JP2014198885A - Electrolytic copper foil, copper-clad laminate, printed wiring board and electronic component - Google Patents

Electrolytic copper foil, copper-clad laminate, printed wiring board and electronic component Download PDF

Info

Publication number
JP2014198885A
JP2014198885A JP2013075212A JP2013075212A JP2014198885A JP 2014198885 A JP2014198885 A JP 2014198885A JP 2013075212 A JP2013075212 A JP 2013075212A JP 2013075212 A JP2013075212 A JP 2013075212A JP 2014198885 A JP2014198885 A JP 2014198885A
Authority
JP
Japan
Prior art keywords
copper foil
copper
young
modulus
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013075212A
Other languages
Japanese (ja)
Other versions
JP6212273B2 (en
Inventor
雅史 石井
Masashi Ishii
雅史 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013075212A priority Critical patent/JP6212273B2/en
Publication of JP2014198885A publication Critical patent/JP2014198885A/en
Application granted granted Critical
Publication of JP6212273B2 publication Critical patent/JP6212273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic copper foil successfully inhibiting the occurrence of warpage of a rigid base material and good in handling ability even when the rigid base material is constituted by laminating rigid base materials, and a copper-clad laminate, a printed wiring board and an electronic component using the same.SOLUTION: There is provided an electrolytic copper foil having a Young's modulus of 35 GPa or more before a heating treatment, and the Young's modulus decreases to 30 GPa or less by the heating treatment at 200°C for 90 minutes.

Description

本発明は、電解銅箔、それを用いた銅張積層体、プリント配線板及び電子部品に関する。   The present invention relates to an electrolytic copper foil, a copper-clad laminate using the same, a printed wiring board, and an electronic component.

近年、熱硬化性樹脂やガラス等のリジッドな基材上に電解銅箔を積層した銅張積層体が、電子機器に用いられるプリント配線板の材料として使用されている。しかしながら、熱硬化性樹脂の片側に電解銅箔を積層して加熱することで両者を張り合わせて形成したリジッド基板(銅張積層体)には、反りが発生することがある。また、熱硬化性ではないガラス等の片側に接着剤等を介して電解銅箔を積層して加熱することで両者を張り合わせて形成したリジッド基板(銅張積層体)にも、反りが発生することがある。   In recent years, a copper-clad laminate in which an electrolytic copper foil is laminated on a rigid base material such as a thermosetting resin or glass has been used as a material for printed wiring boards used in electronic devices. However, warping may occur in a rigid substrate (copper-clad laminate) formed by laminating and heating an electrolytic copper foil on one side of a thermosetting resin and bonding them together. Also, warping occurs in a rigid substrate (copper-clad laminate) formed by laminating and heating an electrolytic copper foil on one side of non-thermosetting glass or the like via an adhesive or the like. Sometimes.

反り発生現象を、電解銅箔と熱可塑性樹脂の片面張り合わせ時を例にして説明する。すなわち、銅箔と樹脂を積層・加圧・加熱すると、樹脂は熱により溶融した後硬化し、銅箔と接着する。通常、両材料は平坦なステンレスプレート等を支持体として積層・加圧・加熱され、その状態で樹脂が硬化し、銅箔と樹脂とが平坦な状態を維持して接着されるが、冷却によりこの複合体が室温に戻る際に反りが発生する。ここで、図1に片面リジッド基板の構造例を示す。図2は、当該片面リジッド基板での銅箔側反り発生形態を示す。   The warp occurrence phenomenon will be described by taking as an example the case of bonding one side of an electrolytic copper foil and a thermoplastic resin. That is, when the copper foil and the resin are laminated, pressed, and heated, the resin is melted by heat and then cured and bonded to the copper foil. Usually, both materials are laminated, pressed and heated using a flat stainless steel plate as a support, and the resin is cured in that state, and the copper foil and the resin are bonded in a flat state. Warpage occurs when this complex returns to room temperature. Here, FIG. 1 shows a structural example of a single-sided rigid substrate. FIG. 2 shows a copper foil side warp generation form in the single-sided rigid board.

反りが発生する原因は次の通りである。すなわち、樹脂の線膨張係数は電解銅箔のそれよりも小さいため、複合体が室温まで冷却された際、銅箔の収縮量は樹脂のそれよりも大きいが、銅箔のヤング率が樹脂のそれよりも大きい場合、樹脂は銅箔側に反ってしまう。従って、このような2種の材料から複合材であるリジッド基板を製作する場合、銅箔のヤング率を下げる必要がある。   The causes of warping are as follows. That is, since the linear expansion coefficient of the resin is smaller than that of the electrolytic copper foil, when the composite is cooled to room temperature, the shrinkage amount of the copper foil is larger than that of the resin, but the Young's modulus of the copper foil is higher than that of the resin. When it is larger than that, the resin warps to the copper foil side. Therefore, when manufacturing a rigid substrate which is a composite material from these two kinds of materials, it is necessary to lower the Young's modulus of the copper foil.

