JP2014198002A - Desalination method of milk - Google Patents

Desalination method of milk Download PDF

Info

Publication number
JP2014198002A
JP2014198002A JP2013074569A JP2013074569A JP2014198002A JP 2014198002 A JP2014198002 A JP 2014198002A JP 2013074569 A JP2013074569 A JP 2013074569A JP 2013074569 A JP2013074569 A JP 2013074569A JP 2014198002 A JP2014198002 A JP 2014198002A
Authority
JP
Japan
Prior art keywords
milk
vinyl alcohol
anionic
exchange membrane
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013074569A
Other languages
Japanese (ja)
Other versions
JP6238188B2 (en
Inventor
直原 敦
Atsushi Naohara
敦 直原
小林 謙一
Kenichi Kobayashi
謙一 小林
崇裕 中島
Takahiro Nakajima
崇裕 中島
充 比嘉
Mitsuru Higa
充 比嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Yamaguchi University NUC
Original Assignee
Kuraray Co Ltd
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Yamaguchi University NUC filed Critical Kuraray Co Ltd
Priority to JP2013074569A priority Critical patent/JP6238188B2/en
Publication of JP2014198002A publication Critical patent/JP2014198002A/en
Application granted granted Critical
Publication of JP6238188B2 publication Critical patent/JP6238188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable, when removing minerals from raw milk by electrodialysis, a stable long-term electrodialysis without membrane contamination.SOLUTION: Provided is a desalination method of milk for removing at least a portion of minerals in a raw milk by an electrodialysis treatment, wherein, as a cation exchange membrane, there is used one including a polyvinyl alcohol-based copolymer having an anionic group-containing anionic polymer segment and a vinyl alcohol polymer segment, and having a microphase separation structure having a domain size (X) in a range of 0 nm<X≤150 nm.

Description

本発明は、新規なイオン交換膜を用いた電気透析処理により乳類中に含まれるミネラル成分の少なくとも一部を除去する乳類の脱塩方法に関する。   The present invention relates to a method for desalinating milk by removing at least a part of mineral components contained in milk by electrodialysis using a novel ion exchange membrane.

液体または粉末形のミネラルを除去した乳またはホエイは幼児用製品および療養食品、特に母乳に適応した乳の主要成分である。ミネラル除去した乳は他の用途もあり、例えば菓子−チョコレートの製造または再構成乳の製造で脱脂乳の代替成分として使われる。
ホエイのミネラルを除去するもっとも有効な公知方法は電気透析およびイオン交換であり、これらは別々に、または組合せて使われている。電気透析では、ホエイ溶液のイオン化塩は電場の作用下で膜を通して移動し、カチオンおよびアニオンに対し選択的に透過可能でかつ、ブライン形で除去する方法で処理される。
Milk or whey free of minerals in liquid or powder form is a major component of milk adapted for infant products and health foods, particularly breast milk. Demineralized milk also has other uses, for example as a substitute for skim milk in the manufacture of confectionery-chocolate or reconstituted milk.
The most effective known methods for removing whey minerals are electrodialysis and ion exchange, which are used separately or in combination. In electrodialysis, the ionized salt of the whey solution moves through the membrane under the action of an electric field and is processed in such a way that it is selectively permeable to cations and anions and is removed in a brine form.

しかし、従来の電気透析に使用されている炭化水素系の疎水性ポリマーから形成された膜では、乳類のミネラル除去において該乳中に含有されるタンパク質や脂肪分などの有機性の汚染物質より膜の疎水性部分に汚染物質が吸着する。カチオン交換膜では原料乳中のラクトフェリンのようなカチオン性タンパク質がカチオン交換膜に吸着し有機汚染性を生じる。その結果、イオン交換膜が汚染され、抵抗が増加し、透析エネルギーの増大や安定した運転の継続が出来ず、さらに汚染された、膜抵抗の高いイオン交換膜を使用した場合、イオン交換膜表面でpH変化が発生し、乳類に含まれるタンパク質が変性するなどの問題やイオン交換膜の使用期間が短いなどの大きな欠点を有している。また、汚染されたイオン交換膜の薬液洗浄、逆通電処理等により再生する方法も考えられるが、イオン交換膜の完全な再生はきわめて困難である。従ってこれらの障害を除くミネラルの除去方法がいくつか研究提案されてきたが、除去能力、経済的な面で有効な手段が見出せないのが現状であった。   However, membranes formed from hydrocarbon-based hydrophobic polymers used in conventional electrodialysis are more effective than organic contaminants such as proteins and fats contained in milk in removing minerals from milk. Contaminants adsorb on the hydrophobic part of the membrane. In the cation exchange membrane, a cationic protein such as lactoferrin in raw milk is adsorbed on the cation exchange membrane and causes organic contamination. As a result, the ion exchange membrane is contaminated, the resistance increases, the dialysis energy cannot be increased and stable operation cannot be continued, and the ion exchange membrane surface that is contaminated and has high membrane resistance is used. However, there are problems such as the occurrence of pH change, degeneration of proteins contained in milk, and the short period of use of the ion exchange membrane. In addition, a method of regenerating the contaminated ion exchange membrane by chemical cleaning, reverse current treatment, or the like is conceivable, but complete regeneration of the ion exchange membrane is extremely difficult. Accordingly, several methods for removing minerals that eliminate these obstacles have been researched and proposed, but the present situation is that no effective means can be found in terms of removal ability and economy.

そのような中で、特許文献1にはイオン交換膜に固定電荷と反対の電荷を有する層を形成することや、特許文献2には電気的に中性な親水層をカチオン交換膜に形成することが提案されている。   Under such circumstances, in Patent Document 1, a layer having a charge opposite to the fixed charge is formed on the ion exchange membrane, and in Patent Document 2, an electrically neutral hydrophilic layer is formed on the cation exchange membrane. It has been proposed.

特開昭62−205135号公報JP-A-62-205135 特開2003−082130号公報Japanese Patent Laid-Open No. 2003-082130

しかしながら、特許文献1および特許文献2に開示されているイオン交換膜も、長期の使用により、形成された層の脱離が発生するため、有機汚染の耐久性に問題があった。   However, the ion exchange membranes disclosed in Patent Document 1 and Patent Document 2 also have a problem in durability of organic contamination because the formed layer is detached due to long-term use.

したがって、本発明の目的は、原料乳中に含まれているミネラルの少なくとも一部を除去するために電気透析処理を行うにあたり、耐有機汚染性に優れたイオン交換膜を得て、このイオン交換膜を用いて電気透析を行うことであり、すなわち、かかる有機汚染性に優れたイオン交換膜を用いて電気透析を行うことによる、原料乳類からの電解質の除去方法を提供することである。   Accordingly, an object of the present invention is to obtain an ion exchange membrane having excellent organic contamination resistance in performing electrodialysis treatment to remove at least a part of minerals contained in raw milk, and this ion exchange It is to perform electrodialysis using a membrane, that is, to provide a method for removing an electrolyte from raw milk by performing electrodialysis using an ion exchange membrane having excellent organic contamination.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントを有するビニルアルコール系共重合体を含む陽イオン交換膜におけるミクロ相分離が、前記ビニルアルコール系共重合体に不純物として混入する塩類の含有量により影響され、塩類の含有量を低下させて製膜することにより、ドメインサイズが小さくなり、ミクロ相分離が抑制され、それにより荷電密度や膜抵抗の電気特性に優れ、更には従来のスチレンジビニルベンゼン等のイオン交換膜より親水性にすることで、膜抵抗を殆ど増大させることなく耐有機汚染性を付与することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that in a cation exchange membrane comprising an anionic polymer segment having an anionic group and a vinyl alcohol copolymer having a vinyl alcohol polymer segment. Microphase separation is affected by the salt content mixed as an impurity in the vinyl alcohol copolymer, and by reducing the salt content to form a film, the domain size is reduced and microphase separation is suppressed. As a result, it is excellent in electrical characteristics such as charge density and membrane resistance, and more hydrophilic than conventional ion exchange membranes such as styrenedivinylbenzene, thereby providing organic contamination resistance with almost no increase in membrane resistance. As a result, the present invention has been completed.

すなわち本発明は、原料乳類を電気透析処理することにより、原料乳類中のミネラルの少なくとも一部を除去する乳類の脱塩方法において、陽イオン交換膜として、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントを有するポリビニルアルコール系共重合体を含有し、ドメインサイズ(X)が0nm<X≦150nmの範囲内にあるミクロ相分離構造を有する陽イオン交換膜を用いることを特徴とする、乳類の脱塩方法である。
本発明において、ミクロ相分離とは、2種類以上の鎖状高分子を含む共重合体において、同種のポリマーセグメント同士で凝集して、異種ポリマーセグメント間に斥力的な相互作用が働き、結果としてナノスケールからサブミクロンスケールの周期的な自己組織化構造を形成し、得られる周期構造を言う。また、本発明において、ドメインとは、1本または複数のポリマー鎖において、同種のポリマーセグメントが凝集してできた塊のことを意味する。
That is, the present invention relates to an anionic group having an anionic group as a cation exchange membrane in a milk desalting method in which at least a part of minerals in the raw milk is removed by electrodialysis of the raw milk. Use a cation exchange membrane having a microphase separation structure containing a polyvinyl alcohol copolymer having a polymer segment and a vinyl alcohol polymer segment and having a domain size (X) in the range of 0 nm <X ≦ 150 nm. A method for desalinating milk.
In the present invention, microphase separation means that in a copolymer containing two or more types of chain polymers, the same kind of polymer segments aggregate together and a repulsive interaction acts between different polymer segments. A periodic structure obtained by forming a periodic self-organized structure from nanoscale to submicron scale. In the present invention, the domain means a mass formed by aggregating polymer segments of the same kind in one or a plurality of polymer chains.

前記ビニルアルコール重合体セグメントは、アニオン性基を含有しないビニルアルコール重合体から形成されるセグメントであり、該セグメントを有するビニルアルコール系共重合体を含有する陽イオン交換膜を用いて電気透析を行うことが好ましい。   The vinyl alcohol polymer segment is a segment formed from a vinyl alcohol polymer not containing an anionic group, and electrodialysis is performed using a cation exchange membrane containing a vinyl alcohol copolymer having the segment. It is preferable.

前記ビニルアルコール系共重合体に架橋構造が導入されていることが好ましい。   It is preferable that a cross-linked structure is introduced into the vinyl alcohol copolymer.

前記架橋構造が、ビニルアルコール系共重合体をジアルデヒド化合物と反応させて導入されたものであることが好ましい。   The crosslinked structure is preferably introduced by reacting a vinyl alcohol copolymer with a dialdehyde compound.

前記ビニルアルコール系共重合体が、ビニルアルコール重合体ブロックとアニオン性基を有するアニオン性重合体ブロックを有するアニオン性ブロック共重合体であることが好ましい。   The vinyl alcohol copolymer is preferably an anionic block copolymer having a vinyl alcohol polymer block and an anionic polymer block having an anionic group.

前記ビニルアルコール系共重合体が、ビニルアルコール重合体ブロックとアニオン性基を有するアニオン性重合体ブロックを有するアニオン性グラフト共重合体であることが好ましい。   The vinyl alcohol copolymer is preferably an anionic graft copolymer having a vinyl alcohol polymer block and an anionic polymer block having an anionic group.

原料乳類中のミネラルを50〜80質量%除去することが好ましい。   It is preferable to remove 50 to 80% by mass of minerals in raw milk.

原料乳類が、全乳、ホエー、パーミェート、乳糖母液、脱脂乳及びバターミルクよりなる群から選択された1種又は2種以上の原料乳類であることが好ましい。   The raw milk is preferably one or more raw milks selected from the group consisting of whole milk, whey, permeate, lactose mother liquor, skim milk and butter milk.

本発明に係る原料乳類を電気透析処理することにより、原料乳類中のミネラルの少なくとも一部を除去する乳類の脱塩方法によれば、電気透析処理に用いられる陽イオン交換膜は、アニオン性重合体セグメントとビニルアルコール重合体セグメントを有するビニルアルコール系共重合体から構成されているが、前記ビニルアルコール系共重合体に不純物として含有されている塩類の含有量を減少させてイオン交換膜が製膜されているため、アニオン性重合体セグメントとビニルアルコール重合体セグメントとのミクロ相分離が抑制されて、ドメインサイズが0nmよりも大きく、150nm以下の膜を形成している。このため、陽イオン交換膜としては、ビニルアルコール重合体セグメントが高い親水性を有することで膜抵抗が小さく、上記のようにミクロ相分離が抑制されているため、イオンパス構造が緻密形成され、耐久性が高く、長期間にわたって効率よく、安定に電気透析を行うことができる。かかる陽イオン交換膜を用いて原料乳類に対して電気透析処理を行うことにより、陽イオン交換膜が乳類に含まれるタンパク質や脂肪分などの有機物によって汚染されることなく、低い電気抵抗を維持しながら、長期間にわたって電気透析を安定に行うことが可能であり、乳類の脱塩を効率的に行うことが出来る。   According to the milk desalting method for removing at least a part of the minerals in the raw milk by electrodialyzing the raw milk according to the present invention, the cation exchange membrane used for the electrodialysis is Consists of a vinyl alcohol copolymer having an anionic polymer segment and a vinyl alcohol polymer segment, but ion exchange is performed by reducing the content of salts contained as impurities in the vinyl alcohol copolymer. Since the membrane is formed, microphase separation between the anionic polymer segment and the vinyl alcohol polymer segment is suppressed, and a membrane having a domain size larger than 0 nm and 150 nm or less is formed. For this reason, as the cation exchange membrane, since the vinyl alcohol polymer segment has high hydrophilicity, the membrane resistance is low, and the microphase separation is suppressed as described above, so that the ion path structure is densely formed and durable. The electrodialysis can be performed stably and efficiently over a long period of time. By performing electrodialysis treatment on raw milk using such a cation exchange membrane, the cation exchange membrane has a low electric resistance without being contaminated by organic substances such as proteins and fats contained in the milk. While maintaining, electrodialysis can be stably performed over a long period of time, and milk can be desalted efficiently.

