瞬間発熱温度が1.0℃以上であり、衣服とした場合、動き易く運動追随性に優れる衣服とすることができた。
[Example 1]
Using a 32-gauge single tricot knitting machine, using non-elastic polyester 56dtex / 36f on the front heel and elastic yarn 33dtex (trade name Roica SF: manufactured by Asahi Kasei Fibers Co., Ltd.) on the back, the elastic yarn shown below All organized in a closed Atlas organization.
Front 23/10
Back 10/21/23/12
The knitted fabric that had been knitted was relaxed and scoured with a continuous scouring machine, then pre-set at 190 ° C. for 90 seconds with the width of the green machine, and then dyed with a liquid dyeing machine. After dyeing, a polyester-based water-absorbing softening finish was applied, and a finishing set was carried out at 170 ° C. for 60 seconds at almost the same density as after dyeing to obtain a knitted fabric.
The results of evaluating the performance of the obtained knitted fabric are shown in Table 1 below. In the knitted fabric of the present invention of Example 1, the instantaneous exothermic temperature at the time of elongation was 1.0 ° C. or higher, and when it was made into a garment, it was possible to obtain a garment that was easy to move and excellent in motion following ability.

[実施例2〜5、比較例1〜2]
実施例1より密度を粗く幅出しセットして弾性糸含有量を下げた編地(実施例2)、弾性糸、非弾性糸の繊度を変更した編地(実施例3〜5、比較例1〜2)した以外は、実施例1と同様に編地を作製し、評価を行なった。なお、比較例1では前記の変更に加え、プレセット条件を185℃60秒間とした。結果を以下の表1に示す。
[Examples 2-5, Comparative Examples 1-2]
A knitted fabric (Example 2) in which the density of the elastic yarn is lowered by setting the density more coarsely than Example 1 (Example 2), and the knitted fabric in which the fineness of the elastic yarn and the inelastic yarn is changed (Examples 3 to 5, Comparative Example 1) A knitted fabric was prepared and evaluated in the same manner as in Example 1 except that the above steps were performed. In Comparative Example 1, in addition to the above changes, the presetting conditions were set to 185 ° C. for 60 seconds. The results are shown in Table 1 below.

[実施例6]
36ゲージのシングルトリコット編機を使用し、フロント筬に非弾性糸のポリエステル56dtex/36f、バックに弾性糸44dtex(商品名ロイカSF:旭化成せんい(株)製)を使用し、次に示す閉じ目のアトラス組織にて編成した。
フロント 23/10
バック 10/32/45/23
編成できた編地を連続精練機でリラックス及び精練を行い、次いで190℃で90秒間ほぼ生機の巾でプレセットを行い、その後、液流染色機でポリエステルの染色を行った。染色後にポリエステル系の吸水柔軟仕上げ剤を付与して、染色後とほぼ同密度で170℃60秒間仕上げセットを行い編地とした。
得られた編地の性能を評価した結果を以下の表1に示す。実施例1の本発明の編地では、伸長時瞬間発熱温度が1.0℃以上であり、衣服とした場合、動き易く運動追随性に優れる衣服とすることができた。
[Example 6]
Using a 36-gauge single tricot knitting machine, using non-elastic polyester 56dtex / 36f for the front heel and elastic yarn 44dtex (trade name Roica SF: manufactured by Asahi Kasei Fibers Co., Ltd.) for the back, Organized by the Atlas organization.
Front 23/10
Back 10/32/45/23
The knitted fabric that had been knitted was relaxed and scoured with a continuous scouring machine, then pre-set at 190 ° C. for 90 seconds with the width of the green machine, and then dyed with a liquid dyeing machine. After dyeing, a polyester-based water-absorbing softening finish was applied, and a finishing set was carried out at 170 ° C. for 60 seconds at almost the same density as after dyeing to obtain a knitted fabric.
The results of evaluating the performance of the obtained knitted fabric are shown in Table 1 below. In the knitted fabric of the present invention of Example 1, the instantaneous exothermic temperature at the time of elongation was 1.0 ° C. or higher, and when it was made into a garment, it was possible to obtain a garment that was easy to move and excellent in motion following ability.