このような反りを低減する方策として、例えば、500℃以上の高温条件で完全に焼き鈍し、樹脂レベル或いはそれ以下のヤング率まで低下させた電解銅箔を使用することが挙げられる。   As a measure for reducing such warpage, for example, use of an electrolytic copper foil that is completely annealed under a high temperature condition of 500 ° C. or more and reduced to a resin level or a Young's modulus of less than that level.

しかしながら、焼き鈍した銅箔は軟らかいためハンドリングに難があること、更に、銅箔表面に施された化学的成分が焼き鈍しによって破壊され、リジッド基板に必要とされる性能を損なってしまうという問題が生じる。
本発明は、リジッドな基材に積層されてリジッド基板を構成した場合でも、リジッド基板の反りの発生が良好に抑制され、且つ、ハンドリング性が良好な電解銅箔、それを用いた銅張積層体、プリント配線板及び電子部品を提供する。
However, the annealed copper foil is soft and difficult to handle, and the chemical components applied to the surface of the copper foil are destroyed by the annealing, and the performance required for the rigid substrate is impaired. .
The present invention is an electrolytic copper foil in which the occurrence of warpage of a rigid substrate is satisfactorily suppressed even when a rigid substrate is configured by being laminated on a rigid base material, and a copper-clad laminate using the same Body, printed wiring board and electronic components.

本発明者らは鋭意研究を重ねた結果、ベースとなる銅箔の機械特性を最適化することにより、基板作製時に完全焼き鈍し銅箔のレベルまで銅箔のヤング率を下げることで、リジッド基板の反り発生を良好に抑制することが可能となることを見出した。   As a result of intensive research, the present inventors have optimized the mechanical properties of the copper foil as a base, completely annealed at the time of substrate production, and lowered the Young's modulus of the copper foil to the level of the copper foil. It has been found that the occurrence of warpage can be satisfactorily suppressed.

以上の知見を基礎として完成された本発明は一側面において、熱処理前に35GPa以上のヤング率を有し、且つ、200℃で90分間の熱処理によってヤング率が30GPa以下まで下がる電解銅箔である。   The present invention completed on the basis of the above knowledge is, in one aspect, an electrolytic copper foil having a Young's modulus of 35 GPa or higher before heat treatment and having a Young's modulus reduced to 30 GPa or less by heat treatment at 200 ° C. for 90 minutes. .

本発明の電解銅箔は一実施形態において、200℃で90分間の熱処理によってヤング率が27GPa以下まで下がる。   In one embodiment, the electrolytic copper foil of the present invention has a Young's modulus reduced to 27 GPa or less by heat treatment at 200 ° C. for 90 minutes.

本発明は別の一側面において、銅より線膨張係数が小さく、且つ、前記熱処理前の銅箔よりもヤング率の小さい基材と、前記基材に積層された本発明の銅箔とで構成された銅張積層体である。   Another aspect of the present invention is a base material having a smaller coefficient of linear expansion than copper and a Young's modulus smaller than that of the copper foil before the heat treatment, and the copper foil of the present invention laminated on the base material. Copper clad laminate.

本発明の銅張積層体は一実施形態において、前記銅箔が、接着剤を介して前記基材に積層されている。   In one embodiment of the copper clad laminate of the present invention, the copper foil is laminated on the base material via an adhesive.

本発明は更に別の一側面において、本発明の銅張積層体を材料としたプリント配線板である。   In yet another aspect, the present invention is a printed wiring board made of the copper clad laminate of the present invention.

本発明は更に別の一側面において、本発明のプリント配線板を備えた電子部品である。   In still another aspect, the present invention is an electronic component including the printed wiring board of the present invention.

本発明によれば、リジッドな基材に積層されてリジッド基板を構成した場合でも、リジッド基板の反りの発生が良好に抑制され、且つ、ハンドリング性が良好な電解銅箔、それを用いた銅張積層体、プリント配線板及び電子部品を提供することができる。   According to the present invention, even when a rigid substrate is configured by being laminated on a rigid base material, an electrolytic copper foil in which the occurrence of warpage of the rigid substrate is satisfactorily suppressed and the handling property is good, and a copper using the same A tension laminate, a printed wiring board, and an electronic component can be provided.

片面リジッド基板の構造例である。It is an example of a structure of a single-sided rigid board | substrate. 片面リジッド基板での銅箔側反り発生形態である。This is a copper foil side warp generation form on a single-sided rigid board. 実施例4の樹脂基板での反り状況(写真)である。It is the curvature condition (photograph) in the resin substrate of Example 4. 比較例10の樹脂基板での反り状況(写真)である。It is the curvature condition (photograph) in the resin substrate of the comparative example 10.

