JP2014197487A - Ion exchange membrane for fuel cell - Google Patents

Ion exchange membrane for fuel cell Download PDF

Info

Publication number
JP2014197487A
JP2014197487A JP2013072787A JP2013072787A JP2014197487A JP 2014197487 A JP2014197487 A JP 2014197487A JP 2013072787 A JP2013072787 A JP 2013072787A JP 2013072787 A JP2013072787 A JP 2013072787A JP 2014197487 A JP2014197487 A JP 2014197487A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
fuel cell
short fibers
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013072787A
Other languages
Japanese (ja)
Inventor
史亮 綱脇
Fumiaki Tsunawaki
史亮 綱脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2013072787A priority Critical patent/JP2014197487A/en
Publication of JP2014197487A publication Critical patent/JP2014197487A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ion exchange membrane for a fuel cell, excellent in long-term durability, having both ion conductivity and mechanical strength.SOLUTION: The ion exchange membrane for a fuel cell contains 1 weight% or more and 20 weight% or less of aramid short fibers whose fiber length is 0.1 mm or more and 10 mm or less in reference to a total weight of the ion exchange membrane.

Description

本発明は燃料電池の電解質用イオン交換膜として使用できる、アラミド短繊維を含む燃料電池用イオン交換膜に関する。   The present invention relates to an ion exchange membrane for a fuel cell containing aramid short fibers, which can be used as an ion exchange membrane for an electrolyte of a fuel cell.

従来、クリーンでかつ高効率という特徴を有する燃料電池の研究が進められている。燃料電池用イオン交換膜としては高い化学的安定性を有することからフッ素系イオン交換樹脂が広く用いられている。中でも、主鎖がパーフルオロカーボンで、側鎖末端にスルホン酸基を有するデュポン社製の「ナフィオン(登録商標)」が広く用いられている。こうしたフッ素系イオン交換樹脂は、固体高分子電解質材料として概ねバランスのとれた特性を有するが、当該電池の実用化が進むにつれて、さらなる物性の改善が要求されるようになってきた。燃料電池用イオン交換膜の要求特性としては、第一に高いイオン伝導性が上げられる。プロトンが燃料電池用イオン交換膜の内部を移動する際は、水分子が水和することによって安定化すると考えられるため、イオン伝導性と共に高い含水性と水分散性も重要な要求特性となっている。また、燃料電池用イオン交換膜は、水素と酸素の直接反応を防止するバリアとしての機能を担うため、ガスに対する低透過性が要求される。その他の要求特性としては、燃料電池運転中の強い酸化雰囲気に耐えるための化学的安定性、さらなる薄膜化に耐えうる機械強度などを挙げることができる。   Conventionally, research on fuel cells having characteristics of cleanness and high efficiency has been advanced. Fluorine ion exchange resins are widely used as ion exchange membranes for fuel cells because of their high chemical stability. Among them, “Nafion (registered trademark)” manufactured by DuPont having a main chain of perfluorocarbon and a sulfonic acid group at the end of the side chain is widely used. Such a fluorine-based ion exchange resin has generally balanced characteristics as a solid polymer electrolyte material. However, as the battery is put into practical use, further improvements in physical properties have been required. As a required characteristic of an ion exchange membrane for a fuel cell, first, high ion conductivity is raised. When protons move inside the ion exchange membrane for fuel cells, water molecules are thought to be stabilized by hydration. Therefore, high water content and water dispersibility are important characteristics as well as ion conductivity. Yes. Moreover, since the ion exchange membrane for fuel cells serves as a barrier that prevents direct reaction between hydrogen and oxygen, low permeability to gas is required. Other required characteristics include chemical stability to withstand a strong oxidizing atmosphere during fuel cell operation and mechanical strength to withstand further thinning.