本発明方法に用いられる陽イオン交換膜の一例である、実施例5で用いられるイオン交換膜(CEM−5)の透過型電子顕微鏡(TEM)写真である。It is a transmission electron microscope (TEM) photograph of the ion exchange membrane (CEM-5) used in Example 5, which is an example of a cation exchange membrane used in the method of the present invention. 本発明方法に用いられる陽イオン交換膜の一例である、実施例7で用いられるイオン交換膜(CEM−7)ののTEM写真である。It is a TEM photograph of the ion exchange membrane (CEM-7) used in Example 7, which is an example of a cation exchange membrane used in the method of the present invention. 比較例1で用いられるイオン交換膜(CEM−8)のTEM写真である。4 is a TEM photograph of an ion exchange membrane (CEM-8) used in Comparative Example 1. 比較例2で用いられるイオン交換膜(CEM−9)のTEM写真である。4 is a TEM photograph of an ion exchange membrane (CEM-9) used in Comparative Example 2. 比較例3で用いられるイオン交換膜(CEM−10)のTEM写真である。10 is a TEM photograph of an ion exchange membrane (CEM-10) used in Comparative Example 3. 本発明において用いる陽イオン交換膜の膜抵抗の測定に用いる装置の説明図である。It is explanatory drawing of the apparatus used for the measurement of the membrane resistance of the cation exchange membrane used in this invention.

(原料乳類の脱塩)
本発明は、原料乳類を電気透析処理することにより、原料乳類中のミネラルの少なくとも一部を除去するにあたり、陽イオン交換膜としてアニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントを有するポリビニルアルコール系共重合体を含有し、ドメインサイズ(X)が0nm<X≦150nmの範囲内にあるミクロ相分離構造を有する陽イオン交換膜を用いる点にある。そこで、以下、本発明において用いられる陽イオン交換膜について詳述する。
(Desalination of raw milk)
The present invention provides an anionic polymer segment having an anionic group as a cation exchange membrane and a vinyl alcohol polymer in removing at least a part of minerals in raw milk by electrodialyzing raw milk. A cation exchange membrane having a microphase separation structure containing a polyvinyl alcohol copolymer having a segment and having a domain size (X) in the range of 0 nm <X ≦ 150 nm is used. Therefore, the cation exchange membrane used in the present invention will be described in detail below.

(陽イオン交換膜)
本発明に用いる陽イオン交換膜は、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントとを有するビニルアルコール系共重合体とから構成されている。通常、アニオン性重合体セグメントとビニルアルコール重合体セグメントとは共有結合で結合されて、ビニルアルコール系共重合体を構成している。本発明において、重合体セグメントとは、同一のモノマー単位が2個以上連結した同一の繰り返し単位を含む重合体鎖を意味し、ブロック共重合体における重合体ブロック、グラフト重合体における幹鎖または枝鎖に相当する重合体ブロックを包含する用語として用いられている。また、アニオン性基を有するアニオン性重合体セグメントにおいて、アニオン性基は重合体末端に含まれていてもよいので、アニオン性基を有する単量体が繰り返し単位でなくてもよい。
本発明に用いる陽イオン交換膜は、上記のように、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントを有するビニルアルコール系共重合体から構成されるが、この共重合体だけでなく、この共重合体に加えて、アニオン性重合体セグメントと結合していないアニオン性基を有しないビニルアルコール系重合体、ビニルアルコール重合体と結合していないアニオン性重合体を、相分離構造に影響しない程度に含んでいてもよい。
(Cation exchange membrane)
The cation exchange membrane used in the present invention is composed of an anionic polymer segment having an anionic group and a vinyl alcohol copolymer having a vinyl alcohol polymer segment. Usually, an anionic polymer segment and a vinyl alcohol polymer segment are bonded by a covalent bond to constitute a vinyl alcohol copolymer. In the present invention, the polymer segment means a polymer chain containing the same repeating unit in which two or more of the same monomer units are linked, and is a polymer block in a block copolymer, a trunk chain or a branch in a graft polymer. It is used as a term encompassing polymer blocks corresponding to chains. Further, in the anionic polymer segment having an anionic group, the anionic group may be contained at the end of the polymer, and therefore the monomer having the anionic group may not be a repeating unit.
As described above, the cation exchange membrane used in the present invention is composed of an anionic polymer segment having an anionic group and a vinyl alcohol copolymer having a vinyl alcohol polymer segment. In addition to this copolymer, a phase separation of a vinyl alcohol polymer that does not have an anionic group that is not bonded to an anionic polymer segment, and an anionic polymer that is not bonded to a vinyl alcohol polymer. It may be included to the extent that it does not affect the structure.

本発明に用いる陽イオン交換膜は、ビニルアルコール系共重合体に含まれる塩類の含有量を低下させて製膜することにより、膜を構成するビニルアルコール系共重合体はミクロ相分離構造を示し、そのドメインサイズを150nm以下にできることを本発明者は見出した。本発明において用いる陽イオン交換膜は、通常、ビニルアルコール重合体セグメントが架橋処理されて実用に供されるが、ドメインサイズ(X)が、0nm<X≦150nmの範囲に特定されることにより、イオンパス構造に変化がなく、膜構造が安定し、荷電密度や膜抵抗などの電気特性が優れた、電気透析用として有用な陽イオン交換膜を得ることができる。上記のドメインサイズ(X)は、塩類含有量を低下させるほど小さくなり、0nm<X≦130nm、さらには0nm<X≦100nmとすることができる。   The cation exchange membrane used in the present invention is formed by reducing the content of salts contained in the vinyl alcohol copolymer, so that the vinyl alcohol copolymer constituting the membrane exhibits a microphase separation structure. The inventors have found that the domain size can be made 150 nm or less. The cation exchange membrane used in the present invention is usually provided for practical use by crosslinking the vinyl alcohol polymer segment, but the domain size (X) is specified in the range of 0 nm <X ≦ 150 nm, It is possible to obtain a cation exchange membrane useful for electrodialysis having no change in ion path structure, stable membrane structure, and excellent electrical characteristics such as charge density and membrane resistance. The domain size (X) becomes smaller as the salt content is lowered, and can be set to 0 nm <X ≦ 130 nm, and further 0 nm <X ≦ 100 nm.

本発明に用いる陽イオン交換膜は、上記のようにビニルアルコール重合体セグメントを有するビニルアルコール系共重合体から構成されているので、親水性のイオン交換膜である。このことにより被処理液中の有機汚染物質(乳類に含まれるタンパク質や脂肪分など)の付着による汚染を抑制できる利点を有する。ここで構成ポリマーが親水性であるとは、上記アニオン性重合体であるために必要な官能基(アニオン性基)がない構造において親水性を有することを意味する。このように、構成重合体が親水性重合体であることにより、親水性度の高い陽イオン交換膜が得られ、被処理液中の有機汚染物質が陽イオン交換膜に付着して膜の性能を低下させる問題を低減できる。また、膜強度が高くなるという利点を有する。   The cation exchange membrane used in the present invention is a hydrophilic ion exchange membrane because it is composed of a vinyl alcohol copolymer having a vinyl alcohol polymer segment as described above. This has an advantage that contamination due to adhesion of organic contaminants (proteins and fats contained in milk) in the liquid to be treated can be suppressed. Here, that the constituent polymer is hydrophilic means that the polymer has hydrophilicity in a structure having no functional group (anionic group) necessary for the anionic polymer. As described above, since the constituent polymer is a hydrophilic polymer, a cation exchange membrane having a high degree of hydrophilicity is obtained, and organic contaminants in the liquid to be treated adhere to the cation exchange membrane and the performance of the membrane. The problem of lowering can be reduced. Moreover, it has the advantage that film | membrane intensity | strength becomes high.

(アニオン性重合体)
本発明で用いられるアニオン性重合体セグメントを構成するアニオン性重合体は、分子鎖中にアニオン性基を含有する重合体である。当該アニオン性基は主鎖、側鎖、末端のいずれに含まれていても構わない。アニオン性基としては、スルホネート基、カルボキシレート基、ホスホネート基などが例示される。また、スルホン酸基、カルボキシル基、ホスホン酸基のように、水中において少なくともその一部が、スルホネート基、カルボキシレート基、ホスホネート基に変換し得る官能基も、アニオン性基に含まれる。この中で、イオン解離定数が大きい点から、スルホネート基が好ましい。アニオン性重合体は、1種類
のみのアニオン性基を含有していてもよいし、複数種のアニオン性基を含有していてもよい。また、アニオン性基の対カチオンは特に限定されず、水素イオン、アルカリ金属イオン、などが例示される。この中で、設備の腐蝕問題が少ない点から、アルカリ金属イオンが好ましい。アニオン性重合体は、1種類のみの対カチオンを含有していてもよいし、複数種の対カチオンを含有していてもよい。
(Anionic polymer)
The anionic polymer constituting the anionic polymer segment used in the present invention is a polymer containing an anionic group in the molecular chain. The anionic group may be contained in any of the main chain, side chain, and terminal. Examples of the anionic group include a sulfonate group, a carboxylate group, and a phosphonate group. In addition, functional groups that can be converted into sulfonate groups, carboxylate groups, and phosphonate groups at least partially in water, such as sulfonic acid groups, carboxyl groups, and phosphonic acid groups are also included in the anionic groups. Of these, a sulfonate group is preferred because of its large ion dissociation constant. The anionic polymer may contain only one type of anionic group or may contain a plurality of types of anionic groups. Moreover, the counter cation of an anionic group is not specifically limited, A hydrogen ion, an alkali metal ion, etc. are illustrated. Of these, alkali metal ions are preferred from the viewpoint of less equipment corrosion problems. The anionic polymer may contain only one type of counter cation or may contain a plurality of types of counter cation.

本発明で用いられるアニオン性重合体は、上記アニオン性基を含有する構造単位のみからなる重合体であってもよいし、上記アニオン性基を含有しない構造単位をさらに含む重合体であってもよい。また、これらの重合体は架橋性を有するものであることが好ましい。アニオン性重合体は、1種類のみの重合体からなるものであってもよいし、複数種のアニオン性重合体を含むものであってもよい。また、これらアニオン性重合体と別の重合体との混合物であっても構わない。ここでアニオン性重合体以外の重合体はカチオン性重合体でないことが望ましい。   The anionic polymer used in the present invention may be a polymer composed only of a structural unit containing the anionic group, or may be a polymer further containing a structural unit not containing the anionic group. Good. Moreover, it is preferable that these polymers have a crosslinking property. An anionic polymer may consist of only one type of polymer, or may include a plurality of types of anionic polymers. Moreover, you may be a mixture of these anionic polymers and another polymer. Here, the polymer other than the anionic polymer is preferably not a cationic polymer.

アニオン性重合体としては、以下の一般式(1)および(2)の構造単位を有するものが例示される。   As an anionic polymer, what has the structural unit of the following general formula (1) and (2) is illustrated.

Figure 2014198002
[式中、Rは水素原子またはメチル基を表す。Gは−SOH、−SO−M、−POH、−PO−M、−COHまたは−CO−Mを表す。Mはアンモニウムイオンまたはアルカリ金属イオンを表す。]
Figure 2014198002
[Wherein R 5 represents a hydrogen atom or a methyl group. G represents -SO 3 H, -SO 3 -M + , -PO 3 H, -PO 3 -M +, a -CO 2 H or -CO 2 -M +. M + represents an ammonium ion or an alkali metal ion. ]

一般式(1)で表わされる構造単位を含有するアニオン性重合体としては、2−アクリルアミド−2−メチルプロパンスルホン酸の単独重合体または共重合体などが例示される。   Examples of the anionic polymer containing the structural unit represented by the general formula (1) include 2-acrylamido-2-methylpropanesulfonic acid homopolymer or copolymer.

Figure 2014198002
[式中、R5は水素原子またはメチル基を表わし、Tは水素原子がメチル基で置換されていてもよいフェニレン基またはナフチレン基を表わす。Gは一般式(1)と同義である。]
Figure 2014198002
[Wherein, R5 represents a hydrogen atom or a methyl group, and T represents a phenylene group or a naphthylene group in which the hydrogen atom may be substituted with a methyl group. G is synonymous with the general formula (1). ]

一般式(2)で表わされる構造単位を含有するアニオン性重合体としては、p−スチレンスルホン酸ナトリウムなどp−スチレンスルホン酸塩の単独重合体または共重合体などが例示される。   Examples of the anionic polymer containing the structural unit represented by the general formula (2) include homopolymers or copolymers of p-styrene sulfonate such as sodium p-styrene sulfonate.

また、アニオン性重合体としては、ビニルスルホン酸、(メタ)アリルスルホン酸などのスルホン酸またはその塩の単独重合体または共重合体、フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のジカルボン酸、その誘導体またはその塩の単独重合体または共重合体なども例示される。   Examples of the anionic polymer include homopolymers or copolymers of sulfonic acids such as vinyl sulfonic acid and (meth) allyl sulfonic acid or salts thereof, fumaric acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride. Examples include dicarboxylic acids such as acids, homopolymers or copolymers of derivatives or salts thereof.

一般式(1)または(2)において、Gは、より高い荷電密度を与えるスルホネート基
、スルホン酸基、ホスホネート基、またはホスホン酸基であることが好ましい。また一般
式(1)および一般式(2)中、Mで表わされるアルカリ金属イオンとしてはナトリウ
ムイオン、カリウムイオン、リチウムイオン等が挙げられる。
In the general formula (1) or (2), G is preferably a sulfonate group, a sulfonic acid group, a phosphonate group, or a phosphonic acid group that gives a higher charge density. In the general formulas (1) and (2), examples of the alkali metal ion represented by M + include sodium ion, potassium ion, and lithium ion.