本発明の電解銅箔は、電解製箔装置により製造することができる。電解製箔装置は、表面がSUS又はチタンで形成されドラム状のカソード、及び、カソードに対して同心円状に配置されたアノードで構成されている。この電解製箔装置に電解液を供給させつつ両極間に電流を流して、カソード表面に所定の厚さに銅を析出させ、次いでカソード表面から銅を回収することで電解銅箔が作製される。   The electrolytic copper foil of the present invention can be produced by an electrolytic foil making apparatus. The electrolytic foil making apparatus includes a drum-shaped cathode having a surface formed of SUS or titanium, and an anode arranged concentrically with respect to the cathode. An electrolytic copper foil is produced by supplying current to both electrodes while supplying an electrolytic solution to this electrolytic foil making apparatus, depositing copper to a predetermined thickness on the cathode surface, and then collecting copper from the cathode surface. .

本発明の電解銅箔の厚みは、3〜70μmであることが好ましい。厚さが9μm以下の銅箔はハンドリング性が不良となる可能性があるため、アルミ、ステンレス、銅等のキャリアを使用したキャリア付き銅箔を使用することが好ましい。また、厚さが70μm超となると銅箔の厚みによる剛性が高くなり反り抑制効果が小さくなる。   The thickness of the electrolytic copper foil of the present invention is preferably 3 to 70 μm. Since the copper foil having a thickness of 9 μm or less may have poor handling properties, it is preferable to use a copper foil with a carrier using a carrier such as aluminum, stainless steel, or copper. On the other hand, when the thickness exceeds 70 μm, the rigidity due to the thickness of the copper foil increases and the warpage suppressing effect is reduced.

本発明の電解銅箔は、熱処理前に35GPa以上のヤング率を有し、且つ、200℃で90分間の熱処理によってヤング率が30GPa以下まで下がる。本発明の電解銅箔は、このように樹脂基板等への加熱圧着で受ける熱処理後において、ヤング率が27GPa以上から30GPa以下まで下がるため、リジッドな基材に張り合わせてリジッド基板が作製されても、張り合わされる基材とのヤング率の違いにより、銅箔の温度低下につれて発生する反りが良好に抑制される。また、このとき、200℃で90分間の熱処理によってヤング率が27GPa以下まで下がるのがより好ましい。また、当該ヤング率の下限は特に限定されないが、完全に焼き鈍した電解銅箔のヤング率が24GPaであるため、典型的には当該ヤング率は24GPa以上となる。   The electrolytic copper foil of the present invention has a Young's modulus of 35 GPa or more before heat treatment, and the Young's modulus is lowered to 30 GPa or less by heat treatment at 200 ° C. for 90 minutes. The electrolytic copper foil of the present invention has a Young's modulus of 27 GPa or more to 30 GPa or less after the heat treatment received by thermocompression bonding to a resin substrate or the like as described above. Due to the difference in Young's modulus from the substrates to be bonded together, the warpage that occurs as the temperature of the copper foil decreases is satisfactorily suppressed. At this time, it is more preferable that the Young's modulus is lowered to 27 GPa or less by heat treatment at 200 ° C. for 90 minutes. Further, the lower limit of the Young's modulus is not particularly limited, but the Young's modulus of a completely annealed electrolytic copper foil is 24 GPa, and therefore typically the Young's modulus is 24 GPa or more.

電解銅箔を析出させる銅電解液としては、硫酸銅めっき液、ピロリン酸銅めっき液、スルファミン酸銅めっき液等を用いることができるが、コストの面から硫酸銅めっき液が好ましい。硫酸銅めっき液を用いる場合、めっき液組成は、塩素及びニカワを必須成分として含み、硫酸濃度:40〜120g/l、銅濃度:70〜140g/l、塩素濃度:20〜100ppmとする。また、ニカワは、その濃度が0.01ppm未満(検出限界以下)となるように添加される。このようにニカワの濃度を0.01ppm未満となるように調整するためには、銅1トン電着当たりのニカワ添加量を3〜50gとする。
電流密度は50〜150A/dm2が好ましく、電解浴温度は40〜70℃が好ましい。
As the copper electrolytic solution for depositing the electrolytic copper foil, a copper sulfate plating solution, a copper pyrophosphate plating solution, a copper sulfamate plating solution, or the like can be used, but a copper sulfate plating solution is preferable from the viewpoint of cost. When using a copper sulfate plating solution, the plating solution composition contains chlorine and glue as essential components, and the sulfuric acid concentration is 40 to 120 g / l, the copper concentration is 70 to 140 g / l, and the chlorine concentration is 20 to 100 ppm. Further, glue is added so that its concentration is less than 0.01 ppm (below the detection limit). Thus, in order to adjust the concentration of glue to be less than 0.01 ppm, the amount of glue added per 1 ton of copper is set to 3 to 50 g.
The current density is preferably 50 to 150 A / dm 2 , and the electrolytic bath temperature is preferably 40 to 70 ° C.