[実施例7]
28ゲージのダブル丸編機により、非弾性糸ナイロン56dtex/24fと、弾性糸44dtex(商品名ロイカSF:旭化成せんい(株)製)を使用し、図2に示すスムース組織中に、弾性糸をプレーティング(添え糸編)して編成した。
[Example 7]
Using a 28 gauge double circular knitting machine, inelastic yarn nylon 56dtex / 24f and elastic yarn 44dtex (trade name Roika SF: manufactured by Asahi Kasei Fibers Co., Ltd.) are used to place elastic yarn in the smooth structure shown in FIG. Knit by plating.

[実施例8]
32ゲージのシングルトリコット編機を使用し、フロント筬に非弾性糸のポリエステル56dtex/36f、バックに弾性糸33dtex(商品名ロイカSF:旭化成せんい(株)製)を使用し、次に示す弾性糸が閉じ目のループが50%であるアトラス組織にて編成した。
フロント 23/10
バック 10/12/23/21
[Example 8]
Using a 32-gauge single tricot knitting machine, using non-elastic polyester 56dtex / 36f on the front heel and elastic yarn 33dtex (trade name Roica SF: manufactured by Asahi Kasei Fibers Co., Ltd.) on the back, the elastic yarn shown below Was knitted in an atlas structure with a closed loop of 50%.
Front 23/10
Back 10/12/23/21

[実施例9]
32ゲージのダブル丸編機により、非弾性糸ナイロン56dtex/24fと、弾性糸33dtex(商品名ロイカSF:旭化成せんい(株)製)を使用し、スムース組織中に全てのコースに弾性糸をプレーティング(添え糸編)して編成した。
編成できた編地を連続精練機でリラックス及び精練を行い、次いで190℃で90秒間ほぼ生機の巾でプレセットを行い、その後、液流染色機でポリエステルの染色を行った。染色後にポリエステル系の吸水柔軟仕上げ剤を付与して、染色後とほぼ同密度で170℃60秒間仕上げセットを行い編地とした。
得られた編地の性能を評価した結果を以下の表1に示す。実施例1の本発明の編地では、伸長時瞬間発熱温度が1.0℃以上であり、衣服とした場合、動き易く運動追随性に優れうる衣服とすることができた。
[Example 9]
Using a 32 gauge double circular knitting machine, nonelastic yarn nylon 56dtex / 24f and elastic yarn 33dtex (trade name Roika SF: manufactured by Asahi Kasei Fibers Co., Ltd.) are used to play elastic yarn in all courses. Knitting was performed with a ding.
The knitted fabric that had been knitted was relaxed and scoured with a continuous scouring machine, then pre-set at 190 ° C. for 90 seconds with the width of the green machine, and then dyed with a liquid dyeing machine. After dyeing, a polyester-based water-absorbing softening finish was applied, and a finishing set was carried out at 170 ° C. for 60 seconds at almost the same density as after dyeing to obtain a knitted fabric.
The results of evaluating the performance of the obtained knitted fabric are shown in Table 1 below. In the knitted fabric of the present invention of Example 1, the instantaneous exothermic temperature at the time of elongation was 1.0 ° C. or more, and when it was made into a garment, it was possible to make a garment that was easy to move and excellent in movement following ability.

本発明の編地は、着用動作時に伸長時瞬間的に温度上昇する編地であり、この編地をスポーツタイツ、スパッツ、コンプレッションタイツ、ガードル等の等ボトム類、肌着、シャツ、コンプレッションシャツ等トップス類、パンティーストッキング、ソックス、タイツ、レギンス等レッグ類、また、膝サポーター、肘サポーター、アームカバー、レッグカバー、ニーカバー、エルボーカバー等のサポーター類、手袋など、関節部を覆う衣服に縫製することにより、着用運動時に編地が発熱し、暖かくて運動追随性に優れ、型崩れのし難い衣服となる。   The knitted fabric of the present invention is a knitted fabric that instantaneously rises in temperature when being worn, and this knitted fabric is made up of bottoms such as sports tights, spats, compression tights, girdles, underwear, shirts, compression shirts, etc. By sewing to leg coverings such as legs, pantyhose, socks, tights, leggings, knee supporters, elbow supporters, arm covers, leg covers, knee covers, elbow covers, gloves, etc. The knitted fabric generates heat during wearing exercise, and it is warm and excellent in the ability to follow the exercise.