(ビニルアルコール重合体セグメント)
本発明において、ビニルアルコール重合体セグメントを構成するポリビニルアルコール
としては、ビニルエステル系モノマーを重合して得られたビニルエステル系重合体をけん化し、ビニルエステル単位をビニルアルコール単位としたものが用いられる。前記ビニルエステル系モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等を挙げることができ、これらのなかでも酢酸ビニルを用いるのが好ましい。
ビニルエステル系モノマーを共重合させる際には、必要に応じて共重合可能なモノマー
を、発明の効果を損なわない範囲内(好ましくは50モル%以下、より好ましくは30モ
ル%以下の割合)で共重合させても良い。
このようなビニルエステル系モノマーと共重合可能なモノマーとしては、例えば、エチ
レン、プロピレン、1−ブテン、イソブテン等の炭素数3〜30のオレフィン類;アクリ
ル酸およびその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、ア
クリル酸i−プロピル、アクリル酸n−ブチル、アクリル酸i−ブチル、アクリル酸t−
ブチル、アクリル酸2−エチルへキシル、アクリル酸ドデシルアクリル酸オクタデシル等
のアクリル酸エステル類;メタクリル酸およびその塩;メタクリル酸メチル、メタクリル
酸エチル、メタクリル酸n−プロピル、メタクリル酸i−プロピル、メタクリル酸n−ブ
チル、メタクリル酸i−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルへキ
シル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル類;
アクリルアミド、N−メチルアクリルアミド、N−エチルアクリルアミド、N,N−ジメ
チルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸お
よびその塩、アクリルアミドプロピルジメチルアミンおよびその塩、N−メチロールアク
リルアミドおよびその誘導体等のアクリルアミド誘導体;メタクリルアミド、N−メチル
メタクリルアミド、N−エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸
およびその塩、メタクリルアミドプロピルジメチルアミンおよびその塩、N−メチロール
メタクリルアミドおよびその誘導体等のメタクリルアミド誘導体;N−ビニルホルムアミ
ド、N−ビニルアセトアミド、N−ビニルピロリドン等のN−ビニルアミド類;メチルビ
ニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、i−プロピルビニ
ルエーテル、n−ブチルビニルエーテル、i−ブチルビニルエーテル、t−ブチルビニル
エーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル類;
アクリロニトリル、メタクリロニトリル等のニトリル類;塩化ビニル、塩化ビニリデン、
フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル類;酢酸アリル、塩化アリル等の
アリル化合物;マレイン酸およびその塩またはそのエステル;イタコン酸およびその塩ま
たはそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペ
ニル等を挙げることができる。
(Vinyl alcohol polymer segment)
In the present invention, as the polyvinyl alcohol constituting the vinyl alcohol polymer segment, a vinyl ester polymer obtained by polymerizing a vinyl ester monomer is saponified and the vinyl ester unit is used as a vinyl alcohol unit. . Examples of the vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatate, and the like. Of these, vinyl acetate is preferably used.
When the vinyl ester monomer is copolymerized, a monomer that can be copolymerized, if necessary, within a range that does not impair the effects of the invention (preferably 50 mol% or less, more preferably 30 mol% or less). It may be copolymerized.
Examples of the monomer copolymerizable with the vinyl ester monomer include olefins having 3 to 30 carbon atoms such as ethylene, propylene, 1-butene and isobutene; acrylic acid and salts thereof; methyl acrylate and acrylic acid. Ethyl, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-acrylate
Acrylic esters such as butyl, 2-ethylhexyl acrylate, octadecyl acrylate; methacrylic acid and its salts; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, methacryl Methacrylic acid esters such as n-butyl acid, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, octadecyl methacrylate;
Acrylamide derivatives such as acrylamide, N-methyl acrylamide, N-ethyl acrylamide, N, N-dimethyl acrylamide, diacetone acrylamide, acrylamide propane sulfonic acid and its salt, acrylamide propyl dimethylamine and its salt, N-methylol acrylamide and its derivative Methacrylamide derivatives such as methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, methacrylamide propane sulfonic acid and salts thereof, methacrylamide propyl dimethylamine and salts thereof, N-methylol methacrylamide and derivatives thereof; N-vinylamides such as vinylformamide, N-vinylacetamide, N-vinylpyrrolidone; methyl vinyl ether, ethyl vinyl Ether, n- propyl vinyl ether, i- propyl vinyl ether, n- butyl vinyl ether, i- butyl vinyl ether, t- butyl ether, dodecyl vinyl ether and stearyl vinyl ether;
Nitriles such as acrylonitrile and methacrylonitrile; vinyl chloride, vinylidene chloride,
Vinyl halides such as vinyl fluoride and vinylidene fluoride; allyl compounds such as allyl acetate and allyl chloride; maleic acid and its salts or esters thereof; itaconic acid and its salts or esters thereof; vinylsilyl compounds such as vinyltrimethoxysilane And isopropenyl acetate.

ビニルアルコール系共重合体におけるアニオン性基以外の部分の構造単位は、それぞれ独立に選択することができるが、前記共重合体は、同一の構造単位を有する単量体から構成されることが好ましい。これにより、ドメイン同士の間の親和性が高くなるため、陽イオン交換膜の機械的強度が増大する。ビニルアルコール系共重合体は、同一の構造単位を50モル%以上有していることが好ましく、70モル%以上有していることがより好ましい。   The structural units other than the anionic group in the vinyl alcohol copolymer can be selected independently, but the copolymer is preferably composed of monomers having the same structural unit. . Thereby, since the affinity between domains becomes high, the mechanical strength of a cation exchange membrane increases. The vinyl alcohol copolymer preferably has 50 mol% or more of the same structural unit, more preferably 70 mol% or more.

また、親水性であることが望ましいことから、同一の構造単位がビニルアルコール単位
であることが特に好ましい。ビニルアルコール単位を有することにより、グルタルアルデ
ヒドなどの架橋処理剤によりドメイン同士の間を化学的に架橋することができるので、陽
イオン交換膜の機械的強度をさらに高くすることもできる。
Moreover, since it is desirable that it is hydrophilic, it is particularly preferable that the same structural unit is a vinyl alcohol unit. By having a vinyl alcohol unit, the domains can be chemically crosslinked with a crosslinking agent such as glutaraldehyde, so that the mechanical strength of the cation exchange membrane can be further increased.

上記のように、本発明において、アニオン性重合体セグメントとビニルアルコール重合
体セグメントとを有するビニルアルコール系共重合体は、アニオン性重合体セグメントとビニルアルコール重合体セグメントとが結合している構造が好ましい。
As described above, in the present invention, the vinyl alcohol copolymer having an anionic polymer segment and a vinyl alcohol polymer segment has a structure in which the anionic polymer segment and the vinyl alcohol polymer segment are bonded. preferable.

本発明に用いる陽イオン交換膜は、上記のようにアニオン性重合体セグメントにビニルアルコール重合体セグメントを有するビニルアルコール系共重合体から構成されているが、ビニルアルコール系共重合体は、アニオン性基を含有しないビニルアルコール重合体を含み混合物から構成されていてもよい。   The cation exchange membrane used in the present invention is composed of a vinyl alcohol copolymer having a vinyl alcohol polymer segment in the anionic polymer segment as described above. The vinyl alcohol copolymer is anionic. It may be composed of a mixture including a vinyl alcohol polymer containing no group.

(ブロックまたはグラフト共重合体)
本発明において、前記ビニルアルコール系共重合体は、アニオン性重合体セグメントとビニルアルコール重合体セグメントとがブロック共重合体またはグラフト共重合体を形成しているのが好ましい。なかでも、ブロック共重合体がより好適に用いられる。こうすることにより、陽イオン交換膜全体の強度の向上、膜の膨潤度の抑制、および形状保持についての機能を担うビニルアルコール重合体ブロックと、陽イオンを透過させる機能を担うアニオン性基単量体を重合してなるアニオン性重合体ブロックと、が役割分担でき、陽イオン交換膜のイオン透過機能と寸法安定性とを両立することができる。アニオン性基単量体を重合してなる重合体ブロックの構造単位は特に限定されないが、前記一般式(1)〜(2)で表わされるものなどが例示される。この中で、入手容易である点から、アニオン性重合体を構成する単量体としては、p−スチレンスルホン酸塩または2−アクリルアミド−2−メチルプロパンスルホン酸塩を用いて、p−スチレンスルホン酸塩を重合してなるアニオン性重合体ブロックとビニルアルコール重合体ブロックとを含有するアニオン性ブロック共重合体、または2−アクリルアミド−2−メチルプロパンスルホン酸塩を重合してなるアニオン性重合体ブロックとビニルアルコール重合体ブロックとからなるブロック共重合体が好ましく用いられる。
また、グラフト共重合体としては、アニオン性重合体セグメントを幹鎖として、ビニル
アルコール重合体性セグメントを枝鎖とする場合と、ビニルアルコール重合体セグメント
を幹鎖として、アニオン性重合体セグメントを枝鎖とする場合とがある。本発明において
は特に限定されないが、強度的性質を得やすい点から、ビニルアルコールを幹鎖として、
アニオン性重合体セグメントを枝鎖とするグラフト共重合体が好ましい。グラフト共重合
方法としては、公知の方法が適用される。
(Block or graft copolymer)
In the present invention, the vinyl alcohol copolymer is preferably such that the anionic polymer segment and the vinyl alcohol polymer segment form a block copolymer or a graft copolymer. Among these, a block copolymer is more preferably used. By doing this, the vinyl alcohol polymer block responsible for the function of improving the strength of the entire cation exchange membrane, suppressing the degree of swelling of the membrane, and maintaining the shape, and the amount of anionic group responsible for the permeation of the cation The anionic polymer block formed by polymerizing the polymer can share the role, and both the ion permeation function and the dimensional stability of the cation exchange membrane can be achieved. The structural unit of the polymer block obtained by polymerizing the anionic group monomer is not particularly limited, and examples thereof include those represented by the general formulas (1) to (2). Among these, from the viewpoint of easy availability, as the monomer constituting the anionic polymer, p-styrene sulfonate or 2-acrylamido-2-methylpropane sulfonate is used. Anionic block copolymer containing an anionic polymer block obtained by polymerizing an acid salt and a vinyl alcohol polymer block, or an anionic polymer obtained by polymerizing 2-acrylamido-2-methylpropanesulfonate A block copolymer comprising a block and a vinyl alcohol polymer block is preferably used.
The graft copolymer includes an anionic polymer segment as a backbone and a vinyl alcohol polymer segment as a branched chain, and a vinyl alcohol polymer segment as a backbone and an anionic polymer segment as a branch. Sometimes it is a chain. Although not particularly limited in the present invention, from the viewpoint of easily obtaining strength properties, vinyl alcohol as a backbone,
A graft copolymer having an anionic polymer segment as a branched chain is preferred. A known method is applied as the graft copolymerization method.

(ブロック共重合体の製造方法)
本発明で用いられるアニオン性単量体を重合してなるアニオン性重合体ブロックとビ
ニルアルコール重合体ブロックとを含有するブロック共重合体の製造方法は主に次の2つ
の方法に大別される。すなわち、(1)所望のブロック共重合体を製造した後、特定のブ
ロックにアニオン性基を結合させる方法、および(2)少なくとも1種類のアニオン性基
単量体を重合させて所望のブロック共重合体を製造する方法である。このうち、(1)に
ついては、末端にメルカプト基を有するポリビニルアルコールの存在下、1種類または複
数種の単量体をブロック共重合させ、次いでブロック共重合体中の1種類または複数種の
重合体成分にイオン基を導入する方法、(2)については、末端にメルカプト基を有する
ポリビニルアルコールの存在下、少なくとも1種類のアニオン性基単量体をラジカル重合
させることによりブロック共重合体を製造する方法が挙げられるが、これらの方法は、工
業的な容易さから好ましい。特に、ブロック共重合体中のビニルアルコールブロックとア
ニオン性基単量体を重合してなるアニオン性重合体ブロックの各ブロックにおける構成単
量体の種類や量を容易に制御できることから、末端にメルカプト基を有するポリビニルア
ルコールの存在下、少なくとも1種類のアニオン性基単量体をラジカル重合させてブロッ
ク共重合体を製造する方法が好ましい。こうして得られるアニオン性基単量体を重合して
なる重合体ブロックとビニルアルコール重合体ブロックとを含有するブロック共重合体に
は、末端にメルカプト基を有するポリビニルアルコールが未反応のまま含まれていても構
わない。
(Method for producing block copolymer)
The method for producing a block copolymer containing an anionic polymer block obtained by polymerizing an anionic monomer used in the present invention and a vinyl alcohol polymer block is mainly classified into the following two methods. . (1) a method in which a desired block copolymer is produced and then an anionic group is bonded to a specific block; and (2) at least one anionic group monomer is polymerized to form a desired block copolymer. It is a method for producing a polymer. Among these, for (1), one or more types of monomers are block copolymerized in the presence of polyvinyl alcohol having a mercapto group at the terminal, and then one or more types of polymer in the block copolymer are copolymerized. For the method of introducing an ionic group into the coalescing component, (2), a block copolymer is produced by radical polymerization of at least one anionic group monomer in the presence of polyvinyl alcohol having a mercapto group at the terminal. However, these methods are preferable because of industrial ease. In particular, the type and amount of constituent monomers in each block of an anionic polymer block obtained by polymerizing a vinyl alcohol block and an anionic group monomer in the block copolymer can be easily controlled. A method of producing a block copolymer by radical polymerization of at least one anionic group monomer in the presence of a group-containing polyvinyl alcohol is preferred. The block copolymer containing a polymer block obtained by polymerizing the anionic group monomer thus obtained and a vinyl alcohol polymer block contains unreacted polyvinyl alcohol having a mercapto group at the terminal. It doesn't matter.

これらのブロック共重合体の製造に用いられる、末端にメルカプト基を有するビニルア
ルコール系重合体は、例えば、特開昭59−187003号公報などに記載されている方
法により得ることができる。すなわち、チオール酸の存在下にビニルエステル系単量体、
例えば酢酸ビニルをラジカル重合して得られるビニルエステル系重合体をけん化する方法
が挙げられる。このようにして得られる末端にメルカプト基を有するポリビニルアルコー
ルと、アニオン性基単量体とを用いてブロック共重合体を得る方法としては、例えば、特
開昭59−189113号公報などに記載された方法が挙げられる。すなわち、末端にメ
ルカプト基を有するポリビニルアルコールの存在下にアニオン性基単量体をラジカル重合
させることによりブロック共重合体を得ることができる。このラジカル重合は公知の方法
、例えばバルク重合、溶液重合、パール重合、乳化重合などによって行うことができるが
、末端にメルカプト基を含有するポリビニルアルコールを溶解し得る溶剤、例えば水やジ
メチルスルホキシドを主体とする媒体中で行うのが好ましい。また、重合プロセスとして
は、回分法、半回分法、連続法のいずれをも採用することができる。
The vinyl alcohol polymer having a mercapto group at the end used for the production of these block copolymers can be obtained, for example, by the method described in JP-A-59-187003. That is, a vinyl ester monomer in the presence of thiolic acid,
For example, a method of saponifying a vinyl ester polymer obtained by radical polymerization of vinyl acetate can be mentioned. A method for obtaining a block copolymer using a polyvinyl alcohol having a mercapto group at the terminal thus obtained and an anionic group monomer is described in, for example, JP-A-59-189113. Method. That is, a block copolymer can be obtained by radical polymerization of an anionic group monomer in the presence of polyvinyl alcohol having a mercapto group at the terminal. This radical polymerization can be carried out by a known method such as bulk polymerization, solution polymerization, pearl polymerization, emulsion polymerization, etc., but mainly contains a solvent capable of dissolving polyvinyl alcohol containing a mercapto group at the terminal, such as water or dimethyl sulfoxide. It is preferable to carry out in the medium. As the polymerization process, any of a batch method, a semi-batch method, and a continuous method can be employed.