燃料電池の長期耐久性に関しては、その要因として、例えば、高温高湿状態における機械強度との関連が示唆されている。燃料電池用イオン交換膜の機械強度を向上する手段として、従来からいくつかの方法が提案されている。
特許文献1および2には、PTFE微多孔膜にフッ素系イオン交換樹脂の水溶液を含浸させたフッ素系イオン交換膜が開示されている。通常のフッ素系イオン交換膜は高い含水率を持つため、高温高湿状態では機械強度が大きく低下するが、前記特許文献においては、強固なPTFE微多孔膜の微細孔内部にフッ素系イオン交換樹脂を支持することにより、高い機械強度を維持している。しかしながら、上記イオン交換膜においては、さらに高い力学特性が求められている。
Regarding the long-term durability of the fuel cell, for example, a relationship with mechanical strength in a high-temperature and high-humidity state is suggested. Conventionally, several methods have been proposed as means for improving the mechanical strength of ion exchange membranes for fuel cells.
Patent Documents 1 and 2 disclose a fluorine ion exchange membrane in which a PTFE microporous membrane is impregnated with an aqueous solution of a fluorine ion exchange resin. Since ordinary fluorine-based ion exchange membranes have a high water content, mechanical strength is greatly reduced in a high-temperature and high-humidity state. By supporting the above, high mechanical strength is maintained. However, the ion exchange membrane is required to have higher mechanical properties.

特開昭61−246394号公報JP-A 61-246394 特開昭63−99246号公報JP 63-99246 A

本発明はイオン伝導性と力学的強度の両方を兼ね備えた長期耐久性に優れた燃料電池用イオン交換膜を提供することである。   An object of the present invention is to provide an ion exchange membrane for a fuel cell that has both ionic conductivity and mechanical strength and is excellent in long-term durability.

本発明者らは、イオン交換樹脂のみからなる膜をアラミド短繊維により補強することにより、力学的および電気化学的性質に優れた燃料電池用イオン交換膜を得られることがわかり、さらに検討を進めた結果、繊維長が力学特性に大きく影響することを見出し、本発明に到達した。   The inventors of the present invention have found that an ion exchange membrane for fuel cells having excellent mechanical and electrochemical properties can be obtained by reinforcing a membrane composed solely of an ion exchange resin with short aramid fibers, and further studies have been made. As a result, the inventors have found that the fiber length has a great influence on the mechanical properties, and have reached the present invention.

かくして本発明によれば、イオン交換膜中に、繊維長さ0.1mm以上10mm以下のアラミド短繊維が、該イオン交換膜全重量を基準として1重量%以上20重量%以下で含有されていることを特徴とする燃料電池用イオン交換膜が提供される。   Thus, according to the present invention, the aramid short fibers having a fiber length of 0.1 mm or more and 10 mm or less are contained in the ion exchange membrane at 1 wt% or more and 20 wt% or less based on the total weight of the ion exchange membrane. An ion exchange membrane for a fuel cell is provided.

本発明は、特定の範囲内において異なる繊維長を有するアラミド短繊維で構成されていることにより引裂き強度が格段に向上しており、イオン伝導性と力学的強度を同時に実現する燃料電池用イオン交換膜を提供することが可能となった。   The present invention has a remarkable improvement in tear strength by being composed of aramid short fibers having different fiber lengths within a specific range, and achieves ion conductivity and mechanical strength at the same time for ion exchange for fuel cells. It became possible to provide a membrane.