本発明の電解銅箔には、その基材との接着予定面、及び、回路形成予定面に、それぞれ所定の表面処理層(粗化処理層、バリヤー層、防錆層、シランカップリング層等)を公知の手段を用いて形成してもよい。   The electrolytic copper foil of the present invention has predetermined surface treatment layers (roughening treatment layer, barrier layer, rust prevention layer, silane coupling layer, etc.) on the adhesion planned surface with the base material and the circuit formation scheduled surface, respectively. ) May be formed using known means.

本発明の電解銅箔を、樹脂基材やガラス基材等に貼り合わせて銅張積層体を製造することができる。樹脂基材としては、プリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリテトラフルオロエチレン(PTFE)を含有するフッ素系樹脂等を使用する事ができる。   The electrolytic copper foil of the present invention can be bonded to a resin substrate, a glass substrate or the like to produce a copper clad laminate. The resin base material is not particularly limited as long as it has characteristics applicable to printed wiring boards and the like. For example, paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base for rigid PWB Epoxy resin, glass cloth / paper composite base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, fluorine resin containing polytetrafluoroethylene (PTFE), etc. Can do.

貼り合わせの方法は、ガラス単体、ポリテトラフルオロエチレン(PTFE)を含有するフッ素系樹脂、或いは、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔を被覆層の反対側の面から単体のガラス、ポリテトラフルオロエチレン(PTFE)を含有するフッ素系樹脂、或いは、プリプレグに重ねて加熱加圧させることにより行うことができる。各基材と電解銅箔との張り合わせは、使用する基材にもよるが、接着剤を用いてもよく、用いなくてもよい。   As a method of bonding, a prepreg is prepared by impregnating a base material such as a glass simple substance, polytetrafluoroethylene (PTFE), or a glass cloth or the like, and curing the resin to a semi-cured state. . The copper foil can be formed by heating and pressurizing a single glass, a fluororesin containing polytetrafluoroethylene (PTFE), or a prepreg from the opposite surface of the coating layer. The lamination of each base material and the electrolytic copper foil depends on the base material to be used, but an adhesive may or may not be used.

本発明の銅張積層体は、主としてプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、リジッド・フレックスPWBに好適に用いられる。このようにして作製したプリント配線板は、搭載部品の高密度実装が要求される各種電子部品に搭載することができる。   The copper clad laminate of the present invention is mainly usable for a printed wiring board (PWB) and is not particularly limited. For example, from the viewpoint of the number of layers of the conductor pattern, the single-sided PWB, the double-sided PWB, and the multilayered PWB It can be applied to (three or more layers), and is suitably used for rigid PWB and rigid flex PWB from the viewpoint of the type of insulating substrate material. The printed wiring board produced in this way can be mounted on various electronic components that require high-density mounting of the mounted components.

実施例1〜7及び比較例1〜11として、電解製箔装置を用いて、表1に示す電解液組成、電解液温度、電流密度、線速度の各条件にて電解銅箔試料を作製した。続いて、銅箔試料の基板張り合わせ予定面に、それぞれ湿式プロセスにて、粗化処理層、バリヤー層、防錆層及びシランカップリング層を形成し、他方の表面に防錆層を形成し、表面を乾燥し、これを銅箔製品として使用した。粗化処理層、バリヤー層、防錆層及びシランカップリング層の形成条件を以下に示す。なお、実施例、比較例に用いた粗化処理層、バリヤー層、防錆層及びシランカップリング層の条件は全て同一とした。   As Examples 1 to 7 and Comparative Examples 1 to 11, electrolytic copper foil samples were prepared using electrolytic foil making apparatuses under the conditions of the electrolytic solution composition, electrolytic solution temperature, current density, and linear velocity shown in Table 1. . Subsequently, a roughening treatment layer, a barrier layer, a rust prevention layer and a silane coupling layer are formed on the surfaces of the copper foil samples to be bonded to each other by a wet process, and a rust prevention layer is formed on the other surface. The surface was dried and used as a copper foil product. The conditions for forming the roughening treatment layer, barrier layer, rust prevention layer and silane coupling layer are shown below. The conditions of the roughening treatment layer, barrier layer, rust prevention layer and silane coupling layer used in the examples and comparative examples were all the same.

