JP2014198326A - Method of manufacturing precise metal filter for polymer - Google Patents

Method of manufacturing precise metal filter for polymer Download PDF

Info

Publication number
JP2014198326A
JP2014198326A JP2013086082A JP2013086082A JP2014198326A JP 2014198326 A JP2014198326 A JP 2014198326A JP 2013086082 A JP2013086082 A JP 2013086082A JP 2013086082 A JP2013086082 A JP 2013086082A JP 2014198326 A JP2014198326 A JP 2014198326A
Authority
JP
Japan
Prior art keywords
filter
cleaning
filtration
cleaning liquid
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013086082A
Other languages
Japanese (ja)
Other versions
JP6083602B2 (en
Inventor
俊明 山中
Toshiaki Yamanaka
俊明 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2013086082A priority Critical patent/JP6083602B2/en
Publication of JP2014198326A publication Critical patent/JP2014198326A/en
Application granted granted Critical
Publication of JP6083602B2 publication Critical patent/JP6083602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a precise metal filter for a molten polymer which has been cleaned more precisely, especially including impurity particles which remains, by sticking, on a filtering secondary side positioned on an inner peripheral side, relating to a filter product.SOLUTION: There is prepared a metal filter which separates and filters a processed fluid between an inner peripheral side filtering surface which comprises a metal sintering porous filtering material to form an internal filtering chamber and an outer side filtering surface on its outer surface. A method of manufacturing a precise metal filter for a molten polymer includes a first cleaning stage in which ultrasonic wave vibration is radiated from an outer surface side to a filter in a first cleaning liquid so that foreign impurities sticking to a sintered filter material is released and floated, a second cleaning stage in which foreign impurities remaining in the filter are discharged and removed to the outside of the system by repeated pressure flow caused by a plurality of times of discharge processes in which, through a drain mechanism arranged in a second cleaning liquid, the filter after the first cleaning is depressurized in the filtering process direction at a sucking pressure 80KPa or less for exposing, and a drying stage in which the purified filter is further dry-processed.

Description

本発明は、ポリマ−用精密金属フィルタ−の製造方法に関し、特に被処理流体(溶融ポリマー)の濾過処理工程で発生する不純異物の発生を抑え、高品質の処理製品を可能とする清浄化されたクリ−ンフィルタ−の製造方法に関する。  The present invention relates to a method for producing a precision metal filter for a polymer, and in particular, it is purified to suppress the generation of impure foreign matters generated in a filtration process of a fluid to be processed (molten polymer) and to enable a high-quality processed product. The present invention relates to a method for manufacturing a clean filter.

例えばポリエステル、ポリビニールアルコール(PVA)など種々の樹脂材料、特に熱可塑性樹脂による繊維材料やフィルム状のシート材料は、近年のハイテク先端用の産業資材や生活資材として広く利用されている。その要求特性は、対象製品の用途や目的などに応じた高機能化、高性能化によって、原料ポリマーの要求品質も厳しさを増し、ポリマーの処理段階でいかに高精度化するかが問われており、その一方策として、原料ポリマー中の微小不純物粒子を極限状態にまで限りなく完全除去する濾過技術が求められている。  For example, various resin materials such as polyester and polyvinyl alcohol (PVA), in particular, fiber materials and film-like sheet materials made of thermoplastic resins are widely used as industrial materials and living materials for recent high-tech tips. The required characteristics are that the required quality of the raw material polymer has become more stringent due to higher functionality and higher performance according to the application and purpose of the target product, and how high accuracy is required at the polymer processing stage. However, as one of the measures, there is a demand for a filtration technique that completely removes the fine impurity particles in the raw polymer to the limit state.

その清浄化レベルは、ポリマーが例えば電子記録用や光通信用に用いられる高純度薄膜用のフィルム材料の用途では、10μm以下のような極めて微細なレベルの不純物までも対象とされ、その完全除去の為に濾過処理技術や処理設備の改善・改良が試みられている。  The level of cleanliness is that even for very fine levels of impurities such as 10 μm or less in the use of film materials for high-purity thin films where the polymer is used, for example, for electronic recording and optical communication, and its complete removal For this purpose, attempts have been made to improve and improve filtration technology and processing equipment.

また、このような溶融ポリマーはその樹脂材料を例えば200℃以上の温度に加熱溶融した状態で行なわれるため、使用される濾過装置、特に構成濾材にはその温度に耐え得るように金属製やセラミック製等の耐熱材料によるものが用いられる。特にステンレス鋼繊維の不織布焼結体による濾過材料では、形成される空孔の微細化とともに高空隙率を備え、圧力損失を低く抑え得る他、高強度で機械加工も可能など多くの利点があり、多用されてきた。  In addition, since such a molten polymer is produced in a state where the resin material is heated and melted to a temperature of, for example, 200 ° C. or higher, the metal used in the filtration device used, in particular, the constituent filter medium, can be made of metal or ceramic. Those made of heat-resistant materials such as manufactured products are used. In particular, filtration materials using sintered nonwoven fabrics of stainless steel fibers have many advantages such as the fineness of the pores formed, high porosity, low pressure loss, and high strength and machining. Have been used a lot.

これら濾材は、その製造装置に適合する種々形状・構造・大きさのフィルター製品に採用されるが、特に金属製フィルターでは、ポリマーとの摩擦に伴う滞留、偏析、また目詰まりなどの問題や、その製造段階では例えば焼結,溶接、熱処理などの複雑多工程を要し、これら処理に伴って濾材には内外を問わず種々の不純異物が形成され、表面上の異物は通常の清掃や超音波による洗浄処理で除去されている。  These filter media are used in filter products of various shapes, structures, and sizes that are compatible with the manufacturing equipment, but particularly in metal filters, problems such as stagnation, segregation, and clogging due to friction with the polymer, In the manufacturing stage, complicated multi-step processes such as sintering, welding, and heat treatment are required. Along with these processes, various impurities are formed on the filter medium, both inside and outside. It has been removed by cleaning with sonic waves.

同様に、使用に伴って目詰まりした場合の処理方法として、濾過処理方向とは逆方向からの逆洗圧によって表面上に堆積した付着異物を洗い流す排出除去も行われ、その処理をより完全にする為に更に超音波洗浄を付与しながら処理することも知られている。(例えば特許文献1,2及び3)  Similarly, as a treatment method in the case of clogging with use, discharge removal that flushes the adhering foreign matter accumulated on the surface by backwash pressure from the direction opposite to the filtration treatment direction is also performed, and the treatment is more completely performed. For this purpose, it is also known to perform treatment while applying ultrasonic cleaning. (For example, Patent Documents 1, 2, and 3)

特開2001−198422号公報  JP 2001-198422 A 特開2009−189999号公報  JP 2009-189999 A 特開2010−274238号公報  JP 2010-274238 A

しかしながら、これら従来技術による洗浄処理は、主としてフィルターの使用に伴いその表面上に堆積した比較的軽微な異物が対象で、洗浄処理も濾過とは逆方向からの逆洗によって剥離除去するものであり、本願発明が対象とする金属製フィルターの製造過程で発生する、例えば濾材焼結処理時に使用する種々の焼結用副資材(例えば離型剤など)、切断等の機械加工段階で生じる微小片、溶接や酸洗処理に伴う酸化皮膜などのように、濾材内部に深く残留する特殊異物までは考慮されていない。    However, these conventional cleaning treatments mainly target relatively light foreign matter deposited on the surface of the filter as it is used, and the cleaning treatment also removes and removes by backwashing from the opposite direction of filtration. , Generated in the manufacturing process of the metal filter targeted by the present invention, for example, various auxiliary materials for sintering (for example, mold release agent) used during the filtering medium sintering process, and small pieces generated in the machining stage such as cutting No special foreign matter that remains deep inside the filter medium, such as an oxide film accompanying welding or pickling treatment, is considered.