本発明の燃料電池用イオン交換膜(以下、単にイオン交換膜と称することがある)は、イオン交換膜中に、アラミド短繊維が含有されているイオン交換膜である。
本発明に用いられるイオン交換膜用ポリマーの種類としては、ナフィオン等に代表されるパーフルオロカーボンスルホン酸ポリマー、ポリスチレンスルホン酸、ポリ(トリフルオロスチレン)スルホン酸、ポリビニルホスホン酸、ポリビニルカルボン酸、ポリビニルスルホン酸成分の少なくとも1種を含むアイオノマーが挙げられる。また、芳香族系のポリマーとして、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリフェニルキノキサリン、ポリアリールケトン、ポリエーテルケトン、ポリベンズオキサゾール、ポリベンズチアゾール、ポリイミド等の構成成分の少なくとも1種を含むポリマーに、スルホン酸基、ホスホン酸基、カルボキシル基、およびそれらの誘導体の少なくとも1種が導入されているポリマーが挙げられる。なお、ここでいうポリスルホン、ポエーテルスルホン、ポリエーテルケトン等は、その分子鎖にスルホン結合、エーテル結合、ケトン結合を有しているポリマーの総称であり、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトンスルホンなどを含むとともに、特定のポリマー構造に限定するものではない。
The ion exchange membrane for fuel cells of the present invention (hereinafter sometimes simply referred to as an ion exchange membrane) is an ion exchange membrane in which aramid short fibers are contained in the ion exchange membrane.
Examples of the polymer for the ion exchange membrane used in the present invention include perfluorocarbon sulfonic acid polymers represented by Nafion and the like, polystyrene sulfonic acid, poly (trifluorostyrene) sulfonic acid, polyvinyl phosphonic acid, polyvinyl carboxylic acid, and polyvinyl sulfone. Examples include ionomers containing at least one acid component. As aromatic polymers, polysulfone, polyethersulfone, polyphenylene oxide, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene polymer, polyphenyl quinoxaline, polyaryl ketone, polyether ketone, polybenzoxazole, Examples thereof include polymers in which at least one of sulfonic acid groups, phosphonic acid groups, carboxyl groups, and derivatives thereof is introduced into a polymer containing at least one component such as polybenzthiazole and polyimide. Polysulfone, polyethersulfone, polyetherketone, and the like referred to here are generic names for polymers having a sulfone bond, an ether bond, and a ketone bond in their molecular chains. Polyetherketoneketone, polyetheretherketone, It includes polyether ether ketone ketone, polyether ketone ether ketone ketone, polyether ketone sulfone and the like, and is not limited to a specific polymer structure.

本発明に用いるアラミド短繊維を構成するポリマーとしては、芳香族ジカルボン酸成分と芳香族ジアミン成分、もしくは芳香族アミノカルボン酸成分から構成される芳香族ポリアミド、又はこれらの芳香族共重合ポリアミドからなるポリマーであり、例えば、ポリメタフェニレンテレフタルアミド、ポリパラフェニレンテレフタルアミド、コポリパラフェニレン・3,4’−オキシジフェニレンテレフタルアミド、ポリメタフェニレンイソフタルアミドなどが例示できる。特に、ポリパラフェニレンテレフタルアミド、コポリパラフェニレン・3,4’−オキシジフェニレンテレフタルアミドが、イオン交換膜の力学特性、特に引裂強度を向上させる上で好ましい。   The polymer constituting the aramid short fiber used in the present invention comprises an aromatic polyamide composed of an aromatic dicarboxylic acid component and an aromatic diamine component, or an aromatic aminocarboxylic acid component, or an aromatic copolymer polyamide thereof. Examples of the polymer include polymetaphenylene terephthalamide, polyparaphenylene terephthalamide, copolyparaphenylene 3,4'-oxydiphenylene terephthalamide, and polymetaphenylene isophthalamide. In particular, polyparaphenylene terephthalamide and copolyparaphenylene 3,4'-oxydiphenylene terephthalamide are preferable for improving the mechanical properties of the ion exchange membrane, particularly the tear strength.

