JP2014198332A - Catalyst for manufacturing light hydrocarbon from synthetic gas, method for manufacturing the catalyst, and method for manufacturing light hydrocarbon from synthetic gas - Google Patents

Catalyst for manufacturing light hydrocarbon from synthetic gas, method for manufacturing the catalyst, and method for manufacturing light hydrocarbon from synthetic gas Download PDF

Info

Publication number
JP2014198332A
JP2014198332A JP2014047828A JP2014047828A JP2014198332A JP 2014198332 A JP2014198332 A JP 2014198332A JP 2014047828 A JP2014047828 A JP 2014047828A JP 2014047828 A JP2014047828 A JP 2014047828A JP 2014198332 A JP2014198332 A JP 2014198332A
Authority
JP
Japan
Prior art keywords
catalyst
synthesis gas
hydrocarbons
reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014047828A
Other languages
Japanese (ja)
Other versions
JP6314556B2 (en
Inventor
範立 椿
Noritatsu Tsubaki
範立 椿
藤本 健一郎
Kenichiro Fujimoto
健一郎 藤本
典之 山根
Noriyuki Yamane
典之 山根
修 若村
Osamu Wakamura
修 若村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyama University
Nippon Steel Engineering Co Ltd
Original Assignee
Toyama University
Nippon Steel and Sumitomo Metal Corp
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University, Nippon Steel and Sumitomo Metal Corp, Nippon Steel and Sumikin Engineering Co Ltd filed Critical Toyama University
Priority to JP2014047828A priority Critical patent/JP6314556B2/en
Priority to PCT/JP2014/056797 priority patent/WO2014142282A1/en
Publication of JP2014198332A publication Critical patent/JP2014198332A/en
Application granted granted Critical
Publication of JP6314556B2 publication Critical patent/JP6314556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • B01J35/615
    • B01J35/635
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst unlikely to entail, even if a high productivity is set within a microchannel reactor, haywire consequences and yielding, without being accompanied by flow channel congestions, relatively low selectivities of gas products such as methane, etc.; a method for manufacturing the catalyst; and a method for manufacturing a light hydrocarbon from a synthetic gas by using the catalyst.SOLUTION: The provided catalyst for manufacturing a light hydrocarbon from a synthetic gas has an average particle diameter of 400 μm or less and includes both a catalyst exhibiting an activity for an exothermic reaction of generating a hydrocarbon from a synthetic gas and including a metallic compound exhibiting an activity for a Fischer-Tropsch synthesizing reaction and a catalyst exhibiting an activity for an endothermic reaction of decomposing and lightening the hydrocarbon thus generated.

Description

本発明は、一酸化炭素と水素を主成分とする、いわゆる合成ガスから、軽質炭化水素を製造するための触媒と、その製造方法、及び該触媒を用いた軽質炭化水素の製造方法に関する。   The present invention relates to a catalyst for producing light hydrocarbons from so-called synthesis gas containing carbon monoxide and hydrogen as main components, a method for producing the same, and a method for producing light hydrocarbons using the catalyst.

近年、地球温暖化等の環境問題が顕在化し、他の炭化水素燃料、石炭等と比較してH/Cが高く、地球温暖化の原因物質である二酸化炭素排出量を抑えることができ、埋蔵量も豊富な天然ガスの重要性が見直されてきており、今後ますますその需要は増加するものと予想されている。天然ガス開発の手段の一つとして、天然ガスを合成ガスに変換した後、下記反応式に示したように、合成ガスからフィッシャー−トロプシュ(Fischer-Tropsch)合成反応(以下、「F-T合成反応」とも言う)を用いて輸送性・ハンドリング性の優れた灯・軽油等の液体炭化水素燃料に転換するGas To Liquids(GTL)技術開発が各所で精力的に行われ、Sasol社、Shell社は数万BPD規模の商業プラントを稼働させている。触媒としては多孔質担体にコバルトを担持したものが一般的に使用され、更に種々の助触媒を含有させる触媒が開発されている(非特許文献1参照)。

Figure 2014198332
In recent years, environmental problems such as global warming have become apparent, H / C is higher than other hydrocarbon fuels, coal, etc., and carbon dioxide emissions that are the cause of global warming can be suppressed. The importance of natural gas, which is abundant in volume, has been reviewed, and its demand is expected to increase in the future. As a means of natural gas development, after converting natural gas to synthesis gas, as shown in the following reaction formula, the synthesis gas is converted into a Fischer-Tropsch synthesis reaction (hereinafter “FT synthesis reaction”). Gas To Liquids (GTL) technology development is being carried out vigorously at various locations to convert to liquid hydrocarbon fuels such as kerosene and light oil with excellent transportability and handling properties. Sasol and Shell have several A 10,000 BPD-scale commercial plant is in operation. As the catalyst, a catalyst in which cobalt is supported on a porous carrier is generally used, and a catalyst containing various promoters has been developed (see Non-Patent Document 1).
Figure 2014198332

このF-T合成反応は、触媒を用いて合成ガスを炭化水素に転換する発熱反応であるが、プラントの安定操業のためには反応熱を効果的に除去することが極めて重要である。現在までに実績のある反応形式には、気相合成プロセス(固定床、噴流床、流動床)と、液相合成プロセス(スラリー床)があり、Sasol社の商業プラントではスラリー床、Shell社では固定床が採用されている。これは、これら大規模プラントによる開発では、大規模天然ガス田でのみ経済性が成り立つためである。
そして、これらの大規模プラントの内、固定床におけるF-T合成で使用される触媒としては、一般に、平均粒子径が1〜数mm程度の大きなものが使用されており、例えば、特許文献2等においても、通常10μm〜10mmであると記載されているものの(段落0010参照)、実施例では触媒の骨格である粒子状固体として粒子径10〜20mesh〔篩目開き0.841〜2mm(ASTM)〕のアルミナ(Al2O3)が用いられている(段落0020参照)。
This FT synthesis reaction is an exothermic reaction in which synthesis gas is converted into hydrocarbons using a catalyst, but it is extremely important to effectively remove reaction heat for stable operation of the plant. The reaction formats that have been proven to date include gas phase synthesis processes (fixed bed, spouted bed, fluidized bed) and liquid phase synthesis processes (slurry bed). A fixed floor is adopted. This is because development by these large-scale plants is economical only in large-scale natural gas fields.
Of these large-scale plants, as the catalyst used in the FT synthesis in the fixed bed, generally a large one having an average particle diameter of about 1 to several mm is used. Is usually 10 μm to 10 mm (see paragraph 0010), but in the examples, alumina having a particle size of 10 to 20 mesh (a sieve opening of 0.841 to 2 mm (ASTM)) as a particulate solid which is a skeleton of the catalyst. (Al 2 O 3 ) is used (see paragraph 0020).

ところで、地球上に数多く存在する小規模ガス田はこれまで未開発のままであったが、近年、これら小規模ガス田の開発を始めとして、現在ではフレアとして処理されている石油随伴ガスからの液体炭化水素燃料転換をターゲットとし、海洋掘削船上に設置可能なコンパクトなプラントの技術開発が各所で精力的に行われている。この中でF-T合成反応工程ではマイクロチャネル反応器を用いた技術が開発されている。このマイクロチャネル反応器は、内径が数mm以下の微細な流路であり、高い物質移動、伝熱性能を示すことが特徴であり、また、F-T合成反応で用いるマイクロチャネル反応器については、例えば図7に示すように、F-T合成反応を行う原料ガスの流路と除熱を行う冷媒の流路とが交互に層状に重ね合わされた構造とし、F-T合成反応を行う原料ガス供給方向と除熱を行う冷媒供給方向とを直交させ、また、反応器の材質として金属を使用することにより、反応過程で発生する熱を効率的に除去することができるほか、原料ガスと冷媒との混合を抑制することもできる。   By the way, many small-scale gas fields that existed on the earth have been undeveloped until now, but in recent years, such as the development of these small-scale gas fields, the oil-related gas that is currently treated as flare The development of a compact plant that can be installed on an offshore drilling vessel, with the goal of converting liquid hydrocarbon fuel, has been energetically conducted at various locations. Among these, in the FT synthesis reaction process, a technique using a microchannel reactor has been developed. This microchannel reactor is a fine flow path with an inner diameter of several mm or less and is characterized by high mass transfer and heat transfer performance. Also, for the microchannel reactor used in the FT synthesis reaction, for example, As shown in FIG. 7, the material gas flow path for performing the FT synthesis reaction and the flow path of the refrigerant for performing heat removal are alternately stacked in a layered structure, and the direction of supplying the raw material gas for performing the FT synthesis reaction and the heat removal. By using the metal as the reactor material, the heat generated in the reaction process can be removed efficiently and mixing of the source gas and the refrigerant is suppressed. You can also

ところで、大規模プラントにおける固定床のF-T合成反応では除熱性能に応じて発熱量を抑制する必要が生じ、生産量を抑えて運転する必要が多々生じているが、上記のマイクロチャネル反応器を用いたF-T合成では除熱性能が高く、生産性を高く設定することができるので、反応器容積当たりの炭化水素生産量が高くなる。しかしながら、生産性を高く設定した場合には、除熱用のマイクロチャネル内で当初は液体であった除熱のための流体が熱容量の小さい蒸気となり、蒸気が流通するマイクロチャネルでの如熱効率が低下し、このマイクロチャネルに隣接するマイクロチャネル(F-T合成反応を行う原料ガスの流路)で発生した熱の効果的な除熱ができなくなって暴走し、暴走した際にはマイクロチャネル反応器内の温度が過度に上昇し、F-T合成反応が阻害されるだけでなく、触媒が失活し、その再生も困難になる可能性があった。
また、このようなマイクロチャネル反応器でのF-T合成反応においては、大規模プラントで使用していたような大きな粒径の触媒の使用は困難であり、専用の触媒の開発が必要であった。
更に、一般に、F-T合成反応生成物の炭素数分布はシュルツ・フロリー則に従うとされており、F-T合成反応では、常温常圧で液体である比較的軽質な炭化水素化合物の他、常温常圧では固体である比較的重質な炭化水素化合物(WAX)も生成される。そのため、マイクロチャネル内でのF-T合成反応では、狭い流路を反応物が通過するため、反応温度が低い条件や運転停止時に温度を低下させる際、生成したWAXによる流路閉塞が発生したり、流路閉塞は無くとも生成油の粘度が高くハンドリング性が良くないことも考えられる。これを回避する手段として反応温度を極めて高く設定することもできるが、メタン選択率が高くなり、液状生成物収率が低下する課題があった。
By the way, in the fixed-bed FT synthesis reaction in a large-scale plant, it is necessary to suppress the calorific value according to the heat removal performance, and it is often necessary to operate with a reduced production amount. The FT synthesis used has high heat removal performance and can be set to high productivity, resulting in high hydrocarbon production per reactor volume. However, when productivity is set high, the heat removal fluid that was initially liquid in the heat removal microchannel becomes a vapor having a small heat capacity, and the heat efficiency in the microchannel in which the vapor flows is high. The heat generated in the microchannel adjacent to this microchannel (the flow path of the raw material gas that performs the FT synthesis reaction) cannot be removed effectively, and then runs away. In addition to excessively increasing the temperature of the catalyst, not only was the FT synthesis reaction inhibited, but the catalyst could be deactivated and its regeneration could be difficult.
In addition, in such an FT synthesis reaction in a microchannel reactor, it is difficult to use a catalyst having a large particle size as used in a large-scale plant, and it is necessary to develop a dedicated catalyst.
Furthermore, in general, the carbon number distribution of the FT synthesis reaction product is supposed to follow the Schulz-Flory rule. In the FT synthesis reaction, in addition to relatively light hydrocarbon compounds that are liquid at room temperature and normal pressure, A relatively heavy hydrocarbon compound (WAX) that is a solid is also produced. Therefore, in the FT synthesis reaction in the microchannel, the reactant passes through a narrow flow path, so when the temperature is lowered when the reaction temperature is low or when the operation is stopped, the flow path is blocked by the generated WAX, Even if there is no channel blockage, the viscosity of the product oil may be high and the handling property may not be good. As a means for avoiding this, the reaction temperature can be set extremely high, but there is a problem that the methane selectivity increases and the yield of the liquid product decreases.