粗化処理層形成条件:
銅濃度15〜35g/l、硫酸濃度40〜120g/l、砒素濃度0.3〜3.0g/l、温度30〜40℃の銅粗化メッキ浴を用い、電流密度80〜100A/dm2(多段粗化)でメッキ電気量230As/dm2を生箔M面(マット面)に付与した。その後、該M面に、銅濃度40〜60g/l、硫酸濃度40〜120g/l、温度35〜45℃の銅正常メッキ浴を用い、電流密度25〜30A/dm2(多段処理)でメッキ電気量200As/dm2を付与した。
Roughening layer formation conditions:
Using a copper roughening plating bath having a copper concentration of 15 to 35 g / l, a sulfuric acid concentration of 40 to 120 g / l, an arsenic concentration of 0.3 to 3.0 g / l, and a temperature of 30 to 40 ° C., a current density of 80 to 100 A / dm 2 The plating electric quantity 230 As / dm 2 was applied to the green foil M surface (mat surface) by (multi-stage roughening). Thereafter, the M surface is plated at a current density of 25 to 30 A / dm 2 (multistage treatment) using a copper normal plating bath having a copper concentration of 40 to 60 g / l, a sulfuric acid concentration of 40 to 120 g / l and a temperature of 35 to 45 ° C. An electric amount of 200 As / dm 2 was applied.

バリヤー層形成条件:
銅濃度50〜80g/l、亜鉛濃度2〜10g/l、水酸化ナトリウム濃度50〜80g/l、シアン化ナトリウム濃度5〜30g/l、温度60〜90℃の真鍮メッキ浴を用い、電流密度5〜10A/dm2(多段処理)でメッキ電気量30As/dm2を上記粗化処理層を形成したM面に付与した。
Barrier layer formation conditions:
Using a brass plating bath having a copper concentration of 50 to 80 g / l, a zinc concentration of 2 to 10 g / l, a sodium hydroxide concentration of 50 to 80 g / l, a sodium cyanide concentration of 5 to 30 g / l, and a temperature of 60 to 90 ° C., the current density A plating electric quantity of 30 As / dm 2 was applied to the M surface on which the roughening treatment layer was formed by 5 to 10 A / dm 2 (multistage treatment).

防錆層形成条件:
CrO3:1〜5g/l、Zn:0.2〜2g/l、Na2SO4:5〜15g/l、温度:50〜60℃、pH:4〜6(H2SO4、NaOHで調整)のメッキ浴を用い、メッキ電気量0.80As/dm2を生箔S面(シャイニー面)、メッキ電気量0.18As/dm2を上記の粗化処理層とバリヤー層を形成したM面に付与した。
Rust prevention layer formation conditions:
CrO 3 : 1 to 5 g / l, Zn: 0.2 to 2 g / l, Na 2 SO 4 : 5 to 15 g / l, temperature: 50 to 60 ° C., pH: 4 to 6 (H 2 SO 4 , with NaOH Adjustment), a plating electric quantity of 0.80 As / dm 2 was formed on the S surface (shiny surface) of the green foil, and an electric quantity of plating of 0.18 As / dm 2 was formed on the above roughened layer and barrier layer. Applied to the surface.

シランカップリング層塗布条件:
上記の粗化処理層、バリヤー層、防錆層を形成させたM面に、0.2〜2%のアルコキシシランを含有量するpH7〜8の溶液を噴霧した。
Silane coupling layer application conditions:
A solution having a pH of 7 to 8 containing 0.2 to 2% of alkoxysilane was sprayed on the M surface on which the roughening layer, the barrier layer, and the rust preventive layer were formed.

次に、各試料のヤング率、基材との張り合わせ後の反り量、ハンドリング性を、以下の方法によって測定した。   Next, the Young's modulus of each sample, the warpage amount after pasting to the base material, and the handling properties were measured by the following methods.

〔ヤング率〕
熱処理前の銅箔試料、200℃×90分の熱処理後の銅箔試料、500℃×1時間の熱処理後の銅箔試料について、それぞれ以下の方法でヤング率を測定した。ヤング率(縦弾性係数)は、弾性範囲における単位ひずみ当たりどれだけの応力が必要かの値を決める定数であり、一方向の引張りまたは圧縮応力の方向に対するひずみ量の関係から求める。ヤング率は、縦軸に応力、横軸にひずみをとった応力ひずみ曲線の直線部の傾きに相当する。銅箔試料のヤング率は、IPC-TM-650の「Tensile Strength and Elongation, Copper Foil」に記された「抗張力及び伸び」を測定する際に得られるひずみ-応力曲線を用い、ひずみと応力が比例関係にある弾性変形領域を特定し、この領域での単位ひずみ当たりの応力を計算することにより求めた。
〔Young's modulus〕
The Young's modulus was measured for the copper foil sample before heat treatment, the copper foil sample after heat treatment at 200 ° C. for 90 minutes, and the copper foil sample after heat treatment at 500 ° C. for 1 hour by the following methods. The Young's modulus (longitudinal elastic modulus) is a constant that determines the value of how much stress is required per unit strain in the elastic range, and is obtained from the relationship between the strain amount in the direction of tensile or compressive stress in one direction. The Young's modulus corresponds to the slope of the straight line portion of the stress-strain curve with the stress on the vertical axis and the strain on the horizontal axis. The Young's modulus of the copper foil sample was determined using the strain-stress curve obtained when measuring the “tensile strength and elongation” described in “Tensile Strength and Elongation, Copper Foil” of IPC-TM-650. The elastic deformation region having a proportional relationship was specified, and the stress per unit strain in this region was calculated.