本発明においては、イオン交換膜中に、繊維長さ0.1mm以上10mm以下のアラミド短繊維が含有されていることが肝要である。繊維長さが、1mm未満ではイオン交換膜の補強性能が不足し好ましくなく、10mm以上ではイオン交換膜成型時に凹凸が生じるなど燃料電池の性能低下を引き起こすため好ましくない。また、単一繊維長さのアラミド短繊維では、イオン交換膜の補強性能が得られるものの、繊維の配向が生じ、一方向のみに補強されるため好ましくない。   In the present invention, it is important that an aramid short fiber having a fiber length of 0.1 mm to 10 mm is contained in the ion exchange membrane. If the fiber length is less than 1 mm, the ion exchange membrane is insufficiently reinforced, and if the fiber length is 10 mm or more, it is not preferable because unevenness occurs during molding of the ion exchange membrane, resulting in a decrease in fuel cell performance. In addition, aramid short fibers having a single fiber length are not preferable because the reinforcing performance of the ion exchange membrane can be obtained but the fibers are oriented and reinforced in only one direction.

イオン交換膜に添加されるアラミド短繊維の量は1重量%以上20重量%以下であり、好ましくは2重量%以上20重量%以下である。短繊維の含有率が1重量%未満ではイオン交換膜の補強効果が得られないため好ましくない。また、含有率が20重量%を超えると繊維の配向、イオン交換膜の平滑性が失われるため好ましくない。
また、イオン交換膜の厚みは1μm以上100μm以下であることが好ましい。イオン交換膜の厚みが1μm未満ではイオン交換膜の強度が不足するため、また、100μmを超えるとイオン交換膜のイオン伝導性が低下するため好ましくない。
The amount of aramid short fibers added to the ion exchange membrane is 1% by weight or more and 20% by weight or less, and preferably 2% by weight or more and 20% by weight or less. If the short fiber content is less than 1% by weight, the effect of reinforcing the ion exchange membrane cannot be obtained, which is not preferable. Further, if the content exceeds 20% by weight, the fiber orientation and the smoothness of the ion exchange membrane are lost, which is not preferable.
The thickness of the ion exchange membrane is preferably 1 μm or more and 100 μm or less. If the thickness of the ion exchange membrane is less than 1 μm, the strength of the ion exchange membrane will be insufficient.

本発明においては、アラミド短繊維の一部がフィブリル状短繊維であることが好ましい。ここで、フィブリル状短繊維は、上記のアラミド短繊維をリファイナーやビーター、ミル、高圧ホモジナイザー、摩砕装置等の装置により高度にフィブリル化させたものをいう。また、例えば、WO2004/099476A1、特公昭35−11851号公報、特公昭37−5732号公報等に記載された方法により、アラミド重合体溶液をその沈澱剤と剪断力の存在する系において混合することにより製造されるフィルム状パルプや、特公昭59−603号公報に記載された方法により、光学的異方性を示す高分子重合体溶液から成形した分子配向性を有する成形物に叩解等の機械的剪断力を与えてランダムにフィブリル化させる、湿式抄造工程において得られるフィルム状のフィブリル状短繊維も含まれる。該アラミド短繊維におけるフィブリル状短繊維の割合は、好ましは0.1重量%以上80重量%以下、より好ましくは1重量%以上50重量%以下、さらに好ましくは10重量%以上40重量%以下である。   In the present invention, it is preferable that a part of the aramid short fibers are fibril short fibers. Here, the fibrillated short fibers are those obtained by highly fibrillating the above-mentioned aramid short fibers with an apparatus such as a refiner, beater, mill, high-pressure homogenizer, or grinding apparatus. Also, for example, by mixing the aramid polymer solution in a system in which shearing force exists with the precipitating agent by the method described in WO2004 / 099476A1, Japanese Patent Publication No. 35-11851, Japanese Patent Publication No. 37-5732, etc. A machine such as beating a film-like pulp produced by the method described above or a molded article having molecular orientation formed from a polymer solution exhibiting optical anisotropy by a method described in Japanese Patent Publication No. 59-603 Also included is a film-like fibrillar short fiber obtained in a wet papermaking process in which a mechanical shearing force is applied to randomly fibrillate. The proportion of fibrillar short fibers in the aramid short fibers is preferably 0.1% by weight to 80% by weight, more preferably 1% by weight to 50% by weight, and even more preferably 10% by weight to 40% by weight. It is.