上記ラジカル重合は、通常のラジカル重合開始剤、例えば、2,2’−アゾビスイソブ
チロニトリル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジイソプロピル
パーオキシカーボネート、4,4′−アゾビス−(4−シアノペンタノイックナトリウム
)、4,4′−アゾビス−(4−シアノペンタノイックアンモニウム)、4,4′−アゾ
ビス−(4−シアノペンタノイックカリウム)、4,4′−アゾビス−(4−シアノペン
タノイックリチウム)等や2,2′−アゾビス{2−メチル−N−[1,1′−ビス(ヒ
ドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2過硫酸カリウム、過
硫酸アンモニウム等の中から重合系にあったものを使用して行うことができるが、水系で
の重合の場合、ビニルアルコール系重合体末端のメルカプト基と臭素酸カリウム、過硫酸
カリウム、過硫酸アンモニウム、過酸化水素等の酸化剤によるレドックス開始や,2′−
アゾビス[2−メチル−N(2−ヒドロキシエチル)プロピオンアミド]等でも可能である
。特には、分解後もイオン性残基が発生しないものが特に好まれる。
The above radical polymerization may be performed by using a normal radical polymerization initiator such as 2,2′-azobisisobutyronitrile, benzoyl peroxide, lauroyl peroxide, diisopropyl peroxycarbonate, 4,4′-azobis- (4-cyano Pentanoic sodium), 4,4'-azobis- (4-cyanopentanoic ammonium), 4,4'-azobis- (4-cyanopentanoic potassium), 4,4'-azobis- (4- Cyanopentanoic lithium), 2,2'-azobis {2-methyl-N- [1,1'-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, potassium persulfate, ammonium persulfate, etc. Can be used by using one that is suitable for the polymerization system, but in the case of polymerization in an aqueous system, vinyl alcohol Initiation of redox by a mercapto group at the end of a polymer and an oxidizing agent such as potassium bromate, potassium persulfate, ammonium persulfate, hydrogen peroxide, 2'-
Azobis [2-methyl-N (2-hydroxyethyl) propionamide] and the like are also possible. In particular, those that do not generate ionic residues after decomposition are particularly preferred.

ビニルエステル系重合体のけん化反応の触媒としては通常アルカリ性物質が用いられ、
その例として、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、およ
びナトリウムメトキシドなどのアルカリ金属アルコキシドが挙げられる。けん化触媒は、
けん化反応の初期に一括して添加しても良いし、あるいはけん化反応の初期に一部を添加
し、残りをけん化反応の途中で追加して添加しても良い。けん化反応に用いられる溶媒と
しては、メタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメ
チルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましい。けん
化反応は、バッチ法および連続法のいずれの方式にても実施可能である。けん化反応の終
了後に、必要に応じて、残存するけん化触媒を中和しても良く、使用可能な中和剤として
、酢酸、乳酸などの有機酸、および酢酸メチルなどのエステル化合物などが挙げられる。
As a catalyst for the saponification reaction of a vinyl ester polymer, an alkaline substance is usually used.
Examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide. The saponification catalyst is
It may be added all at once at the beginning of the saponification reaction, or a part thereof may be added at the beginning of the saponification reaction, and the rest may be added during the saponification reaction. Examples of the solvent used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, dimethylformamide and the like. Of these solvents, methanol is preferred. The saponification reaction can be carried out by either a batch method or a continuous method. After completion of the saponification reaction, the remaining saponification catalyst may be neutralized as necessary, and usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate. .

(ビニルアルコール重合体のけん化度)
ビニルアルコール重合体のけん化度は特に限定されないが、40〜99.9モル%であ
ることが好ましい。けん化度が40モル%未満だと、結晶性が低下し、陽イオン交換膜の
強度が不足するおそれがある。けん化度が60モル%以上であることがより好ましく、8
0モル%以上であることがさらに好ましい。通常、けん化度は99.9モル%以下である
。このとき、前記ポリビニルアルコールが複数種のポリビニルアルコールの混合物である
場合のけん化度は、混合物全体としての平均のけん化度をいう。なお、ポリビニルアルコ
ールのけん化度は、JIS K6726に準じて測定した値である。
(Degree of saponification of vinyl alcohol polymer)
Although the saponification degree of a vinyl alcohol polymer is not specifically limited, It is preferable that it is 40-99.9 mol%. If the degree of saponification is less than 40 mol%, the crystallinity is lowered and the strength of the cation exchange membrane may be insufficient. More preferably, the saponification degree is 60 mol% or more, and 8
More preferably, it is 0 mol% or more. Usually, the saponification degree is 99.9 mol% or less. At this time, the saponification degree when the polyvinyl alcohol is a mixture of plural kinds of polyvinyl alcohols refers to the average saponification degree of the whole mixture. The saponification degree of polyvinyl alcohol is a value measured according to JIS K6726.

(ポリビニルアルコールの重合度)
ビニルアルコール重合体セグメントを構成するポリビニルアルコールの粘度平均重合度
(以下単に重合度と言うことがある)は特に限定されないが、50〜10000であるこ
とが好ましい。重合度が50未満だと、実用上で陽イオン交換膜が十分な強度を保持でき
ないおそれがある。重合度が100以上であることがより好ましい。重合度が10000
を超えると重合体水溶液の粘度が高すぎて、塗布が困難になり、得られる膜に欠陥が生じ
やすくなるおそれがある。重合度が8000以下であることがより好ましい。このとき、
前記ポリビニルアルコールが複数種のポリビニルアルコールの混合物である場合の重合度
は、混合物全体としての平均の重合度をいう。なお、ポリビニルアルコールの粘度平均重
合度は、JIS K6726に準じて測定した値である。本発明で用いられるイオン基を
含有しないポリビニルアルコールの重合度も、上記範囲であることが好ましい。
(Polyvinyl alcohol polymerization degree)
The viscosity average degree of polymerization of the polyvinyl alcohol constituting the vinyl alcohol polymer segment (hereinafter sometimes simply referred to as the degree of polymerization) is not particularly limited, but is preferably 50 to 10,000. When the degree of polymerization is less than 50, there is a possibility that the cation exchange membrane cannot maintain sufficient strength in practical use. More preferably, the degree of polymerization is 100 or more. The degree of polymerization is 10,000
If it exceeds 1, the viscosity of the polymer aqueous solution will be too high, it will be difficult to apply, and the resulting film may be prone to defects. The degree of polymerization is more preferably 8000 or less. At this time,
The degree of polymerization when the polyvinyl alcohol is a mixture of a plurality of types of polyvinyl alcohol refers to the average degree of polymerization of the entire mixture. In addition, the viscosity average polymerization degree of polyvinyl alcohol is a value measured according to JIS K6726. The polymerization degree of polyvinyl alcohol containing no ionic group used in the present invention is also preferably within the above range.

(アニオン性基単量体単位の含有量)
陽イオン交換膜を構成するビニルアルコール系共重合体中のアニオン性基単量体単位の含有量は特に限定されないが、前記共重合体のアニオン性基単量体単位の含有量、すなわち、前記共重合体中の単量体単位の総数に対するアニオン性基単量体単位の数の割合が、0.1モル%以上であることが好ましい。アニオン性基単量体単位の含有量が0.1モル%未満だと、陽イオン交換膜中の有効荷電密度が低下し、電解質選択透過性が低下するおそれがある。アニオン性基単量体単位の含有量が0.5モル%以上であることがより好ましく、1モル%以上であることがさらに好ましい。また、アニオン性基単量体単位の含有量は50モル%以下であることが好ましい。アニオン性基単量体単位の含有量が50モル%を超えると、陽イオン交換膜の膨潤度が高くなり、陽イオン交換膜中の有効荷電密度が低下し、電解質選択透過性が低下するおそれがある。アニオン性基単量体単位の含有量が30モル%以下であることがより好ましく、20モル%以下であることがさらに好ましい。ビニルアルコール系共重合体が、アニオン性基を含有する重合体とアニオン性基を含有しない重合体との混合物である場合や、アニオン性基を含有する重合体の複数種の混合物である場合のアニオン性基単量体単位の含有量は、混合物中の単量体単位の総数に対するアニオン性基単量体単位の数の割合をいう。
(Content of anionic group monomer unit)
The content of the anionic group monomer unit in the vinyl alcohol copolymer constituting the cation exchange membrane is not particularly limited, but the content of the anionic group monomer unit of the copolymer, that is, the above The ratio of the number of anionic group monomer units to the total number of monomer units in the copolymer is preferably 0.1 mol% or more. When the content of the anionic group monomer unit is less than 0.1 mol%, the effective charge density in the cation exchange membrane is lowered, and the electrolyte permselectivity may be lowered. The content of the anionic group monomer unit is more preferably 0.5 mol% or more, and further preferably 1 mol% or more. Moreover, it is preferable that content of an anionic group monomer unit is 50 mol% or less. When the content of the anionic group monomer unit exceeds 50 mol%, the degree of swelling of the cation exchange membrane increases, the effective charge density in the cation exchange membrane decreases, and the electrolyte permselectivity may decrease. There is. The content of the anionic group monomer unit is more preferably 30 mol% or less, and further preferably 20 mol% or less. When the vinyl alcohol copolymer is a mixture of a polymer containing an anionic group and a polymer containing no anionic group, or a mixture of a plurality of polymers containing an anionic group The content of anionic group monomer units refers to the ratio of the number of anionic group monomer units to the total number of monomer units in the mixture.

(陽イオン交換膜の製造方法)
本発明に用いる陽イオン交換膜の製造方法の特徴は、ビニルアルコール重合体セグメントと、アニオン性基を有するアニオン性重合体セグメントを構成成分とするビニルアルコール系共重合体(好ましくは、ブロック共重合体)を主成分とし、前記共重合体中の塩類を低減し、製膜することで相分離ドメインサイズを小さくしたことにある。ここで言う塩類とは、ビニルアルコール重合体セグメントを構成するポリビニルアルコール中に含まれる不純物である硫酸塩、酢酸塩や、アニオン性基を有するアニオン性重合体セグメントを構成する、アニオン性基を有するモノマーに不純物として含まれる、臭化物塩、塩化物塩、硝酸塩、リン酸塩などの金属塩が挙げられる。これらの塩類は、ビニルアルコール系共重合体に不可避的に不純物として混入するものであるが、本発明者らはこの不純物の混入が、製膜時において、ビニルアルコール系共重合体におけるアニオン性重合体セグメントのミクロ相分離を大きくして、膜特性に悪影響を及ぼすことを見出した。本発明においては、ビニルアルコール系共重合体に含まれる塩類の含有量を低下させて製膜することで、膜の相分離ドメインサイズを小さくすることができる。このときのビニルアルコール系共重合体の重量(P)に対する塩類の重量(C)の比(重量比)(C)/(P)は、4.5/95.5以下が必要で、より相分離ドメインサイズを小さくするには、4.0/96.0以下、さらに好ましくは、3.5/96.5以下である、重量比(C)/(P)が4.5/95.5を超えると、アニオン性基重合体セグメントのミクロ相分離ドメインサイズが大きくなり、陽イオン交換膜として使用したとき、イオンパス構造に変化が生じて、耐久性にある陽イオン交換膜を得ることができない。
(Method for producing cation exchange membrane)
A feature of the method for producing a cation exchange membrane used in the present invention is that a vinyl alcohol polymer segment and a vinyl alcohol copolymer (preferably a block copolymer) having an anionic polymer segment having an anionic group as constituent components. The phase separation domain size is reduced by forming a film by reducing the salt in the copolymer and forming a film. The salts referred to herein have an anionic group that constitutes an anionic polymer segment having an anionic group, such as sulfate and acetate which are impurities contained in the polyvinyl alcohol constituting the vinyl alcohol polymer segment. Examples thereof include metal salts such as bromide salts, chloride salts, nitrates, and phosphates contained as impurities in the monomer. These salts are inevitably mixed as impurities in the vinyl alcohol copolymer, and the present inventors have mixed the impurities into the anionic heavy weight in the vinyl alcohol copolymer during film formation. It has been found that the microphase separation of the coalesced segment is increased to adversely affect the membrane characteristics. In the present invention, the phase separation domain size of the membrane can be reduced by reducing the content of salts contained in the vinyl alcohol copolymer to form a membrane. At this time, the ratio (weight ratio) (C) / (P) of the weight (C) of the salt to the weight (P) of the vinyl alcohol copolymer is required to be 4.5 / 95.5 or less. In order to reduce the separation domain size, it is 4.0 / 96.0 or less, more preferably, 3.5 / 96.5 or less, and the weight ratio (C) / (P) is 4.5 / 95.5. If it exceeds 1, the microphase separation domain size of the anionic group polymer segment will increase, and when used as a cation exchange membrane, the ion path structure will change, and a durable cation exchange membrane cannot be obtained. .

ビニルアルコール系共重合体に含まれる塩類の含有量を所定値以下に減少させるには、特に限定されないが、例えば、ビニルアルコール重合体セグメントを構成するポリビニルアルコール中に含まれる不純物については、ポリマーフレークを水洗することにより減少させることができる。
また、アニオン性重合体セグメントを構成するポリマー中に含まれる不純物については
、該ポリマーを適当な溶媒に溶解したポリマー溶液を貧溶媒中で再沈殿精製することによ
り減少させて、ポリマーを精製することができる。
なお、本発明において、塩類の含有量は上記のように低減されておればよく、したがっ
て、ポリビニルアルコールとアニオン性重合体のどちらか一方または両方を精製して上記
に規定する含有量に低減させればよい。
Although there is no particular limitation on reducing the salt content contained in the vinyl alcohol copolymer to a predetermined value or less, for example, for impurities contained in polyvinyl alcohol constituting the vinyl alcohol polymer segment, polymer flakes may be used. Can be reduced by washing with water.
In addition, impurities contained in the polymer constituting the anionic polymer segment can be reduced by reprecipitation purification in a poor solvent of a polymer solution obtained by dissolving the polymer in an appropriate solvent, thereby purifying the polymer. Can do.
In the present invention, the salt content only needs to be reduced as described above. Therefore, one or both of polyvinyl alcohol and anionic polymer are purified to reduce the content to the above-described content. Just do it.