図1
1 非弾性糸のニードルループ(の長さ)
2 非弾性糸のニードルループの始点
3 非弾性糸のニードルループの終点
4 弾性糸のシンカーループ(の長さ)
5 弾性糸のシンカーループの始点
6 弾性糸のシンカーループの終点
図2
1〜4 編順
図3
1a 固定試料把持部
1b 試料固定枠
1d 突き上げ丸棒
FIG.
1 Needle loop (length) of inelastic thread
2 Inelastic thread needle loop start point 3 Inelastic thread needle loop end point 4 Elastic thread sinker loop (length)
5 Start point of elastic thread sinker loop 6 End point of elastic thread sinker loop 2
1-4 Order 3
1a Fixed sample gripping part 1b Sample fixing frame 1d Push-up round bar

Claims (7)

弾性糸と非弾性糸とからなる編地であって、該弾性糸の含有量が30〜60g/m2であり、該経編地を80%まで伸長後元の長さに戻し、伸縮途中の50%時点での往路応力と復路応力とで求める下記式:
応力比=(50%時点の復路応力(N))/(50%時点の往路応力(N))
で表される応力比が0.60〜0.80であり、経方向密度と緯方向密度との下記式:
密度比=(経方向密度(コース/インチ))/(緯方向密度(ウェール/インチ))で表される密度比が1.7〜2.2であり、かつ、該編地の80%伸長時の経方向及び緯方向の伸長応力が3.0〜6.0Nであり、さらに、経緯少なくとも一方向の伸長時瞬間発熱温度が1.0℃以上であることを特徴とする前記編地。
A knitted fabric composed of elastic yarns and inelastic yarns, wherein the elastic yarn content is 30 to 60 g / m 2 , the warp knitted fabric is stretched to 80% after being stretched, and is stretched The following formula obtained from the forward stress and the backward stress at 50% of the following:
Stress ratio = (Return stress at 50% (N)) / (Outward stress at 50% (N))
The stress ratio represented by the formula is 0.60 to 0.80, and the following formula of the warp direction density and the weft direction density:
Density ratio = (Wrong direction density (course / inch)) / (Weft direction density (Wale / inch)) is a density ratio of 1.7 to 2.2, and 80% elongation of the knitted fabric The knitted fabric characterized by having an elongation stress in a warp direction and a weft direction of 3.0 to 6.0 N, and an instantaneous exothermic temperature at the time of at least one direction of warp being 1.0 ° C. or more.
前記編地を構成する組織中の該弾性糸と該非弾性糸との繊度比=(非弾性糸の繊度/弾性糸の繊度)が1.4〜2.5である、請求項1に記載の編地。   The fineness ratio of the elastic yarn and the inelastic yarn in the structure constituting the knitted fabric = (fineness of the inelastic yarn / fineness of the elastic yarn) is 1.4 to 2.5. Knitted fabric. 前記編地を経緯両方向に30%伸長させた時の編組織一単位中の弾性糸のシンカーループの長さと非弾性糸のニードルループの長さとを加えた長さLaと、該経編地を経緯いずれか1方向にさらに50%伸張させた場合の編組織一単位中の弾性糸のシンカーループの長さと非弾性糸のニードルループの長さとを加えた長さLbとの比=(Lb/La)が下式(1):
1.15≦Lb/La≦1.60 (1)
を満たす、請求項1又は2に記載の編地。
A length La obtained by adding the length of the sinker loop of the elastic yarn and the length of the needle loop of the inelastic yarn in one unit of the knitted structure when the knitted fabric is stretched by 30% in both directions of warp and warp, The ratio of the length of the sinker loop of the elastic yarn and the length of the needle loop of the inelastic yarn in one unit of the knitted fabric when stretched by 50% in any one direction = (Lb / La) is the following formula (1):
1.15 ≦ Lb / La ≦ 1.60 (1)
The knitted fabric according to claim 1 or 2, wherein:
複数筬の経編地であり、弾性糸がアトラス組織にて編成されている、請求項1〜3のいずれか1項に記載の編地。   The knitted fabric according to any one of claims 1 to 3, wherein the knitted fabric is a multi-warp warp knitted fabric, and the elastic yarn is knitted with an atlas structure. ダブル丸編地であり、弾性糸を含有するコースと非弾性糸のみのコースが1完全の編順で1本交互に配置されている、請求項1〜3いずれか1項に記載の編地。   The knitted fabric according to any one of claims 1 to 3, wherein the knitted fabric is a double circular knitted fabric, wherein a course containing elastic yarn and a course containing only inelastic yarn are alternately arranged in one complete knitting order. . 請求項1〜5のいずれか1項に記載の編地を含み、身体に密着し、かつ、少なくとも関節部を覆う衣服。   A garment comprising the knitted fabric according to any one of claims 1 to 5, being in close contact with a body and covering at least a joint part. ボトム類、トップス類、レッグ類、サポーター類及び手袋からなる群から選ばれる、請求項6に記載の衣服。   The garment according to claim 6, selected from the group consisting of bottoms, tops, legs, supporters and gloves.
JP2013073939A 2013-03-29 2013-03-29 Knitted fabric and clothes Active JP6154171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013073939A JP6154171B2 (en) 2013-03-29 2013-03-29 Knitted fabric and clothes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073939A JP6154171B2 (en) 2013-03-29 2013-03-29 Knitted fabric and clothes