これら異物は、従来の一般的な用途(低粘性流体)ではあまり重要視されることなく見過ごされてきたものであるが、特に粘性が高く高機能化が求められる前記溶融ポリマー用途のものでは無視できない問題であり、これまでは、その使用に先立つ慣らし運転において、予め流出の可能性がある異物を前もって除去させた上で本格稼動することで対応しており、その慣らし処理で用いられるポリマーは、そのまま廃棄されるなど歩留り低下の要因とされている。  These foreign substances have been overlooked without much importance in conventional general applications (low-viscosity fluids), but are ignored especially for those molten polymer applications where high viscosity and high functionality are required. Until now, in the running-in operation prior to its use, it has been dealt with by operating in full operation after removing foreign substances that may be spilled in advance, and the polymer used in the running-in process is It is considered to be a factor of yield reduction such as being discarded as it is.

また、使用するフィルター構造上の問題として、例えば図2のように、上下2枚の円環状の前記濾材を重ね合わせた内縁又は外縁同士を結合し、更に内部に支持用のリテーナーメッシュなどの部材を内装するリーフ状フィルターでは、構造の複雑さによって該不純異物の流出が遮られやすく、前記と同様の課題がある。  Further, as a problem in the filter structure to be used, for example, as shown in FIG. 2, members such as a retainer mesh for supporting inner and outer edges obtained by superposing two annular upper and lower annular filter media are joined to each other. In the leaf-shaped filter having the interior, the outflow of the impure foreign matter is easily blocked by the complexity of the structure, and there is the same problem as described above.

本発明は、こうした問題について研究を進め完成したもので、その目的はフィルター製品の特に濾過二次側の濾材内部に残存する不純異物を含めてより高精度にクリーン化した溶融ポリマー用の精密金属フィルターの製造方法を提供することにある。  The present invention has been completed by researching these problems, and its purpose is to provide a precision metal for molten polymer that has been cleaned with higher precision including impure foreign matters remaining inside the filter medium, particularly the filter medium on the secondary side of the filter. It is in providing the manufacturing method of a filter.

すなわち本発明の請求項1に係る発明は、
1)金属製の焼結多孔濾材で構成され、内部の濾過室をなす内周側濾過面と、その外表面の外周側濾過面の間で被処理流体を分離濾過する金属製フィルタ−を準備する準備段階と、
2)該フィルタ−を第一洗浄液中で、その前記外表面側から超音波振動を照射し、前記焼結濾材に付着する不純異物を浮離させる第一洗浄段階と、
3)第一洗浄後の前記フィルタ−を、所定量の第二洗浄液中に配置する排水機構を通じて、吸引圧−80KPa以下で、かつ濾過処理方向に減圧させ、該第二洗浄液から露出させる複数回の排水処理による繰り返し圧流によって、該フィルター内に残留する不純異物を系外に排出除去させる第二洗浄段階と
4)清浄化されたフィルターを更に乾燥処理する乾燥段階と、
を備えることを特徴とする溶融ポリマ−用精密金属フィルタ−の製造方法である。
That is, the invention according to claim 1 of the present invention is
1) A metal filter that is composed of a sintered sintered filter material made of metal and that separates and filters the fluid to be processed between an inner peripheral filtration surface forming an internal filtration chamber and an outer peripheral filtration surface of the outer surface is prepared. Preparation stage to do,
2) A first cleaning step of irradiating ultrasonic vibration from the outer surface side of the filter in the first cleaning liquid to float off impure foreign matters adhering to the sintered filter medium;
3) A plurality of times when the filter after the first cleaning is exposed to the second cleaning liquid by reducing the suction pressure to -80 KPa or less in the filtration direction through a drainage mechanism disposed in a predetermined amount of the second cleaning liquid. A second washing step for discharging and removing impure foreign matters remaining in the filter out of the system by repeated pressure flow due to the waste water treatment of 4), and a drying step for further drying the cleaned filter;
A method for producing a precision metal filter for a molten polymer.

また請求項2に係る発明は、前記第二洗浄液は、前記フィルターの最上の濾過面位置から30mm以下の液面高さの容量に調整されるものであり、請求項3に係る発明は、前記減圧吸引処理が、5〜15回の多数回の繰り返しで行なわれるものであること、請求項4に係る発明は、前記第二洗浄段階が、下記算式による処理係数(Y)が 4〜20の範囲で行われるものであることを各々対象とする前記精密金属フィルターの製造方法である。
Y=吸引量(L)×吸引流速(L/min)×繰り返し処理回数(回)/1000
Moreover, the invention which concerns on Claim 2 adjusts the said 2nd washing | cleaning liquid to the capacity | capacitance of the liquid level height of 30 mm or less from the uppermost filtration surface position of the said filter, The invention which concerns on Claim 3 The vacuum suction process is performed in a number of repetitions of 5 to 15 times, and the invention according to claim 4 is characterized in that the second washing step has a processing coefficient (Y) of 4 to 20 according to the following formula: It is the manufacturing method of the said precision metal filter which is what is performed by the range respectively.
Y = aspiration amount (L) × aspiration flow rate (L / min) × repetition processing times (times) / 1000

更に請求項5に係る発明は、前記フィルタ−は、2枚の円環状の前記焼結濾材同士が、その内縁又は外縁のいずれか一辺で結合され、円環リ−フ状に形成されたもの、請求項6に係る発明は、前記フィルタ−成形品は、前記焼結濾材がその長手軸方向に沿って筒状に伸びる筒状成形品として形成されたもの、更に請求項7に係る発明は、前記焼結濾材は、金属繊維材料及び/又は金属粉末材料で構成され、微細空孔を持つ濾過保証層と、該保証層の少なくともいずれか片面側に積層配置される該保証層より粗大空孔の支持層を一体に焼結形成してなる、濾過精度100μm以下の積層構造体によるものであることを各々特徴とする前記精密金属フィルタ−の製造方法である。  Further, the invention according to claim 5 is the filter, wherein the two annular sintered filter media are joined to each other at either the inner edge or the outer edge to form an annular leaf shape. In the invention according to claim 6, the filter-molded product is formed as a cylindrical molded product in which the sintered filter medium extends in a cylindrical shape along the longitudinal axis direction, and the invention according to claim 7 further includes: The sintered filter medium is made of a metal fiber material and / or a metal powder material, and has a filtration guarantee layer having fine pores and a coarser air than the guarantee layer laminated on at least one side of the guarantee layer. It is a manufacturing method of the said precision metal filter characterized by each using the laminated structure of the filtration accuracy of 100 micrometers or less formed by integrally sintering the support layer of a hole.