本発明においては、芳香族ポリアミドパルプの比表面積は、3〜20m/gが好ましく、5〜15m/gがより好ましい。また、本発明で用いるフィルム状のフィブリル状短繊維の水分率は80%以上が好ましい。水分率が80%未満では乾燥時の収縮が十分に得られず、バインダー効果が得られないため好ましく無い。フィルム状パルプの収縮率は40%以上である事が好ましく、より好ましくは50%以上である。収縮率が40%未満では収縮によるバインダー効果が得られないため好ましくない。 In the present invention, the specific surface area of the aromatic polyamide pulp is preferably 3~20m 2 / g, 5~15m 2 / g is more preferable. Further, the moisture content of the film-like fibrillar short fibers used in the present invention is preferably 80% or more. If the moisture content is less than 80%, the shrinkage during drying cannot be sufficiently obtained, and the binder effect cannot be obtained, which is not preferable. The shrinkage of the film pulp is preferably 40% or more, more preferably 50% or more. If the shrinkage rate is less than 40%, the binder effect due to shrinkage cannot be obtained.

次に、以上に説明した本発明のイオン交換膜の製造方法について説明する。イオン交換膜用樹脂とアラミド短繊維の複合化の方法としては、当該イオン交換膜樹脂溶液に所定量のアラミド短繊維を添加し、プラネタリミキサ等を用いて混練する。得られた樹脂溶液混合物をフィルム状に成型し、溶媒を除去することにより、本発明のイオン交換膜が得られるが、これらに限定されるものではない。これら樹脂液の調製に用いることのできる溶媒としては一般に各種炭化水素系の有機溶剤、水、あるいはこれらの混合溶剤が挙げられるが、樹脂によって適する物があり、これらに限定されるものではない。溶媒の除去の方法としては水洗・加熱乾燥が最も有効であるが、これに限定されるものではない。   Next, the manufacturing method of the ion exchange membrane of this invention demonstrated above is demonstrated. As a method for combining the ion exchange membrane resin and the aramid short fibers, a predetermined amount of the aramid short fibers are added to the ion exchange membrane resin solution, and kneaded using a planetary mixer or the like. The resulting resin solution mixture is molded into a film and the solvent is removed to obtain the ion exchange membrane of the present invention, but is not limited thereto. Solvents that can be used for the preparation of these resin liquids generally include various hydrocarbon-based organic solvents, water, or mixed solvents thereof, but there are suitable ones depending on the resin, and the present invention is not limited to these. Washing with water and drying by heating are the most effective methods for removing the solvent, but are not limited thereto.

[評価方法]
(1)膜厚
イオン交換膜を23℃、65%RHの高温恒温室で12時間以上放置したあと、膜厚計(東洋精機製作所)を用いて測定した。
[Evaluation method]
(1) Film thickness The ion exchange membrane was allowed to stand for 12 hours or more in a high temperature thermostatic chamber at 23 ° C. and 65% RH, and then measured using a film thickness meter (Toyo Seiki Seisakusho).

(2)引裂強力
イオン交換膜の機械物性(引裂強力)JIS−K7128−2に従いエルメンドルフ引裂度試験機(安田精機製)を用いて測定した。強力は20g以上が好ましく、30g以上がより更に好ましい。引裂強度が4g未満では、高い長期耐久性が得られにくい場合がある。引裂強度の上限は燃料電池の性能に影響を与えないため限定されない。
(2) Tear strength Mechanical properties of ion exchange membrane (tear strength) Measured according to JIS-K7128-2 using an Elmendorf tear tester (manufactured by Yasuda Seiki). The strength is preferably 20 g or more, more preferably 30 g or more. If the tear strength is less than 4 g, high long-term durability may be difficult to obtain. The upper limit of the tear strength is not limited because it does not affect the performance of the fuel cell.