(製膜)
上記により塩類含有量を調整されたビニルアルコール系共重合体を、水、メタノール、エタノール、1−プロパノール、2−プロパノールなどの低級アルコール、又はこれらの混合溶媒から構成される溶媒に溶解して、ダイから押し出して膜状に成形し、溶媒を揮発除去することにより所定厚みの膜を形成することができる。皮膜をプレート上またはローラ上で成形する際の製膜温度は、特に限定されないが、通常、室温〜100℃程度の温度範囲が適当である。溶媒除去は、適宜加熱しておこなうことができる。
(Film formation)
The vinyl alcohol copolymer having a salt content adjusted as described above is dissolved in a solvent composed of water, a lower alcohol such as methanol, ethanol, 1-propanol, 2-propanol, or a mixed solvent thereof, A film having a predetermined thickness can be formed by extruding from a die, forming into a film, and removing the solvent by evaporation. The film forming temperature when the film is formed on a plate or a roller is not particularly limited, but a temperature range of about room temperature to about 100 ° C. is usually appropriate. Solvent removal can be performed by heating as appropriate.

(膜厚)
本発明に用いる陽イオン交換膜は、電気透析用電解質膜として必要な性能、機械的強度、ハンドリング性等の観点から、その膜厚が30〜1000μm程度であることが好ましい。膜厚が30μm未満である場合には、膜の機械的強度が不充分となる傾向がある。逆に、膜厚が1000μmを超える場合には、膜抵抗が大きくなり、充分なイオン交換性が発現しないため、電気透析効率が低くなる傾向となる。好ましくは40〜500μmであり、より好ましくは50〜300μmである。
(Film thickness)
The cation exchange membrane used in the present invention preferably has a thickness of about 30 to 1000 μm from the viewpoints of performance, mechanical strength, handling properties, etc. required as an electrolyte membrane for electrodialysis. When the film thickness is less than 30 μm, the mechanical strength of the film tends to be insufficient. On the other hand, when the film thickness exceeds 1000 μm, the membrane resistance increases and sufficient ion exchange properties are not exhibited, so that the electrodialysis efficiency tends to decrease. Preferably it is 40-500 micrometers, More preferably, it is 50-300 micrometers.

(架橋処理)
本発明に用いる陽イオン交換膜においては、製膜後、架橋処理を施すことが好ましい。架橋処理を施すことによって、得られる陽イオン交換膜の機械的強度が増大する。架橋処理の方法は、重合体の分子鎖同士を化学的に結合する方法でもよく、また、熱処理などにより物理的な結合を導入してもよく、特に限定されない。
(Crosslinking treatment)
The cation exchange membrane used in the present invention is preferably subjected to a crosslinking treatment after film formation. By performing the crosslinking treatment, the mechanical strength of the resulting cation exchange membrane is increased. The method for the crosslinking treatment is not particularly limited, and may be a method of chemically bonding the molecular chains of the polymer or introducing physical bonds by heat treatment or the like.

化学的に結合する場合には、通常、架橋処理剤を含む溶液に浸漬する方法などが用いら
れる。該架橋処理剤としては、グルタルアルデヒド、ホルムアルデヒド、グリオキザール
などのポリビニルアルコールのアセタール化剤が例示されるが、なかでもグルタルアルデヒド、グリオギザールなどのジアルデヒド架橋剤が好ましい。該架橋処理剤の濃度は、通常、溶液に対する架橋処理剤の体積濃度が0.001〜10体積%である。架橋反応は、上記のアルデヒドを、水、アルコールまたはそれらの混合溶媒中で、酸性条件下で、ポリビニルアルコール系共重合体を処理して、化学的に架橋結合を導入することにより行うことができる。架橋反応後、水洗して未反応のアルデヒド、酸などを取り除くのが好ましい。
When chemically bonding, a method of immersing in a solution containing a crosslinking agent is usually used. Examples of the crosslinking agent include polyvinyl alcohol acetalizing agents such as glutaraldehyde, formaldehyde, and glyoxal. Among them, dialdehyde crosslinking agents such as glutaraldehyde and gliogital are preferable. The concentration of the crosslinking agent is usually 0.001 to 10% by volume of the crosslinking agent relative to the solution. The crosslinking reaction can be performed by treating the polyvinyl alcohol copolymer with the above aldehyde in water, alcohol or a mixed solvent thereof under acidic conditions to chemically introduce a crosslinking bond. . After the crosslinking reaction, it is preferable to remove unreacted aldehyde, acid and the like by washing with water.

また、架橋処理の方法として、熱処理を行って分子鎖間に物理的な架橋を導入してもよ
い。熱処理を施すことによって、物理的な架橋が生じ、得られるイオン交換膜の機械的強
度が増大する。熱処理の方法は特に限定されず、熱風乾燥機などが一般に用いられる。熱
処理の温度は、特に限定されないが、ポリビニルアルコールの場合、50〜250℃であ
ることが好ましい。熱処理の温度が50℃未満だと、得られるイオン交換膜の機械的強度
が不足するおそれがある。該温度が80℃以上であることがより好ましく、100℃以上
であることがさらに好ましい。熱処理の温度が250℃を超えると、結晶性重合体が融解
するおそれがある。該温度が230℃以下であることがより好ましく、200℃以下であ
ることがさらに好ましい。
Moreover, as a method for the crosslinking treatment, physical crosslinking may be introduced between the molecular chains by performing a heat treatment. By performing the heat treatment, physical crosslinking occurs, and the mechanical strength of the resulting ion exchange membrane is increased. The method of heat treatment is not particularly limited, and a hot air dryer or the like is generally used. Although the temperature of heat processing is not specifically limited, In the case of polyvinyl alcohol, it is preferable that it is 50-250 degreeC. If the temperature of the heat treatment is less than 50 ° C., the mechanical strength of the obtained ion exchange membrane may be insufficient. The temperature is more preferably 80 ° C. or higher, and further preferably 100 ° C. or higher. When the temperature of the heat treatment exceeds 250 ° C., the crystalline polymer may be melted. The temperature is more preferably 230 ° C. or less, and further preferably 200 ° C. or less.

前記製造方法においては、熱処理と化学的な架橋処理の両方を行ってもよいし、そのい
ずれかのみを行ってもよい。熱処理と架橋処理を両方行う場合、熱処理の後に架橋処理を
行ってもよいし、架橋処理の後に熱処理を行ってもよいし、両者を同時に行ってもよい。
熱処理の後に架橋処理を行うこと、特に、ビニルアルコール系共重合体溶液を溶解した溶液から製膜して得られる皮膜を、100℃以上の温度で熱処理した後、水、アルコール又はそれらの混合溶媒中で、酸性条件下、ジアルデヒド化合物による架橋処理を行うことが得られるイオン交換膜の機械的強度の面から好ましい。
In the manufacturing method, both heat treatment and chemical crosslinking treatment may be performed, or only one of them may be performed. When both the heat treatment and the crosslinking treatment are performed, the crosslinking treatment may be performed after the heat treatment, the heat treatment may be performed after the crosslinking treatment, or both may be performed simultaneously.
After the heat treatment, a crosslinking treatment is performed. In particular, a film obtained by forming a film from a solution in which a vinyl alcohol copolymer solution is dissolved is heat-treated at a temperature of 100 ° C. or higher, and then water, alcohol, or a mixed solvent thereof. Among them, it is preferable from the viewpoint of mechanical strength of an ion exchange membrane obtained by performing a crosslinking treatment with a dialdehyde compound under acidic conditions.

(イオン交換容量)
電気透析用の陽イオン交換膜として使用するのに十分なイオン交換性を発現するために
は、得られるビニルアルコール系共重合体のイオン交換容量は0.30meq/g以上であることが好ましく、0.50meq/g以上であることがより好ましい。ビニルアルコール系共重合体のイオン交換容量の上限については、イオン交換容量が大きくなりすぎると親水性が高まり膨潤度の抑制が困難となるので、3.0meq/g以下であるのが好ましい。
(Ion exchange capacity)
In order to express sufficient ion exchange properties for use as a cation exchange membrane for electrodialysis, the ion exchange capacity of the resulting vinyl alcohol copolymer is preferably 0.30 meq / g or more, More preferably, it is 0.50 meq / g or more. The upper limit of the ion exchange capacity of the vinyl alcohol copolymer is preferably 3.0 meq / g or less because if the ion exchange capacity becomes too large, hydrophilicity increases and it becomes difficult to suppress the degree of swelling.

(原料乳類)
本発明の方法に適用できる原料乳類としては、例えば、全乳、ホエー、パーミェート、乳糖母液、脱脂乳、バターミルク等を挙げることができる。全乳には、乳牛、山羊、羊等の乳が用いられる。ホエーは、全乳または脱脂乳に酸を加えるかあるいはレンネツトを加えて凝固させ、カゼインやチーズを製造する際に副生される凝固物を除いた液体であって、その種類には、酸カゼインホエー、レンネツトカゼインホエー、共沈カゼインホエー、チーズホエー等があり、これらのいずれを用いてもよい。また、パーミェートは、全乳、ホエー、脱脂乳、バターミルクを限外濾過した際に得られる透過液をいう。乳糖母液とは、ホエーもしくはホエーを限外濾過処理して得られるパーミェートから粗製乳糖を製造する際に副生される粗製乳糖母液と、粗製乳糖を原料として更に精製乳糖を製造する際に副生される精製乳糖母液をいう。また、脱脂乳は、全乳から乳脂肪を分離したものであり、バターミルクはこの分離した乳脂肪を原料として、バターを製造する際に副生されるものをいう。本発明では、これらの原料乳類に対して電気透析処理することにより、原料乳類中のミネラルの少なくとも一部を除去することにより、ミネラル濃度を調整することができる。
(Raw milk)
Examples of raw milk applicable to the method of the present invention include whole milk, whey, permeate, lactose mother liquor, skim milk, butter milk and the like. Milk such as cows, goats and sheep is used for whole milk. Whey is a liquid that removes the coagulum produced as a by-product when producing casein or cheese by adding acid or rennet to whole milk or skimmed milk and coagulating it. There are whey, rennet casein whey, co-precipitated casein whey, cheese whey and the like, and any of these may be used. Permeate refers to a permeate obtained by ultrafiltration of whole milk, whey, skim milk, and buttermilk. The lactose mother liquor is a crude lactose mother liquor produced as a by-product when producing crude lactose from whey or permeate obtained by ultrafiltration treatment of whey, and a by-product produced when crude lactose is used as a raw material to produce further purified lactose. Purified lactose mother liquor. In addition, skim milk is obtained by separating milk fat from whole milk, and butter milk is produced as a by-product when producing butter using the separated milk fat as a raw material. In the present invention, the mineral concentration can be adjusted by removing at least part of the minerals in the raw milk by electrodialyzing these raw milks.

(原料乳類中に含まれるミネラル)
原料乳類中に含まれ、電気透析により除去可能なミネラルとしては、カリウム、カルシウム、ナトリウム、マグネシウムなどが挙げられる。本発明の脱塩方法によれば、これらのミネラルの少なくとも一部が除去されるが、原料乳の用途により除去率は適宜選択されるが、通常、50〜80質量%除去される。
(Minerals contained in raw milk)
Examples of minerals that are contained in raw milk and can be removed by electrodialysis include potassium, calcium, sodium, magnesium, and the like. According to the desalting method of the present invention, at least a part of these minerals is removed, but the removal rate is appropriately selected depending on the use of raw material milk, but usually 50 to 80% by mass is removed.

(電気透析処理において用いられる陰イオン交換膜)
本発明における電気透析処理において、上述の陽イオン交換膜とともに用いられる陰イオン交換膜としては、特に限定はなく、第4級アンモニウム基等の強塩基性基を有するポリマーからなる膜、第1級アミノ基、第2級アミノ基、第3級アミノ基等の弱塩基性官能基を有するポリマーからなる膜を適宜選択して使用できる。
(Anion exchange membrane used in electrodialysis treatment)
In the electrodialysis treatment of the present invention, the anion exchange membrane used together with the cation exchange membrane is not particularly limited, and is a membrane made of a polymer having a strongly basic group such as a quaternary ammonium group, a primary grade. A film made of a polymer having a weakly basic functional group such as an amino group, a secondary amino group, or a tertiary amino group can be appropriately selected and used.

(電気透析)
本発明における乳類の脱塩方法において、電気透析槽は、陽極と陰極との間に少なくとも一方が本発明における陽イオン膜を用いて、陽イオン交換膜と陰イオン交換膜とを配列して構成される基本構造を有するものであれば、公知の電気透析槽を特に制限なく用いうる。例えば、陰イオン交換膜及び陽イオン交換膜を交互に配列しこれらのイオン交換膜と室枠とによって脱塩室と濃縮室とが形成された基本構造よりなるフィルタープレス型やユニットセル型などのような電気透析槽が好適に使用できる。なお、かかる電気透析槽に用いる膜数あるいは脱塩室および濃縮室の流路間隔(膜間隔)等は、処理される硝酸イオンおよび異種の陰イオンを含有する被処理液の種類や処理量により適宜選定される。
(Electrodialysis)
In the method for desalinating milk in the present invention, the electrodialysis tank has a cation exchange membrane and an anion exchange membrane arranged at least one of the cation membrane in the present invention between the anode and the cathode. A known electrodialysis tank can be used without particular limitation as long as it has a basic structure. For example, an anion exchange membrane and a cation exchange membrane are alternately arranged, such as a filter press type or unit cell type having a basic structure in which a desalination chamber and a concentration chamber are formed by the ion exchange membrane and a chamber frame. Such an electrodialysis tank can be preferably used. The number of membranes used in such an electrodialysis tank or the channel spacing (membrane spacing) between the desalting chamber and the concentrating chamber depends on the type and amount of the liquid to be treated containing nitrate ions and different types of anions to be treated. It is selected appropriately.

以下、本発明を更に詳細に説明するため実施例を挙げるが、本発明はこれらの実施例に限定されるものではない。なお、実施例中、特に断りのない限り「%」および「部」は重量基準である。   Hereinafter, examples will be given to describe the present invention in more detail, but the present invention is not limited to these examples. In the examples, “%” and “parts” are based on weight unless otherwise specified.

実施例および比較例に示す陽イオン交換膜の特性は、以下の方法により測定した。   The characteristics of the cation exchange membranes shown in Examples and Comparative Examples were measured by the following methods.