WAXによる流路閉塞を回避するための手段の一つとして、F-T合成反応生成物の炭素数分布を制御する(F-T合成触媒と炭化水素を軽質化する触媒とを共存させる)方法が考えられ、固定床を想定した触媒については報告がある(特許文献1、非特許文献2、3参照)。これら触媒は大規模な反応塔での使用を前提として数mm程度の粒子径で検討され、マイクロチャネル内に適用したF-T合成反応は不可能であった。   One way to avoid channel blockage due to WAX is to control the carbon number distribution of the FT synthesis reaction product (by coexisting an FT synthesis catalyst and a catalyst for lightening hydrocarbons) There are reports on catalysts that assume a fixed bed (see Patent Document 1, Non-Patent Documents 2 and 3). These catalysts have been studied with a particle size of several millimeters on the assumption that they are used in large-scale reaction towers, and FT synthesis reactions applied in microchannels were impossible.

特開2007−197628号公報JP 2007-197628 A 特開2007−196187号公報JP 2007-196187 A

R.Oukaci et al.,Applied Catalysis A:General,186(1999)129-144R. Oukaci et al., Applied Catalysis A: General, 186 (1999) 129-144 J.He et al.,Chemistry A European Journal,12(2006)8296-8304J. He et al., Chemistry A European Journal, 12 (2006) 8296-8304 G.Yang et al.,Applied Catalysis A:General,329(2007)99-105G. Yang et al., Applied Catalysis A: General, 329 (2007) 99-105

本発明は、発熱反応となる合成ガスから炭化水素の生成反応を促進させる触媒と、吸熱反応となる生成した炭化水素を分解して軽質化する反応を促進させる触媒とを、両方共に含有する触媒を使用することで、マイクロチャネル反応器内でF-T合成反応の生産性を高く設定しても、通常の炭化水素を製造する触媒のみ使用した時と比較して、暴走し難く系全体の発熱量を抑制することが可能で、且つ、生成油の粘度が低く流路内の閉塞を防止することも可能な、合成ガスから軽質炭化水素を製造する触媒、及び当該触媒の製造方法、並びに当該触媒を用いた軽質炭化水素の製造方法を提供するものである。   The present invention relates to a catalyst that contains both a catalyst that promotes a hydrocarbon formation reaction from a synthesis gas that becomes an exothermic reaction, and a catalyst that promotes a reaction that decomposes and lightens the generated hydrocarbon that becomes an endothermic reaction. , Even if the productivity of the FT synthesis reaction is set high in the microchannel reactor, compared to the case of using only a catalyst that produces ordinary hydrocarbons, the runaway heat of the entire system is difficult. , A catalyst for producing light hydrocarbons from synthesis gas, and a method for producing the catalyst, and the catalyst in which the viscosity of the product oil is low and blockage in the flow path can be prevented The present invention provides a method for producing light hydrocarbons.

本発明の要旨は、以下に記す通りである。   The gist of the present invention is as described below.

(1)合成ガスから軽質炭化水素を製造する触媒であって、フィッシャー−トロプシュ合成反応に活性を有する金属系化合物を含有し、合成ガスから炭化水素を生成する触媒と、当該生成した炭化水素を分解して軽質化する触媒とを、両方含有し、平均粒子径が400μm以下であることを特徴とする合成ガスから軽質炭化水素を製造する触媒。
(2)前記平均粒子径が200μm以下であることを特徴とする(1)に記載の合成ガスから軽質炭化水素を製造する触媒。
(3)前記金属系化合物の金属が、コバルトを含むことを特徴とする(1)又は(2)に記載の合成ガスから軽質炭化水素を製造する触媒。
(4)前記生成した炭化水素を分解して軽質化する触媒が、ゼオライトであることを特徴とする(1)〜(3)のいずれか1項に記載の合成ガスから軽質炭化水素を製造する触媒。
(5)前記合成ガスから炭化水素を製造する触媒の外表面に、前記生成した炭化水素を分解して軽質化する触媒が形成されていることを特徴とする(1)〜(4)のいずれか1項に記載の合成ガスから軽質炭化水素を製造する触媒。
(6)前記合成ガスから炭化水素を製造する触媒の担体がシリカであることを特徴とする(1)〜(5)のいずれか1項に記載の合成ガスから軽質炭化水素を製造する触媒。
(7)(5)又は(6)に記載の触媒を製造する方法であって、シリカ担体に、含浸法、インシピエントウェットネス法、沈殿法、又はイオン交換法を用いて合成ガスから炭化水素を製造する触媒を製造し、その後、水熱合成法を用いて、当該製造された触媒の外表面に前記生成した炭化水素を分解して軽質化する触媒を形成することを特徴とする合成ガスから軽質炭化水素を製造する触媒の製造方法。
(8)(1)〜(6)のいずれか1項に記載の触媒を用いて、マイクロチャネル反応器内で合成ガスから軽質炭化水素を製造することを特徴とする軽質炭化水素の製造方法。
(9)前記マイクロチャネル反応器の流路幅が4mm以下であることを特徴とする(8)記載の軽質炭化水素の製造方法。
(10)前記マイクロチャネル反応器が金属材料で形成されていることを特徴とする(8)又は(9)記載の軽質炭化水素の製造方法。
(11)前記マイクロチャネル反応器が多段階の層状構造であり、合成ガスを供給し軽質炭化水素を製造する層と、冷媒を供給し軽質炭化水素製造で発生した熱を除熱する層とが交互に配置され、これら層の流路が直交する方向に配列していることを特徴とする(8)〜(10)のいずれかに記載の軽質炭化水素の製造方法。
(1) A catalyst for producing light hydrocarbons from synthesis gas, which contains a metal compound having activity in the Fischer-Tropsch synthesis reaction and produces hydrocarbons from synthesis gas; and the produced hydrocarbons A catalyst for producing light hydrocarbons from synthesis gas, which contains both a catalyst that is decomposed and lightened and has an average particle size of 400 μm or less.
(2) The catalyst for producing light hydrocarbons from the synthesis gas according to (1), wherein the average particle diameter is 200 μm or less.
(3) The catalyst for producing light hydrocarbons from synthesis gas according to (1) or (2), wherein the metal of the metal-based compound contains cobalt.
(4) The light hydrocarbon is produced from the synthesis gas according to any one of (1) to (3), wherein the catalyst for decomposing and lightening the generated hydrocarbon is zeolite. catalyst.
(5) Any one of (1) to (4), wherein a catalyst for decomposing and reducing the generated hydrocarbon is formed on an outer surface of a catalyst for producing hydrocarbons from the synthesis gas. A catalyst for producing light hydrocarbons from the synthesis gas according to claim 1.
(6) The catalyst for producing light hydrocarbons from the synthesis gas according to any one of (1) to (5), wherein the catalyst carrier for producing hydrocarbons from the synthesis gas is silica.
(7) A method for producing the catalyst according to (5) or (6), wherein the silica support is carbonized from a synthesis gas using an impregnation method, an incipient wetness method, a precipitation method, or an ion exchange method. A synthesis characterized in that a catalyst for producing hydrogen is produced, and then a hydrothermal synthesis method is used to form a catalyst for decomposing and reducing the generated hydrocarbons on the outer surface of the produced catalyst. A method for producing a catalyst for producing light hydrocarbons from gas.
(8) A method for producing light hydrocarbons, comprising producing light hydrocarbons from synthesis gas in a microchannel reactor using the catalyst according to any one of (1) to (6).
(9) The process for producing light hydrocarbons according to (8), wherein the flow path width of the microchannel reactor is 4 mm or less.
(10) The method for producing light hydrocarbons according to (8) or (9), wherein the microchannel reactor is formed of a metal material.
(11) The microchannel reactor has a multi-stage layered structure, and includes a layer for supplying synthesis gas to produce light hydrocarbons, and a layer for supplying refrigerant and removing heat generated in light hydrocarbon production. The light hydrocarbon production method according to any one of (8) to (10), wherein the layers are alternately arranged and the flow paths of these layers are arranged in a direction perpendicular to each other.

本発明によれば、数mm以下の流路幅を持つマイクロチャネル反応器中で合成油を製造する際に、吸熱反応である生成した炭化水素を分解して軽質化する反応を促進させる触媒を共存させるため、F-T合成反応の生産性を高く設定しても、通常の炭化水素を製造する触媒のみ使用した時と比較して、系全体の発熱量を抑制することが可能で、且つ、生成油の粘度が低く流路内の閉塞を防止することも可能となる軽質炭化水素合成用触媒及び、該触媒の製造方法、並びに軽質炭化水素の製造方法を提供できる。従って、マイクロチャネル反応器を用いた開発が期待される小規模ガス田や石油随伴ガスからの炭化水素生産を安定的に実施することが可能となる。   According to the present invention, when producing synthetic oil in a microchannel reactor having a flow path width of several millimeters or less, a catalyst that promotes a reaction that decomposes and lightens the generated hydrocarbon that is an endothermic reaction. Because of the coexistence, even if the productivity of the FT synthesis reaction is set high, it is possible to suppress the calorific value of the entire system compared to when only a catalyst for producing ordinary hydrocarbons is used, and the generation It is possible to provide a light hydrocarbon synthesis catalyst having a low oil viscosity and capable of preventing clogging in a flow path, a method for producing the catalyst, and a method for producing light hydrocarbons. Therefore, it is possible to stably carry out hydrocarbon production from small-scale gas fields and petroleum-associated gas that are expected to be developed using a microchannel reactor.

実施例1で得られた生成物の炭素数分布を示す図である。2 is a graph showing the carbon number distribution of the product obtained in Example 1. FIG. 実施例7で得られた生成物の炭素数分布を示す図である。It is a figure which shows carbon number distribution of the product obtained in Example 7. 比較例4で得られた生成物の炭素数分布を示す図である。It is a figure which shows carbon number distribution of the product obtained in the comparative example 4. 合成ガスから炭化水素を生成する触媒の表面を炭化水素を分解して軽質化する触媒が覆って1粒子を形成する触媒の断面を示す図である。It is a figure which shows the cross section of the catalyst which covers the surface of the catalyst which produces | generates a hydrocarbon from synthesis gas, and the catalyst which decomposes | disassembles and lightens a hydrocarbon forms 1 particle | grain. 合成ガスから炭化水素を生成する触媒と炭化水素を分解して軽質化する触媒の物理混合を示す図である。It is a figure which shows the physical mixing of the catalyst which produces | generates a hydrocarbon from a synthesis gas, and the catalyst which decomposes | disassembles and lightens hydrocarbon. マイクロチャネルに触媒充填した場合と触媒塗布した場合のイメージ図である。It is an image figure when the catalyst is filled in the microchannel and when the catalyst is applied. 実施例10で使用したマイクロチャネル反応器を示す図である。1 is a diagram showing a microchannel reactor used in Example 10. FIG.

以下、本発明を更に詳述する。
本発明者らは、マイクロチャネル反応器内で合成ガスから合成油(炭化水素)を製造する際に、合成ガスから炭化水素を生成する触媒と、この生成した炭化水素を分解して軽質化する触媒とを、両方含有する小粒子径の触媒(合成ガスから炭化水素を生成する触媒と炭化水素を軽質化する触媒との複合触媒)を使用することで、生産性を高く設定しても、発熱が抑えられ、且つ、生成油の粘度が低くなるためWAX生成による流路内の閉塞を防止することができ、更に、大型の固定床を前提として開発された数ミリと大きな粒子径を持つ触媒と比較してメタン選択率が低下することを見出して、本発明を為すに至った。
The present invention is described in further detail below.
When producing synthetic oil (hydrocarbon) from synthesis gas in a microchannel reactor, the present inventors decompose a catalyst that produces hydrocarbons from synthesis gas and the produced hydrocarbons to lighten them. Even if the productivity is set high by using a catalyst with a small particle diameter that contains both catalyst (composite catalyst of a catalyst that generates hydrocarbons from synthesis gas and a catalyst that lightens hydrocarbons) Heat generation is suppressed, and the viscosity of the product oil is low, so it is possible to prevent clogging in the flow path due to WAX generation, and it has a large particle size of several millimeters developed on the premise of a large fixed bed The inventors have found that the methane selectivity is lower than that of the catalyst, and have made the present invention.