(3)イオン伝導性
テフロン(登録商標、デュポン製)製プローブ上で短冊状膜試料の表面に白金線(直径:0.2mm)を押しあて、60℃95%RHの恒温恒湿槽(カトー株式会社、SSE−23TPA)中に試料を保持し、白金線間のインピーダンスをSOLARTRON社1250FREQUENCY RESPONSE ANALYSERにより測定した。極間距離10mmから40mmまで10mm間隔で変化させて測定し、極間距離とC−Cプロットから見積もられる抵抗測定値をプロットした勾配から以下の式により膜と白金線間の接触抵抗をキャンセルした伝導率を算出した。イオン伝導率は0.15S/cm以上が好ましい。0.15S/cm未満では燃料電池の性能が得られず好ましくない。イオン伝導率の上限は燃料電池の性能を阻害しないため限定されない。
イオン伝導率[S/cm]=1/(膜幅[cm]×膜厚[cm]×抵抗極間勾配[Ω/cm])
(3) Ion conductivity A platinum wire (diameter: 0.2 mm) was pressed against the surface of the strip-shaped membrane sample on a Teflon (registered trademark, manufactured by DuPont) probe, and a constant temperature and humidity chamber (Cato at 60 ° C. and 95% RH). The sample was held in SSE-23TPA, Inc., and the impedance between the platinum wires was measured by SOLARTRON 1250 FREQUENCY RESPONSE ANALYSER. Measurement was performed by changing the distance between the electrodes from 10 mm to 40 mm at intervals of 10 mm, and the contact resistance between the film and the platinum wire was canceled by the following formula from the gradient obtained by plotting the distance between the electrodes and the resistance measurement value estimated from the CC plot. Conductivity was calculated. The ionic conductivity is preferably 0.15 S / cm or more. If it is less than 0.15 S / cm, the performance of the fuel cell cannot be obtained, which is not preferable. The upper limit of the ionic conductivity is not limited because it does not hinder the performance of the fuel cell.
Ionic conductivity [S / cm] = 1 / (film width [cm] × film thickness [cm] × resistance interelectrode gradient [Ω / cm])

[実施例1]
イオン交換膜交換膜樹脂としてナフィオン(登録商標、デュポン製、SIGMA−ALDRICH製)、アラミド短繊維として3〜8mmの繊維長分布を有するテクノーラ短繊維(登録商標、帝人株式会社製)を10重量%添加し、ドープを作成した。なお、アラミド短繊維中、フィブリル状短繊維の割合は25重量%であった。得られたドープをPETフィルム上に60μmの厚みにキャストし、これをNMP/水=60/40重量%、80℃からなる凝固浴に10min浸漬し、水洗後150℃にて5min乾燥してイオン交換膜を得た。イオン交換膜の膜厚50μmであり引裂き強力は30gであり、イオン伝導率は0.22S/cmであった。
[Example 1]
10% by weight of Nafion (registered trademark, manufactured by DuPont, manufactured by SIGMA-ALDRICH) as an ion exchange membrane exchange resin, and Technora short fiber (registered trademark, manufactured by Teijin Ltd.) having a fiber length distribution of 3 to 8 mm as an aramid short fiber Add to make dope. In the aramid short fibers, the ratio of fibrillar short fibers was 25% by weight. The obtained dope was cast to a thickness of 60 μm on a PET film, immersed in a coagulation bath consisting of NMP / water = 60/40 wt%, 80 ° C. for 10 min, washed with water, dried at 150 ° C. for 5 min, and ionized. An exchange membrane was obtained. The film thickness of the ion exchange membrane was 50 μm, the tear strength was 30 g, and the ionic conductivity was 0.22 S / cm.

[実施例2]
アラミド短繊維の添加量を2重量%に変更した以外は実施例1と同様にしてイオン交換膜を得た。なお、フィブリル状短繊維の割合は実施例1と同じとした。イオン交換膜の膜厚52μmであり引裂き強力は24gであり、イオン伝導率は0.32S/cmであった。
[Example 2]
An ion exchange membrane was obtained in the same manner as in Example 1 except that the addition amount of the aramid short fibers was changed to 2% by weight. The proportion of fibrillar short fibers was the same as in Example 1. The ion exchange membrane had a thickness of 52 μm, a tear strength of 24 g, and an ionic conductivity of 0.32 S / cm.