〔基材との張り合わせ後の反り量〕
・樹脂基材への張り合わせ:
ガラス転移点が170〜180℃の市販のFR-4プリプレグを準備し、複数枚使用して総厚が1.8mmになるようにした。粗化処理面が施された銅箔表面がプリプレグと向かい合うようにプリプレグの片側にプリプレグよりもサイズの大きい銅箔試料を配置し、逆側にプリプレグよりもサイズの大きい離型材を配置した。その後、銅箔試料及び離型紙の表面にそれらよりもサイズの大きいステンレスプレート(積層保護材)を配置し、圧力40kg/cm2、温度180℃で90分間加圧プレスを行い、銅張積層体を製作した。銅張積層体を室温になるまで放置し、銅張積層体の一部である離型材を剥離して最終的な銅張積層体を作製した。続いて、銅箔を上側にして平坦面に静置し、四角の浮き上がり量を測定し、それらの平均値を算出した。
[The amount of warping after pasting to the substrate]
・ Lamination to resin substrate:
A commercially available FR-4 prepreg having a glass transition point of 170 to 180 ° C. was prepared, and a plurality of sheets were used so that the total thickness became 1.8 mm. A copper foil sample having a size larger than that of the prepreg was arranged on one side of the prepreg so that the surface of the copper foil subjected to the roughening treatment faced the prepreg, and a release material having a size larger than that of the prepreg was arranged on the opposite side. After that, a stainless steel plate (lamination protective material) larger in size than the copper foil sample and release paper is placed on the surface and pressure-pressed at a pressure of 40 kg / cm 2 and a temperature of 180 ° C. for 90 minutes to obtain a copper-clad laminate. Was made. The copper clad laminate was allowed to stand until it reached room temperature, and the release material as a part of the copper clad laminate was peeled off to produce a final copper clad laminate. Subsequently, the copper foil was placed on the flat surface, and the amount of lifting of the squares was measured, and the average value thereof was calculated.

・ガラス基材への張り合わせ:
市販の硬質ガラス基材(厚み1.8mm)の表面を、エチルアルコールを染み込ませたリントフリー布で拭き、汚れを取り除いた。ガラス表面のエチルアルコールを乾燥させた後、その表面に、厚みが8μmとなるように180〜200℃で完全硬化する市販のエポキシ系接着剤を均一に塗布し、粗化処理が施された銅箔表面がガラス基材と重なり合うように銅箔試料を貼付し、100℃のオーブン内に15分間放置した。その後、接着剤をキュアするため、銅箔試料を貼付したガラス基材を200℃に加熱した真空オーブン内に90分間放置した。接着剤のキュア終了後、ガラス基板を真空オーブンから取り出し、最終的な銅張積層体を製作した。銅張積層体を室温になるまで放置した後、銅箔を上側にして平坦面に静置し、四角の浮き上がり量を測定し、それらの平均値を算出した。
・ Lamination to glass substrate:
The surface of a commercially available hard glass substrate (thickness 1.8 mm) was wiped with a lint-free cloth soaked with ethyl alcohol to remove dirt. After drying the ethyl alcohol on the glass surface, the surface was subjected to a roughening treatment by uniformly applying a commercially available epoxy adhesive that completely hardens at 180 to 200 ° C. to a thickness of 8 μm. A copper foil sample was stuck so that the foil surface overlapped with the glass substrate, and left in an oven at 100 ° C. for 15 minutes. Thereafter, in order to cure the adhesive, the glass substrate on which the copper foil sample was adhered was left in a vacuum oven heated to 200 ° C. for 90 minutes. After curing of the adhesive, the glass substrate was taken out of the vacuum oven, and the final copper clad laminate was manufactured. The copper clad laminate was allowed to stand until it reached room temperature, then left on a flat surface with the copper foil facing upward, the amount of lifting of the squares was measured, and the average value thereof was calculated.

〔ハンドリング性〕
銅箔試料を基材に積層するまでのハンドリングにおいて、折れ、シワ等の外観不良の生じ易さを下記の基準で評価した。
○:折れ・シワが発生しなかった。×:折れ・シワが発生した。
各測定結果、及び、各試料の銅箔厚みを表2に示す。
[Handling]
In handling until the copper foil sample was laminated on the base material, the ease with which appearance defects such as folding and wrinkling occurred was evaluated according to the following criteria.
○: No breakage or wrinkle occurred. X: Folding / wrinkle occurred.
Table 2 shows the measurement results and the copper foil thickness of each sample.