1)膜含水率(H)
イオン交換膜の乾燥重量を予め測定しておき、その後、脱イオン水に浸漬し膨潤平衡に達したところで湿潤重量を測定した。膜含水率(H)は下式により算出した。H=<(W−D)/ 1.0> /<(W−D)/ 1.0+(D/1.3)>
ここで1.0と1.3はそれぞれ水とポリマーの比重を示している。
・H:膜含水率[−]
・D:膜の乾燥重量[g]
・W:膜の湿潤重量[g]
1) Membrane moisture content (H)
The dry weight of the ion exchange membrane was measured in advance, and then the wet weight was measured when it was immersed in deionized water and reached a swelling equilibrium. The membrane water content (H) was calculated by the following equation. H = <(W w -D w ) / 1.0> / <(W w -D w) / 1.0+ (D w /1.3)>
Here, 1.0 and 1.3 indicate the specific gravity of water and polymer, respectively.
-H: membrane water content [-]
Dw : dry weight of membrane [g]
W w : wet weight of the film [g]

2)陽イオン交換容量の測定
陽イオン交換膜を1mol/LのHCl水溶液に10時間以上浸漬する。その後、1mol/LのNaNO水溶液で水素イオン型をナトリウムイオン型に置換させ、遊離した水素イオンを酸-塩基滴定により定量した(Amol)。
2) Measurement of cation exchange capacity A cation exchange membrane is immersed in a 1 mol / L aqueous HCl solution for 10 hours or more. Thereafter, the hydrogen ion type was replaced with the sodium ion type with 1 mol / L NaNO 3 aqueous solution, and the liberated hydrogen ions were quantified by acid-base titration (Amol).

次に、同じ陽イオン交換膜を1mol/LのNaCl水溶液に4時間以上浸漬し、イオン交換水で十分に水洗したのち熱風乾燥機中で105℃、8時間乾燥し、乾燥時の重さW(g)を測定した。
イオン交換容量は次式により算出した。
・イオン交換容量=A×1000/W [mmol/g−乾燥膜]
Next, the same cation exchange membrane is immersed in a 1 mol / L NaCl aqueous solution for 4 hours or more, washed thoroughly with ion exchange water, dried in a hot air drier at 105 ° C. for 8 hours, and the weight when dried W (G) was measured.
The ion exchange capacity was calculated by the following formula.
・ Ion exchange capacity = A × 1000 / W [mmol / g-dry membrane]

3)ポリビニルアルコール系共重合体中の塩の測定
ポリビニルアルコール系共重合体中の塩類の量は、ポリビニルアルコール系共重合体の架橋前の皮膜をメタノール溶液にてソックスレー抽出を行い、抽出物を乾固後、イオンクロマトグラフィICS−5000(DIONEX社製)により測定を行った。
3) Measurement of salt in polyvinyl alcohol copolymer The amount of salts in the polyvinyl alcohol copolymer was determined by Soxhlet extraction of the film before crosslinking of the polyvinyl alcohol copolymer with a methanol solution. After drying, measurement was performed by ion chromatography ICS-5000 (manufactured by DIONEX).

4)膜抵抗の測定
膜抵抗は、図2に示される白金黒電極板を有する2室セル中に陽イオン交換膜を挟み、膜の両側に0.5mol/L−NaCl溶液を満たし、交流ブリッジ(周波数10サイクル/秒)により25℃における電極間の抵抗を測定し、該電極間抵抗と陽イオン交換膜を設置しない場合の電極間抵抗との差により求めた。上記測定に使用する膜は、あらかじめ0.5mol/L−NaCl溶液中で平衡にしたものを用いた。
4) Measurement of membrane resistance The membrane resistance was measured by sandwiching a cation exchange membrane in a two-chamber cell having a platinum black electrode plate as shown in Fig. 2, and filling a 0.5 mol / L-NaCl solution on both sides of the membrane. The resistance between the electrodes at 25 ° C. was measured by (frequency 10 cycles / second), and was determined by the difference between the resistance between the electrodes and the resistance between the electrodes when no cation exchange membrane was installed. The membrane used for the above measurement was previously equilibrated in a 0.5 mol / L-NaCl solution.

5)ドメインサイズの測定
蒸留水に浸漬した陽イオン交換膜を一辺1cmの正方形に切り出して測定試料を作製した。この測定試料を、酢酸鉛(II)で染色した後、TEM(透過電子顕微鏡)を用いて観察し、測定試料中の粒子群についての画像を得た。得られた画像について、三谷商事株式会社製画像処理ソフト「WINROOF」を用いて画像処理を行い、各々の粒子の最大粒子径を求めた。約400個の粒子について最大粒子径を求め、最大粒子径の累積頻度が50%である粒子径を、陽イオン交換膜のアニオン性基ポリマーセグメントのドメインサイズとした。得られたアニオン性ブロック共重合体の特性を表3に示す。
5) Measurement of domain size A cation exchange membrane immersed in distilled water was cut into a 1 cm square to prepare a measurement sample. This measurement sample was stained with lead acetate (II) and then observed using a TEM (transmission electron microscope) to obtain an image of a particle group in the measurement sample. The obtained image was subjected to image processing using image processing software “WINROOF” manufactured by Mitani Corporation, and the maximum particle size of each particle was determined. The maximum particle size was determined for about 400 particles, and the particle size at which the cumulative frequency of the maximum particle size was 50% was defined as the domain size of the anionic group polymer segment of the cation exchange membrane. Table 3 shows the properties of the obtained anionic block copolymer.

<PVA−1(分子末端にメルカプト基を有するポリビニルアルコール系共重合体の合成)の作製>
特開昭59−187003号公報に記載された方法によって、表1に示す分子末端にメルカプト基を有するポリビニルアルコール(PVA−1)を合成した。PVA−1の重合度およびけん化度を表1に示す。
<Preparation of PVA-1 (Synthesis of polyvinyl alcohol copolymer having a mercapto group at the molecular terminal)>
Polyvinyl alcohol (PVA-1) having a mercapto group at the molecular end shown in Table 1 was synthesized by the method described in JP-A-59-187003. Table 1 shows the polymerization degree and saponification degree of PVA-1.

Figure 2014198002
Figure 2014198002

<NaSS−1(アニオン性重合体)の作製>
表2に示すポリスチレンスルホン酸ナトリウムモノマー(NaSS:東ソー製)をそのまま用いた。塩類の含有量はイオンクロマトグラフィICS−5000(DIONEX社製)により測定を行った。なお、表2に示す全塩量以外のモノマー中の不純物は水分とした。
<Preparation of NaSS-1 (anionic polymer)>
The polystyrene sulfonate sodium monomer (NaSS: manufactured by Tosoh Corporation) shown in Table 2 was used as it was. The salt content was measured by ion chromatography ICS-5000 (manufactured by DIONEX). The impurities in the monomer other than the total salt amount shown in Table 2 were moisture.

<NaSS−2の作製>
ポリスチレンスルホン酸ナトリウムモノマー(NaSS:東ソー製)を1000gと純水950g、水酸化ナトリウム40g、硝酸ナトリウム、1gを60℃で1時間溶解させ、20℃に冷却して再結晶を行った。その後、遠心ろ過によりポリスチレンスルホン酸モノマーの結晶を分離し、結晶を乾燥させ表2に示すNaSS−2(精製ポリスチレンスルホン酸モノマー)を得た。塩類の含有量はイオンクロマトグラフィICS−5000(DIONEX社製))により測定を行った。
<Preparation of NaSS-2>
1000 g of sodium polystyrene sulfonate monomer (NaSS: manufactured by Tosoh Corp.), 950 g of pure water, 40 g of sodium hydroxide, 1 g of sodium nitrate were dissolved at 60 ° C. for 1 hour, cooled to 20 ° C. and recrystallized. Thereafter, the polystyrenesulfonic acid monomer crystals were separated by centrifugal filtration, and the crystals were dried to obtain NaSS-2 (purified polystyrenesulfonic acid monomer) shown in Table 2. The salt content was measured by ion chromatography ICS-5000 (manufactured by DIONEX).

Figure 2014198002
Figure 2014198002

<P−1(アニオン性ブロック共重合体)の合成>
還流冷却管、攪拌翼を備え付けた1L四つ口セパラブルフラスコに、水660g、末端にメルカプト基を有するビニルアルコール系重合体として表1に示すPVA−1を80gと、NaSS−1を46.6g仕込み、攪拌下95℃まで加熱して該ビニルアルコール系重合体とNaSS−1を溶解した。また、水溶液中に窒素をバブリングしながら30分間系内を窒素置換した。窒素置換後、90℃まで冷却し、上記水溶液に2,2′−アゾビス[2−メチル−N(2−ヒドロキシエチル)プロピオンアミド]5.4%溶液13mlを1.5時間かけて逐次的に添加してブロック共重合を開始、進行させた後、系内温度を90
℃に1時間維持して重合をさらに進行させ、ついで冷却して、固形分濃度15%のPVA−(b)−p−スチレンスルホン酸ナトリウム水溶液を得た。得られた水溶液の一部を乾燥した後、重水に溶解し、400MHzでのH−NMR測定に付した結果、パラスチレンスルホン酸ナトリウム単位の変性量は10モル%であった。得られたアニオン性ブロック共重合体の特性を表3に示す。
<Synthesis of P-1 (anionic block copolymer)>
In a 1 L four-necked separable flask equipped with a reflux condenser and a stirring blade, 660 g of water, 80 g of PVA-1 shown in Table 1 as a vinyl alcohol polymer having a mercapto group at the end, and 46. 6 g was charged and heated to 95 ° C. with stirring to dissolve the vinyl alcohol polymer and NaSS-1. The system was purged with nitrogen for 30 minutes while bubbling nitrogen into the aqueous solution. After nitrogen substitution, the solution was cooled to 90 ° C., and 13 ml of a 5.4% solution of 2,2′-azobis [2-methyl-N (2-hydroxyethyl) propionamide] was sequentially added to the above aqueous solution over 1.5 hours. After the addition and start and advance of block copolymerization, the system temperature is increased to 90.
The polymerization was further continued by maintaining at 1 ° C. for 1 hour, and then cooled to obtain a PVA- (b) -p-sodium styrenesulfonate aqueous solution having a solid content concentration of 15%. A part of the obtained aqueous solution was dried, dissolved in heavy water, and subjected to 1 H-NMR measurement at 400 MHz. As a result, the amount of modification of the sodium parastyrenesulfonate unit was 10 mol%. Table 3 shows the properties of the obtained anionic block copolymer.

<P−2の合成>
使用するアニオン性モノマーとしてNaSS−2を表3に示す組成で使用した。これ以外はP−1と同様の方法により固形分濃度15%のPVA−(b)−p−スチレンスルホン酸ナトリウム水溶液を得た。
<Synthesis of P-2>
NaSS-2 was used in the composition shown in Table 3 as an anionic monomer to be used. Except for this, a PVA- (b) -p-sodium styrenesulfonate aqueous solution having a solid concentration of 15% was obtained in the same manner as P-1.

<P−3の合成>
還流冷却管、攪拌翼を備え付けた1L四つ口セパラブルフラスコに、水616g、末端にメルカプト基を有するビニルアルコール系重合体として表1に示すPVA−1を80gと、NaSS−1を46.6gと、を仕込み、攪拌下95℃まで加熱して該ビニルアルコール系重合体とNaSS−1を溶解した後、室温まで冷却した。該水溶液に1/2規定の硫酸を添加してpHを3.0に調整した。90℃まで加温し、また、水溶液中に窒素をバブリングしながら30分間系内を窒素置換した。窒素置換後、上記水溶液に過硫酸カリウムの2.5%水溶液63mLを1.5時間かけて逐次的に添加してブロック共重合を開始、進行させた後、系内温度を90℃に1時間維持して重合をさらに進行させ、ついで冷却して、固形分濃度15%のPVA−(b)−p−スチレンスルホン酸ナトリウムブロック共重合体水溶液を得た。得られた水溶液の一部を乾燥した後、重水に溶解し、400MHzでのH−NMR測定に付した結果、p−スチレンスルホン酸ナトリウム単位の変性量は10モル%であった。得られたアニオン性ブロック共重合体の特性を表3に示す。
<Synthesis of P-3>
In a 1 L four-necked separable flask equipped with a reflux condenser and a stirring blade, 616 g of water, 80 g of PVA-1 shown in Table 1 as a vinyl alcohol polymer having a mercapto group at the end, and 46. NaSS-1 were obtained. 6 g was charged and heated to 95 ° C. with stirring to dissolve the vinyl alcohol polymer and NaSS-1, and then cooled to room temperature. 1/2 N sulfuric acid was added to the aqueous solution to adjust the pH to 3.0. The system was heated to 90 ° C., and the system was purged with nitrogen for 30 minutes while bubbling nitrogen into the aqueous solution. After nitrogen substitution, 63 mL of a 2.5% aqueous solution of potassium persulfate was sequentially added to the aqueous solution over 1.5 hours to start and proceed with block copolymerization, and then the system temperature was increased to 90 ° C. for 1 hour. The polymerization was further continued to proceed, followed by cooling to obtain a PVA- (b) -p-sodium styrenesulfonate block copolymer aqueous solution having a solid concentration of 15%. A part of the obtained aqueous solution was dried, dissolved in heavy water, and subjected to 1 H-NMR measurement at 400 MHz. As a result, the amount of modification of the sodium p-styrenesulfonate unit was 10 mol%. Table 3 shows the properties of the obtained anionic block copolymer.

<P−4の合成>
使用するアニオン性モノマーとしてNaSS−2を表3に示す組成で使用した。これ以外はP−3と同様の方法により固形分濃度15%のPVA−(b)−p−スチレンスルホン酸ナトリウム水溶液を得た。得られたアニオン性ブロック共重合体の特性を表3に示す。
<Synthesis of P-4>
NaSS-2 was used in the composition shown in Table 3 as an anionic monomer to be used. Except for this, a PVA- (b) -p-sodium styrenesulfonate aqueous solution having a solid concentration of 15% was obtained in the same manner as P-3. Table 3 shows the properties of the obtained anionic block copolymer.

<P−5の合成>
アニオン性モノマーとしてNaSS−2を使用し、表3に示す組成にて、P−1と同様の方法により固形分濃度17%のPVA−(b)−p−スチレンスルホン酸ナトリウム水溶液を得た。得られたアニオン性ブロック共重合体の特性を表3に示す。
<Synthesis of P-5>
NaSS-2 was used as the anionic monomer, and a PVA- (b) -p-sodium styrenesulfonate aqueous solution having a solid content concentration of 17% was obtained by the same method as P-1 with the composition shown in Table 3. Table 3 shows the properties of the obtained anionic block copolymer.