[実施例3]
アラミド短繊維の添加量を18重量%に変更した以外は実施例1と同様にしてイオン交換膜を得た。なお、フィブリル状短繊維の割合は実施例1と同じとした。イオン交換膜の膜厚56μmであり引裂き強力は42gであり、イオン伝導率は0.18S/cmであった。
[Example 3]
An ion exchange membrane was obtained in the same manner as in Example 1 except that the addition amount of the aramid short fibers was changed to 18% by weight. The proportion of fibrillar short fibers was the same as in Example 1. The ion exchange membrane had a thickness of 56 μm, a tear strength of 42 g, and an ionic conductivity of 0.18 S / cm.

[比較例1]
アラミド短繊維の添加量を0.5重量%に変更した以外は実施例1と同様にしてイオン交換膜を得た。なお、フィブリル状短繊維の割合は実施例1と同じとした。イオン交換膜の膜厚48μmであり引裂き強力は17gであり、イオン伝導率は0.23S/cmであった。
[Comparative Example 1]
An ion exchange membrane was obtained in the same manner as in Example 1 except that the addition amount of the aramid short fibers was changed to 0.5% by weight. The proportion of fibrillar short fibers was the same as in Example 1. The film thickness of the ion exchange membrane was 48 μm, the tear strength was 17 g, and the ionic conductivity was 0.23 S / cm.

[比較例2]
アラミド短繊維の添加量を25重量%に変更した以外は実施例1と同様にしてイオン交換膜を得た。なお、フィブリル状短繊維の割合は実施例1と同じとした。イオン交換膜の膜厚49μmであり引裂き強力は43gであり、イオン伝導率は0.02S/cmであった。
[Comparative Example 2]
An ion exchange membrane was obtained in the same manner as in Example 1 except that the addition amount of the aramid short fibers was changed to 25% by weight. The proportion of fibrillar short fibers was the same as in Example 1. The ion exchange membrane had a thickness of 49 μm, a tear strength of 43 g, and an ionic conductivity of 0.02 S / cm.

[比較例3]
繊維長が6mmに揃えられたアラミド短繊維を用いた以外は実施例1と同様にしてイオン交換膜を得た。イオン交換膜の膜厚49μmであり引裂き強力は繊維配向方向には43gであるが、繊維配向と垂直方向には6gであり、イオン伝導率は0.19S/cmであった。
[Comparative Example 3]
An ion exchange membrane was obtained in the same manner as in Example 1 except that aramid short fibers having a fiber length of 6 mm were used. The film thickness of the ion exchange membrane was 49 μm, and the tear strength was 43 g in the fiber orientation direction, but 6 g in the direction perpendicular to the fiber orientation, and the ionic conductivity was 0.19 S / cm.

本発明の燃料電池用イオン交換膜は、優れたイオン伝導性と力学的強度の両方を兼ね備えており、産業上の利用価値が極めて高いものである。   The ion exchange membrane for a fuel cell of the present invention has both excellent ion conductivity and mechanical strength, and has extremely high industrial utility value.