(評価結果)
実施例1〜7は、いずれも熱処理前に35GPa以上のヤング率を有し、且つ、200℃で90分間の熱処理によってヤング率が30GPa以下まで下がっており、基材張り合わせ後の反り量も小さく、ハンドリング性も良好であった。
比較例1〜7、9及び10は、いずれも200℃で90分間の熱処理後のヤング率が30GPaを超えており、基材張り合わせ後の反り量が大きかった。
比較例8は、ピンホールが発生してしまい、製品とならず各評価ができなかった。
比較例11は、比較例4の電解銅箔を500℃の高温条件で完全に焼き鈍しているため、反り量は良好に抑制できたが、軟らかくなり過ぎてしまい、ハンドリング性が不良であった。
図3に、実施例4の樹脂基板での反り状況(写真)を示す。図4に、比較例10の樹脂基板での反り状況(写真)を示す。
(Evaluation results)
Examples 1 to 7 all had a Young's modulus of 35 GPa or more before heat treatment, and the Young's modulus was lowered to 30 GPa or less by heat treatment at 200 ° C. for 90 minutes, and the amount of warpage after bonding the substrates was small. The handling property was also good.
In each of Comparative Examples 1 to 7, 9 and 10, the Young's modulus after heat treatment at 200 ° C. for 90 minutes exceeded 30 GPa, and the amount of warpage after bonding the substrates was large.
In Comparative Example 8, pinholes were generated, and the product was not a product and could not be evaluated.
In Comparative Example 11, since the electrolytic copper foil of Comparative Example 4 was completely annealed at a high temperature condition of 500 ° C., the amount of warpage could be suppressed satisfactorily, but it was too soft and the handling property was poor.
In FIG. 3, the curvature condition (photograph) in the resin substrate of Example 4 is shown. In FIG. 4, the curvature condition (photograph) in the resin substrate of the comparative example 10 is shown.

Claims (6)

熱処理前に35GPa以上のヤング率を有し、且つ、200℃で90分間の熱処理によってヤング率が30GPa以下まで下がる電解銅箔。   An electrolytic copper foil having a Young's modulus of 35 GPa or more before heat treatment and having a Young's modulus lowered to 30 GPa or less by heat treatment at 200 ° C. for 90 minutes. 200℃で90分間の熱処理によってヤング率が27GPa以下まで下がる請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein the Young's modulus is lowered to 27 GPa or less by heat treatment at 200 ° C for 90 minutes. 銅より線膨張係数が小さく、且つ、前記熱処理前の銅箔よりもヤング率の小さい基材と、前記基材に積層された請求項1又は2に記載の銅箔とで構成された銅張積層体。   A copper-clad composed of a base material having a smaller linear expansion coefficient than copper and a Young's modulus smaller than that of the copper foil before the heat treatment, and the copper foil according to claim 1 or 2 laminated on the base material. Laminated body. 前記銅箔が、接着剤を介して前記基材に積層されている請求項3に記載の銅張積層体。   The copper clad laminate according to claim 3, wherein the copper foil is laminated on the base material via an adhesive. 請求項3又は4に記載の銅張積層体を材料としたプリント配線板。   A printed wiring board made of the copper clad laminate according to claim 3. 請求項5に記載のプリント配線板を備えた電子部品。   An electronic component comprising the printed wiring board according to claim 5.
JP2013075212A 2013-03-29 2013-03-29 Electrolytic copper foil, copper-clad laminate using the same and method for producing the same, printed wiring board and method for producing the same, electronic component and method for producing the same Active JP6212273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075212A JP6212273B2 (en) 2013-03-29 2013-03-29 Electrolytic copper foil, copper-clad laminate using the same and method for producing the same, printed wiring board and method for producing the same, electronic component and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075212A JP6212273B2 (en) 2013-03-29 2013-03-29 Electrolytic copper foil, copper-clad laminate using the same and method for producing the same, printed wiring board and method for producing the same, electronic component and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014198885A true JP2014198885A (en) 2014-10-23
JP6212273B2 JP6212273B2 (en) 2017-10-11

Family

ID=52355975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075212A Active JP6212273B2 (en) 2013-03-29 2013-03-29 Electrolytic copper foil, copper-clad laminate using the same and method for producing the same, printed wiring board and method for producing the same, electronic component and method for producing the same

Country Status (1)