本発明の合成ガスから軽質炭化水素を製造する触媒における、合成ガスから炭化水素を生成する触媒と、生成した炭化水素を分解して軽質化する触媒との共存構造としては、図5に示したように、両触媒が物理的に混合されて成り立っている構造の場合だけでなく、図4のように、前者の触媒の表面の一部若しくは全面を後者の触媒が覆って1粒子を形成している構造の場合の、どちらでも構わない。   In the catalyst for producing light hydrocarbons from the synthesis gas of the present invention, the coexistence structure of the catalyst for producing hydrocarbons from the synthesis gas and the catalyst for decomposing and reducing the produced hydrocarbons is shown in FIG. As shown in FIG. 4, the latter catalyst covers a part or the entire surface of the former catalyst to form one particle as shown in FIG. In the case of the structure, it does not matter.

また、両触媒が物理的に混合されて成り立っている構造の場合では、それぞれの触媒粒子が別々の粒子として存在し、それらが複数混合されて成り立っている場合の他、1粒子中に両触媒の混合物が含まれている構造でも構わない。1粒子中に両触媒の混合物が含まれる構造は、それぞれ粒子径が小さい触媒を用い、混合・成型することで製造することができる。   In the case of a structure in which both catalysts are physically mixed, each catalyst particle exists as a separate particle, and in addition to a case in which a plurality of them are mixed, both catalysts are contained in one particle. It may be a structure containing a mixture of A structure in which a mixture of both catalysts is contained in one particle can be produced by using a catalyst having a small particle size and mixing and molding.

本発明による合成ガスから炭化水素を製造する触媒は、F-T合成反応に活性を有する金属系化合物を含むものであれば特に限定されるものではないが、その金属種として、コバルト、鉄、ルテニウム等を含有する触媒が一般的であり、性能や価格を考慮するとコバルトを含有する触媒が好適である。   The catalyst for producing hydrocarbons from the synthesis gas according to the present invention is not particularly limited as long as it contains a metal compound active in the FT synthesis reaction, but as its metal species, cobalt, iron, ruthenium, etc. In general, a catalyst containing cobalt is preferable in consideration of performance and price.

上記金属系化合物の触媒担体としては、シリカ、アルミナ、チタニア等の多孔質酸化物より適宜選定することができ、触媒反応性能の点からはシリカ、アルミナが好ましく、シリカがより好ましい。   The catalyst carrier of the metal compound can be appropriately selected from porous oxides such as silica, alumina, and titania. Silica and alumina are preferable, and silica is more preferable from the viewpoint of catalytic reaction performance.

合成ガスから炭化水素を製造する触媒の担体性状としては特に限定されないが、触媒活性の観点からは金属系化合物の分散度を高く保ち、担持した活性金属の反応に寄与する効率を向上させるためには、高比表面積の担体を使用することが好ましい。比表面積を大きくするためには、細孔径を小さくする、又は細孔容積を大きくする必要がある。   The carrier property of the catalyst for producing hydrocarbons from synthesis gas is not particularly limited, but from the viewpoint of catalytic activity, the dispersibility of the metal compound is kept high, and the efficiency contributing to the reaction of the supported active metal is improved. It is preferable to use a carrier having a high specific surface area. In order to increase the specific surface area, it is necessary to decrease the pore diameter or increase the pore volume.

しかしながら、細孔径が8nmを下回ると、細孔内のガス拡散速度が水素と一酸化炭素では異なり、細孔の奥へ行くほど水素分圧が高くなるという結果を招き、F-T合成反応では副生成物といえるメタン等の常温常圧で気体である炭化水素が、多量に生成することになるため好ましくなく、逆に、細孔径が50nmを超えると比表面積を増大させることが困難となり、活性金属の分散度が低下してしまうため好ましくない。   However, when the pore diameter is less than 8 nm, the gas diffusion rate in the pore is different between hydrogen and carbon monoxide, and the result is that the hydrogen partial pressure increases as it goes deeper into the pore. Hydrocarbons that are gaseous at normal temperature and normal pressure, such as methane, are undesirable because they generate a large amount. Conversely, if the pore diameter exceeds 50 nm, it is difficult to increase the specific surface area, and active metals This is not preferable because the degree of dispersion of the resin is lowered.

また、細孔容積としては0.4cc/gを下回ると比表面積を増大させることが困難となるため好ましくない。触媒担体の物理性状としては、細孔径が8〜50nm、比表面積が80〜600m2/g、細孔容積が0.4〜4cc/gを同時に満足するものが、好適である。細孔径が10〜40nm、比表面積が100〜550m2/g、細孔容積が0.6〜3.0cc/gを同時に満足するものであればより好ましく、細孔径が12〜30nm、比表面積が150〜500 m2/g、細孔容積が0.8〜2.0cc/gを同時に満足するものであれば更に好ましい。上記の比表面積はBET法で、細孔容積は水銀圧入法や水滴定法で測定することができる。また、細孔径はガス吸着法や水銀ポロシメーターなどによる水銀圧入法で測定可能であるが、比表面積、細孔容積から計算で求めることもできる。 Further, if the pore volume is less than 0.4 cc / g, it is difficult to increase the specific surface area, which is not preferable. The physical properties of the catalyst carrier are preferably those that simultaneously satisfy a pore diameter of 8 to 50 nm, a specific surface area of 80 to 600 m 2 / g, and a pore volume of 0.4 to 4 cc / g. More preferably, the pore diameter is 10 to 40 nm, the specific surface area is 100 to 550 m 2 / g, and the pore volume is 0.6 to 3.0 cc / g at the same time, and the pore diameter is 12 to 30 nm and the specific surface area is 150 to More preferably, it is 500 m 2 / g and the pore volume satisfies 0.8 to 2.0 cc / g at the same time. The specific surface area can be measured by the BET method, and the pore volume can be measured by a mercury intrusion method or a water titration method. The pore diameter can be measured by a mercury adsorption method using a gas adsorption method or a mercury porosimeter, but can also be calculated from the specific surface area and pore volume.

触媒担体へのF-T合成反応に活性を有する金属系化合物の担持量は、5〜50質量%である。例えば、コバルトを用いた場合では、好ましくは10〜40質量%、より好ましくは20〜35質量%である。この範囲を下回ると活性を十分発現することができず、また、この範囲を上回ると分散度が低下して、担持したコバルトの利用効率が低下して不経済となるため、好ましくない。ここでいう担持率とは、担持したF-T合成反応に活性を有する金属系化合物が最終的に100%還元されるとは限らないが、100%還元されたと考えて、F-T合成反応に活性を有する金属系化合物における金属の質量が触媒質量全体(合成ガスから炭化水素を製造する触媒質量全体)に占める割合を指す。   The supported amount of the metal compound having activity in the FT synthesis reaction on the catalyst carrier is 5 to 50% by mass. For example, when cobalt is used, it is preferably 10 to 40% by mass, more preferably 20 to 35% by mass. If it is below this range, the activity cannot be fully expressed, and if it exceeds this range, the degree of dispersion is lowered, and the utilization efficiency of the supported cobalt is lowered, which is not preferable. The loading rate referred to here means that the metal compound having activity in the supported FT synthesis reaction is not necessarily 100% reduced in the end, but is considered to have been reduced 100% and has activity in the FT synthesis reaction. The ratio of the metal mass in the metal compound to the entire catalyst mass (the entire catalyst mass for producing hydrocarbons from synthesis gas) is indicated.

触媒担体へのF-T合成反応に活性を有する金属系化合物の担持方法は、通常の含浸法、インシピエントウェットネス(Incipient Wetness)法、沈殿法、イオン交換法等によればよい。担持において使用する原料(前駆体)である金属系化合物としては、担持後に乾燥処理し、その後、還元処理、または焼成処理及び還元処理によって、カウンターイオン(例えばコバルト硝酸塩であればCo(NO3)2中の(NO3)-)が揮散するものであり、溶媒に溶解するものであれば特に制限はなく、硝酸塩、炭酸塩、酢酸塩、塩化物、アセチルアセトナートなどが使用可能であるが、担持操作をする際に水溶液を用いることができる水溶性の化合物を用いることが製造コストの低減や安全な製造作業環境の確保のためには好ましい。金属系化合物がコバルトの場合には、硝酸コバルトなどは焼成時に酸化コバルトに容易に変化し、その後のコバルト酸化物の還元処理も容易であるため好ましい。 The supporting method of the metal compound having activity in the FT synthesis reaction on the catalyst carrier may be a normal impregnation method, an incipient wetness method, a precipitation method, an ion exchange method, or the like. The metal compound that is a raw material (precursor) used for loading is a drying treatment after loading, followed by a reduction treatment, or a firing treatment and a reduction treatment, whereby counter ions (for example, Co (NO 3 ) in the case of cobalt nitrate). in 2 (NO 3) -) is intended to volatilization particularly limited as long as it dissolves in the solvent is not, nitrates, carbonates, acetates, chlorides, although such acetylacetonate is available It is preferable to use a water-soluble compound that can be used as an aqueous solution during the carrying operation in order to reduce manufacturing costs and secure a safe manufacturing work environment. In the case where the metal compound is cobalt, cobalt nitrate or the like is preferable because it easily changes to cobalt oxide at the time of firing, and the subsequent reduction treatment of the cobalt oxide is easy.

本発明による生成した炭化水素を分解して軽質化する触媒は、炭化水素の分解活性を有する固体酸触媒であれば特に制限されるものではないが、ゼオライト、シリカアルミナ(アルミナとシリカの複合酸化物)が一般的であり、ゼオライトが好適である。   The catalyst for decomposing and lightening the hydrocarbons produced according to the present invention is not particularly limited as long as it is a solid acid catalyst having hydrocarbon decomposition activity, but zeolite, silica alumina (a composite oxidation of alumina and silica). ) Are common, and zeolite is preferred.

ゼオライトとしては特に制限されることはなく、X型ゼオライト、Y型ゼオライト、β型ゼオライト、モルデナイト、ZSM-5等から適宜選択することが可能であり、炭化水素の分解活性や使用する反応温度、合成ガスから炭化水素を製造する触媒に応じて選定すれば良い。ゼオライト細孔内の陽イオンとしてはプロトン(H+)であることが好ましい。例えば、F-T合成反応に活性を有する金属系化合物としてコバルトを用いた場合にはプロトン型のβ型ゼオライトやプロトン型のZSM-5(H-ZSM-5)を使用すると好適な性能が得られやすく、H-ZSM-5がより好ましい。 Zeolite is not particularly limited and can be appropriately selected from X-type zeolite, Y-type zeolite, β-type zeolite, mordenite, ZSM-5, etc., hydrocarbon decomposition activity and reaction temperature used, What is necessary is just to select according to the catalyst which manufactures a hydrocarbon from synthesis gas. The cation in the zeolite pores is preferably proton (H + ). For example, when cobalt is used as a metal compound active in the FT synthesis reaction, it is easy to obtain suitable performance by using proton type β-type zeolite or proton type ZSM-5 (H-ZSM-5). H-ZSM-5 is more preferable.

合成ガスから炭化水素を製造する触媒、及び生成した炭化水素を分解して軽質化する触媒の存在形態は特に限定されず、それぞれの粒子を物理混合した混合物や、合成ガスから炭化水素を製造する触媒の外表面に炭化水素を分解して軽質化する触媒を形成させた一体型の触媒粒子を使用することができる。合成ガスから炭化水素を製造する触媒と、炭化水素を分解して軽質化する触媒の混合比は特に限定されないが、重量比で(合成ガスから炭化水素を製造する触媒)/(炭化水素を分解して軽質化する触媒)=15/1〜1/5の範囲が好ましく、より好ましくは10/1〜1/1、更に好ましくは5/1〜2/1である。この範囲を超えて合成ガスから炭化水素を製造する触媒量が多くなると、系全体の発熱量を抑制する効果が十分でなくなったり、生成したWAXの軽質化が十分でなくマイクロチャネルの閉塞が発生することになり、この範囲を超えて炭化水素を分解して軽質化する触媒量が多くなると、合成ガスから炭化水素への転換活性が十分でなく、メタン等のガス状の生成物が増加するため好ましくない。   The existence form of the catalyst for producing hydrocarbons from the synthesis gas and the catalyst for decomposing and lightening the produced hydrocarbons is not particularly limited, and the hydrocarbons are produced from the mixture obtained by physically mixing the respective particles or the synthesis gas. One-piece catalyst particles in which a catalyst that decomposes and lightens hydrocarbons on the outer surface of the catalyst can be used. The mixing ratio of the catalyst that produces hydrocarbons from synthesis gas and the catalyst that decomposes and lightens hydrocarbons is not particularly limited, but by weight ratio (catalyst producing hydrocarbons from synthesis gas) / (hydrocarbon decomposition) Thus, the range of 15/1 to 1/5 is preferable, more preferably 10/1 to 1/1, and still more preferably 5/1 to 2/1. If the amount of catalyst for producing hydrocarbons from synthesis gas exceeds this range, the effect of suppressing the heat generation amount of the entire system will be insufficient, or the generated WAX will not be light enough and the microchannel will be blocked. If the amount of catalyst that decomposes and lightens hydrocarbons beyond this range increases, the conversion activity from synthesis gas to hydrocarbons is not sufficient, and gaseous products such as methane increase. Therefore, it is not preferable.