Claims (4)

イオン交換膜中に、繊維長さ0.1mm以上10mm以下のアラミド短繊維が、該イオン交換膜全重量を基準として1重量%以上20重量%以下で含有されていることを特徴とする燃料電池用イオン交換膜。   A fuel cell characterized in that an aramid short fiber having a fiber length of 0.1 mm to 10 mm is contained in the ion exchange membrane in an amount of 1 wt% to 20 wt% based on the total weight of the ion exchange membrane. Ion exchange membrane. アラミド短繊維の一部がフィブリル状短繊維である請求項1に記載の燃料電池用イオン交換膜。   The ion exchange membrane for a fuel cell according to claim 1, wherein a part of the aramid short fibers is a fibrillar short fiber. 燃料電池用イオン交換膜の厚みが1μm以上100μm以下である請求項1または2に記載の燃料電池用イオン交換膜。   The ion exchange membrane for a fuel cell according to claim 1 or 2, wherein the thickness of the ion exchange membrane for a fuel cell is 1 µm or more and 100 µm or less. アラミド短繊維がパラアラミド短繊維である請求項1〜3のいずれかに記載の燃料電池用イオン交換膜。   The ion-exchange membrane for fuel cells according to any one of claims 1 to 3, wherein the aramid short fibers are para-aramid short fibers.
JP2013072787A 2013-03-29 2013-03-29 Ion exchange membrane for fuel cell Pending JP2014197487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072787A JP2014197487A (en) 2013-03-29 2013-03-29 Ion exchange membrane for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072787A JP2014197487A (en) 2013-03-29 2013-03-29 Ion exchange membrane for fuel cell

Publications (1)

Publication Number Publication Date
JP2014197487A true JP2014197487A (en) 2014-10-16

Family

ID=52358135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072787A Pending JP2014197487A (en) 2013-03-29 2013-03-29 Ion exchange membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP2014197487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432065B2 (en) 2021-07-20 2024-02-15 信越ポリマー株式会社 Separator and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432065B2 (en) 2021-07-20 2024-02-15 信越ポリマー株式会社 Separator and its manufacturing method

Similar Documents

Publication Publication Date Title
Sahin The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells
Özdemir et al. Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells
Giancola et al. Composite short side chain PFSA membranes for PEM water electrolysis
Li et al. Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells
Shabani et al. Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications
CA2679594C (en) Polymer electrolyte composition, polymer electrolyte membrane, membrane electrode assembly and solid polymer electrolyte-based fuel cell
Aili et al. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells
Meenakshi et al. Chitosan‐polyvinyl alcohol‐sulfonated polyethersulfone mixed‐matrix membranes as methanol‐barrier electrolytes for DMFCs
Yu et al. Properties of sulfonated poly (arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells
CN109755613B (en) Three-dimensional framework and sulfonated aromatic polymer composite proton exchange membrane and preparation method thereof
JP6707519B2 (en) film
Ye et al. Advanced hybrid membrane for vanadium redox flow battery created by polytetrafluoroethylene layer and functionalized silicon carbide nanowires
Reyes-Rodriguez et al. Conductivity of composite membrane-based poly (ether-ether-ketone) sulfonated (SPEEK) nanofiber mats of varying thickness
Zhang et al. Electrospinning preparation of a graphene oxide nanohybrid proton‐exchange membrane for fuel cells
Jang et al. One-step fabrication and characterization of reinforced microcomposite membranes for polymer electrolyte membrane fuel cells
Fryczkowska et al. Preparation and properties of composite PAN/PANI membranes
Li et al. Development of a crosslinked pore-filling membrane with an extremely low swelling ratio and methanol crossover for direct methanol fuel cells
Zhang et al. Zwitterionic interface engineering enables ultrathin composite membrane for high-rate vanadium flow battery
Goo et al. Polyamide-coated Nafion composite membranes with reduced hydrogen crossover produced via interfacial polymerization
JP6150616B2 (en) Polymer electrolyte composition and polymer electrolyte membrane
JP5189394B2 (en) Polymer electrolyte membrane
Wang et al. Fabrication of alginate-based multi-crosslinked biomembranes for direct methanol fuel cell application
Nguyen et al. Aromatic copolymer/Nafion blends outperforming the corresponding pristine ionomers
Wang et al. Nanofiber mats electrospun from composite proton exchange membranes prepared from poly (aryl ether sulfone) s with pendant sulfonated aliphatic side chains
Lee et al. Nafion nanofiber membranes