本発明の精密金属フィルタ−の製造方法に係る請求項1の発明によれば、成形後のフィルター製品を第一次と第二次の二段階の洗浄処理で行い、一次洗浄ではその外表面側からの超音波振動の照射で付着する不純物粒子を浮遊させ、また第二次洗浄処理では、該フィルターの前記濾過室内を所定の高圧流で、かつ洗浄液から少なくともその一部が露出する強制的な減圧吸引を所定圧で、かつ濾過方向に沿って繰り返し行なう圧流によって、内存する不純異物を確実かつ効果的に排出することができ、高クリーン用のフィルター製品として有効に使用できるものである。  According to the invention of claim 1 relating to the method for producing a precision metal filter of the present invention, the molded filter product is subjected to a primary and secondary two-stage cleaning process, and the primary cleaning is performed on the outer surface side. Impurity particles adhering to the surface are suspended by irradiation of ultrasonic vibrations from the filter, and in the secondary cleaning process, the filter chamber of the filter is forced through a predetermined high-pressure flow and at least a part of the filter is exposed from the cleaning liquid. By the pressure flow in which the vacuum suction is repeatedly performed at a predetermined pressure and along the filtration direction, the impure foreign matters existing therein can be surely and effectively discharged, and can be effectively used as a filter product for high cleanliness.

また、本発明では、前記二次洗浄が所定の強制減圧によって洗浄液から露出されるもので、フィルタ−に残留しやすい該浄化用液も同時に吸引排除でき、洗浄後の乾燥処理が軽減できる利点もある。その為、請求項2乃至4の発明によればその効果がより促進され、請求項5乃至7の種々形状のフィルター製品に広く採用でき、広く活用できる。  In the present invention, since the secondary cleaning is exposed from the cleaning liquid by a predetermined forced pressure reduction, the cleaning liquid that tends to remain in the filter can be sucked out at the same time, and the drying process after cleaning can be reduced. is there. Therefore, according to the inventions of claims 2 to 4, the effect is further promoted, and can be widely applied to the filter products of various shapes of claims 5 to 7, and can be widely used.

本発明の製造プロセスを説明する工程図である。  It is process drawing explaining the manufacturing process of this invention. 円環リーフ状のフィルターについて、その一部を断面で示す斜視図である。  It is a perspective view which shows the cross section about the annular leaf-shaped filter in cross section. 第二次洗浄段階を説明する、洗浄装置の一例を示す平面図である。  It is a top view which shows an example of the washing | cleaning apparatus explaining a secondary washing | cleaning step. 本発明の実施例に基づく試験結果の一例であって、図4Aは、前記第二次洗浄段階における繰り返し洗浄処理回数がもたらす、不純異物の除去性能の関係を示す線図、また図4Bは、同様に前記処理係数(Y)の関係による除去性能の関係を各々示すものである。  FIG. 4A is an example of a test result based on an embodiment of the present invention, and FIG. 4A is a diagram showing the relationship between the removal performance of impure foreign matters caused by the number of repeated cleaning processes in the secondary cleaning stage, and FIG. Similarly, the relationship of the removal performance by the relationship of the processing coefficient (Y) is shown respectively. 実施例の試験結果により、排出除去した不純物粒子の分布状態を示す顕微鏡写真であって、図5Aは、第二次洗浄を10回繰り返し行ったときの排出不純異物の状態写真、図5Bは参考として、前記第一洗浄処理のみのフィルターについて、排出された不純異物の状態を示す。  FIG. 5A is a micrograph showing the distribution state of the discharged and removed impurity particles according to the test results of the examples. FIG. 5A is a state photograph of the discharged impurity particles when the secondary cleaning is repeated 10 times, and FIG. 5B is a reference. As for the filter of only said 1st washing process, the state of the impure foreign matter discharged | emitted is shown.

以下、本発明の一形態を添付図面に基づき説明する。本願発明は、かならずしもその説明のもののみに限定されるものではなく、特許請求の範囲を基本として理解され、その範囲内のものを含むものと理解されなければならない。  Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. The present invention is not necessarily limited to the description thereof, but should be understood based on the scope of the claims and includes the scope of the claims.

図1は、本発明の製造プロセスの一形態が示され、その要点として、
1)金属製の多孔質焼結濾材によって構成される前記金属製フィルターを準備する準備段階Aと、
2)該フィルタ−成形品を第一洗浄液中に浸漬して、前記外表面側から超音波振動を照射し、該フィルター成形品の前記焼結濾材に付着する不純異物を浮離させる第一洗浄段階Bと、
3)第一洗浄後の前記フィルタ−を、所定量の第二洗浄液中に配置する排水機構を通じて、吸引圧−80KPa以下で、かつ濾過処理方向に減圧させ、該第二洗浄液から露出させる複数回の排水処理による繰り返し圧流によって、該フィルター内に残留する不純異物を系外に排出除去させる第二洗浄段階Cと
4)清浄化されたフィルターを更に乾燥処理する乾燥段階Dの各段階を備えるフィルターの製造方法である。
FIG. 1 shows an embodiment of the manufacturing process of the present invention.
1) Preparation stage A for preparing the metal filter constituted by a metal porous sintered filter medium;
2) First cleaning in which the filter-molded product is immersed in a first cleaning liquid and irradiated with ultrasonic vibration from the outer surface side, and impure foreign matters adhering to the sintered filter medium of the filter molded product are floated. Stage B,
3) A plurality of times when the filter after the first cleaning is exposed to the second cleaning liquid by reducing the suction pressure to -80 KPa or less in the filtration direction through a drainage mechanism disposed in a predetermined amount of the second cleaning liquid. A second cleaning stage C that discharges and removes impure foreign matters remaining in the filter by repeated pressure flow due to the waste water treatment of 4) and 4) a filter that includes each stage of the drying stage D for further drying the cleaned filter It is a manufacturing method.

前記金属製フィルターの一形態として、ここでは図2にその一部を切除した前記リーフ状フィルター成形品1の斜視図が示される。該フィルター1は、予めドーナツ円環状に打ち抜きされた金属製、例えばステンレス鋼繊維でなる多孔質な焼結濾材2A,2Bと、その濾材間に配置され、該濾材に付加される濾過圧を適宜支持する補強用のリテーナーメッシュ2Cを備え、該濾材2A,2Bの外縁(又は内縁)に沿ってリークなく溶接2Dすることで、その内部に濾材で隔離された濾過室2Eを備え、一体のリーフ状フィルター成形品1が構成される。なお、濾材2A,2Bの内縁側(又は外縁側)の当接面には、該濾材を各々支持しながら、かつ濾過処理液を系外に排出するための通孔2Gを持つハブ部材2Fを備える。このような繊維焼結濾材によるフィルターは、例えば実公平1−23530号、実開平4−70112号などで広く知られている。  As an embodiment of the metal filter, FIG. 2 shows a perspective view of the leaf-shaped filter molded article 1 with a part thereof cut away. The filter 1 is disposed between porous sintered filter media 2A and 2B made of metal, for example, stainless steel fibers, previously punched into a donut ring shape, and the filtration pressure applied to the filter media is appropriately set. Retaining retainer mesh 2C for supporting, and welding 2D without leakage along the outer edges (or inner edges) of the filter media 2A, 2B, thereby providing a filtration chamber 2E isolated by the filter media in the interior, and an integral leaf A filter product 1 is formed. A hub member 2F having a through hole 2G for discharging the filtration liquid to the outside of the system while supporting the filter medium on the contact surface on the inner edge side (or outer edge side) of the filter medium 2A, 2B. Prepare. A filter using such a fiber-sintered filter medium is widely known, for example, in Japanese Utility Model Publication Nos. 1-23530 and 4-70112.

この形態で、濾過処理されるポリマーすなわち被処理流体は、同図に見られるように例えばその外表面2a側から矢印A方向に沿って濾材2A,2Bで濾過され、濾過室2Eを経てハブ部材2Fの通孔2Gを通り、系外すなわち次工程に供給されるように流通する。ここでは、該濾材2の各外表面2a側を上流一次側、その裏面の濾過室2E側が下流二次側となる。  In this form, the polymer to be filtered, that is, the fluid to be treated, is filtered by the filter media 2A and 2B along the direction of the arrow A from the outer surface 2a side, as shown in FIG. It flows through the 2F through-hole 2G so as to be supplied outside the system, that is, to the next process. Here, the outer surface 2a side of the filter medium 2 is the upstream primary side, and the filtration chamber 2E side of the back surface is the downstream secondary side.

フィルター1は、このようなリーフ形状のもの以外にも、例えば前記濾材2を単に所定外径で筒状になるように突合せ形成した筒状フィルター、もしくはその濾過面に軸方向に伸びるプリーツ状のひだを形成した筒状プリーツフィルターなど種々形態のものが採用でき、またその大きさも使用する濾過装置やその処理能力によって任意に設定される。例えば、前記リーフ状のフィルターでは外径が50〜500mm程度のものが多用される。  In addition to the leaf-shaped filter, the filter 1 is, for example, a cylindrical filter in which the filter medium 2 is simply butt-formed so as to have a cylindrical shape with a predetermined outer diameter, or a pleated shape extending in the axial direction on the filter surface. Various forms such as a pleated tubular pleated filter can be adopted, and the size of the filter can be arbitrarily set according to the filtration device used and its processing capacity. For example, a leaf-shaped filter having an outer diameter of about 50 to 500 mm is often used.

また、前記濾材2に関し、使用される前記ポリマーの種類や特性、処理条件によってその構成は自由にかつ最適範囲で設計でき、例えばポリエステル樹脂材料などのような高粘性流体の場合は、その濾過処理時における圧力損失を極力抑制するように、種類の異なる多種濾材を多層構造にした積層濾材が多用されている。  Further, the configuration of the filter medium 2 can be designed freely and in an optimum range depending on the type, characteristics, and processing conditions of the polymer used. For example, in the case of a highly viscous fluid such as a polyester resin material, the filtering process is performed. In order to suppress the pressure loss at that time as much as possible, a multi-layered filter medium having a multi-layer structure made of various types of filter media is often used.

その一例として、例えば繊維径が数〜数十μm程度の微細ステンレス鋼繊維による不織布焼結体でなる濾過精度を保証する微細層21と、その両面により粗大な空孔が形成されるプレフィルター層22を配し一体に焼結したものが好ましく、その場合、該濾材の空孔は粗大空孔→微小空孔→粗大空孔の順に構成される。また必要ならば前記濾材1は、その全体を前記金属繊維で構成したもの、乃至金属粉末(ステンレス鋼粉末)によるものなど、公知の金属濾材によるものであってもよい。  As an example, for example, a fine layer 21 that guarantees filtration accuracy made of a sintered nonwoven fabric of fine stainless steel fibers having a fiber diameter of about several to several tens of μm, and a prefilter layer in which coarse pores are formed on both sides thereof In this case, the pores of the filter medium are constructed in the order of coarse pores → fine pores → large pores. Further, if necessary, the filter medium 1 may be made of a known metal filter medium, such as the one composed entirely of the metal fibers or the metal powder (stainless steel powder).

したがって、前記積層濾材や濾材厚さを増したフィルター1によるものの場合、その内部に残留する微小異物は例えば中央の微細層21によって遮られることとなり、一方向からだけの洗浄処理では十分な除去が期待できない。その為、本発明ではその外表面側の第一次洗浄処理を、超音波によって濾材表面に付着残留する不純異物の粒子を浮遊させ、かつ該外表面側を洗い流す洗浄を行った後に、更にその裏面である内面側を洗浄流体の強制減圧吸引に伴う繰り返しの圧流によって、系外に排出除去する第二次洗浄処理を加えることで、全体を通じて高クリーン化したフィルター製品とするものである。  Therefore, in the case of the filter 1 with the laminated filter medium or the filter medium having an increased filter medium thickness, the fine foreign matters remaining in the filter medium are blocked by, for example, the central fine layer 21 and can be sufficiently removed by a cleaning process from only one direction. I can't expect it. Therefore, in the present invention, the first cleaning treatment on the outer surface side is performed by suspending the impurities particles remaining on the filter medium surface by ultrasonic waves and washing the outer surface side to wash away. By adding a secondary cleaning process that discharges and removes the inner surface, which is the back surface, out of the system by repeated pressure flow accompanying forced vacuum suction of the cleaning fluid, the filter product is made highly clean throughout.

前記第一次洗浄処理は、例えば水中で発振するようにセットされた超音波振動面に向けて所定フィルター製品の外周面を全面に亘って洗浄するもので、その振動サイクルは例えば5〜20KHz程度で行われる。その微振動は、該フィルターの細部にわたって周囲の水との間で微小摩擦を生じさせ、空孔内に付着残留する微小不純異物を浮遊離脱させ、その排出を容易にすることができる。その為、まずフィルター1の前記外面側の不純異物が例えば流水によって流出除去される。  The primary cleaning process is to clean the entire outer peripheral surface of a predetermined filter product, for example, toward an ultrasonic vibration surface set to oscillate in water, and the vibration cycle is, for example, about 5 to 20 KHz. Done in The fine vibration causes minute friction with the surrounding water over the details of the filter, floats and separates minute impurity particles remaining in the pores, and facilitates discharge thereof. For this reason, the impure foreign matters on the outer surface side of the filter 1 are first removed by running water, for example.

そのフィルター1は、次の第二次洗浄処理の為に、図3に例示する洗浄槽10の排出機構11にリークなく取付セットされ、また該排出機構11は、更に配管12及び流量調整用バルブ13を介して洗浄槽10外に設けた貯留タンクT1,T2を介して真空ポンプ14に繋がり、該.ポンプ14の真空減圧吸引によって、洗浄槽10内の洗浄液Sを強制的に排出可能に構成される。  The filter 1 is attached and set without leakage to the discharge mechanism 11 of the cleaning tank 10 illustrated in FIG. 3 for the next secondary cleaning process. The discharge mechanism 11 further includes a pipe 12 and a flow rate adjusting valve. 13 is connected to a vacuum pump 14 via storage tanks T1 and T2 provided outside the cleaning tank 10. The cleaning liquid S in the cleaning tank 10 can be forcibly discharged by vacuum vacuum suction of the pump 14.

前記フィルター1の前記排出機構11への取り付けは、該フィルターの例えば前記内周ハブ部2Fをその両面からねじ締めすることでリークを防ぎ、該洗浄液Sが一気に排水可能にセットされる。その減圧条件は、例えば該フィルター1の前記濾過室2Eが大気圧状態から−80KPa以下に調整される。それに伴って、前記第二洗浄液Sは、前記バルブ13に付設した液圧計(図示せず)で調整される条件で該フィルター1の濾過室2E内から吸引し、配管12を通ってタンクT1,及びバッファータンクT2に貯留され、最終的にフィルター1は完全に露出する状態にまで減圧排水される。本発明では、その排水処理を複数回繰り返し行なうこととし、こうした処理はコンピューター制御によって自動化可能である。  The filter 1 is attached to the discharge mechanism 11 by, for example, screwing the inner peripheral hub portion 2F of the filter from both sides thereof to prevent leakage, and the cleaning liquid S is set so that it can be drained all at once. The decompression condition is adjusted, for example, so that the filtration chamber 2E of the filter 1 is -80 KPa or less from the atmospheric pressure state. Accordingly, the second cleaning liquid S is sucked from the filtration chamber 2E of the filter 1 under conditions adjusted by a hydraulic pressure gauge (not shown) attached to the valve 13, and passes through the pipe 12 to the tank T1, The filter 1 is stored in the buffer tank T2, and finally, the filter 1 is drained under reduced pressure until it is completely exposed. In the present invention, the waste water treatment is repeated a plurality of times, and such treatment can be automated by computer control.

その第二洗浄液Sの供給処理量は、例えば該フィルター1の最上の濾過面位置までのセット高さHが、30mm以下になるように調整される。その水深セット高さHが30mmを超える場合は、該洗浄液の流通に偏りが生じ、例えばフィルターの中央ハブ部付近に集中しやすく、外方の外縁側ではあまり強い排出が得られ難いとの実験結果で確認されている。その観察は、洗浄液の吸引排水中に墨摘等の異色液の液滴を落として、その流出状態を確認することで行ない判明したことである。  The supply processing amount of the second cleaning liquid S is adjusted so that, for example, the set height H to the uppermost filtration surface position of the filter 1 is 30 mm or less. When the depth set height H exceeds 30 mm, the flow of the cleaning liquid is biased, for example, it is easy to concentrate near the central hub of the filter, and it is difficult to obtain a strong discharge on the outer edge side. The result is confirmed. The observation was made by dropping droplets of different color liquid such as ink picking into the suction drain of the cleaning liquid and confirming the outflow state.

その結果として、特に前記H高さが5〜20mm、より好ましくは上限15mm以下にする場合は、該濾材の全面からほぼ均等に吸引されるという現象が確認されている。このような流出現象が、前記水深Hとどのように関係するのかについては十分に解明されていないが、水深による水圧の差異と液流の方向性がもたらす流体力学的な現象論に基づくものと推測される。  As a result, it has been confirmed that, particularly when the H height is 5 to 20 mm, more preferably 15 mm or less, the filter medium is sucked almost uniformly from the entire surface. How this outflow phenomenon relates to the water depth H has not been fully elucidated, but it is based on hydrodynamic phenomenology caused by the difference in water pressure depending on the water depth and the direction of the liquid flow. Guessed.

したがって、前記水深範囲で洗浄に必要な供給量を収容できるよう、該洗浄層10の広さと、処理するフィルター1の厚さ方向に見た投影面積との面積比が3倍以上、好ましくは4倍以上になるように、比較的大きな浴槽を用いることが好ましい。そうすることで、該洗浄液Sを前記−80KPa以下の高圧で減圧吸引する場合も、該洗浄液の急激な液面低下がなく、フィルターのほぼ全面を有効に流出させることができ、残留する不純異物が効果的に排出できる。  Therefore, the area ratio between the width of the cleaning layer 10 and the projected area seen in the thickness direction of the filter 1 to be processed is 3 times or more, preferably 4 so as to accommodate the supply amount necessary for cleaning in the depth range. It is preferable to use a relatively large bathtub so as to be twice or more. By doing so, even when the cleaning liquid S is sucked under reduced pressure at a high pressure of −80 KPa or less, there is no sudden drop in the level of the cleaning liquid, and the entire surface of the filter can be effectively discharged, and the remaining impure foreign matter Can be effectively discharged.

その減圧に伴う強制吸引は、同時にフィルター1内に残る前記洗浄液も少なからず排出されることから、その後の乾燥処理を短縮でき、濾材の発銹などの問題を軽減し得る。なお前記洗浄液には、前記第一洗浄液と同様に、例えば濾過処理された純水やアルコールなど、クリーン性の非腐食性流体が用いられる。  The forced suction accompanying the pressure reduction simultaneously discharges a considerable amount of the cleaning liquid remaining in the filter 1, so that the subsequent drying process can be shortened and problems such as filter medium fraying can be reduced. As the first cleaning liquid, for example, a clean non-corrosive fluid such as filtered pure water or alcohol is used for the cleaning liquid.

こうして、洗浄槽10内のフィルタ−1が露出し、洗浄液Sの排出が完了した時点でバルブ13を閉じ、これを1サイクルとしてその複数回の洗浄処理を繰り返し、繰り返しの圧流によって残留異物をより清浄になるように排出することを基本とする。好ましい繰り返し回数は5〜15回とされる。その一例として、後述する実施例で求めた結果を図4A,4Bに見ることができる。  In this way, when the filter-1 in the cleaning tank 10 is exposed and the discharge of the cleaning liquid S is completed, the valve 13 is closed, and this is set as one cycle, and the cleaning process is repeated a plurality of times. Basically, it should be discharged so that it is clean. The preferred number of repetitions is 5 to 15 times. As an example, the results obtained in Examples described later can be seen in FIGS. 4A and 4B.

図4Aは、その第二洗浄段階における洗浄回数と、それに伴う排出異物の残留量の変化を示しており、前記吸引圧力を−90KPa(試験A)と、−80KPa(試験B)の2条件で、各々繰り返し回数に伴う排出異物の状況変化を示している。いずれの状況も、5回程度の繰り返しで効果はほぼ半減し、また約15回以上の繰り返しでは比較的変化なく推移していることが分かる。  FIG. 4A shows the number of times of cleaning in the second cleaning stage and the change in the residual amount of discharged foreign matter, and the suction pressure is -90 KPa (test A) and -80 KPa (test B) under two conditions. , Each shows a change in the state of discharged foreign matter with the number of repetitions. In any situation, it can be seen that the effect is almost halved by repeating about 5 times, and that the change is relatively unchanged after repeating about 15 times or more.

その効果としては、該第二洗浄段階における下記算式による処理係数(Y)を4〜20の範囲になるようにすることで示すことができる。その係数(Y)は実験によるもので、その値が4未満のものでは不純物粒子の十分な流出が得られ難く、逆に20を超えるほど過処理してもその効果は飽和し、より好ましくは5〜18に調整される。    The effect can be shown by setting the treatment coefficient (Y) according to the following formula in the second cleaning stage to be in the range of 4-20. The coefficient (Y) is based on experiments, and when the value is less than 4, it is difficult to obtain sufficient outflow of impurity particles. It is adjusted to 5-18.

Y=吸引量(L)×吸引流速(L/min)×繰り返し処理回数(回)/1000    Y = aspiration amount (L) × aspiration flow rate (L / min) × repetition processing times (times) / 1000

図4Bは、前記処理係数(Y)の変化に伴う前記異物の流出効果との関係を示し、試験Cでは洗浄液の吸引量のみ変えることでY値を変化させたもの、試験Dは、吸引流速のみ変えた場合であり、各々図4Aと同様の傾向が見られている。  FIG. 4B shows the relationship with the outflow effect of the foreign matter accompanying the change in the processing coefficient (Y). In test C, the Y value is changed by changing only the suction amount of the cleaning liquid, and test D is the suction flow rate. The same tendency as in FIG. 4A is observed.