Country Link
JP (1) JP6212273B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045549A (en) * 2018-09-21 2020-03-26 日鉄ケミカル&マテリアル株式会社 Electrolytic copper foil and manufacturing method therefor, copper-clad laminate, circuit board, electronic device and electronic apparatus
CN112323001A (en) * 2020-10-31 2021-02-05 湖北中一科技股份有限公司 Aging treatment process method for reducing warping of electrolytic copper foil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278866A (en) * 1994-04-12 1995-10-24 Nikko Gould Foil Kk Production of highly high-temperature elongated electrolytic copper foil
JPH07297511A (en) * 1994-04-27 1995-11-10 Matsushita Electric Works Ltd Electrical lamination board
JP2004152904A (en) * 2002-10-29 2004-05-27 Kyocera Corp Electrolytic copper foil, film and multilayer wiring substrate therewith, and method of manufacturing the same
US20040157128A1 (en) * 2002-09-12 2004-08-12 Hirohisa Seto Metal foil for current collector of secondary battery and method for producing the same
WO2009116432A1 (en) * 2008-03-17 2009-09-24 日鉱金属株式会社 Electrolytic solution for producing electrolytic copper foil
WO2009151124A1 (en) * 2008-06-12 2009-12-17 古河電気工業株式会社 Electrolytic copper coating and method of manufacture therefor, and copper electrolyte for manufacturing electrolytic copper coatings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278866A (en) * 1994-04-12 1995-10-24 Nikko Gould Foil Kk Production of highly high-temperature elongated electrolytic copper foil
JPH07297511A (en) * 1994-04-27 1995-11-10 Matsushita Electric Works Ltd Electrical lamination board
US20040157128A1 (en) * 2002-09-12 2004-08-12 Hirohisa Seto Metal foil for current collector of secondary battery and method for producing the same
JP2004152904A (en) * 2002-10-29 2004-05-27 Kyocera Corp Electrolytic copper foil, film and multilayer wiring substrate therewith, and method of manufacturing the same
WO2009116432A1 (en) * 2008-03-17 2009-09-24 日鉱金属株式会社 Electrolytic solution for producing electrolytic copper foil
WO2009151124A1 (en) * 2008-06-12 2009-12-17 古河電気工業株式会社 Electrolytic copper coating and method of manufacture therefor, and copper electrolyte for manufacturing electrolytic copper coatings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045549A (en) * 2018-09-21 2020-03-26 日鉄ケミカル&マテリアル株式会社 Electrolytic copper foil and manufacturing method therefor, copper-clad laminate, circuit board, electronic device and electronic apparatus
CN112323001A (en) * 2020-10-31 2021-02-05 湖北中一科技股份有限公司 Aging treatment process method for reducing warping of electrolytic copper foil

Also Published As

Publication number Publication date
JP6212273B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
US8624125B2 (en) Metal foil laminated polyimide resin substrate
JP5710845B2 (en) Surface-treated electrolytic copper foil, laminated board, printed wiring board, and electronic device
US20100000771A1 (en) Copper-clad laminate, printed-wiring boards, multilayer printed-wiring boards, and method for manufacturing the same
WO2003047323A1 (en) Method for preparing copper foil with insulating layer and copper foil with insulating layer prepared by the method, and printed wiring board using the copper foil with insulating layer
JP5615253B2 (en) Method for producing thick film polyimide flexible metal laminate
JP3963662B2 (en) Laminate production method
JP6212273B2 (en) Electrolytic copper foil, copper-clad laminate using the same and method for producing the same, printed wiring board and method for producing the same, electronic component and method for producing the same
KR101362288B1 (en) Copper foil with primer resin layer, copper-clad laminate comprising the copper foil for a printed circuit board, preparation method of the copper foil, and primer resin composition used for the copper foil
JP3611506B2 (en) Laminate manufacturing method
JP4802541B2 (en) Method for producing metal foil-clad laminate and multilayer printed wiring board
JP4296680B2 (en) Laminate production method
JP2004249641A (en) Manufacturing method for laminate
JP2001138437A (en) Method for manufacturing laminate
KR101975450B1 (en) Manufacturing method of multilayer printed circuit board comprising surface-treated insulating film
JP4067920B2 (en) Laminate production method
JP2005059486A (en) Method and equipment for manufacturing laminate
JPWO2019208402A1 (en) Laminated board, printed wiring board, multilayer printed wiring board, laminated body, and manufacturing method of laminated board
JP4823884B2 (en) Method for producing flexible copper-clad laminate
JP2001170953A (en) Method for manufacturing laminated sheet
JP2001179877A (en) Method for manufacturing laminated sheet
JP2001047587A (en) Manufacture of laminate
JP6435703B2 (en) Laminated board and wiring board
JP2004149901A (en) Chemically treated copper foil, and production method therefor
JP2001334542A (en) Method for manufacturing laminated sheet
JPH0414875B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170915

R150 Certificate of patent or registration of utility model

Ref document number: 6212273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250