炭化水素を分解して軽質化する触媒としてゼオライトを使用する場合には、CH4選択率を低下させる観点からは合成ガスから炭化水素を製造する触媒の外表面にゼオライトを形成させた一体型の触媒粒子を使用することが好ましい。 In the case of using zeolite as a catalyst for decomposing and lightening hydrocarbons, from the viewpoint of reducing CH 4 selectivity, an integrated type in which zeolite is formed on the outer surface of a catalyst for producing hydrocarbons from synthesis gas. It is preferred to use catalyst particles.

合成ガスから炭化水素を製造する触媒の外表面にゼオライトを形成させた一体型の触媒粒子の製造方法としては、最初に上述の方法で合成ガスから炭化水素を製造する触媒を製造し、水熱合成法で該触媒の外表面にゼオライトを形成させる方法を採用することができる。この場合、合成ガスから炭化水素を製造する触媒と、炭化水素を分解して軽質化する触媒との混合比は時間等の水熱合成の条件によって制御することができる。   As a method for producing integrated catalyst particles in which zeolite is formed on the outer surface of a catalyst for producing hydrocarbons from synthesis gas, a catalyst for producing hydrocarbons from synthesis gas is first produced by the above-described method, and hydrothermal A method of forming zeolite on the outer surface of the catalyst by a synthesis method can be employed. In this case, the mixing ratio of the catalyst for producing hydrocarbons from synthesis gas and the catalyst for decomposing and lightening hydrocarbons can be controlled by the conditions of hydrothermal synthesis such as time.

以下に、上記の触媒を得る方法の一例を示す。まずコバルトなどの金属系化合物の前駆体の水溶液にシリカ担体を含浸して担持後、必要に応じて乾燥(100℃-1h、通常は50〜150℃程度の範囲で実施するが、特に限定されない。)、焼成処理(450℃-10h、通常は300℃〜600℃程度の範囲で実施するが、特に限定されない。)を行い、合成ガスから炭化水素を製造する触媒(F-T合成触媒)を得ることができる。10質量%テトラプロピルアンモニウムヒドロキシド、オルトケイ酸テトラエチル、アルミニウム硝酸塩、イオン交換水、エタノールをそれぞれ適量容器に仕込み、攪拌(室温-6h、特に限定されない。)して前駆体溶液を調製し、F-T合成触媒を添加して2rpmで回転させながら加熱保持(180℃-48h、特に限定されない。)する水熱合成にてF-T合成触媒の外表面にゼオライトを形成させることができる。   Below, an example of the method of obtaining said catalyst is shown. First, an aqueous solution of a precursor of a metal compound such as cobalt is impregnated with a silica carrier and supported, and then dried as necessary (100 ° C. to 1 h, usually in the range of about 50 to 150 ° C., but not particularly limited) ), Calcining treatment (450 ° C to 10h, usually in the range of about 300 ° C to 600 ° C, but not particularly limited) to obtain a catalyst for producing hydrocarbons from synthesis gas (FT synthesis catalyst) be able to. 10 mass% tetrapropylammonium hydroxide, tetraethyl orthosilicate, aluminum nitrate, ion-exchanged water, and ethanol are charged in appropriate amounts, respectively, and stirred (room temperature -6h, not particularly limited) to prepare a precursor solution, FT synthesis Zeolite can be formed on the outer surface of the FT synthesis catalyst by hydrothermal synthesis in which the catalyst is added and heated while being rotated at 2 rpm (180 ° C.-48 h, not particularly limited).

水熱合成の時間増加に伴い、合成ガスから炭化水素を製造する触媒の外表面に形成されるゼオライトの厚さが増加する。ゼオライトの厚さは特に限定されることはないが、通常は1〜40μmであり、2〜30μmが好ましく、3〜20μmがより好ましい。この範囲を下回ると系全体の発熱量を抑制する効果が十分でなくなるため温度制御が難しくなったり、生成したWAXの軽質化が十分でなくマイクロチャネルの閉塞が発生する可能性が増加することになり、この範囲を超えると必要以上に炭化水素の分解が進行し、メタン等の常温常圧で気体である炭化水素が多量に生成することになる。   As the time of hydrothermal synthesis increases, the thickness of the zeolite formed on the outer surface of the catalyst for producing hydrocarbons from synthesis gas increases. The thickness of the zeolite is not particularly limited, but is usually 1 to 40 μm, preferably 2 to 30 μm, and more preferably 3 to 20 μm. If the temperature falls below this range, the temperature control becomes difficult because the effect of suppressing the heat generation of the entire system becomes insufficient, and the possibility that the generated WAX will not be light enough and the microchannel will be clogged increases. When this range is exceeded, the decomposition of hydrocarbons proceeds more than necessary, and a large amount of hydrocarbons, such as methane, which are gaseous at normal temperature and pressure are produced.

また、シリカアルミナ等のゼオライト以外の炭化水素を分解して軽質化する触媒では、予め調製した合成ガスから炭化水素を製造する触媒にシリカアルミナ等のゾルをコーティングする手法を採用することができる。
なお、炭化水素を分解して軽質化する触媒が、合成ガスから炭化水素を製造する触媒の外表面に形成される場合、炭化水素を分解して軽質化する触媒は合成ガスから炭化水素を製造する触媒の全面を覆うことが性能の観点からは好ましいが、一部のみが覆われた構造であっても構わない。
Moreover, in the catalyst which decomposes | disassembles and lightens hydrocarbons other than zeolites, such as a silica alumina, the method of coating sol, such as a silica alumina, on the catalyst which manufactures a hydrocarbon from the synthesis gas prepared previously can be employ | adopted.
If the catalyst that decomposes and lightens hydrocarbons is formed on the outer surface of the catalyst that produces hydrocarbons from synthesis gas, the catalyst that decomposes and lightens hydrocarbons produces hydrocarbons from synthesis gas. Although it is preferable from the viewpoint of performance to cover the entire surface of the catalyst to be performed, a structure in which only a part is covered may be used.

マイクロチャネル反応器の流路幅としては特に限定されないが、流路内の触媒上で発生する反応熱を、隣接流路内の冷媒流通によって効率的に除去する観点からは4mm以下の流路幅を持つ構造が良く、波板を挟んで基板が層状に重ねた構造の他、基板にマイクロチャネルを形成させたものを層状に重ねた構造や、ハニカム構造などを使用することができる。反応器の材質としては金属や無機化合物を使用することができ特に限定されないが、金属が好ましい。金属としては、ステンレス鋼などの鉄鋼材やアルミニウムなどが好適である。   The channel width of the microchannel reactor is not particularly limited, but the channel width is 4 mm or less from the viewpoint of efficiently removing the reaction heat generated on the catalyst in the channel by the refrigerant flow in the adjacent channel. In addition to a structure in which the substrates are stacked in layers with the corrugated sheet sandwiched therebetween, a structure in which microchannels are formed on the substrate in layers or a honeycomb structure can be used. The material of the reactor can be a metal or an inorganic compound, and is not particularly limited, but a metal is preferable. As the metal, a steel material such as stainless steel, aluminum or the like is suitable.

F-T合成反応は発熱反応であり、また、安定的に高い反応成績を維持するためには効率的な除熱が効果的であるので、流路が層状に構成される反応器で材質として金属を使用し、F-T合成反応を行う流路と、冷媒を流通させ除熱を行う流路とが交互に層状に重ね合わされたマイクロチャネル反応器を使用することにより良好な性能を得ることができる(図7)。このようなマイクロチャネル反応器を使用する場合には、F-T合成反応を行う流路への原料ガス供給方向と、除熱を行う流路への冷媒供給方向とは直交とすることができる。冷媒としては、熱を除去可能なものであれば良く特に限定されないが、ボイラー給水(BFW)を使用するとF-T合成反応を行う流路内温度の制御性が良好であり好ましい。   The FT synthesis reaction is an exothermic reaction, and efficient heat removal is effective for maintaining a stable and high reaction performance. It is possible to obtain good performance by using a microchannel reactor in which a flow path for performing an FT synthesis reaction and a flow path for removing heat by circulating a refrigerant are alternately layered (see FIG. 7). When such a microchannel reactor is used, the direction of supplying the raw material gas to the flow path for performing the FT synthesis reaction and the direction of supplying the refrigerant to the flow path for performing heat removal can be orthogonal. The refrigerant is not particularly limited as long as it can remove heat, but it is preferable to use boiler feed water (BFW) because the controllability of the temperature in the flow path for performing the FT synthesis reaction is good.

マイクロチャネル反応器の流路内温度制御の観点からは、流路幅を小さくすると除熱を効率的に行うことができ、2mm以下が好ましく、1.5mm以下がより好ましい。流路内温度制御の観点からは流路幅は小さい方が好ましいが、流路が小さくなりすぎて流路を形成する基板厚さが大きくなりすぎると、単位体積当たりの生産性が小さくなるため、流路幅を決める際には生産性も考慮する必要がある。   From the viewpoint of controlling the temperature in the flow path of the microchannel reactor, if the flow path width is reduced, heat removal can be efficiently performed, preferably 2 mm or less, more preferably 1.5 mm or less. From the viewpoint of controlling the temperature in the flow path, it is preferable that the flow path width is small, but if the flow path becomes too small and the substrate thickness forming the flow path becomes too large, the productivity per unit volume becomes small. When determining the channel width, it is necessary to consider productivity.

この単位体積当たりの生産性には流路を形成する基板及び流路内の波板の厚さも寄与することになるため、安全にF-T合成反応および除熱を実施できる範囲で、これらの厚さは薄い方が好ましい。例えば、ステンレス鋼を使用したマイクロチャネル反応器では基板や波板の厚さは30〜200μm程度から選択することが可能である。   The productivity per unit volume also contributes to the thickness of the substrate that forms the flow path and the corrugated plate in the flow path, so these thicknesses are within the range where FT synthesis reaction and heat removal can be performed safely. Is preferably thinner. For example, in a microchannel reactor using stainless steel, the thickness of the substrate or corrugated plate can be selected from about 30 to 200 μm.

このようなマイクロチャネル反応器内への合成ガスから軽質炭化水素を製造する触媒の固定は、図6に示したように、流路幅よりも小さい粒子径の触媒を充填する方法や、流路幅よりも十分に小さい粒子径の触媒を流路の内壁(基板及び波板の表面)に塗布する方法を採用することができる。反応器の単位体積当たりの軽質炭化水素生産量の観点からは触媒を比較的多く存在させることが可能な触媒充填の方が好ましい。   As shown in FIG. 6, the fixing of the catalyst for producing light hydrocarbons from the synthesis gas in the microchannel reactor can be performed by a method of filling a catalyst having a particle diameter smaller than the channel width, A method of applying a catalyst having a particle diameter sufficiently smaller than the width to the inner wall of the flow path (the surface of the substrate and the corrugated plate) can be employed. From the viewpoint of the production of light hydrocarbons per unit volume of the reactor, it is preferable to use catalyst packing that can contain a relatively large amount of catalyst.

触媒を充填するマイクロチャネル反応器を使用する場合には、触媒の平均粒子径は400μm以下であることが必要であり、特に下限は規定しないが原料ガス供給による触媒層での圧力損失を考慮すると通常は5μm以上が好ましい。圧力損失と触媒充填率の双方を考慮した、操業安定性と反応性の観点からは20μ〜300μmの平均粒子径が好ましく、より好ましくは25μm〜250μm、更に好ましくは30μm〜200μmである。   When using a microchannel reactor packed with a catalyst, the average particle size of the catalyst needs to be 400 μm or less, and there is no particular lower limit, but considering the pressure loss in the catalyst layer due to the supply of raw material gas Usually, 5 μm or more is preferable. From the viewpoint of operation stability and reactivity considering both pressure loss and catalyst packing rate, an average particle size of 20 μm to 300 μm is preferable, more preferably 25 μm to 250 μm, and still more preferably 30 μm to 200 μm.

ここで言う触媒の平均粒子径とは、合成ガスから炭化水素を製造する触媒の外表面に生成した炭化水素を分解して軽質化する触媒を形成させた一体型触媒の場合には、その一体型触媒の平均粒子径である。一体型触媒で無くこれら触媒を物理混合する触媒で、それぞれの触媒粒子が別々の粒子として存在し、それらが複数混合されて成り立っている場合には、合成ガスから炭化水素を製造する触媒の平均粒子径を指す。物理混合する触媒の場合に、合成ガスから炭化水素を製造する触媒の平均粒子径を用いる理由は、一般的に炭化水素を分解して軽質化する触媒の粒子径が合成ガスから炭化水素を製造する触媒と比較して十分に小さく(一般に数μm〜数十μm程度)、マイクロチャネル反応器への充填率や混合度合の観点からは、相対的に大きな触媒の粒子径の影響が大きいためである。なお、物理混合触媒が1粒子中に両触媒の混合物が含まれる構造の場合には、一体型触媒と同様にこの粒子の粒子径である。また、本発明における平均粒子径の測定にはレーザー回折法を適用するが、分散性が悪い等の理由でレーザー回折法による測定が困難な場合には、画像イメージング法等の手法を適用することができる。   The average particle diameter of the catalyst referred to here is one of those in the case of an integrated catalyst in which a catalyst for decomposing and lightening hydrocarbons formed on the outer surface of the catalyst for producing hydrocarbons from synthesis gas is formed. This is the average particle size of the body-shaped catalyst. In the case of a catalyst that physically mixes these catalysts instead of an integral catalyst, each catalyst particle exists as a separate particle and is composed of a mixture of two or more, the average of the catalysts that produce hydrocarbons from synthesis gas Refers to particle size. The reason for using the average particle size of a catalyst that produces hydrocarbons from synthesis gas in the case of a catalyst that is physically mixed is that the catalyst particle size that generally decomposes and lightens hydrocarbons produces hydrocarbons from synthesis gas. The size of the catalyst is sufficiently small (generally several μm to several tens of μm), and from the viewpoint of the filling rate and mixing degree of the microchannel reactor, the influence of the relatively large catalyst particle size is large. is there. When the physical mixed catalyst has a structure in which a mixture of both catalysts is contained in one particle, the particle diameter is the same as that of the integral catalyst. In addition, the laser diffraction method is applied to the measurement of the average particle diameter in the present invention. When measurement by the laser diffraction method is difficult due to poor dispersibility or the like, a method such as an image imaging method should be applied. Can do.

また、触媒を流路の内壁に塗布するマイクロチャネル反応器を使用する場合には、触媒の平均粒子径は、充填の場合よりも小さい粒子径が好ましく、特に限定されることはないが、150μm以下の平均粒子径が好ましく、より好ましくは、平均粒子径が5〜100μm以下である。平均粒径が150μmを超えると均一に塗布することが難しくなってくるため、触媒が流路内で局在化して固定される、あるいは容易に剥離するといった問題が発生することから、上記平均粒子径の範囲で使用することが好ましい。   In addition, when using a microchannel reactor in which the catalyst is applied to the inner wall of the flow path, the average particle diameter of the catalyst is preferably smaller than that in the case of packing, and is not particularly limited, but 150 μm The following average particle diameter is preferable, and more preferably, the average particle diameter is 5 to 100 μm or less. When the average particle size exceeds 150 μm, it becomes difficult to apply uniformly, and thus the problem that the catalyst is localized and fixed in the flow path or peels easily occurs. It is preferable to use in the range of diameter.

触媒を流路の内壁に塗布する方法としては、ウォッシュコート等の通常の方法を採用することができる。例えば、材質が金属の場合には、アルミナ等の無機化合物を予めウォッシュコート等の方法で塗布した後、触媒を含む塗布液を塗布する多段階のウォッシュコートを採用することができる。触媒を含む塗布液にはアルミナ等の無機化合物を含有することができ、所望の塗布量が得られるまで繰り返し操作を行うことができる。   As a method of applying the catalyst to the inner wall of the flow path, a normal method such as wash coating can be employed. For example, when the material is a metal, it is possible to employ a multi-stage washcoat in which an inorganic compound such as alumina is applied in advance by a method such as washcoat, and then a coating liquid containing a catalyst is applied. The coating liquid containing the catalyst can contain an inorganic compound such as alumina, and the operation can be repeated until a desired coating amount is obtained.

マイクロチャネル反応器内の塗布厚みとしては流路幅にもよるが、10〜400μmが好ましく、50〜300μmがより好ましい。この範囲を下回るとマイクロチャネルに固定される触媒量が少なくなり、単位体積当たりの生産性が小さくなるため好ましくなく、この範囲を超えると塗布操作の繰り返し回数が多くなり時間を要すること、合成ガスの拡散が不十分で流路壁側に固定された触媒が十分に反応に寄与しないことがあり好ましくない。   The coating thickness in the microchannel reactor is preferably 10 to 400 μm, more preferably 50 to 300 μm, although it depends on the channel width. Below this range, the amount of catalyst fixed to the microchannel is reduced, and the productivity per unit volume is reduced, which is not preferable. Over this range, the number of repetitions of the coating operation increases, requiring time, and synthesis gas. The diffusion of the catalyst is insufficient and the catalyst fixed on the channel wall side is not preferable because it may not sufficiently contribute to the reaction.

マイクロチャネル反応器における、軽質炭化水素を製造する反応を行う際には、炭化水素を製造する触媒上のF-T合成反応に活性を有する金属系化合物は還元された金属を形成する必要がある。合成ガスを供給して軽質炭化水素を製造する前に、水素ガス等の還元性ガスを流通させて還元処理(例えば、400℃-10h、通常は300〜500℃程度の範囲で実施するが特に限定されない。)を行うことができる。このような処理で触媒上に金属が形成された後に合成ガスに切替えることで軽質炭化水素を製造することができる。   When performing a reaction for producing light hydrocarbons in a microchannel reactor, a metal compound having activity in the FT synthesis reaction on a catalyst for producing hydrocarbons needs to form a reduced metal. Before supplying the synthesis gas to produce light hydrocarbons, reducing gas such as hydrogen gas is circulated and reduced (for example, 400 ° C-10h, usually in the range of about 300-500 ° C. Not limited). A light hydrocarbon can be produced by switching to synthesis gas after the metal is formed on the catalyst by such treatment.

上記のように還元処理を行わない触媒を充填または塗布固定する方法の他に、マイクロチャネル反応器内に触媒を仕込む前に還元処理を行い、その後に充填することも可能である。還元処理後の触媒は、大気に触れて酸化失活しないように取り扱う必要があるが、担体上のコバルト金属等の表面を大気から遮断するような安定化処理を行うと、大気中での取り扱いが可能となり好適である。この安定化処理には、低濃度の酸素を含有する窒素、二酸化炭素、不活性ガスを触媒に触れさせて、担体上のコバルト金属等の極表層のみを酸化するいわゆるパッシベーション(不動態化処理)を行うとよい。塗布固定のためのウォッシュコートなどは多くの場合、塗布液中に水溶液を含むため、還元後の触媒を塗布することは効率的ではないが、塗布液の組成によっては還元処理後の触媒を塗布固定することもできる。   In addition to the above-described method of filling or coating and fixing the catalyst that is not subjected to the reduction treatment, it is possible to perform the reduction treatment before charging the catalyst into the microchannel reactor and then charge the catalyst. The catalyst after the reduction treatment must be handled so as not to be oxidized and deactivated by exposure to the atmosphere. However, if the stabilization treatment is performed to block the surface of cobalt metal etc. on the support from the atmosphere, the catalyst should be handled in the atmosphere. Is possible and preferable. This stabilization treatment involves so-called passivation (passivation treatment) in which only the surface layer of cobalt metal or the like on the support is oxidized by bringing nitrogen, carbon dioxide, or inert gas containing low concentrations of oxygen into contact with the catalyst. It is good to do. In many cases, such as a wash coat for application fixation, an aqueous solution is included in the coating solution, so it is not efficient to apply the reduced catalyst, but depending on the composition of the applied solution, the reduced catalyst is applied. It can also be fixed.

以上のような構成あるいは製造法を用いて製造されたマイクロチャネル反応器における、軽質炭化水素を製造する反応の反応条件は特に限定されないが、反応温度220〜300℃、反応圧力0.8〜3.5MPaの範囲で選択することができ、好ましくは反応温度240〜280℃、反応圧力0.9〜2.5MPaである。合成ガスのH2/CO比は特に限定されないが、合成ガスから炭化水素を製造する触媒中のF-T合成反応に活性を有する金属系化合物がコバルトやルテニウムの場合には0.5〜3が好ましく、より好ましくは1〜2.5である。合成ガスから炭化水素を製造する触媒中のF-T合成反応に活性を有する金属系化合物の主成分が鉄である場合には、0.5〜2が好ましく、より好ましくは0.7〜1.5である。このような条件で実施される反応では、軽質炭化水素を選択的に製造可能となるため、生成油の粘度が低く流路内の圧力損失を抑えることも可能となる。そのため、マイクロチャネル反応器内のWAX生成による閉塞は起こらない。また、合成ガスより炭化水素を製造する触媒を単独で使用する場合には、生成油のほとんどは直鎖パラフィンであるが、炭化水素を分解して軽質化する触媒が共存することでイソパラフィンやオレフィンも同時に製造することができる。 The reaction conditions of the reaction for producing light hydrocarbons in the microchannel reactor produced using the above-described configuration or production method are not particularly limited, but the reaction temperature is 220 to 300 ° C. and the reaction pressure is 0.8 to 3.5 MPa. The reaction temperature is 240 to 280 ° C., and the reaction pressure is 0.9 to 2.5 MPa. The H 2 / CO ratio of the synthesis gas is not particularly limited, but is preferably 0.5 to 3 when the metal compound active in the FT synthesis reaction in the catalyst for producing hydrocarbons from the synthesis gas is cobalt or ruthenium, Preferably it is 1-2.5. When the main component of the metal compound active in the FT synthesis reaction in the catalyst for producing hydrocarbons from synthesis gas is iron, 0.5 to 2 is preferable, and 0.7 to 1.5 is more preferable. In the reaction carried out under such conditions, light hydrocarbons can be selectively produced, so that the viscosity of the product oil is low and pressure loss in the flow path can be suppressed. Therefore, clogging due to WAX generation in the microchannel reactor does not occur. In addition, when a catalyst for producing hydrocarbons from synthesis gas is used alone, most of the product oil is straight-chain paraffin. However, isoparaffins and olefins can be used together with a catalyst that decomposes and lightens hydrocarbons. Can also be manufactured at the same time.

著しく転化率が高い、あるいは反応時間が長いなどの要因で、活性低下が生じた場合には、合成ガスの代わりに水素を含むガスを供給することで、触媒を再生することができる。再生ガスの水素含有量は5%以上であることが好ましく、100%でも良い。他に窒素、アルゴン等の不活性ガスを含有しても良い。再生条件としては、触媒再生が進行する条件であれば良く、特に限定されるものではない。水素を含む再生ガスと触媒を接触させることによる触媒再生機構としては、副生水により酸化したコバルト等の再還元と、水素による析出炭素の除去によるものと推察される。再生条件としては、例えば、再生温度は100〜400℃、再生圧力は常圧〜反応圧、再生時間は1時間以上、が好適である。再生圧力は反応圧以下にすると、反応において反応圧に昇圧するためのコンプレッサーを利用することが可能となり、再生のために新たにコンプレッサーを設置する必要がなくなるため、設備コストの面から有利となる。   When the activity is reduced due to a remarkably high conversion rate or a long reaction time, the catalyst can be regenerated by supplying a gas containing hydrogen instead of the synthesis gas. The hydrogen content of the regeneration gas is preferably 5% or more, and may be 100%. In addition, you may contain inert gas, such as nitrogen and argon. The regeneration conditions are not particularly limited as long as catalyst regeneration proceeds. The catalyst regeneration mechanism by bringing the regeneration gas containing hydrogen into contact with the catalyst is assumed to be due to re-reduction of cobalt or the like oxidized by by-product water and removal of precipitated carbon by hydrogen. As the regeneration conditions, for example, the regeneration temperature is preferably 100 to 400 ° C., the regeneration pressure is normal pressure to the reaction pressure, and the regeneration time is 1 hour or more. If the regeneration pressure is less than or equal to the reaction pressure, it is possible to use a compressor for raising the reaction pressure to the reaction pressure, and it is not necessary to install a new compressor for regeneration, which is advantageous in terms of equipment costs. .

尚、本発明で使用する合成ガスには、水素と一酸化炭素の合計が全体の50体積%以上であるガスが生産性の面から好ましく、特に、水素と一酸化炭素のモル比(水素/一酸化炭素)が0.5〜4.0の範囲であることが望ましい。これは、水素と一酸化炭素のモル比が0.5未満の場合には、原料ガス中の水素の存在量が少な過ぎるため、一酸化炭素の水素化反応(FT合成反応)が進みにくく、液状炭化水素の生産性が高くならないためであり、一方、水素と一酸化炭素のモル比が4.0を超える場合には、原料ガス中の一酸化炭素の存在量が少な過ぎるため、触媒活性に関わらず液状炭化水素の生産性が高くならないためである。
また、本発明において、合成ガスから炭化水素を製造する触媒と炭化水素を分解して軽質化する触媒とが共存し、かつ、粒子径の小さな触媒を用いてメタン選択率が抑えられる理由については、メタン選択率が比較的低い反応温度や比較的高い水分圧の下での反応において低くなることを考慮すると、炭化水素を分解して軽質化する触媒上で起こる吸熱反応によって局所的に反応温度が低くなると考えられ、また、炭化水素を分解して軽質化する触媒を合成ガスから炭化水素を製造する触媒の外表面に形成させた場合には、炭化水素を分解して軽質化する触媒の構造上、あるいは、その性質上の特性から、反応によって副生した水が触媒内部から排出され難くなり、触媒中で水分圧が高くなることが考えられ、結果としてメタン選択率が抑制されると考えられる。
The synthesis gas used in the present invention is preferably a gas in which the total amount of hydrogen and carbon monoxide is 50% by volume or more from the viewpoint of productivity, and in particular, the molar ratio of hydrogen to carbon monoxide (hydrogen / carbon monoxide). Carbon monoxide) is desirably in the range of 0.5 to 4.0. This is because when the molar ratio of hydrogen to carbon monoxide is less than 0.5, the amount of hydrogen in the raw material gas is too small, so the carbon monoxide hydrogenation reaction (FT synthesis reaction) is difficult to proceed, and liquid carbonization This is because the productivity of hydrogen does not increase. On the other hand, when the molar ratio of hydrogen to carbon monoxide exceeds 4.0, the amount of carbon monoxide in the raw material gas is too small, so that it is liquid regardless of the catalyst activity. This is because the productivity of hydrocarbons does not increase.
In the present invention, the reason why the catalyst for producing hydrocarbons from synthesis gas and the catalyst for decomposing and lightening hydrocarbons coexist and the methane selectivity can be suppressed by using a catalyst having a small particle diameter is as follows. Considering that methane selectivity is lower in reactions with relatively low reaction temperatures and relatively high water pressures, the reaction temperature locally depends on the endothermic reaction that occurs on the catalyst that decomposes and lightens hydrocarbons. If a catalyst that decomposes and lightens hydrocarbons is formed on the outer surface of the catalyst that produces hydrocarbons from synthesis gas, the catalyst that decomposes and lightens hydrocarbons Due to structural and property characteristics, water produced as a by-product of the reaction is less likely to be discharged from the inside of the catalyst, and the water pressure in the catalyst may increase, resulting in a reduction in methane selectivity. It is considered to be.

以下、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれら実施例及び比較例に限定されない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples and a comparative example.

〔実施例1〕
平均粒子径110μmのシリカ担体を用い、Co(NO3)2・6H2O水溶液を用いてインシピエントウェットネス法でCoを担持後、120℃-12hの乾燥処理、400℃-2hの焼成処理を行い、合成ガスから炭化水素を製造する触媒(Co/SiO2)を調製した。Co担持量は10質量%であった。
なお、ここで用いたシリカ担体は、細孔径が13nm、細孔容積が1cc/g、比表面積が300m2/gである。
[Example 1]
Using a silica carrier with an average particle size of 110 μm, after supporting Co by an incipient wetness method using a Co (NO 3 ) 2 · 6H 2 O aqueous solution, drying treatment at 120 ° C.-12 h, baking at 400 ° C.-2 h A catalyst (Co / SiO 2 ) for producing hydrocarbons from synthesis gas was prepared. The amount of Co supported was 10% by mass.
The silica carrier used here has a pore diameter of 13 nm, a pore volume of 1 cc / g, and a specific surface area of 300 m 2 / g.

10質量%テトラプロピルアンモニウムヒドロキシド、アルミニウム硝酸塩、イオン交換水、エタノール、オルトケイ酸テトラエチルを順にテフロン(登録商標)容器に仕込み、常温で6時間攪拌し、均一な前駆体溶液を調製した。前駆体溶液のモル比は(10wt%テトラプロピルアンモニウムヒドロキシド:アルミニウム硝酸塩:イオン交換水:エタノール:オルトケイ酸テトラエチル)=(20:1:4,800:320:80)であった。調製した前駆体溶液23.4gに上記合成ガスから炭化水素を製造する触媒(Co/SiO2)0.5gを添加し、180℃で加熱しながら2rpmで回転させ、48時間保持する水熱合成を行った。固体触媒を取り出し、pHが中性となるまでイオン交換水で洗浄し、120℃-12hの乾燥処理、500℃-8hの焼成処理を行い、炭化水素を分解して軽質化する触媒(H-ZSM-5)が合成ガスから炭化水素を製造する触媒(Co/SiO2)の外表面に形成されたH-ZSM-5/Co/SiO2触媒(平均粒子径120μm)を得た。
なお、触媒の粒子径はレーザー回折法(Malvern製、レーザー回折式粒度分布測定装置マスターサイザー2000)にて測定した体積基準平均径である。
10% by mass of tetrapropylammonium hydroxide, aluminum nitrate, ion-exchanged water, ethanol, and tetraethyl orthosilicate were sequentially charged into a Teflon (registered trademark) container and stirred at room temperature for 6 hours to prepare a uniform precursor solution. The molar ratio of the precursor solution was (10 wt% tetrapropylammonium hydroxide: aluminum nitrate: ion exchange water: ethanol: tetraethyl orthosilicate) = (20: 1: 4,800: 320: 80). Hydrothermal synthesis is performed by adding 0.5 g of a catalyst (Co / SiO 2 ) for producing hydrocarbons from the above synthesis gas to 23.4 g of the prepared precursor solution, rotating at 2 rpm while heating at 180 ° C., and maintaining for 48 hours. It was. Take out the solid catalyst, wash with ion-exchanged water until the pH becomes neutral, perform 120 ℃ -12h drying treatment, 500 ℃ -8h calcination treatment to decompose hydrocarbons and lighten the catalyst (H- An H-ZSM-5 / Co / SiO 2 catalyst (average particle size of 120 μm) formed on the outer surface of a catalyst (Co / SiO 2 ) from which ZSM-5) produces hydrocarbons from synthesis gas was obtained.
The particle diameter of the catalyst is a volume-based average diameter measured by a laser diffraction method (manufactured by Malvern, laser diffraction particle size distribution measuring device Mastersizer 2000).

上記で得られたH-ZSM-5/Co/SiO2触媒1gを8mmφの管型反応器に充填し、常圧で400℃-10hの還元処理を行い、窒素に置換して80℃まで降温した後、H2/CO=2の合成ガスに切り替えた。反応温度260℃、反応圧力1.0MPa、W(触媒質量)/F(合成ガス流量);(g・h/mol)=10に設定し、供給ガス及び管型反応器出口ガスの組成をガスクロマトグラフィーにより求め、CO転化率、CH4選択率、C5+選択率、オレフィン選択率、イソパラフィン選択率を算出した。
以下の実施例に記載したCO転化率、CH4選択率、C5+選択率、オレフィン選択率、イソパラフィン選択率は、それぞれ次に示す式により算出した。ここで、C5+とは炭素数5以上の炭化水素を示す。
1 g of the H-ZSM-5 / Co / SiO 2 catalyst obtained above is charged into an 8 mmφ tube reactor, subjected to reduction treatment at 400 ° C for 10 h at normal pressure, and is cooled to 80 ° C by replacing with nitrogen. After that, the synthesis gas was switched to H 2 / CO = 2. The reaction temperature was set at 260 ° C, reaction pressure at 1.0 MPa, W (catalyst mass) / F (synthesis gas flow rate); (g The CO conversion, CH 4 selectivity, C5 + selectivity, olefin selectivity, and isoparaffin selectivity were calculated by chromatography.
The CO conversion, CH 4 selectivity, C5 + selectivity, olefin selectivity, and isoparaffin selectivity described in the following examples were calculated by the following formulas. Here, C5 + represents a hydrocarbon having 5 or more carbon atoms.

Figure 2014198332
Figure 2014198332

上記で調製した触媒を用いて、反応を行ったところ、CO転化率78.9%、CH4選択率15.6%、C5+選択率74.2%、オレフィン選択率20.5%、イソパラフィン選択率24.8%であった。また、図1に示す炭素数分布の生成物が得られた。後述する比較例1に示した平均粒子径1.3mmのシリカ担体を用いて製造したH-ZSM-5/Co/SiO2触媒と比較してCH4選択率が低く良好な反応性能を示した。また、後述する比較例2に示した炭化水素を分解して軽質化する触媒が存在しないCo/SiO2触媒と比較して、生成物の炭素数分布は軽質化していることを確認した。 When the reaction was carried out using the catalyst prepared above, the CO conversion was 78.9%, the CH 4 selectivity was 15.6%, the C5 + selectivity was 74.2%, the olefin selectivity was 20.5%, and the isoparaffin selectivity was 24.8%. Moreover, the product of carbon number distribution shown in FIG. 1 was obtained. Compared with the H-ZSM-5 / Co / SiO 2 catalyst produced using a silica carrier having an average particle size of 1.3 mm shown in Comparative Example 1 described later, the CH 4 selectivity was low and good reaction performance was exhibited. In addition, it was confirmed that the carbon number distribution of the product was lightened as compared to the Co / SiO 2 catalyst which does not have a catalyst for decomposing and lightening hydrocarbons shown in Comparative Example 2 described later.

〔実施例2〕
管型反応器を二重管構造として中心部に常温の水を流通させた他は、実施例1と同様にして、反応を行った。流通後の水の温度上昇は8℃であった。
(Example 2)
The reaction was carried out in the same manner as in Example 1 except that the tubular reactor had a double tube structure and normal temperature water was passed through the center. The temperature rise of the water after distribution was 8 ° C.

〔実施例3〕
触媒調製における水熱合成時間を96時間とする他は、実施例1と同様にして、反応を行ったところ、CO転化率75.2%、CH4選択率16.4%、C5+選択率72.2%、オレフィン選択率35.2%、イソパラフィン選択率20.6%であった。
Example 3
The reaction was conducted in the same manner as in Example 1 except that the hydrothermal synthesis time in the catalyst preparation was 96 hours.The CO conversion was 75.2%, the CH 4 selectivity was 16.4%, the C5 + selectivity was 72.2%, and the olefin was selected. The rate was 35.2% and the isoparaffin selectivity was 20.6%.

〔実施例4〕
W/Fを20g・h/molに設定する他は、実施例1と同様にして、反応を行ったところ、CO転化率95.8%、CH4選択率4.9%、C5+選択率87.8%、オレフィン選択率35.7%、イソパラフィン選択率32.5%であった。
(Example 4)
The reaction was performed in the same manner as in Example 1 except that W / F was set to 20 g · h / mol.The CO conversion was 95.8%, the CH 4 selectivity was 4.9%, the C5 + selectivity was 87.8%, and the olefin was selected. The rate was 35.7% and the isoparaffin selectivity was 32.5%.

〔実施例5〕
W/Fを20g・h/molに設定する他は、実施例2と同様にして、反応を行ったところ、CO転化率96.3%、CH4選択率3.5%、C5+選択率89.0%、オレフィン選択率34.2%、イソパラフィン選択率38.9%であった。
Example 5
The reaction was conducted in the same manner as in Example 2 except that W / F was set to 20 g · h / mol.The CO conversion was 96.3%, the CH 4 selectivity was 3.5%, the C5 + selectivity was 89.0%, and the olefin was selected. The rate was 34.2%, and the isoparaffin selectivity was 38.9%.