こうした洗浄処理を終えたフィルター1は、前記保持機構11から取り外され、次の乾燥処理が行われる。その乾燥処理は、通常の金属製品と同様に例えば100〜300℃程度に所定時間加温する加熱乾燥が容易に採用できる。最後に、例えばダストチェックやバブルポイント、その他の品質事項を測定検査し、フィルター製品として製品化される。  The filter 1 which has finished such a cleaning process is removed from the holding mechanism 11 and the next drying process is performed. The drying treatment can be easily adopted, for example, by heating and heating at a temperature of, for example, about 100 to 300 ° C. for a predetermined time in the same manner as a normal metal product. Finally, for example, dust checks, bubble points, and other quality items are measured and inspected and commercialized as a filter product.

以下、本発明を更に次の実施例により説明する。  The invention is further illustrated by the following examples.

本実施例では、被処理流体としてポリエルテル樹脂を温度220〜260℃程度に加熱し溶融状態のポリマー用の濾過処理装置に適合するように、フィルターは外径12インチサイズのリ−フフィルタ−による場合を説明する。
《工程段階A》
In this embodiment, the filter is a 12-inch outer diameter leaf filter so that the polymer fluid is heated to a temperature of about 220 to 260 ° C. as a fluid to be treated and is suitable for a filtration apparatus for a polymer in a molten state. Will be explained.
<< Process Stage A >>

前記フィルターは、平均繊維径5μmのステンレス鋼繊維のウエブを用い、これを厚さ0.8mmに加圧して空孔径が5μmでかつ空隙率72%の微細な焼結層を精度保証層とし、更にその下流面側に粒径300μmアンダーのステンレス鋼アトマイズ粒子による支持層を各々配置してその全体厚さを3mmとする合計2層の構造体を一体に焼結した積層濾材で構成しており、該濾材の厚さ方向における形成空孔は、微細、粗大とするものである。    The filter uses a stainless steel fiber web having an average fiber diameter of 5 μm, pressurized to a thickness of 0.8 mm, and a fine sintered layer having a pore diameter of 5 μm and a porosity of 72% is used as an accuracy guarantee layer, Furthermore, it is composed of a laminated filter medium in which a total of two layers of structures with a total thickness of 3 mm are placed on the downstream side of the support layer made of stainless steel atomized particles with a particle size of less than 300 μm and sintered together. The pores formed in the thickness direction of the filter medium are fine and coarse.

そして、この焼結濾材用シート2枚が準備され、各々前記外径を持つ円環状に打ち抜きされたものを重ね合わせて、外周辺を全長にわたって溶接し構成しており、またその濾材間には、更にリテーナー用の5#の粗大メッシュを組み込みすることで、その相当部分を濾過室とする、外径300mm×厚さ15mmのリーフフィルターを得た。
《工程段階B》
And two sheets for this sintered filter medium are prepared, each of which is punched into an annular shape having the above outer diameter, and the outer periphery is welded over the entire length, and between the filter media, Further, by incorporating a 5 # coarse mesh for the retainer, a leaf filter having an outer diameter of 300 mm × thickness of 15 mm was obtained with the corresponding portion as a filtration chamber.
<< Process Stage B >>

次に、得られたフィルター成形品を水道水を濾過した洗浄液中に浸漬して、その液中で該フィルタ−の濾過上流側の外面側に向けて1200W、15kHzの固定周波数を発振する超音波振動を付与し、該濾材中に含まれ付着残留する不純物粒子を浮遊離脱させ、かつその外面上(一次面側)の残留不純物を洗い流した。    Next, the obtained filter molded article is immersed in a cleaning liquid obtained by filtering tap water, and an ultrasonic wave that oscillates at a fixed frequency of 1200 W and 15 kHz toward the outer surface of the filter upstream of the filter in the liquid. By applying vibration, the adhering and remaining impurity particles contained in the filter medium were floated and separated, and residual impurities on the outer surface (primary surface side) were washed away.

このとき用いた超音波振動子は、幅25mm×長さ165mmの平面を持つ長手状のもので、この面と前記フィルターの濾過面を平行かつ一定距離になるように調整しながら、フィルターの全面が洗浄できるように順次移動回転させながら行った。なお、この一次洗浄に要した処理時間は6分/枚である。
《工程段階C》
The ultrasonic transducer used at this time was a longitudinal shape having a plane of width 25 mm × length 165 mm, and the entire surface of the filter was adjusted while adjusting this surface and the filtration surface of the filter to be parallel and at a constant distance. Was carried out while rotating and rotating sequentially so as to be washed. The processing time required for this primary cleaning is 6 minutes / sheet.
<< Process stage C >>

その処理後、該フィルタ−を取り出して、図3のように大きさ700×500mm,高さ200mmの所定容積を持つ洗浄槽内の排出機構に取付けセットして、該槽内に前記フィルタ−全体が完全に浸漬するまで第二洗浄液(濾過水)を充満し、その分量が該フィルターの上面から10mmの高さになるように流量調整した。この槽の開口面積とフィルターの前記投影面積との前記比は約5倍である。  After the treatment, the filter is taken out and attached to a discharge mechanism in a cleaning tank having a predetermined volume of 700 × 500 mm and a height of 200 mm as shown in FIG. 3, and the entire filter is placed in the tank. The second cleaning liquid (filtered water) was filled until the liquid was completely immersed, and the flow rate was adjusted so that the amount was 10 mm from the upper surface of the filter. The ratio of the open area of the tank to the projected area of the filter is about 5 times.

その後、前記排出機構を通じて該フィルタ−の濾過室内を大気圧状態から−90KPaと−80KPaの2条件で、かつその一次側から二次側に向けて強制減圧し、その吸引によって該フィルタ−全体が露出するまで前記第二洗浄液を排出させるように、バルブを開放した。  Thereafter, the filter chamber of the filter is forcibly depressurized from the atmospheric pressure state to -90 KPa and -80 KPa from the primary side to the secondary side through the discharge mechanism, and the entire filter is sucked by the suction. The valve was opened so that the second cleaning liquid was discharged until it was exposed.

そして、その流出に伴ない流出したフィルター内部の不純物粒子は、前記排出配管12途中にバイパスを設け、その通路にメンブレンシートをセットしてメンブレンシートで捕獲される該粒子の一定時間当りにおける粒子分布量を面積率を求めたもので、測定は該メンブレンシートを取り出して乾燥後、顕微鏡によって任意に選択した3視野について、各々拡大観察し、その視野面積内で捕獲された異物粒子の合計面積を視野面積で除した面積率を平均化したものである。
その面積率の変化が前記図4Aに示されている。
The impurity particles inside the filter that have flowed out due to the outflow are provided with a bypass in the middle of the discharge pipe 12, and a particle distribution per unit time of the particles captured by the membrane sheet by setting a membrane sheet in the passage The amount was obtained by determining the area ratio. After the membrane sheet was taken out and dried, each of three visual fields arbitrarily selected by a microscope was observed under magnification, and the total area of foreign particles captured within the visual field area was measured. The area ratio divided by the visual field area is averaged.
The change in the area ratio is shown in FIG. 4A.

この結果は前記説明のように、二次洗浄を10回以上繰り返すことで90%以上にまで大幅に減少させることができ、特に5回程度の二次洗浄の繰り返しの間での減少率が大きく減少していることが認められる。図5は、この洗浄試験で排出除去された不純物粒子が示され、図5Aは二次洗浄を10回繰り返し行った場合の顕微鏡写真であり、図5Bは、前記一次洗浄をのみ行なった場合の捕獲異物の状態である。この状態からも、本願二次洗浄の効果が確認される。  As described above, this result can be greatly reduced to 90% or more by repeating the secondary cleaning 10 times or more, and especially the reduction rate between the repetitions of the secondary cleaning of about 5 times is large. A decrease is observed. FIG. 5 shows the impurity particles discharged and removed in this cleaning test, FIG. 5A is a photomicrograph when the secondary cleaning is repeated 10 times, and FIG. 5B is a case where only the primary cleaning is performed. It is the state of the trapped foreign matter. Also from this state, the effect of the secondary cleaning of the present application is confirmed.

またこれら捕獲粒子をX線分析で調べたところ、特に切断片,酸化クロム,酸化スケール等の不純物がより多量に確認され、それら粒子は該フィルターの製造段階での切断や加熱処理、洗浄処理段階でのものであることが確認された。
《工程段階D》
Further, when these captured particles were examined by X-ray analysis, in particular, a larger amount of impurities such as cut pieces, chromium oxide, oxide scale, etc. were confirmed, and these particles were cut, heated, and washed at the production stage of the filter. It was confirmed that
<< Process Stage D >>

こうして吸引減圧されたフィルター成形品は、全体的な脱水によって水分の付着が少なく、ほぼ乾燥状態のものであったが、更に確実を期する為に温度200℃の乾燥炉に入れて30分間の乾燥処理を行った。  The filter molded product thus sucked and reduced in pressure was less dry due to the overall dehydration and was almost in a dry state, but for further certainty, it was placed in a drying oven at a temperature of 200 ° C. for 30 minutes. A drying treatment was performed.

前記フィルターについて更に次の算式に基づく処理係数(Y)による影響を検証した。
該係数Yは、前記第二洗浄段階における、洗浄液の吸引量(L)と吸引流速(L/min)及び繰り返し処理回数(回)により、 Y=吸引量(L)×吸引流速(L/min)×繰り返し処理回数(回)/1000で示され、その結果を前記図4Bに示され、前記処理係数(Y)が特に8程度以上でほぼ安定していることが理解される。
The filter was further examined for the influence of the processing coefficient (Y) based on the following formula.
The coefficient Y is determined by the following equation: Y = aspiration amount (L) × aspiration flow rate (L / min) according to the suction amount (L) of the cleaning liquid, the suction flow rate (L / min), and the number of repetitions (times) in the second cleaning stage. ) × number of times of repeated processing (times) / 1000, and the result is shown in FIG.

次に、前記実施例1に用いたリーフ状フィルターに代えて、次の詳細で述べられる円筒状フィルターを用いた例を説明する。  Next, instead of the leaf filter used in the first embodiment, an example using a cylindrical filter described in detail below will be described.

該円筒フィルターは、前記と同様にステンレス鋼繊維と粉末を積層した積層濾材を用い、これを外径60mmに湾曲させかつ付き合わせ部を溶接して筒状にしたもので、その上端側には封止キャップを配し、また他方の下端側には中央に流通用の開口を持つ円環状のキャップ金具を当接し、各々溶接によって、内部に濾過室を備えた筒状フィルターを成形した。そのフィルターは、外径60mm×長さ150mmの形状寸法を有するものである。  The cylindrical filter uses a laminated filter medium in which stainless steel fibers and powder are laminated in the same manner as described above. The cylindrical filter is curved to an outer diameter of 60 mm and welded together to form a cylindrical shape. A sealing cap was disposed, and an annular cap metal fitting having an opening for circulation was brought into contact with the other lower end side, and a cylindrical filter having a filtration chamber therein was formed by welding. The filter has an outer diameter of 60 mm and a length of 150 mm.

この成形フィルターに対し、前記実施例1と同様に水中に浸漬してその外面側から超音波を付与し、外面側を洗浄する第一次洗浄処理と、さらに別製の洗浄槽内に前記Hが15mmとなる水深位置にセットして、その外面側から内面側に向かう洗浄液10Lを強制的に減圧吸引(条件−90KPa)する第二次洗浄処理を8回繰り返し、前記と同様にその繰り返し圧流により流出した不純異物を顕微鏡で観察して、合計1%程度の清浄化されたフィルター品を得た。その処理係数(Y)は、8〜10の範囲内であった。  In the same manner as in Example 1, the molded filter was immersed in water and applied with ultrasonic waves from the outer surface side to clean the outer surface side, and the H in the separate cleaning tank. Is set at a water depth of 15 mm, and the secondary cleaning process of forcibly suctioning the cleaning liquid 10L from the outer surface side toward the inner surface side under the reduced pressure (condition -90 KPa) is repeated 8 times, and the repeated pressure flow is performed in the same manner as described above. The impure foreign matters that flowed out by the above were observed with a microscope, and a cleaned filter product of about 1% in total was obtained. The processing coefficient (Y) was in the range of 8-10.

以上説明のように、本発明は2種類の洗浄方法によって、従来十分に対応されなかったフィルター内部に残留する金属フィルター固有の不純異物を除去する製造方法によるもので、特に高粘性で高機能化が進む溶融ポリマー用フィルターとして有効である。    As described above, the present invention is based on a manufacturing method that removes impure foreign matter inherent to a metal filter remaining inside a filter, which has not been sufficiently handled by two types of cleaning methods, and is particularly highly viscous and highly functional. It is effective as a filter for molten polymer.

1 金属製フィルター
2A,2B 焼結濾材
2E 濾過室
10 第二次洗浄槽
11 排出機構
S 第二洗浄液
DESCRIPTION OF SYMBOLS 1 Metal filter 2A, 2B Sintered filter medium 2E Filtration chamber 10 Secondary washing tank 11 Discharge mechanism S Second washing liquid

Claims (7)

1)金属製の焼結多孔濾材で構成され、内部の濾過室をなす内周側濾過面と、その外表面の外周側濾過面の間で被処理流体を分離濾過する金属製フィルタ−を準備する準備段階と、
2)該フィルタ−を第一洗浄液中で、その前記外表面側から超音波振動を照射し、前記焼結濾材に付着する不純異物を浮離させる第一洗浄段階と、
3)第一洗浄後の前記フィルタ−を、所定量の第二洗浄液中に配置する排水機構を通じて、吸引圧−80KPa以下で、かつ濾過処理方向に減圧させ、該第二洗浄液から露出させる複数回の排水処理による繰り返し圧流によって、該フィルター内に残留する不純異物を系外に排出除去させる第二洗浄段階と
4)清浄化されたフィルターを更に乾燥処理する乾燥段階と、
を備えることを特徴とする溶融ポリマ−用精密金属フィルタ−の製造方法。
1) A metal filter that is composed of a sintered sintered filter material made of metal and that separates and filters the fluid to be processed between an inner peripheral filtration surface forming an internal filtration chamber and an outer peripheral filtration surface of the outer surface is prepared. Preparation stage to do,
2) A first cleaning step of irradiating ultrasonic vibration from the outer surface side of the filter in the first cleaning liquid to float off impure foreign matters adhering to the sintered filter medium;
3) A plurality of times when the filter after the first cleaning is exposed to the second cleaning liquid by reducing the suction pressure to -80 KPa or less in the filtration direction through a drainage mechanism disposed in a predetermined amount of the second cleaning liquid. A second washing step for discharging and removing impure foreign matters remaining in the filter out of the system by repeated pressure flow due to the waste water treatment of 4), and a drying step for further drying the cleaned filter;
A method for producing a precision metal filter for a molten polymer.
前記第二洗浄液は、前記フィルターの最上の濾過面位置から30mm以下の液面高さの容量に調整されるものである、請求項1に記載の前記精密金属フィルタ−の製造方法。  2. The method for producing the precision metal filter according to claim 1, wherein the second cleaning liquid is adjusted to a capacity having a liquid level height of 30 mm or less from an uppermost filtration surface position of the filter. 前記減圧吸引処理が、5〜15回の多数回繰り返し行なわれるものである請求項1または2に記載の前記精密金属フィルタ−の製造方法。  The method for producing the precision metal filter according to claim 1 or 2, wherein the vacuum suction treatment is repeatedly performed 5 to 15 times. 前記第二洗浄段階が、下記算式による処理係数(Y)が 4〜20 の範囲で行われるものである、請求項4に記載の溶融ポリマ−用精密金属フィルタ−の製造方法。
Y=吸引量(L)×吸引流速(L/min)×繰り返し処理回数(回)/1000
The manufacturing method of the precision metal filter for molten polymers of Claim 4 whose said 2nd washing | cleaning step is performed in the range whose processing coefficient (Y) by the following formula is 4-20.
Y = aspiration amount (L) × aspiration flow rate (L / min) × repetition processing times (times) / 1000
前記フィルタ−は、2枚の円環状の前記焼結濾材同士が、その内縁又は外縁のいずれか一辺で結合され、円環リ−フ状に形成されたものである、請求項1〜4のいずれかに記載の前記精密金属フィルタ−の製造方法。  5. The filter according to claim 1, wherein the two annular sintered filter media are joined to each other at either the inner edge or the outer edge to form an annular leaf shape. The manufacturing method of the said precision metal filter in any one. 前記フィルタ−は、前記焼結濾材がその長手軸方向に沿って筒状に伸びる筒状成形品として形成されたものである、請求項1〜4のいずれかに記載の前記精密金属フィルタ−の製造方法。  The filter according to any one of claims 1 to 4, wherein the filter is formed as a cylindrical molded product in which the sintered filter medium extends in a cylindrical shape along a longitudinal axis direction thereof. Production method. 前記焼結濾材は、金属繊維材料及び/又は金属粉末材料で構成され、微細空孔を持つ濾過保証層と、該保証層の少なくともいずれか片面側に積層配置される該保証層より粗大空孔の支持層を一体に焼結形成してなる、濾過精度100μm以下の積層構造体によるものである請求項1〜6のいずれかに記載の前記精密金属フィルタ−の製造方法。  The sintered filter medium is made of a metal fiber material and / or a metal powder material, and has a filtration guarantee layer having fine pores, and pores coarser than the guarantee layer laminated on at least one side of the guarantee layer. The method for producing a precision metal filter according to any one of claims 1 to 6, which is a laminated structure having a filtration accuracy of 100 µm or less formed by integrally sintering the support layer.
JP2013086082A 2013-03-29 2013-03-29 Method for producing precision metal filter for molten polymer Active JP6083602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013086082A JP6083602B2 (en) 2013-03-29 2013-03-29 Method for producing precision metal filter for molten polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086082A JP6083602B2 (en) 2013-03-29 2013-03-29 Method for producing precision metal filter for molten polymer

Publications (2)

Publication Number Publication Date
JP2014198326A true JP2014198326A (en) 2014-10-23
JP6083602B2 JP6083602B2 (en) 2017-02-22

Family

ID=52355598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086082A Active JP6083602B2 (en) 2013-03-29 2013-03-29 Method for producing precision metal filter for molten polymer

Country Status (1)

Country Link
JP (1) JP6083602B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002072A (en) * 2017-06-09 2019-01-10 ツィンファ ユニバーシティ Porous metal composite structure
US10777822B2 (en) 2017-05-08 2020-09-15 Tsinghua University Fuel cell electrode and fuel cell using the same
US10852267B2 (en) 2017-05-08 2020-12-01 Tsinghua University Biosensor electrode and biosensor using the same
US10942143B2 (en) 2017-06-09 2021-03-09 Tsinghua University Biosensor electrode and biosensor using the same
US11192337B2 (en) 2017-06-09 2021-12-07 Tsinghua University Method for making composite structure with porous metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510410A (en) * 1993-05-28 1996-11-05 コートールズ ファイバース(ホールディングス)リミティド Filter cleaning
JP2010274238A (en) * 2009-06-01 2010-12-09 Teijin Dupont Films Japan Ltd Filter cleaner and filter cleaning method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510410A (en) * 1993-05-28 1996-11-05 コートールズ ファイバース(ホールディングス)リミティド Filter cleaning
JP2010274238A (en) * 2009-06-01 2010-12-09 Teijin Dupont Films Japan Ltd Filter cleaner and filter cleaning method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10777822B2 (en) 2017-05-08 2020-09-15 Tsinghua University Fuel cell electrode and fuel cell using the same
US10852267B2 (en) 2017-05-08 2020-12-01 Tsinghua University Biosensor electrode and biosensor using the same
JP2019002072A (en) * 2017-06-09 2019-01-10 ツィンファ ユニバーシティ Porous metal composite structure
US10919261B2 (en) 2017-06-09 2021-02-16 Tsinghua University Composite structure with porous metal
US10942143B2 (en) 2017-06-09 2021-03-09 Tsinghua University Biosensor electrode and biosensor using the same
US11192337B2 (en) 2017-06-09 2021-12-07 Tsinghua University Method for making composite structure with porous metal

Also Published As

Publication number Publication date
JP6083602B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6083602B2 (en) Method for producing precision metal filter for molten polymer
EP2679298B1 (en) Porous multi-layer filter
KR100200001B1 (en) Laminated filter medium, method of making said medium, and filter using said medium
JP5407133B2 (en) Separation membrane element for filtration and membrane module for filtration
JP6050752B2 (en) Cartridge filter including combination of depth filter and submicron filter and RO pretreatment method
TWI386249B (en) Filtration device and method of making the same
JPS6120327B2 (en)
JP2011011194A (en) Crystalline polymer microporous membrane, method of manufacturing the same, and filter for filtration
JP2012130916A (en) High-throughput asymmetrical membrane
JP5966733B2 (en) Separation membrane element and membrane module
TW201634101A (en) Water-purifying cartridge and water purifier
JP2014184398A (en) Oily water separation filter, oily water separation method and oil separator using oily water separation filter
JP2007283287A (en) Poly(vinylidene fluoride) based porous separating membrane
JP2016087519A (en) Filter device and fluid purification system, and replaceable filter cartridge
JP2011152490A (en) Filter medium, water treatment apparatus using the filter medium, and method for manufacturing the filter medium
KR20150054047A (en) The filter having multi-layer
RU2481878C1 (en) Filtration fabric for band filter
GB2385008A (en) Surface Microfilter
CN209828546U (en) Capsule filtering device
JP3114487B2 (en) Filtration equipment using an asymmetric filtration membrane.
KR20160083562A (en) Filter assembly having excellent filtration efficiency depending on the particle size and filter unit comprising the same
US20160107124A1 (en) Filtration device and filtration method using same
CN113620384B (en) OLED (organic light emitting diode) cleaning water filtering equipment and filtering method
US20230028271A1 (en) Ultrasonically surface modified polyethersulfone members and method of making thereof
TW201420171A (en) Filter for a water purifier, and a water purifier including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6083602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250