<P−6(アニオン性ランダム共重合体)の合成>
攪拌機、温度センサー、滴下漏斗および還流冷却管を備え付けた6Lのセパラブルフラスコに、酢酸ビニル2450g、メタノール762g、および2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム(AMPS)27gを仕込み、攪拌下に系内を窒素置換した後、内温を60℃まで上げた。この系に2,2’−アゾビスイソブチロニトリル(AIBN)を0.8g含有するメタノール20gを添加し、重合反応を開始した。重合開始時点より2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム(AMPS)を25質量%含有するメタノール溶液568gを系内に添加しながら、4時間重合反応
を行った後、重合反応を停止した。重合反応を停止した時点における系内の固形分濃度、すなわち、重合反応スラリー全体に対する固形分の含有率は30質量%であった。ついで、系内にメタノール蒸気を導入することにより、未反応の酢酸ビニル単量体を追い出し、ビニルエステル共重合体を30質量%含有するメタノール溶液を得た。
<Synthesis of P-6 (anionic random copolymer)>
A 6 L separable flask equipped with a stirrer, temperature sensor, dropping funnel and reflux condenser was charged with 2450 g of vinyl acetate, 762 g of methanol, and 27 g of sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) under stirring. After the system was purged with nitrogen, the internal temperature was raised to 60 ° C. To this system, 20 g of methanol containing 0.8 g of 2,2′-azobisisobutyronitrile (AIBN) was added to initiate the polymerization reaction. While adding 568 g of methanol solution containing 25% by mass of sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) to the system from the start of polymerization, the polymerization reaction was stopped for 4 hours, and then the polymerization reaction was stopped. The solid content concentration in the system when the polymerization reaction was stopped, that is, the solid content with respect to the entire polymerization reaction slurry was 30% by mass. Subsequently, methanol vapor was introduced into the system to drive out unreacted vinyl acetate monomer, thereby obtaining a methanol solution containing 30% by mass of a vinyl ester copolymer.

このビニルエステル共重合体を30質量%含有するメタノール溶液に、該共重合体中の酢酸ビニル単位に対する水酸化ナトリウムのモル比が0.02、ビニルエステル共重合体の固形分濃度が30質量%となるように、メタノール、水酸化ナトリウムを10質量%含有するメタノール溶液をこの順序で攪拌下に加え、40℃でけん化反応を開始した。   In a methanol solution containing 30% by mass of this vinyl ester copolymer, the molar ratio of sodium hydroxide to vinyl acetate units in the copolymer is 0.02, and the solid content concentration of the vinyl ester copolymer is 30% by mass. Then, a methanol solution containing 10% by mass of methanol and sodium hydroxide was added in this order with stirring, and the saponification reaction was started at 40 ° C.

けん化反応の進行に伴ってゲル化物が生成した直後に、これを反応系から取り出して粉砕し、ついで、ゲル化物が生成してから1時間が経過した時点で、この粉砕物に酢酸メチルを添加することにより中和を行い、膨潤状態のポリビニルアルコール−ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム)のランダム共重合体の水溶液を得た。この膨潤したアニオン性重合体に対して質量基準で6倍量(浴比6倍)のメタノールを加え、還流下に1時間洗浄し、該重合体をろかした。該重合体を65℃で16時間乾燥した。得られた重合体を重水に溶解し、400MHzでのH−NMR測定を
行ったところ、該アニオン性重合体中のアニオン性単量体の含有量、すなわち、該重合体中の単量体単位の総数に対する2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム単量体単位の数の割合は5モル%であった。得られたアニオン性ランダム共重合体の特性を表4に示す。
Immediately after the saponification reaction has occurred, a gelled product is formed and taken out from the reaction system and pulverized. Then, when 1 hour has passed since the gelated product was formed, methyl acetate was added to the pulverized product. By carrying out neutralization, an aqueous solution of a random copolymer of polyvinyl alcohol-poly (sodium 2-acrylamido-2-methylpropanesulfonate) in a swollen state was obtained. To this swollen anionic polymer, 6 times the amount of methanol (bath ratio 6 times) of methanol was added and washed under reflux for 1 hour to filter the polymer. The polymer was dried at 65 ° C. for 16 hours. When the obtained polymer was dissolved in heavy water and subjected to 1 H-NMR measurement at 400 MHz, the content of the anionic monomer in the anionic polymer, that is, the monomer in the polymer The ratio of the number of sodium 2-acrylamido-2-methylpropanesulfonate monomer units to the total number of units was 5 mol%. Table 4 shows the properties of the obtained anionic random copolymer.

Figure 2014198002
Figure 2014198002

Figure 2014198002
Figure 2014198002

<CEM−1作製>
P−3の樹脂を濃度10wt%まで希釈し、樹脂溶液の1倍の体積のメタノールにより再沈して塩類を除去した樹脂を取り出した。次いで、必要量の蒸留水を加えて濃度15wt%の水溶液を調整した。この水溶液を縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、皮膜を作製した。
<CEM-1 production>
The resin of P-3 was diluted to a concentration of 10 wt%, and the resin from which salts were removed by reprecipitation with 1 volume of methanol of the resin solution was taken out. Next, a necessary amount of distilled water was added to prepare an aqueous solution having a concentration of 15 wt%. This aqueous solution was poured into a cast board made of acrylic having a length of 270 mm and a width of 210 mm to remove excess liquid and bubbles, and then dried on a hot plate at 50 ° C. for 24 hours to prepare a film.

こうして得られた皮膜を、160℃で30分間熱処理し、物理的な架橋を生じさせた。ついで、皮膜を2mol/Lの硫酸ナトリウムの電解質水溶液に24時間浸漬させた。該水溶液にそのpHが1になるように濃硫酸を加えた後、1.0体積%グルタルアルデヒド水溶液に皮膜を浸漬し、25℃で24時間スターラーを用いて撹拌し、架橋処理を行った。ここで、グルタルアルデヒド水溶液としては、石津製薬株式会社製「グルタルアルデヒド」(25体積%)を水で希釈したものを用いた。架橋処理の後、皮膜を脱イオン水に浸漬し、途中数回脱イオン水を交換しながら、皮膜が膨潤平衡に達するまで浸漬させ、陽イオン交換膜を得た。   The film thus obtained was heat treated at 160 ° C. for 30 minutes to cause physical crosslinking. Subsequently, the film was immersed in an aqueous electrolyte solution of 2 mol / L sodium sulfate for 24 hours. Concentrated sulfuric acid was added to the aqueous solution so that the pH was 1, and then the film was immersed in a 1.0% by volume glutaraldehyde aqueous solution and stirred with a stirrer at 25 ° C. for 24 hours to carry out a crosslinking treatment. Here, as the glutaraldehyde aqueous solution, a product obtained by diluting “glutaraldehyde” (25% by volume) manufactured by Ishizu Pharmaceutical Co., Ltd. with water was used. After the crosslinking treatment, the film was immersed in deionized water, and the film was immersed until the film reached a swelling equilibrium while exchanging the deionized water several times in the middle to obtain a cation exchange membrane.

(イオン交換膜の評価)
このようにして作製した陽イオン交換膜を、所望の大きさに裁断し、測定試料を作製した。得られた測定試料を用い、上記方法にしたがって、膜含水率、陽イオン交換容量、膜抵抗の測定、相分離サイズの測定を行なった。得られた結果を表5に示す。
(Evaluation of ion exchange membrane)
The cation exchange membrane thus prepared was cut into a desired size to prepare a measurement sample. Using the obtained measurement sample, the membrane water content, the cation exchange capacity, the membrane resistance, and the phase separation size were measured according to the above methods. The results obtained are shown in Table 5.

<CEM−2作製>
P−3の樹脂を濃度10wt%まで希釈し、樹脂溶液の2倍の体積のメタノールにより再沈して塩類を除去した樹脂を取り出した。次いで、必要量の蒸留水を加えて濃度15wt%の水溶液を調整した。この水溶液を縦270mm×横210mmのアクリル製キャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、皮膜を作製した。これ以外は、CEM−1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM-2 production>
The resin of P-3 was diluted to a concentration of 10 wt%, and the resin from which salts were removed by reprecipitation with twice the volume of methanol as the resin solution was taken out. Next, a necessary amount of distilled water was added to prepare an aqueous solution having a concentration of 15 wt%. This aqueous solution was poured onto an acrylic cast plate having a length of 270 mm and a width of 210 mm to remove excess liquid and bubbles, and then dried on a hot plate at 50 ° C. for 24 hours to prepare a film. Except for this, the membrane characteristics of the cation exchange membrane were measured in the same manner as CEM-1. The obtained measurement results are shown in Table 5.

<CEM−3作製>
(イオン交換膜の作製)
P−2の水溶液を縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、皮膜を作製した。これ以外は、CEM−1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM-3 production>
(Production of ion exchange membrane)
An aqueous solution of P-2 was poured onto an acrylic cast plate having a length of 270 mm and a width of 210 mm to remove excess liquid and bubbles, and then dried on a hot plate at 50 ° C. for 24 hours to prepare a film. Except for this, the membrane characteristics of the cation exchange membrane were measured in the same manner as CEM-1. The obtained measurement results are shown in Table 5.

<CEM−4作製>
CEM−3において、熱処理温度を表5に示すように変更した以外は、CEM−3と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM-4 production>
In CEM-3, the membrane characteristics of the cation exchange membrane were measured in the same manner as in CEM-3 except that the heat treatment temperature was changed as shown in Table 5. The obtained measurement results are shown in Table 5.

<CEM−5作製>
P−3の樹脂を濃度10wt%まで希釈し、樹脂溶液の5倍の体積のメタノールにより再沈して塩類を除去した樹脂を取り出した。次いで、必要量の蒸留水を加えて濃度15wt%の水溶液を調整した。この水溶液を縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間燥させることにより、皮膜を作製した。これ以外は、CEM−1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM-5 production>
The resin of P-3 was diluted to a concentration of 10 wt%, and the resin from which salts were removed by reprecipitation with 5 times the volume of methanol of the resin solution was taken out. Next, a necessary amount of distilled water was added to prepare an aqueous solution having a concentration of 15 wt%. This aqueous solution was poured onto an acrylic cast plate having a length of 270 mm and a width of 210 mm to remove excess liquid and bubbles, and then dried on a hot plate at 50 ° C. for 24 hours to prepare a film. Except for this, the membrane characteristics of the cation exchange membrane were measured in the same manner as CEM-1. The obtained measurement results are shown in Table 5.

<CEM−6作製>
P−3の樹脂を濃度10wt%まで希釈し、樹脂溶液の10倍の体積のメタノールにより再沈して塩類を除去した樹脂を取り出した。次いで、必要量の蒸留水を加えて濃度15wt%の水溶液を調整した。この水溶液を縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、皮膜を作製した。これ以外は、CEM−1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM-6 production>
The P-3 resin was diluted to a concentration of 10 wt%, and the resin from which salts were removed by reprecipitation with 10 times the volume of methanol of the resin solution was taken out. Next, a necessary amount of distilled water was added to prepare an aqueous solution having a concentration of 15 wt%. This aqueous solution was poured into a cast board made of acrylic having a length of 270 mm and a width of 210 mm to remove excess liquid and bubbles, and then dried on a hot plate at 50 ° C. for 24 hours to prepare a film. Except for this, the membrane characteristics of the cation exchange membrane were measured in the same manner as CEM-1. The obtained measurement results are shown in Table 5.

<CEM−7〜11作製>
陽イオン交換樹脂を表5に示す内容に変更した以外はCEM−1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM-7-11 production>
Membrane characteristics of the cation exchange membrane were measured in the same manner as CEM-1 except that the cation exchange resin was changed to the contents shown in Table 5. The obtained measurement results are shown in Table 5.

Figure 2014198002
Figure 2014198002

図1(a)、図1(b)、図1(c)、図1(d)および図1(e)は、塩含有量の異なるブロック共重合体を用いた陽イオン交換膜のTEM写真を示している(塩含有量は、表5を参照)。図1(a)〜図1(e)のTEM写真から、相分離構造は塩含有量により変化し、塩含有重量(C)/ブロック共重合体の重量(P)の減少と共にドメインサイズが小さくなることがわかる。特に変性量10モル%での含有塩の重量(C)が最も少ない図1(b)[CEM−7]では、膜の相溶性が向上し、ドメインサイズが4nmと非常に小さいものであった。一方で、含有塩重量(C)の最も多い図1(C)[CEM−8]では、相分離が激しく空隙が発生した。   1 (a), 1 (b), 1 (c), 1 (d) and 1 (e) are TEM photographs of cation exchange membranes using block copolymers having different salt contents. (See Table 5 for salt content). From the TEM photographs of FIGS. 1 (a) to 1 (e), the phase separation structure varies depending on the salt content, and the domain size decreases with decreasing salt-containing weight (C) / block copolymer weight (P). I understand that In particular, in FIG. 1 (b) [CEM-7] in which the weight (C) of the contained salt is the smallest at a modification amount of 10 mol%, the compatibility of the film is improved and the domain size is very small, 4 nm. . On the other hand, in FIG. 1 (C) [CEM-8] having the largest salt content (C), phase separation was severe and voids were generated.

表5の結果からは、特に塩含有重量(C)が4.0%以下のブロック共重合体(P)を用いた陽イオン交換膜は、ドメインサイズが150nm以下となり、膜抵抗が低い膜となり、陽イオン交換膜として優れていることが判る(CEM−1〜7)。さらに、塩含有重量(C)が3.5%以下の膜は、ドメインサイズが130nm以下であり、膜抵抗が低くなることがわかる(CEM−2〜7)。一方で、塩含有重量が4.0%よりも多いブロック共重合体を用いた陽イオン交換膜はドメインサイズが150nmよりも大きく、高い膜抵抗を有し、陽イオン交換膜としての特性が発現しなかった(CEM−8〜10)。特に、塩含有量(C)の多いものは膜のポリマーセグメントの相分離が激しく、イオン交膜全体で空隙が発生し、イオン交換膜として満足のいく特性を発現していない(CEM−8)。なお、CEM9では、精製したNaSS−2を使用しているが、重合開始剤としてKPSを使用しているため、得られた陽イオン交換樹脂中の塩含有量は高い。   From the results in Table 5, the cation exchange membrane using the block copolymer (P) having a salt content weight (C) of 4.0% or less is a membrane having a domain size of 150 nm or less and a low membrane resistance. It can be seen that it is excellent as a cation exchange membrane (CEM-1 to 7). Furthermore, it can be seen that a film having a salt-containing weight (C) of 3.5% or less has a domain size of 130 nm or less and a low film resistance (CEM-2 to 7). On the other hand, a cation exchange membrane using a block copolymer having a salt content of more than 4.0% has a domain size larger than 150 nm, a high membrane resistance, and exhibits properties as a cation exchange membrane. Not (CEM-8-10). In particular, when the salt content (C) is large, the phase separation of the polymer segment of the membrane is severe, and voids are generated in the entire ion exchange membrane, and satisfactory characteristics as an ion exchange membrane are not expressed (CEM-8). . In CEM9, purified NaSS-2 is used, but since KPS is used as a polymerization initiator, the salt content in the obtained cation exchange resin is high.