〔実施例6〕
平均粒子径200μmのシリカ担体を用いて製造したH-ZSM-5/Co/SiO2触媒(平均粒子径210μm)を使用する他は、実施例1と同様にして、反応を行ったところ、CO転化率80.1%、CH4選択率18.9%、C5+選択率69.1%、オレフィン選択率22.5%、イソパラフィン選択率23.9%であった。
Example 6
A reaction was conducted in the same manner as in Example 1 except that an H-ZSM-5 / Co / SiO 2 catalyst (average particle diameter 210 μm) produced using a silica carrier having an average particle diameter 200 μm was used. Conversion was 80.1%, CH 4 selectivity was 18.9%, C5 + selectivity was 69.1%, olefin selectivity was 22.5%, and isoparaffin selectivity was 23.9%.

〔実施例7〕
平均粒子径350μmのシリカ担体を用いて製造したH-ZSM-5/Co/SiO2触媒(平均粒子径360μm)を使用する他は、実施例1と同様にして、反応を行ったところ、CO転化率80.9%、CH4選択率20.4%、C5+選択率65.7%、オレフィン選択率21.5%、イソパラフィン選択率24.4%であった。
Example 7
A reaction was conducted in the same manner as in Example 1 except that an H-ZSM-5 / Co / SiO 2 catalyst (average particle diameter 360 μm) produced using a silica support having an average particle diameter of 350 μm was used. The conversion was 80.9%, CH 4 selectivity 20.4%, C5 + selectivity 65.7%, olefin selectivity 21.5%, isoparaffin selectivity 24.4%.

〔実施例8〕
Co/SiO2触媒(平均粒子径110μm)とH-ZSM-5を物理混合(それぞれの触媒粒子が別々の粒子として存在)する他は、実施例1と同様にして、反応を行ったところ、CO転化率83.4%、CH4選択率18.5%、C5+選択率71.5%、オレフィン選択率27.5%、イソパラフィン選択率23.7%であった。また、図2に示す炭素数分布の生成物が得られた。
(Example 8)
When the reaction was carried out in the same manner as in Example 1 except that the Co / SiO 2 catalyst (average particle size 110 μm) and H-ZSM-5 were physically mixed (each catalyst particle exists as a separate particle), The CO conversion was 83.4%, the CH 4 selectivity was 18.5%, the C5 + selectivity was 71.5%, the olefin selectivity was 27.5%, and the isoparaffin selectivity was 23.7%. Moreover, the product of carbon number distribution shown in FIG. 2 was obtained.

〔実施例9〕
平均粒子径200μmのシリカ担体を用いて製造したCo/SiO2触媒(平均粒子径200μm)を使用する他は、実施例7と同様にして、反応を行ったところ、CO転化率82.1%、CH4選択率18.1%、C5+選択率72.9%、オレフィン選択率26.1%、イソパラフィン選択率23.2%であった。
Example 9
The reaction was conducted in the same manner as in Example 7 except that a Co / SiO 2 catalyst (average particle diameter 200 μm) produced using a silica carrier having an average particle diameter of 200 μm was used. As a result, the CO conversion was 82.1%, CH 4 The selectivity was 18.1%, the C5 + selectivity was 72.9%, the olefin selectivity was 26.1%, and the isoparaffin selectivity was 23.2%.

〔実施例10〕
平均粒子径350μmのシリカ担体を用いて製造したCo/SiO2触媒(平均粒子径350μm)を使用する他は、実施例7と同様にして、反応を行ったところ、CO転化率81.8%、CH4選択率18.7%、C5+選択率71.9%、オレフィン選択率25.5%、イソパラフィン選択率22.9%であった。
Example 10
The reaction was conducted in the same manner as in Example 7 except that a Co / SiO 2 catalyst (average particle diameter 350 μm) produced using a silica carrier having an average particle diameter of 350 μm was used. As a result, the CO conversion was 81.8%, CH 4 The selectivity was 18.7%, the C5 + selectivity was 71.9%, the olefin selectivity was 25.5%, and the isoparaffin selectivity was 22.9%.

〔実施例11〕
H-βゼオライトがCo/SiO2の外表面に形成されたH-β/Co/SiO2触媒(平均粒子径120μm)を使用する他は、実施例1と同様にして、反応を行ったところ、CO転化率73.2%、CH4選択率17.6%、C5+選択率71.2%、オレフィン選択率18.1%、イソパラフィン選択率21.5%であった。
Example 11
Other H-beta zeolite to use Co / are formed on the SiO 2 outer surface H-beta / Co / SiO 2 catalyst (average particle size 120 [mu] m), the same procedure as in Example 1 was subjected to a reaction The CO conversion was 73.2%, the CH 4 selectivity was 17.6%, the C5 + selectivity was 71.2%, the olefin selectivity was 18.1%, and the isoparaffin selectivity was 21.5%.

〔実施例12〕
H-ZSM-5が溶融鉄の外表面に形成されたH-ZSM-5/溶融鉄触媒(平均粒子径120μm)を使用し、反応温度を300℃とする他は、実施例1と同様にして、反応を行ったところ、CO転化率71.2%、CH4選択率11.6%、C5+選択率68.5%、オレフィン選択率14.9%、イソパラフィン選択率29.7%であった。
Example 12
Same as Example 1 except that H-ZSM-5 / molten iron catalyst (average particle size 120μm) with H-ZSM-5 formed on the outer surface of molten iron was used and the reaction temperature was 300 ° C. As a result of the reaction, the CO conversion was 71.2%, the CH 4 selectivity was 11.6%, the C5 + selectivity was 68.5%, the olefin selectivity was 14.9%, and the isoparaffin selectivity was 29.7%.

〔実施例13〕
SUS箔の積層構造で流路に波板を配置した流路幅1.3mmの直交型マイクロチャネル反応器に触媒を充填し、BFWで冷却しながら温度制御する他は、実施例1と同様にして、反応を行ったところ、CO転化率75.7%、CH4選択率13.8%、C5+選択率78.5%、オレフィン選択率21.4%、イソパラフィン選択率25.8%であった。
Example 13
Except for charging the catalyst into a 1.3 mm cross-sectional width microchannel reactor with corrugated plates arranged in the flow path in a laminated structure of SUS foil and controlling the temperature while cooling with BFW, the same as in Example 1 As a result of the reaction, the CO conversion was 75.7%, the CH 4 selectivity was 13.8%, the C5 + selectivity was 78.5%, the olefin selectivity was 21.4%, and the isoparaffin selectivity was 25.8%.

〔実施例13〕
反応圧力2.0MPa、W(触媒質量)/F(合成ガス流量);(g・h/mol)=3に設定する他は、実施例1と同様にして、反応を行ったところ、CO転化率40.6%、CH4選択率9.2%、C5+選択率76.1%、オレフィン選択率17.8%、イソパラフィン選択率21.5%であった。
また、実施例1〜13のいずれにおいても、WAX生成による管内閉塞は生じなかった。
Example 13
The reaction pressure was 2.0 MPa, W (catalyst mass) / F (synthesis gas flow rate); (g · h / mol) = 3, except that the reaction was carried out in the same manner as in Example 1, the CO conversion rate was The selectivity was 40.6%, CH 4 selectivity 9.2%, C5 + selectivity 76.1%, olefin selectivity 17.8%, and isoparaffin selectivity 21.5%.
Moreover, in any of Examples 1-13, the tube | bowl obstruction | occlusion by WAX production did not arise.

〔比較例1〕
平均粒子径1.3mmのシリカ担体を用いて製造したH-ZSM-5/Co/SiO2触媒(平均粒子径1.31mm)を使用する他は、実施例1と同様にして、反応を行ったところ、CO転化率82.0%、CH4選択率32.5%、C5+選択率41.5%、オレフィン選択率19.5%、イソパラフィン選択率21.8%であった。
(Comparative Example 1)
A reaction was conducted in the same manner as in Example 1 except that an H-ZSM-5 / Co / SiO 2 catalyst (average particle diameter 1.31 mm) produced using a silica support having an average particle diameter of 1.3 mm was used. The CO conversion was 82.0%, the CH 4 selectivity was 32.5%, the C5 + selectivity was 41.5%, the olefin selectivity was 19.5%, and the isoparaffin selectivity was 21.8%.

このように、固定床での使用を想定して開発された従来の触媒(F-T合成触媒と炭化水素を軽質化する触媒を共存させる粒子径が大きい触媒)に相当する触媒では、メタン選択率が高いため生産効率に問題があることが確認された。
〔比較例2〕
管型反応器を二重管構造として中心部に常温の水を流通させる他は、比較例1と同様にして、反応を行った。流通後の水の温度上昇は16℃と実施例2と比較して大きく、吸熱反応を起こすH-ZSM-5の存在比率が低いため、系の発熱量が大きいことを確認した。
As described above, a catalyst corresponding to a conventional catalyst (a catalyst having a large particle diameter in which an FT synthesis catalyst and a catalyst for lightening hydrocarbons coexist) developed assuming use in a fixed bed has a methane selectivity. It was confirmed that there was a problem in production efficiency because of its high value.
(Comparative Example 2)
The reaction was carried out in the same manner as in Comparative Example 1 except that the tubular reactor had a double tube structure and normal temperature water was circulated in the center. The increase in the temperature of water after circulation was 16 ° C., which was larger than that in Example 2, and it was confirmed that the heat generation amount of the system was large because the abundance ratio of H-ZSM-5 causing an endothermic reaction was low.

〔比較例3〕
Co/SiO2触媒(平均粒子径1.31mm)とH-ZSM-5を物理混合(それぞれの触媒粒子が別々の粒子として存在)する他は、比較例1と同様にして、反応を行ったところ、CO転化率92.1%、CH4選択率19.5%、C5+選択率69.8%、オレフィン選択率25.8%、イソパラフィン選択率15.8%であった。
(Comparative Example 3)
The reaction was performed in the same manner as in Comparative Example 1 except that the Co / SiO 2 catalyst (average particle size 1.31 mm) and H-ZSM-5 were physically mixed (each catalyst particle exists as a separate particle). The CO conversion was 92.1%, the CH 4 selectivity was 19.5%, the C5 + selectivity was 69.8%, the olefin selectivity was 25.8%, and the isoparaffin selectivity was 15.8%.

〔比較例4〕
炭化水素を分解して軽質化する触媒を使用せず、Co/SiO2触媒(平均粒子径110μm)を単独で使用する他は、実施例1と同様にして、反応を行ったところ、CO転化率98.1%、CH4選択率15.0%、C5+選択率75.2%、オレフィン選択率5.5%、イソパラフィン選択率8.5%であった。また、図3に示す炭素数分布の生成物が得られた。
(Comparative Example 4)
The reaction was carried out in the same manner as in Example 1 except that a Co / SiO 2 catalyst (average particle size 110 μm) was used alone without using a catalyst that decomposes hydrocarbons to lighten them. The selectivity was 98.1%, CH 4 selectivity was 15.0%, C5 + selectivity was 75.2%, olefin selectivity was 5.5%, and isoparaffin selectivity was 8.5%. Moreover, the product of carbon number distribution shown in FIG. 3 was obtained.

〔比較例5〕
管型反応器を二重管構造として中心部に常温の水を流通させる他は、比較例4と同様にして、反応を行った。流通後の水の温度上昇は18℃と実施例2と比較して大きく、吸熱反応を起こすH-ZSM-5が存在しないため系の発熱量が大きいことを確認した。
(Comparative Example 5)
The reaction was carried out in the same manner as in Comparative Example 4 except that the tubular reactor had a double tube structure and normal temperature water was circulated in the center. The temperature rise of the water after distribution was 18 ° C., which was larger than that of Example 2, and it was confirmed that the heat generation amount of the system was large because there was no H-ZSM-5 that caused an endothermic reaction.

〔比較例6〕
平均粒子径1.3mmのシリカ担体を用いて製造したCo/SiO2触媒(平均粒子径1.3mm)を使用する他は、比較例2と同様にして、反応を行ったところ、CO転化率97.5%、CH4選択率15.8%、C5+選択率73.8%、オレフィン選択率4.5%、イソパラフィン選択率3.1%であった。
(Comparative Example 6)
The reaction was carried out in the same manner as in Comparative Example 2 except that a Co / SiO 2 catalyst (average particle diameter 1.3 mm) produced using a silica support having an average particle diameter of 1.3 mm was used. The CO conversion was 97.5%. The CH 4 selectivity was 15.8%, the C5 + selectivity was 73.8%, the olefin selectivity was 4.5%, and the isoparaffin selectivity was 3.1%.

Claims (11)

合成ガスから軽質炭化水素を製造する触媒であって、
フィッシャー−トロプシュ合成反応に活性を有する金属系化合物を含有し、合成ガスから炭化水素を生成する触媒と、
当該生成した炭化水素を分解して軽質化する触媒とを、両方含有し、
平均粒子径が400μm以下であることを特徴とする合成ガスから軽質炭化水素を製造する触媒。
A catalyst for producing light hydrocarbons from synthesis gas,
A catalyst containing a metal compound active in a Fischer-Tropsch synthesis reaction and producing hydrocarbons from synthesis gas;
A catalyst that decomposes the produced hydrocarbons to lighten them,
A catalyst for producing light hydrocarbons from synthesis gas, wherein the average particle size is 400 μm or less.
前記平均粒子径が200μm以下であることを特徴とする請求項1に記載の合成ガスから軽質炭化水素を製造する触媒。   The catalyst for producing light hydrocarbons from synthesis gas according to claim 1, wherein the average particle size is 200 μm or less. 前記金属系化合物の金属が、コバルトを含むことを特徴とする請求項1又は2に記載の合成ガスから軽質炭化水素を製造する触媒。   The catalyst for producing light hydrocarbons from synthesis gas according to claim 1 or 2, wherein the metal of the metal-based compound contains cobalt. 前記生成した炭化水素を分解して軽質化する触媒が、ゼオライトであることを特徴とする請求項1〜3のいずれか1項に記載の合成ガスから軽質炭化水素を製造する触媒。   The catalyst for producing light hydrocarbons from synthesis gas according to any one of claims 1 to 3, wherein the catalyst for decomposing and lightening the generated hydrocarbons is zeolite. 前記合成ガスから炭化水素を製造する触媒の外表面に、前記生成した炭化水素を分解して軽質化する触媒が形成されていることを特徴とする請求項1〜4のいずれか1項に記載の合成ガスから軽質炭化水素を製造する触媒。   The catalyst which decomposes | disassembles the produced | generated hydrocarbon and lightens is formed in the outer surface of the catalyst which manufactures the hydrocarbon from the said synthesis gas, The any one of Claims 1-4 characterized by the above-mentioned. That produces light hydrocarbons from the synthesis gas. 前記合成ガスから炭化水素を製造する触媒の担体がシリカであることを特徴とする請求項1〜5のいずれか1項に記載の合成ガスから軽質炭化水素を製造する触媒。   The catalyst for producing light hydrocarbons from synthesis gas according to any one of claims 1 to 5, wherein the carrier of the catalyst for producing hydrocarbons from the synthesis gas is silica. 請求項5又は6に記載の触媒を製造する方法であって、シリカ担体に、含浸法、インシピエントウェットネス法、沈殿法、又はイオン交換法を用いて合成ガスから炭化水素を製造する触媒を製造し、その後、水熱合成法を用いて、当該製造された触媒の外表面に前記生成した炭化水素を分解して軽質化する触媒を形成することを特徴とする合成ガスから軽質炭化水素を製造する触媒の製造方法。   A method for producing the catalyst according to claim 5 or 6, wherein the catalyst is produced on a silica support from a synthesis gas using an impregnation method, an incipient wetness method, a precipitation method, or an ion exchange method. And then forming a catalyst that decomposes and lightens the generated hydrocarbon on the outer surface of the produced catalyst using a hydrothermal synthesis method. The manufacturing method of the catalyst which manufactures. 請求項1〜6のいずれか1項に記載の触媒を用いて、マイクロチャネル反応器内で合成ガスから軽質炭化水素を製造することを特徴とする軽質炭化水素の製造方法。   A method for producing light hydrocarbons, comprising producing light hydrocarbons from synthesis gas in a microchannel reactor using the catalyst according to any one of claims 1 to 6. 前記マイクロチャネル反応器の流路幅が4mm以下であることを特徴とする請求項8記載の軽質炭化水素の製造方法。   9. The light hydrocarbon production method according to claim 8, wherein a flow path width of the microchannel reactor is 4 mm or less. 前記マイクロチャネル反応器が金属材料で形成されていることを特徴とする請求項8又は9に記載の軽質炭化水素の製造方法。   The method for producing light hydrocarbons according to claim 8 or 9, wherein the microchannel reactor is made of a metal material. 前記マイクロチャネル反応器が多段階の層状構造であり、合成ガスを供給し軽質炭化水素を製造する層と、冷媒を供給し軽質炭化水素製造で発生した熱を除熱する層とが交互に配置され、これら層の流路が直交する方向に配列していることを特徴とする請求項8〜10のいずれか1項に記載の軽質炭化水素の製造方法。   The microchannel reactor has a multi-stage layered structure in which layers for supplying synthesis gas to produce light hydrocarbons and layers for supplying refrigerant and removing heat generated in light hydrocarbon production are alternately arranged. The method for producing light hydrocarbons according to any one of claims 8 to 10, wherein the flow paths of these layers are arranged in a direction orthogonal to each other.
JP2014047828A 2013-03-14 2014-03-11 Catalyst for producing light hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing light hydrocarbons from synthesis gas Active JP6314556B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014047828A JP6314556B2 (en) 2013-03-14 2014-03-11 Catalyst for producing light hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing light hydrocarbons from synthesis gas
PCT/JP2014/056797 WO2014142282A1 (en) 2013-03-14 2014-03-13 Catalyst for manufacturing light hydrocarbon from syngas, method for manufacturing said catalyst, and method for manufacturing light hydrocarbon from syngas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013051915 2013-03-14
JP2013051915 2013-03-14
JP2014047828A JP6314556B2 (en) 2013-03-14 2014-03-11 Catalyst for producing light hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing light hydrocarbons from synthesis gas

Publications (2)

Publication Number Publication Date
JP2014198332A true JP2014198332A (en) 2014-10-23
JP6314556B2 JP6314556B2 (en) 2018-04-25

Family

ID=51536930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014047828A Active JP6314556B2 (en) 2013-03-14 2014-03-11 Catalyst for producing light hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing light hydrocarbons from synthesis gas

Country Status (2)

Country Link
JP (1) JP6314556B2 (en)
WO (1) WO2014142282A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145411A (en) * 2016-02-15 2017-08-24 新日鐵住金株式会社 Manufacturing method of hydrocarbon and catalyst for manufacturing hydrocarbon
KR20190136422A (en) * 2018-05-30 2019-12-10 한국화학연구원 Fischer―Tropsch Catalysts for Preparing Long Chain Olefin and Method for Preparing Long Chain Olefin Using the Same
JP2020018960A (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Production method of catalyst for producing hydrocarbon from synthetic gas, production method of hydrocarbon and catalyst for producing hydrocarbon from synthetic gas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020116478A1 (en) 2018-12-03 2021-10-21 古河電気工業株式会社 Hydrocarbon production equipment and hydrocarbon production method
JPWO2020116474A1 (en) 2018-12-03 2021-10-21 古河電気工業株式会社 Equipment for producing lower olefin-containing gas and method for producing lower olefin-containing gas
EP3892603A4 (en) 2018-12-03 2022-08-31 Furukawa Electric Co., Ltd. Production device for hydrocarbons and production method for hydrocarbons
CN115364870A (en) * 2022-09-29 2022-11-22 中国科学院上海高等研究院 Catalyst for directly synthesizing high-carbon olefin product by synthesis gas one-step method, preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505387A (en) * 2002-10-22 2006-02-16 ヴェロシス インコーポレイテッド Catalyst in microchannel apparatus and reaction using the same
JP2007519805A (en) * 2004-01-28 2007-07-19 ヴェロシス,インク. Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505387A (en) * 2002-10-22 2006-02-16 ヴェロシス インコーポレイテッド Catalyst in microchannel apparatus and reaction using the same
JP2007519805A (en) * 2004-01-28 2007-07-19 ヴェロシス,インク. Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactors

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. MARTINEZ ET AL.: "A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer-Trop", JOURNAL OF CATALYSIS, vol. 249, JPN6014027889, 2007, pages 162 - 173, XP022142422, ISSN: 0003694740, DOI: 10.1016/j.jcat.2007.04.012 *
G. YANG ET AL.: "Design of a zeolite capsule catalyst by controlling the support size for the direct synthesis of iso", RES. CHEM. INTERMED., vol. 34, JPN6014027891, 2008, pages 771 - 779, ISSN: 0003694742 *
J. HE ET AL.: "Designing a Capsule Catalyst and Its Application for Direct Synthesis of Middle Isoparaffins", LANGMUIR, vol. 21, JPN6014027890, 2005, pages 1699 - 1702, ISSN: 0003694741 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145411A (en) * 2016-02-15 2017-08-24 新日鐵住金株式会社 Manufacturing method of hydrocarbon and catalyst for manufacturing hydrocarbon
KR20190136422A (en) * 2018-05-30 2019-12-10 한국화학연구원 Fischer―Tropsch Catalysts for Preparing Long Chain Olefin and Method for Preparing Long Chain Olefin Using the Same
KR102096308B1 (en) 2018-05-30 2020-04-02 한국화학연구원 Fischer―Tropsch Catalysts for Preparing Long Chain Olefin and Method for Preparing Long Chain Olefin Using the Same
JP2020018960A (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Production method of catalyst for producing hydrocarbon from synthetic gas, production method of hydrocarbon and catalyst for producing hydrocarbon from synthetic gas
JP7030641B2 (en) 2018-07-31 2022-03-07 日本製鉄株式会社 A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, a method for producing a hydrocarbon, and a catalyst for producing a hydrocarbon from a synthetic gas.

Also Published As

Publication number Publication date
WO2014142282A1 (en) 2014-09-18
JP6314556B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6314556B2 (en) Catalyst for producing light hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing light hydrocarbons from synthesis gas
Gholami et al. Recent advances in Fischer-Tropsch synthesis using cobalt-based catalysts: A review on supports, promoters, and reactors
Gao et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis
Chen et al. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-) SAPO-34 catalysts: Strategy for product distribution
Cheng et al. Advances in catalysis for syngas conversion to hydrocarbons
Numpilai et al. Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide
Carter et al. Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application
US7259286B2 (en) Attrition resistant bulk iron catalysts and processes for preparing and using same
CN110691646A (en) Catalyst structure for CO conversion or reverse conversion and method for producing same, reaction apparatus for CO conversion or reverse conversion, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
WO2011019037A1 (en) Method for producing a catalyst
CN102612408A (en) Zeolite supported cobalt hybrid fischer-tropsch catalyst
US11660590B2 (en) Process for preparing a catalyst or a trapping mass from molten salts
WO2005082821A1 (en) Methods of reducing and loading a metal-based catalyst into a reactor
Huynh et al. Bed packing configuration and hot-spot utilization for low-temperature CO2 methanation on monolithic reactor
CA2831017A1 (en) High pressure gas to liquid process
KR102378451B1 (en) Catalyst
Martín et al. Multifunctional heterogeneous catalysts for the tandem CO2 hydrogenation-Fischer Tropsch synthesis of gasoline
Zhang et al. ZnO supported on a Zr-based metal–organic framework for selective CO2 hydrogenation to methanol
Tanimu et al. Sono-assisted synthesis and kinetic modeling of nanocrystallite silicalite-1-NiMo catalysts for hydrodesulfurization of dibenzothiophene: role of sonication time on support mesoporosity and catalytic activity
JP6773586B2 (en) A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, a method for producing a hydrocarbon, and a catalyst for producing a hydrocarbon from a synthetic gas.
KR102142617B1 (en) Composite catalyst for fischer-tropsch synthesis and process of fischer-tropsch synthesis using the same
JP2017145411A (en) Manufacturing method of hydrocarbon and catalyst for manufacturing hydrocarbon
JP7030641B2 (en) A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, a method for producing a hydrocarbon, and a catalyst for producing a hydrocarbon from a synthetic gas.
JP6830828B2 (en) A catalyst for producing a hydrocarbon from a synthetic gas, a method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon.
AU2013369215B2 (en) Multi-structured reactor made of monolithic adjacent thermoconductive bodies for chemical processes with a high heat exchange

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R151 Written notification of patent or utility model registration

Ref document number: 6314556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350