Publications (2)

Publication Number Publication Date
JP2014198914A true JP2014198914A (en) 2014-10-23
JP6154171B2 JP6154171B2 (en) 2017-06-28

Family

ID=52355987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073939A Active JP6154171B2 (en) 2013-03-29 2013-03-29 Knitted fabric and clothes

Country Status (1)

Country Link
JP (1) JP6154171B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067912A (en) * 2013-09-27 2015-04-13 旭化成せんい株式会社 Knitted fabric and clothing
JP2016130378A (en) * 2015-01-14 2016-07-21 旭化成株式会社 Leg wear
JP2017008444A (en) * 2015-06-23 2017-01-12 旭化成株式会社 Stretchable weft knitted fabric
WO2017126684A1 (en) * 2016-01-21 2017-07-27 旭化成株式会社 Brassiere
WO2018074285A1 (en) * 2016-10-20 2018-04-26 旭化成株式会社 Elastic circular-knitted fabric
JP2019001091A (en) * 2017-06-16 2019-01-10 共和レザー株式会社 Knitted fabric and synthetic resin laminate containing knitted fabric as base fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195970A (en) * 2010-03-17 2011-10-06 Asahi Kasei Fibers Corp Elastic knitted fabric
JP2012112078A (en) * 2010-11-26 2012-06-14 Asahi Kasei Fibers Corp Elastic warp knitted fabric

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195970A (en) * 2010-03-17 2011-10-06 Asahi Kasei Fibers Corp Elastic knitted fabric
JP2012112078A (en) * 2010-11-26 2012-06-14 Asahi Kasei Fibers Corp Elastic warp knitted fabric

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067912A (en) * 2013-09-27 2015-04-13 旭化成せんい株式会社 Knitted fabric and clothing
JP2016130378A (en) * 2015-01-14 2016-07-21 旭化成株式会社 Leg wear
JP2017008444A (en) * 2015-06-23 2017-01-12 旭化成株式会社 Stretchable weft knitted fabric
WO2017126684A1 (en) * 2016-01-21 2017-07-27 旭化成株式会社 Brassiere
WO2018074285A1 (en) * 2016-10-20 2018-04-26 旭化成株式会社 Elastic circular-knitted fabric
JPWO2018074285A1 (en) * 2016-10-20 2019-06-24 旭化成株式会社 Elastic circular knit
TWI669424B (en) * 2016-10-20 2019-08-21 日商旭化成股份有限公司 Elastic round braid
US10876230B2 (en) 2016-10-20 2020-12-29 Asahi Kasei Kabushiki Kaisha Elastic circular-knitted fabric
JP2019001091A (en) * 2017-06-16 2019-01-10 共和レザー株式会社 Knitted fabric and synthetic resin laminate containing knitted fabric as base fabric

Also Published As

Publication number Publication date
JP6154171B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP6062534B2 (en) Elastic knitted fabric and clothes
JP5777721B2 (en) Elastic knitted fabric and garment
JP6154171B2 (en) Knitted fabric and clothes
JP5896677B2 (en) Knitted fabric
JP6243176B2 (en) Knitted fabric and clothes
JP2012012733A (en) Small size circular knitted fabric
JP6228432B2 (en) Elastic knitted fabric and clothes
JP6368602B2 (en) Leg wear
JP6510337B2 (en) Stretchable weft knit
JP6315695B2 (en) Leg clothing
JP2019108638A (en) Warp knitted fabric
JP2013072155A (en) Exothermic supporter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170601

R150 Certificate of patent or registration of utility model

Ref document number: 6154171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350