<実施例1>
陽イオン交換膜にビニルアルコール系共重合体膜、CEM−1(陰イオン交換膜)にAMX((株)アストム社製)を用いて陰極と陽極の両電極間に交互に配列して締め付けた小型電気透析装置マイクロアシライザーS3((株)アストム製)を用いて乳類の脱塩試験を実施した。この際、膜は0.3mol/Lの食塩水に1時間浸漬しコンデショニングして使用した。希釈液に使用する原料乳として市販の脱脂粉乳(森永脱脂粉乳)をイオン交換水にて固形分濃度10%になるように溶解し、原料乳を再現した。原料乳の脱塩方法は回分式脱塩法を用い、バッチ辺りの仕込み量は8L、透析温度は10℃以下に設定した。濃縮液は0.3mol/Lの食塩水を使用し、10mA/cm一定で4時間電気透析をした。通電中に有機汚染性が起こると膜抵抗が上昇する。膜抵抗の上昇程度が小さいほど耐有機汚染性が高いといえる。そこで、通電を開始して4時間後の陽イオン交換膜の膜抵抗の上昇率を膜の汚染性の尺度とし、固形分中のミネラル分率からミネラル分脱塩率を算出した。なお、ミネラル分は固形分を550度で加熱し、残留物質量を測定した。
<Example 1>
Using a vinyl alcohol copolymer membrane as the cation exchange membrane and AMX (manufactured by Astom Co., Ltd.) as the CEM-1 (anion exchange membrane), the cathode and anode electrodes were alternately arranged and tightened. A milk desalting test was carried out using a small electrodialysis apparatus Microacylator S3 (manufactured by Astom Co., Ltd.) At this time, the membrane was immersed in 0.3 mol / L saline for 1 hour and conditioned. Commercially available skim milk powder (Morinaga skim milk powder) was dissolved in ion-exchanged water so as to have a solid content concentration of 10% as raw material milk to be used for the diluent, and the raw milk was reproduced. A batch-type desalting method was used as the desalting method of the raw milk, and the charge amount per batch was set to 8 L, and the dialysis temperature was set to 10 ° C. or less. The concentrated solution was 0.3 mol / L saline and electrodialyzed at a constant 10 mA / cm 2 for 4 hours. When organic contamination occurs during energization, the membrane resistance increases. The smaller the increase in membrane resistance, the higher the organic contamination resistance. Therefore, the rate of increase in membrane resistance of the cation exchange membrane 4 hours after the start of energization was taken as a measure of membrane contamination, and the mineral desalination rate was calculated from the mineral fraction in the solid content. In addition, the mineral content heated solid content at 550 degree | times and measured the amount of residual substances.

<実施例2〜7>
用いる陽イオン交換膜を表6に示す内容に変更した以外は実施例1と同様にして乳類の脱塩試験を行った。得られた結果を表6に示す。
<Examples 2 to 7>
A milk desalting test was conducted in the same manner as in Example 1 except that the cation exchange membrane used was changed to the contents shown in Table 6. The results obtained are shown in Table 6.

<比較例1〜4>
用いる陽イオン交換膜を表6に示す内容に変更した以外は実施例1と同様にして乳類の脱塩試験を行った。得られた結果を表6に示す。
<Comparative Examples 1-4>
A milk desalting test was conducted in the same manner as in Example 1 except that the cation exchange membrane used was changed to the contents shown in Table 6. The results obtained are shown in Table 6.

<比較例5>
陽イオン交換膜に市販品AMX(アストム(株)社製)を用いて実施例1と同じ条件で測定した。結果を表6に示す。
<Comparative Example 5>
It measured on the same conditions as Example 1 using the commercial item AMX (made by Astom Co., Ltd.) for a cation exchange membrane. The results are shown in Table 6.

Figure 2014198002
Figure 2014198002

表6の結果からは、特に塩含有重量(C)が4.0%以下のブロック共重合体(P)を用いた陽イオン交換膜を用いた電気透析では、膜抵抗の上昇も低い(膜の汚染が少ない)ことが判る(実施例1〜7)。さらに、塩含有重量(C)が3.5%以下の陽イオン交換膜を用いた電気透析ではミネラル分脱塩率が高いことがわかる(実施例2〜7)。一方で、塩含有重量が4.0%よりも多いブロック共重合体を用いた陽イオン交換膜を用いた電気透析では、ミネラル分脱塩率が低かった(比較例1〜3)。一方で、完全相溶系であると考えられるミクロ相分離が確認されなかったランダム共重合体からなる陽イオン交換膜CEM−11を使用した場合(比較例4)は、相分離ドメインサイズの小さいブロック共重合体からなる陽イオン交換膜CEM−7(実施例5)に比べ、ミネラル分脱塩率が低くなった。また、市販品の陽イオン交換膜を用いた場合は、電圧上昇率が著しく高く、通電1時間で電気透析を停止し、停止時のミネラル分率と脱塩率、膜抵抗上昇率を測定した(比較例5)。以上のことから、ビニルアルコール系共重合体からなるイオン交換膜でポリマーセグメントの相分離を抑えた膜はイオン交換膜としての特性や、ミネラル分率、耐汚染性に優れていることが分かる。   From the results shown in Table 6, the electrodialysis using a cation exchange membrane using a block copolymer (P) having a salt-containing weight (C) of 4.0% or less is particularly low in membrane resistance (membrane). (Examples 1 to 7). Furthermore, it can be seen that electrodialysis using a cation exchange membrane having a salt-containing weight (C) of 3.5% or less has a high mineral content desalting rate (Examples 2 to 7). On the other hand, in the electrodialysis using a cation exchange membrane using a block copolymer having a salt content of more than 4.0%, the mineral content desalting rate was low (Comparative Examples 1 to 3). On the other hand, in the case of using a cation exchange membrane CEM-11 made of a random copolymer that was not confirmed to be completely compatible with microphase separation (Comparative Example 4), a block having a small phase separation domain size. Compared with the cation exchange membrane CEM-7 (Example 5) made of a copolymer, the mineral content desalting rate was low. In addition, when a commercially available cation exchange membrane was used, the rate of voltage increase was remarkably high, electrodialysis was stopped after 1 hour of energization, and the mineral fraction, desalting rate, and membrane resistance increase rate at the time of stop were measured. (Comparative Example 5). From the above, it can be seen that a membrane in which the phase separation of the polymer segment is suppressed by an ion exchange membrane made of a vinyl alcohol copolymer is excellent in properties as an ion exchange membrane, mineral fraction, and contamination resistance.

本発明に係る、アニオン性重合体セグメントとビニルアルコール重合体セグメントを有
するビニルアルコール系共重合体から構成される陽イオン交換膜は、膜抵抗に優れるとともに耐有機汚染性に優れているので、ホエー、パーミェート、乳糖母液、脱脂乳、バターミルクなどの原料乳類の脱塩に好適に用いられることができるため産業上の利用可能性がある。
The cation exchange membrane composed of a vinyl alcohol copolymer having an anionic polymer segment and a vinyl alcohol polymer segment according to the present invention is excellent in membrane resistance and resistance to organic contamination. In addition, since it can be suitably used for desalting raw milk such as permeate, lactose mother liquor, skim milk, buttermilk, it has industrial applicability.

以上、本発明の好ましい実施態様を例示的に説明したが、当業者であれば、特許請求の
範囲に開示した本発明の範囲および精神から逸脱することなく多様な修正、付加および置
換ができることが理解可能であろう。
Although the preferred embodiments of the present invention have been described above by way of example, those skilled in the art can make various modifications, additions and substitutions without departing from the scope and spirit of the present invention disclosed in the claims. It will be understandable.

A イオン交換膜
B 白金電極
C NaCl水溶液
D 水浴
E LCR メーター
A ion exchange membrane B platinum electrode C NaCl aqueous solution D water bath E LCR meter

Claims (8)

原料乳類を電気透析処理することにより、原料乳類中のミネラルの少なくとも一部を除去する乳類の脱塩方法において、
陽イオン交換膜として、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントを有するポリビニルアルコール系共重合体を含有し、ドメインサイズ(X)が、0nm<X≦150nmの範囲内にあるミクロ相分離構造を有する陽イオン交換膜を用いることを特徴とする乳類の脱塩方法。
In the method for desalting milk, in which at least part of the minerals in the raw material milk is removed by electrodialysis of the raw material milk,
As a cation exchange membrane, it contains an anionic polymer segment having an anionic group and a polyvinyl alcohol copolymer having a vinyl alcohol polymer segment, and the domain size (X) is in the range of 0 nm <X ≦ 150 nm. A method for desalinating milk, comprising using a cation exchange membrane having a microphase separation structure.
前記ビニルアルコール重合体セグメントは、アニオン性基を含有しないビニルアルコール重合体から形成されるセグメントであり、該セグメントを有するビニルアルコール系共重合体を含有する陽イオン交換膜を用いて行うことを特徴とする請求項1に記載の乳類の脱塩方法。   The vinyl alcohol polymer segment is a segment formed from a vinyl alcohol polymer not containing an anionic group, and is performed using a cation exchange membrane containing a vinyl alcohol copolymer having the segment. The method for desalinating milk according to claim 1. 前記ビニルアルコール系共重合体に架橋構造が導入されていることを特徴とする、請求項1または2に記載の乳類の脱塩方法。   The method for desalinating milk according to claim 1 or 2, wherein a crosslinked structure is introduced into the vinyl alcohol copolymer. 前記架橋構造が、ビニルアルコール系共重合体をジアルデヒド化合物と反応させて導入されたものである、請求項3に記載の乳類の脱塩方法。   The method for desalinating milk according to claim 3, wherein the crosslinked structure is introduced by reacting a vinyl alcohol copolymer with a dialdehyde compound. 前記ビニルアルコール系共重合体が、ビニルアルコール重合体ブロックとアニオン性基を有するアニオン性重合体ブロックを有するアニオン性ブロック共重合体であることを特徴とする請求項1〜4のいずれか1項に記載の乳類の脱塩方法。   The said vinyl alcohol-type copolymer is an anionic block copolymer which has a vinyl alcohol polymer block and an anionic polymer block which has an anionic group, The any one of Claims 1-4 characterized by the above-mentioned. The method for desalinating milk described in 1. 前記ビニルアルコール系共重合体が、ビニルアルコール重合体ブロックとアニオン性基を有するアニオン性重合体ブロックを有するアニオン性グラフト共重合体であることを特徴とする請求項1〜4のいずれか1項に記載の乳類の脱塩方法。   The said vinyl alcohol-type copolymer is an anionic graft copolymer which has a vinyl alcohol polymer block and an anionic polymer block which has an anionic group, The any one of Claims 1-4 characterized by the above-mentioned. The method for desalinating milk described in 1. 原料乳類中のミネラルを50〜80質量%除去することを特徴とする請求項1〜6のいずれか1項に記載の乳類の脱塩方法。   The method for desalinating milk according to any one of claims 1 to 6, wherein 50 to 80% by mass of minerals in the raw milk is removed. 原料乳類が、全乳、ホエー、パーミェート、乳糖母液、脱脂乳及びバターミルクよりなる群から選択された1種又は2種以上の原料乳類であることを特徴とする請求項1〜7のいずれか1項に記載の乳類の脱塩方法。   The raw milk is one or more raw milk selected from the group consisting of whole milk, whey, permeate, lactose mother liquor, skim milk and buttermilk. The method for desalinating milk according to any one of the above.
JP2013074569A 2013-03-29 2013-03-29 Milk desalination method Expired - Fee Related JP6238188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013074569A JP6238188B2 (en) 2013-03-29 2013-03-29 Milk desalination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013074569A JP6238188B2 (en) 2013-03-29 2013-03-29 Milk desalination method

Publications (2)

Publication Number Publication Date
JP2014198002A true JP2014198002A (en) 2014-10-23
JP6238188B2 JP6238188B2 (en) 2017-11-29

Family

ID=52355357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013074569A Expired - Fee Related JP6238188B2 (en) 2013-03-29 2013-03-29 Milk desalination method

Country Status (1)

Country Link
JP (1) JP6238188B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018487A1 (en) * 2006-08-11 2008-02-14 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte molded product using the polymer electrolyte material and method for manufacturing the polymer electrolyte molded product, membrane electrode composite, and solid polymer fuel cell
WO2010119858A1 (en) * 2009-04-13 2010-10-21 国立大学法人山口大学 Ion-exchange membrane and method for producing same
JP2011103295A (en) * 2009-10-16 2011-05-26 Sumitomo Chemical Co Ltd Polymer electrolyte membrane, membrane-electrode assembly, and polymer electrolyte fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018487A1 (en) * 2006-08-11 2008-02-14 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte molded product using the polymer electrolyte material and method for manufacturing the polymer electrolyte molded product, membrane electrode composite, and solid polymer fuel cell
WO2010119858A1 (en) * 2009-04-13 2010-10-21 国立大学法人山口大学 Ion-exchange membrane and method for producing same
JP2011103295A (en) * 2009-10-16 2011-05-26 Sumitomo Chemical Co Ltd Polymer electrolyte membrane, membrane-electrode assembly, and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP6238188B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5715558B2 (en) Anion exchange membrane and method for producing the same
JP6300374B2 (en) Cation exchange membrane and method for producing the same
JP6270094B2 (en) Production method of low salt soy sauce
JP6202607B2 (en) Treatment method for landfill leachate
JP2014198300A (en) Treatment method of organic effluent
JP6018005B2 (en) Nitrate ion separation method
JP6227296B2 (en) Ion exchange membrane
JP6238188B2 (en) Milk desalination method
JP2014176346A (en) Method for producing food product, and food product production system used therefor
JP6172662B2 (en) Method for producing salt
JP2017164718A (en) Ion exchange membrane
JP2015059059A (en) Method for recovering lithium salt
JP6202609B2 (en) Acid recovery method
JP6053514B2 (en) Method for desalting organic matter
JP6270099B2 (en) Method for producing mineral component-containing composition using seawater
JP6018020B2 (en) Method for producing deionized water
JP2015200585A (en) Treating method of radioactive waste liquid
JP6202608B2 (en) Fluoride ion removal method
JP6195188B2 (en) Peptide production method and peptide-containing pharmaceutical composition obtained by the method
JP2014198000A (en) Desalination method of sugar solution
JP2014198001A (en) Desalination method of a pickled plum seasoning liquid
JP2014088514A (en) Anion-exchange membrane and manufacturing method thereof
JP2016155109A (en) Method for removing fluorine ion
JP2014198299A (en) Method of removing electrolyte in fruit juice-containing alcohol solution
JP2015067770A (en) Anion exchange membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

R150 Certificate of patent or registration of utility model

Ref document number: 6238188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees