JP2014194871A - Additive agent for nonaqueous electrolytic solution, nonaqueous electrolytic solution, and electric power storage device - Google Patents

Additive agent for nonaqueous electrolytic solution, nonaqueous electrolytic solution, and electric power storage device Download PDF

Info

Publication number
JP2014194871A
JP2014194871A JP2013070407A JP2013070407A JP2014194871A JP 2014194871 A JP2014194871 A JP 2014194871A JP 2013070407 A JP2013070407 A JP 2013070407A JP 2013070407 A JP2013070407 A JP 2013070407A JP 2014194871 A JP2014194871 A JP 2014194871A
Authority
JP
Japan
Prior art keywords
group
aqueous electrolyte
following formula
compound
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013070407A
Other languages
Japanese (ja)
Other versions
JP6081263B2 (en
Inventor
Tomohiro Onozuka
智洋 小野塚
Maya Murakami
真耶 村上
Koji Fujita
浩司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2013070407A priority Critical patent/JP6081263B2/en
Publication of JP2014194871A publication Critical patent/JP2014194871A/en
Application granted granted Critical
Publication of JP6081263B2 publication Critical patent/JP6081263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an additive agent for nonaqueous electrolytic solution and an electric power storage device which enable the improvement of battery life, capacity and the like.SOLUTION: An additive agent for nonaqueous electrolytic solution comprises an imide sulfonate amide compound expressed by the following formula (1). In the formula (1), Rand Rindependently represent a phenyl group which may be substituted; Rand Rindependently represent a hydrogen atom, an alkyl group having 1-6 carbon atoms which may be substituted, or -RX (Rrepresents an alkylene group having 1-6 carbon atoms which may be substituted, and X represents a phenyl group or phenoxy group which may be substituted); Rand Rindependently represent an alkylene group having 0-6 carbon atoms which may be substituted; and M represents a hydrogen atom, a lithium atom, or an alkyl group having 1-6 carbon atoms.

Description

本発明は、蓄電デバイスに用いた場合に、電極表面上に安定な固体電解質界面を形成して電池の寿命や容量等の電池特性を改善することができる非水電解液用添加剤に関する。また、本発明は、該非水電解液用添加剤を用いた非水電解液、及び、該非水電解液を用いた蓄電デバイスに関する。 The present invention relates to an additive for a non-aqueous electrolyte that can form a stable solid electrolyte interface on an electrode surface and improve battery characteristics such as battery life and capacity when used in an electricity storage device. The present invention also relates to a non-aqueous electrolyte using the non-aqueous electrolyte additive and an electricity storage device using the non-aqueous electrolyte.

近年、環境問題の解決、持続可能な循環型社会の実現に対する関心が高まるにつれ、リチウムイオン電池に代表される非水電解液二次電池の研究が広範囲に行われている。なかでもリチウムイオン電池は高い使用電圧とエネルギー密度から、ノート型パソコン、携帯電話等の電源として用いられている。これらリチウムイオン電池は、鉛電池やニッケルカドミウム電池と比較してエネルギー密度が高く、高容量化が実現されるため期待されている。 In recent years, research on non-aqueous electrolyte secondary batteries represented by lithium ion batteries has been extensively conducted as interest in solving environmental problems and realizing a sustainable recycling society has increased. In particular, lithium ion batteries are used as power sources for notebook computers, mobile phones and the like because of their high operating voltage and energy density. These lithium ion batteries are expected to have higher energy density and higher capacity compared to lead batteries and nickel cadmium batteries.

しかしながら、リチウムイオン電池には、充放電サイクルの経過に伴って電池の容量が低下するという問題がある。これは長期間の充放電サイクルの経過に伴い、電極反応による電解液の分解や電極活物質層への電解質の含浸性の低下、更にリチウムイオンのインターカレーション効率の低下が生じること等が要因に挙げられる。 However, the lithium ion battery has a problem that the capacity of the battery decreases with the progress of the charge / discharge cycle. This is due to the fact that the electrolytic solution is decomposed by electrode reaction, the impregnation of the electrolyte into the electrode active material layer is lowered, and the lithium ion intercalation efficiency is lowered with the progress of the long charge / discharge cycle. It is mentioned in.

充放電サイクルの経過に伴う電池の容量の低下を抑制する方法として、電解液に各種添加剤を加える方法が検討されている。添加剤は、最初の充放電時に分解され、電極表面上に固体電解質界面(SEI)と呼ばれる被膜を形成する。SEIは、充放電サイクルの最初のサイクルにおいて形成するため、電解液の分解に電気が消費されることはなく、リチウムイオンはSEIを介して電極を行き来することができる。すなわち、SEIの形成は充放電サイクルを繰り返した場合の二次電池の劣化を防ぎ、電池特性、保存特性又は負荷特性等を向上させることに大きな役割を果たすと考えられている。 A method of adding various additives to an electrolytic solution has been studied as a method of suppressing a decrease in battery capacity with the progress of a charge / discharge cycle. The additive is decomposed during the first charge and discharge to form a film called a solid electrolyte interface (SEI) on the electrode surface. Since the SEI is formed in the first cycle of the charge / discharge cycle, electricity is not consumed for the decomposition of the electrolytic solution, and lithium ions can move back and forth through the SEI. That is, the formation of SEI is considered to play a major role in preventing deterioration of the secondary battery when the charge / discharge cycle is repeated and improving battery characteristics, storage characteristics, load characteristics, and the like.

SEIを形成する電解液用添加剤として、例えば、特許文献1〜3には、環状モノスルホン酸エステルが開示されている。また、特許文献4には、含硫黄芳香族化合物が開示されており、特許文献5にはジスルフィド化合物が開示されている。更に、特許文献6〜9にはジスルホン酸エステルが開示されている。
また、特許文献10〜13には、ビニレンカーボネートやビニルエチレンカーボネートを含有する電解液が提案されており、特許文献14、15では1,3−プロパンスルトンやブタンスルトンを含有する電解液が提案されている。
For example, Patent Documents 1 to 3 disclose cyclic monosulfonic acid esters as additives for an electrolytic solution that forms SEI. Patent Document 4 discloses a sulfur-containing aromatic compound, and Patent Document 5 discloses a disulfide compound. Furthermore, Patent Documents 6 to 9 disclose disulfonic acid esters.
Patent Documents 10 to 13 propose an electrolytic solution containing vinylene carbonate or vinyl ethylene carbonate, and Patent Documents 14 and 15 propose an electrolytic solution containing 1,3-propane sultone or butane sultone. Yes.

特開昭63−102173号公報JP 63-102173 A 特開2000−003724号公報JP 2000-003724 A 特開平11−339850号公報JP 11-339850 A 特開平05−258753号公報JP 05-258753 A 特開2001−052735号公報JP 2001-052735 A 特開2009−038018号公報JP 2009-038018 A 特開2005−203341号公報JP-A-2005-203341 特開2004−281325号公報JP 2004-281325 A 特開2005−228631号公報JP 2005-228631 A 特開平04−87156号公報Japanese Unexamined Patent Publication No. 04-87156 特開平05−74486号公報Japanese Patent Laid-Open No. 05-74486 特開平08−45545号公報Japanese Patent Application Laid-Open No. 08-45545 特開2001−6729号公報JP 2001-6729 A 特開昭63−102173号公報JP 63-102173 A 特開平10−50342号公報Japanese Patent Laid-Open No. 10-50342

電解液に用いる添加剤によって電極表面に被膜として形成するSEIは、サイクル特性、充放電効率、内部抵抗等、多くの電池特性に深く関与している。
例えば、特許文献10〜15に開示されているビニレンカーボネート系化合物や1,3−プロパンスルトン等のスルトン系化合物を添加剤として用いた電解液は、負極表面上に電気的還元分解を生じて生成したSEI被膜によって、不可逆的容量低下を抑制することが可能となっている。そのため、ビニレンカーボネート系化合物やスルトン系化合物は電解液用添加剤として多用されている。しかしながら、これらの化合物によるSEI被膜は電極保護作用として機能するものの、Liイオンのイオン伝導性が低いため、内部抵抗を低下させる性能は小さかった。更に、長期間の使用に耐えうるほどの強度がないため、使用中にSEI被膜が分解したり亀裂が生じたりすることによって負極表面が露出し、電解液溶媒の分解が生じて電池特性が低下するという問題があった。また、高温条件下でのSEIの劣化により亀裂が生じ、被膜の肥大に伴って内部抵抗が上昇するという問題があった。
このように、従来の非水電解液用添加剤は充分な性能が得られておらず改善の余地があった。即ち、安定性に優れ、サイクル特性、充放電効率、内部抵抗等を向上させるSEIを電極表面上に形成し、非水電解液二次電池の電池特性を向上させる新規な電解液用添加剤の開発が望まれていた。
SEI formed as a film on the electrode surface by the additive used in the electrolytic solution is deeply involved in many battery characteristics such as cycle characteristics, charge / discharge efficiency, and internal resistance.
For example, an electrolytic solution using a vinylene carbonate compound disclosed in Patent Documents 10 to 15 or a sultone compound such as 1,3-propane sultone as an additive is generated by electroreductive decomposition on the negative electrode surface. It is possible to suppress the irreversible capacity drop by the SEI film. For this reason, vinylene carbonate compounds and sultone compounds are frequently used as additives for electrolytic solutions. However, although the SEI film by these compounds functions as an electrode protecting action, since the ionic conductivity of Li ions is low, the performance of reducing the internal resistance was small. In addition, because it does not have enough strength to withstand long-term use, the SEI coating decomposes or cracks during use, exposing the negative electrode surface, causing degradation of the electrolyte solvent and reducing battery characteristics. There was a problem to do. In addition, there is a problem that cracks occur due to the deterioration of SEI under high temperature conditions, and the internal resistance increases with the enlargement of the coating.
As described above, conventional additives for non-aqueous electrolytes have not obtained sufficient performance and have room for improvement. That is, a novel electrolyte additive that improves the battery characteristics of a non-aqueous electrolyte secondary battery by forming SEI on the electrode surface with excellent stability and improving cycle characteristics, charge / discharge efficiency, internal resistance, etc. Development was desired.

本発明は、蓄電デバイスに用いた場合に、電極表面上に安定な固体電解質界面を形成して電池の寿命や容量等の電池特性を改善することができる非水電解液用添加剤を提供することを目的とする。また、本発明は、該非水電解液用添加剤を用いた非水電解液、及び、該非水電解液を用いた蓄電デバイスを提供することを目的とする。 The present invention provides an additive for a non-aqueous electrolyte that can form a stable solid electrolyte interface on an electrode surface and improve battery characteristics such as battery life and capacity when used in an electricity storage device. For the purpose. Another object of the present invention is to provide a non-aqueous electrolyte using the additive for non-aqueous electrolyte and an electricity storage device using the non-aqueous electrolyte.

本発明は、下記式(1)で表されるイミドスルホン酸アミド化合物(以下、「本発明にかかるイミドスルホン酸アミド化合物」ともいう)からなる非水電解液用添加剤である。式(1)で示した構造を有する本発明にかかるイミドスルホン酸アミド化合物は、電気的酸化還元分解により網目状ポリマーを形成しやすいため、電極表面上に形成されたSEIが電気的分解や物理的分解に対して高い耐性を持ち、充放電サイクルで高い容量維持率に寄与することが考えられる。 The present invention is an additive for a non-aqueous electrolyte composed of an imide sulfonic acid amide compound represented by the following formula (1) (hereinafter also referred to as “an imide sulfonic acid amide compound according to the present invention”). Since the imide sulfonic acid amide compound according to the present invention having the structure represented by the formula (1) easily forms a network polymer by electrical redox decomposition, the SEI formed on the electrode surface is electrically decomposed or physically It is considered that it has high resistance to chemical decomposition and contributes to a high capacity retention rate in the charge / discharge cycle.

Figure 2014194871
Figure 2014194871

式(1)中、R及びRは、それぞれ独立し、置換されていてもよいフェニル基を示す。R及びRは、それぞれ独立し、水素、置換されていてもよい炭素数1〜6のアルキル基、又は、−RX(Rは、置換されていてもよい炭素数1〜6のアルキレン基を示し、Xは、置換されていてもよいフェニル基又はフェノキシ基を示す)を示す。R及びRは、それぞれ独立し、置換されていてもよい炭素数0〜6のアルキレン基を示す。Mは、水素、リチウム、炭素数1〜6のアルキル基を示す。
以下に、本発明について詳述する。
In formula (1), R 1 and R 2 each independently represent an optionally substituted phenyl group. R 3 and R 4 are each independently hydrogen, an optionally substituted alkyl group having 1 to 6 carbon atoms, or —R 7 X (R 7 is an optionally substituted carbon atom having 1 to 6 carbon atoms). And X represents an optionally substituted phenyl group or phenoxy group). R 5 and R 6 are each independently an optionally substituted alkylene group having 0 to 6 carbon atoms. M represents hydrogen, lithium, or an alkyl group having 1 to 6 carbon atoms.
The present invention is described in detail below.

本発明者らは、非水溶媒を溶媒として用いた電解液において、特定の構造を有するイミドスルホン酸アミド化合物を添加することにより、蓄電デバイスに用いた場合に、電極表面上に安定な固体電解質界面を形成して電池の寿命や容量等の電池特性を改善することができることを見出し、本発明を完成させるに至った。 The present inventors have added a imide sulfonic acid amide compound having a specific structure to an electrolyte solution using a non-aqueous solvent as a solvent, thereby providing a stable solid electrolyte on the electrode surface when used in an electricity storage device. It has been found that battery characteristics such as battery life and capacity can be improved by forming an interface, and the present invention has been completed.

前記式(1)中、R及びRで示される置換されていてもよいフェニル基としては、例えば、フェニル基、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、3−ブロモフェニル基、4−ブロモフェニル基、2−ヨードフェニル基、3−ヨードフェニル基、4−ヨードフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2−エチルフェニル基、3−エチルフェニル基、4−エチルフェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2−エトキシフェニル基、3−エトキシフェニル基、4−エトキシフェニル基、2−(ジメチルアミノ)フェニル基、3−(ジメチルアミノ)フェニル基、4−(ジメチルアミノ)フェニル基、フェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2−エチルフェノキシ基、3−エチルフェノキシ基、4−エチルフェノキシ基、2−メトキシフェノキシ基、3−メトキシフェノキシ基、4−メトキシフェノキシ基、2−エトキシフェノキシ基、3−エトキシフェノキシ基、4−エトキシフェノキシ基、2−(ジメチルアミノ)フェノキシ基、3−(ジメチルアミノ)フェノキシ基、4−(ジメチルアミノ)フェノキシ基等が挙げられる。なかでも、フェニル基であることが好ましい。
また、R及びRで示されるフェニル基が置換されている場合、フェニル基の一部又は全部の水素がハロゲンで置換されていることが好ましく、フッ素で置換されていることがより好ましい。
In the formula (1), examples of the optionally substituted phenyl group represented by R 1 and R 2 include a phenyl group, a 2-fluorophenyl group, a 3-fluorophenyl group, a 4-fluorophenyl group, 2 -Chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl group, 2-iodophenyl group, 3-iodophenyl group, 4-iodophenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4- Methoxyphenyl group, 2-ethoxyphenyl group, 3-ethoxyphenyl group, 4-ethoxyphenyl group, 2- (dimethylamino Phenyl group, 3- (dimethylamino) phenyl group, 4- (dimethylamino) phenyl group, phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 2-ethylphenoxy group, 3- Ethylphenoxy group, 4-ethylphenoxy group, 2-methoxyphenoxy group, 3-methoxyphenoxy group, 4-methoxyphenoxy group, 2-ethoxyphenoxy group, 3-ethoxyphenoxy group, 4-ethoxyphenoxy group, 2- (dimethyl) Amino) phenoxy group, 3- (dimethylamino) phenoxy group, 4- (dimethylamino) phenoxy group and the like. Of these, a phenyl group is preferable.
Moreover, when the phenyl group shown by R < 1 > and R < 2 > is substituted, it is preferable that a part or all of hydrogen of a phenyl group is substituted by the halogen, and it is more preferable that it is substituted by the fluorine.

前記式(1)中、R及びRで示される置換されていてもよい炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基等が挙げられる。なかでも、メチル基であることが好ましい。
また、R及びRで示されるアルキル基が置換されている場合、アルキル基の一部又は全部の水素がハロゲンで置換されていることが好ましく、フッ素で置換されていることがより好ましい。
In the formula (1), examples of the optionally substituted alkyl group represented by R 3 and R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n- Examples thereof include a butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group. Of these, a methyl group is preferable.
In addition, when the alkyl group represented by R 3 and R 4 is substituted, it is preferable that part or all of the alkyl group is substituted with halogen, and more preferably substituted with fluorine.

前記式(1)中、R及び/又はRが−RXを示す場合における、Rで示される置換されていてもよい炭素数1〜6のアルキレン基としては、例えば、メチレン基、メチルメチレン基、エチレン基、n−プロピレン基、イソプロピレン基、n−ブチレン基、1−メチルエチレン基、1−エチルエチレン基、n−ペンチレン基、n−ヘキサレン基等が挙げられる。なかでも、メチレン基、エチレン基であることが好ましい。
また、Rで示されるアルキレン基が置換されている場合、ハロゲン、炭素数1〜6のアルコキシ基、置換されていてもよいフェニル基、又は、置換されていてもよいフェノキシ基で置換されていることが好ましく、ハロゲンで置換されていることがより好ましい。
In the formula (1), in the case where R 3 and / or R 4 represents a -R 7 X, as the optionally substituted alkylene group having 1 to 6 carbon atoms represented by R 7 is, for example, a methylene group Methylmethylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, 1-methylethylene group, 1-ethylethylene group, n-pentylene group, n-hexalene group and the like. Of these, a methylene group and an ethylene group are preferable.
When the alkylene group represented by R 7 is substituted, it is substituted with a halogen, an alkoxy group having 1 to 6 carbon atoms, an optionally substituted phenyl group, or an optionally substituted phenoxy group. It is preferable that it is substituted with halogen, and it is more preferable that it is substituted with halogen.

前記式(1)中、R及び/又はRが−RXを示す場合における、Xで示される置換されていてもよいフェニル基としては、例えば、例えば、フェニル基、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、3−ブロモフェニル基、4−ブロモフェニル基、2−ヨードフェニル基、3−ヨードフェニル基、4−ヨードフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2−エチルフェニル基、3−エチルフェニル基、4−エチルフェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2−エトキシフェニル基、3−エトキシフェニル基、4−エトキシフェニル基、2−(ジメチルアミノ)フェニル基、3−(ジメチルアミノ)フェニル基、4−(ジメチルアミノ)フェニル基、フェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2−エチルフェノキシ基、3−エチルフェノキシ基、4−エチルフェノキシ基、2−メトキシフェノキシ基、3−メトキシフェノキシ基、4−メトキシフェノキシ基、2−エトキシフェノキシ基、3−エトキシフェノキシ基、4−エトキシフェノキシ基、2−(ジメチルアミノ)フェノキシ基、3−(ジメチルアミノ)フェノキシ基、4−(ジメチルアミノ)フェノキシ基等が挙げられる。なかでも、フェニル基であることが好ましい。
また、Xで示されるフェニル基が置換されている場合、フェニル基の一部又は全部の水素がハロゲンで置換されていることが好ましく、フッ素で置換されていることがより好ましい。
In the formula (1), when R 3 and / or R 4 represents —R 7 X, examples of the optionally substituted phenyl group represented by X include a phenyl group and 2-fluorophenyl. Group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl group, 2-iodo Phenyl group, 3-iodophenyl group, 4-iodophenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2-ethoxyphenyl group, 3-ethoxyphenyl group 4-ethoxyphenyl group, 2- (dimethylamino) phenyl group, 3- (dimethylamino) phenyl group, 4- (dimethylamino) phenyl group, phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4 -Methylphenoxy group, 2-ethylphenoxy group, 3-ethylphenoxy group, 4-ethylphenoxy group, 2-methoxyphenoxy group, 3-methoxyphenoxy group, 4-methoxyphenoxy group, 2-ethoxyphenoxy group, 3-ethoxy Examples include phenoxy group, 4-ethoxyphenoxy group, 2- (dimethylamino) phenoxy group, 3- (dimethylamino) phenoxy group, 4- (dimethylamino) phenoxy group and the like. Of these, a phenyl group is preferable.
Further, when the phenyl group represented by X is substituted, it is preferable that part or all of the hydrogen of the phenyl group is substituted with halogen, and it is more preferable that the phenyl group is substituted with fluorine.

前記式(1)中、R及びRは、炭素数0〜6のアルキレン基を示す。R及びRが「炭素数0のアルキレン基」である場合とは、R及びスルホニル基と結合した窒素原子が直接Rと結合している場合、R及びスルホニル基と結合した窒素原子が直接Rと結合している場合を意味する。
前記式(1)中、R及びRで示されるアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基等が挙げられる。なかでも、メチレン基、エチレン基が好ましい。
In the formula (1), R 5 and R 6 represents an alkylene group having 0-6 carbon atoms. The case where R 5 and R 6 are “an alkylene group having 0 carbon atoms” means that when the nitrogen atom bonded to R 3 and the sulfonyl group is directly bonded to R 1 , the nitrogen bonded to R 4 and the sulfonyl group It means a case where atoms are bonded directly to R 2.
In the formula (1), the alkylene group represented by R 5 and R 6, for example, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group and the like. Of these, a methylene group and an ethylene group are preferable.

とR、RとR、及び、RとRは、それぞれ同一であってもよいし異なっていてもよいが、同一であることが好ましい。 R 1 and R 2 , R 3 and R 4 , and R 5 and R 6 may be the same or different, but are preferably the same.

前記式(1)中、Mで示される置換されていてもよい炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基等が挙げられる。なかでも、メチル基であることが好ましい。
また、Mで示されるアルキル基が置換されている場合、アルキル基の一部又は全部の水素がハロゲンで置換されていることが好ましく、フッ素で置換されていることがより好ましい。
In the formula (1), the optionally substituted alkyl group represented by M is, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl. Group, t-butyl group, n-pentyl group, n-hexyl group and the like. Of these, a methyl group is preferable.
Further, when the alkyl group represented by M is substituted, it is preferable that part or all of the alkyl group is substituted with halogen, and more preferably substituted with fluorine.

本発明の非水電解液用添加剤は、得られる非水電解液が、高い放電容量維持率と低い内部抵抗比を示すものとなることから、本発明にかかるイミドスルホン酸アミド化合物として、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、下記式(5)で表される化合物、下記式(6)で表される化合物、下記式(7)で表される化合物、下記式(8)で表される化合物、下記式(9)で表される化合物、下記式(10)で表される化合物、及び、下記式(11)で表される化合物からなる群より選択される少なくとも1種のイミドスルホン酸アミド化合物からなることが好ましい。 The additive for non-aqueous electrolyte of the present invention is such that the obtained non-aqueous electrolyte exhibits a high discharge capacity retention ratio and a low internal resistance ratio. A compound represented by the formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), a compound represented by the following formula (5), and a formula represented by the following formula (6) A compound represented by the following formula (7), a compound represented by the following formula (8), a compound represented by the following formula (9), a compound represented by the following formula (10), and It preferably comprises at least one imide sulfonic acid amide compound selected from the group consisting of compounds represented by the following formula (11).

Figure 2014194871
Figure 2014194871

Figure 2014194871
Figure 2014194871

Figure 2014194871
Figure 2014194871

Figure 2014194871
Figure 2014194871

Figure 2014194871
Figure 2014194871

Figure 2014194871
Figure 2014194871

Figure 2014194871
Figure 2014194871

Figure 2014194871
Figure 2014194871

Figure 2014194871
Figure 2014194871

Figure 2014194871
Figure 2014194871

本発明にかかるイミドスルホン酸アミド化合物を製造する方法としては、例えば、塩化チオニル存在下、アミド硫酸とクロロ硫酸を反応させることで得られたものをアミンと反応させる方法等が挙げられる。 Examples of the method for producing the imide sulfonic acid amide compound according to the present invention include a method of reacting an amidosulfuric acid and chlorosulfuric acid with an amine in the presence of thionyl chloride.

本発明にかかるイミドスルホン酸アミド化合物は、最低空分子軌道(LUMO)エネルギーの好ましい下限が−2.8eV、好ましい上限が0.0eVである。前記LUMOエネルギーが−2.8eV未満であると、過剰な分解を起こし、電極上に高い抵抗を示す被膜を形成することがある。前記LUMOエネルギーが0.0eVを超えると、非水電解液二次電池等の電極表面上に安定なSEIを形成することができないことがある。前記LUMOエネルギーのより好ましい下限は−1.5eV、より好ましい上限は−0.15eVである。
なお、前記「最低空分子軌道(LUMO)エネルギー」は、半経験的分子軌道計算法:PM3と密度汎関数法:B3LYP法とを組み合わせて算出される。具体的に本発明では、Gaussian03(Revision B.03、米ガウシアン社製ソフトウェア)を用いて算出された値を用いる。
The preferred lower limit of the lowest unoccupied molecular orbital (LUMO) energy of the imide sulfonic acid amide compound according to the present invention is -2.8 eV, and the preferred upper limit is 0.0 eV. When the LUMO energy is less than −2.8 eV, excessive decomposition may occur, and a film showing high resistance may be formed on the electrode. When the LUMO energy exceeds 0.0 eV, stable SEI may not be formed on the electrode surface of a nonaqueous electrolyte secondary battery or the like. A more preferable lower limit of the LUMO energy is −1.5 eV, and a more preferable upper limit is −0.15 eV.
The “lowest unoccupied molecular orbital (LUMO) energy” is calculated by combining a semi-empirical molecular orbital calculation method: PM3 and a density functional method: B3LYP method. Specifically, in the present invention, a value calculated using Gaussian 03 (Revision B.03, software manufactured by Gaussian, USA) is used.

本発明にかかるイミドスルホン酸アミド化合物は、電気化学的還元を受けやすい低いLUMOエネルギーを示すため、該化合物からなる本発明の非水電解液用添加剤は、非水電解液二次電池等の蓄電デバイスに用いる非水電解液に添加された場合に、電極表面上に安定なSEIを形成してサイクル特性、充放電容量、内部抵抗等の電池特性を改善することができる。また、本発明にかかるイミドスルホン酸アミド化合物は、水分や温度変化に対して安定であるため、該化合物からなる本発明の非水電解液用添加剤は、長期間、室温で保存することが可能である。したがって、該非水電解液用添加剤を含有する非水電解液も、長期間の保存及び使用に耐えることができる。
本発明の非水電解液用添加剤、非水溶媒、及び、電解質を含有する非水電解液もまた、本発明の1つである。
Since the imide sulfonic acid amide compound according to the present invention exhibits low LUMO energy that is susceptible to electrochemical reduction, the additive for a non-aqueous electrolyte of the present invention comprising the compound is used for a non-aqueous electrolyte secondary battery or the like. When added to a non-aqueous electrolyte used in an electricity storage device, stable SEI can be formed on the electrode surface to improve battery characteristics such as cycle characteristics, charge / discharge capacity, and internal resistance. Further, since the imide sulfonic acid amide compound according to the present invention is stable against moisture and temperature changes, the additive for non-aqueous electrolyte of the present invention comprising the compound can be stored at room temperature for a long period of time. Is possible. Therefore, the non-aqueous electrolyte containing the non-aqueous electrolyte additive can withstand long-term storage and use.
The non-aqueous electrolyte containing the additive for non-aqueous electrolyte, the non-aqueous solvent, and the electrolyte of the present invention is also one aspect of the present invention.

本発明の非水電解液における本発明の非水電解液用添加剤の含有量(即ち、前記式(1)で表されるイミドスルホン酸アミド化合物の含有量)は特に限定されないが、好ましい下限は0.005質量%、好ましい上限は10質量%である。本発明の非水電解液用添加剤の含有量が0.005質量%未満であると、蓄電デバイスに用いた場合に電極表面での電気化学反応によって安定なSEIを充分に形成できないおそれがある。本発明の非水電解液用添加剤の含有量が10質量%を超えると、溶解しにくくなるだけでなく非水電解液の粘度が上昇し、イオンの移動度を充分に確保できなくなるため、電解液の導電性等を充分に確保することができず、蓄電デバイスに用いた場合に放電特性及び充電特性等に支障をきたすおそれがある。本発明の非水電解液用添加剤の含有量のより好ましい下限は0.01質量%である。 The content of the additive for non-aqueous electrolyte of the present invention in the non-aqueous electrolyte of the present invention (that is, the content of the imide sulfonic acid amide compound represented by the formula (1)) is not particularly limited, but is preferably the lower limit. Is 0.005 mass%, and a preferable upper limit is 10 mass%. When the content of the additive for non-aqueous electrolyte of the present invention is less than 0.005% by mass, there is a possibility that stable SEI cannot be sufficiently formed due to an electrochemical reaction on the electrode surface when used in an electricity storage device. . When the content of the additive for non-aqueous electrolyte of the present invention exceeds 10% by mass, not only is it difficult to dissolve, but also the viscosity of the non-aqueous electrolyte increases, and it becomes impossible to ensure sufficient ion mobility. The electroconductivity of the electrolytic solution cannot be sufficiently ensured, and there is a possibility that the discharge characteristics, the charge characteristics, etc. may be hindered when used in an electricity storage device. The more preferable lower limit of the content of the additive for non-aqueous electrolyte of the present invention is 0.01% by mass.

前記非水溶媒としては、得られる非水電解液の粘度を低く抑える等の観点から、非プロトン性溶媒が好適である。なかでも、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、ラクトン、ラクタム、環状エーテル、鎖状エーテル、及び、これらのハロゲン誘導体からなる群より選択される少なくとも1種を含有することが好ましい。 As the non-aqueous solvent, an aprotic solvent is preferable from the viewpoint of keeping the viscosity of the obtained non-aqueous electrolyte low. Among these, it is preferable to contain at least one selected from the group consisting of cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, lactones, lactams, cyclic ethers, chain ethers, and halogen derivatives thereof.

前記非水溶媒としては、具体的には例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン等の環状カーボネート、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル等の鎖状カーボネートや、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル等の脂肪族カルボン酸エステルや、γ−ブチロラクトン等のラクトンや、ε−カプロラクタム、N−メチルピロリドン等のラクタムや、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン等の環状エーテルや、1,2−エトキシエタン、エトキシメトキシエタン等の鎖状エーテルや、4−フルオロ−1,3−ジオキソラン−2−オン、4−クロロ−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−1,3−ジオキソラン−2−オン等のハロゲン誘導体等が挙げられる。これらの非水溶媒は、単独で用いてもよいし、複数種を混合して用いてもよい。 Specific examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, methyl acetate, ethyl acetate, and propionic acid. Aliphatic carboxylic acid esters such as methyl, ethyl propionate, methyl butyrate, methyl isobutyrate and methyl trimethylacetate, lactones such as γ-butyrolactone, lactams such as ε-caprolactam and N-methylpyrrolidone, tetrahydrofuran, 2- Cyclic ethers such as methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, chain ethers such as 1,2-ethoxyethane, ethoxymethoxyethane, 4-fluoro-1,3-dioxolan-2-one, 4- Chloro-1,3-dioxolan-2-o And halogen derivatives such as 4,5-difluoro-1,3-dioxolan-2-one. These non-aqueous solvents may be used alone or in combination of two or more.

前記電解質としては、リチウムイオンのイオン源となるリチウム塩が好ましい。なかでも、LiAlCl、LiBF、LiPF、LiClO、LiAsF、及び、LiSbFからなる群より選択される少なくとも1種であることが好ましく、LiBF、LiPFであることがより好ましい。これらの電解質は、単独で使用してもよいし、2種以上を併用してもよい。 The electrolyte is preferably a lithium salt that serves as a source of lithium ions. Among these, at least one selected from the group consisting of LiAlCl 4 , LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , and LiSbF 6 is preferable, and LiBF 4 and LiPF 6 are more preferable. These electrolytes may be used alone or in combination of two or more.

本発明の非水電解液における前記電解質の濃度は特に限定されないが、好ましい下限は0.1mol/L、好ましい上限は2.0mol/Lである。前記電解質の濃度が0.1mol/L未満であると、非水電解液の導電性等を充分に確保することができず、蓄電デバイスに用いた場合に放電特性及び充電特性等に支障をきたすおそれがある。前記電解質の濃度が2.0mol/Lを超えると、粘度が上昇し、イオンの移動度を充分に確保できなくなるため、非水電解液の導電性等を充分に確保することができず、蓄電デバイスに用いた場合に放電特性及び充電特性等に支障をきたすおそれがある。前記電解質の濃度のより好ましい下限は0.5mol/L、より好ましい上限は1.5mol/Lである。 The concentration of the electrolyte in the nonaqueous electrolytic solution of the present invention is not particularly limited, but a preferred lower limit is 0.1 mol / L and a preferred upper limit is 2.0 mol / L. When the concentration of the electrolyte is less than 0.1 mol / L, the conductivity of the non-aqueous electrolyte cannot be sufficiently ensured, and the discharge characteristics and the charge characteristics are hindered when used in an electricity storage device. There is a fear. When the concentration of the electrolyte exceeds 2.0 mol / L, the viscosity increases and the mobility of ions cannot be sufficiently ensured, so that the conductivity of the non-aqueous electrolyte cannot be sufficiently secured and When used in a device, there is a risk of disturbing discharge characteristics and charge characteristics. A more preferred lower limit of the electrolyte concentration is 0.5 mol / L, and a more preferred upper limit is 1.5 mol / L.

本発明の非水電解液、正極、及び、負極を備えた蓄電デバイスもまた、本発明の1つである。前記蓄電デバイスとしては、非水電解液二次電池や電気二重層キャパシタ等が挙げられる。これらの中でもリチウムイオン電池、リチウムイオンキャパシタが好適である。 An electricity storage device including the non-aqueous electrolyte, positive electrode, and negative electrode of the present invention is also one aspect of the present invention. Examples of the electricity storage device include non-aqueous electrolyte secondary batteries and electric double layer capacitors. Of these, lithium ion batteries and lithium ion capacitors are preferred.

図1は、本発明の蓄電デバイスの一例を模式的に示した断面図である。
図1において、蓄電デバイス1は、正極集電体2の一方面側に正極活物質層3が設けられてなる正極板4、及び、負極集電体5の一方面側に負極活物質層6が設けられてなる負極板7を有する。正極板4と負極板7とは、本発明の非水電解液8と非水電解液8中に設けたセパレータ9を介して対向配置されている。
FIG. 1 is a cross-sectional view schematically showing an example of the electricity storage device of the present invention.
In FIG. 1, an electricity storage device 1 includes a positive electrode plate 4 in which a positive electrode active material layer 3 is provided on one surface side of a positive electrode current collector 2, and a negative electrode active material layer 6 on one surface side of a negative electrode current collector 5. Has a negative electrode plate 7. The positive electrode plate 4 and the negative electrode plate 7 are disposed to face each other with a separator 9 provided in the non-aqueous electrolyte 8 and the non-aqueous electrolyte 8 of the present invention.

本発明の蓄電デバイスにおいて、正極集電体2及び負極集電体5としては、例えば、アルミニウム、銅、ニッケル、ステンレス等の金属からなる金属箔を用いることができる。 In the electricity storage device of the present invention, as the positive electrode current collector 2 and the negative electrode current collector 5, for example, a metal foil made of a metal such as aluminum, copper, nickel, stainless steel, or the like can be used.

本発明の蓄電デバイスにおいて、正極活物質層3に用いる正極活物質としては、リチウム含有複合酸化物が好ましく用いられ、具体的には例えば、LiMnO、LiFeO、LiCoO、LiMn、LiFeSiO等のリチウム含有複合酸化物が挙げられる。 In the electricity storage device of the present invention, as the positive electrode active material used for the positive electrode active material layer 3, lithium-containing composite oxides are preferably used. Specifically, for example, LiMnO 2 , LiFeO 2 , LiCoO 2 , LiMn 2 O 4 , Examples include lithium-containing composite oxides such as Li 2 FeSiO 4 .

本発明の蓄電デバイスにおいて、負極活物質層6に用いる負極活物質としては、例えば、リチウムを吸蔵、放出することができる材料が挙げられる。このような材料としては、黒鉛、非晶質炭素等の炭素材料や、酸化インジウム、酸化シリコン、酸化スズ、酸化亜鉛、及び酸化リチウム等の酸化物材料等が挙げられる。
また、負極活物質として、リチウム金属、及び、リチウムと合金を形成することができる金属材料を用いることもできる。前記リチウムと合金を形成することができる金属としては、例えば、Cu、Sn、Si、Co、Mn、Fe、Sb、Ag等が挙げられ、これらの金属とリチウムを含む2元又は3元からなる合金を用いることもできる。
これらの負極活物質は単独で用いてもよいし、2種以上を混合して用いてもよい。
本発明の蓄電デバイスにおいて、セパレータ9としては、例えば、ポリエチレン、ポリプロピレン、フッ素樹脂等からなる多孔質フィルムを用いることができる。
In the electricity storage device of the present invention, examples of the negative electrode active material used for the negative electrode active material layer 6 include a material capable of inserting and extracting lithium. Examples of such materials include carbon materials such as graphite and amorphous carbon, and oxide materials such as indium oxide, silicon oxide, tin oxide, zinc oxide, and lithium oxide.
In addition, as the negative electrode active material, lithium metal and a metal material capable of forming an alloy with lithium can be used. Examples of the metal capable of forming an alloy with lithium include Cu, Sn, Si, Co, Mn, Fe, Sb, Ag, and the like, and are composed of binary or ternary containing these metals and lithium. An alloy can also be used.
These negative electrode active materials may be used alone or in combination of two or more.
In the electricity storage device of the present invention, as the separator 9, for example, a porous film made of polyethylene, polypropylene, fluororesin, or the like can be used.

本発明によれば、蓄電デバイスに用いた場合に、電極表面上に安定な固体電解質界面を形成して電池の寿命や容量等の電池特性を改善することができる非水電解液用添加剤を提供することができる。また、本発明によれば、該非水電解液用添加剤を用いた非水電解液、及び、該非水電解液を用いた蓄電デバイスを提供することができる。 According to the present invention, when used in an electricity storage device, a non-aqueous electrolyte additive that can form a stable solid electrolyte interface on the electrode surface to improve battery characteristics such as battery life and capacity. Can be provided. Moreover, according to this invention, the nonaqueous electrolyte using this additive for nonaqueous electrolytes, and the electrical storage device using this nonaqueous electrolyte can be provided.

本発明の蓄電デバイスの一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the electrical storage device of this invention.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(イミドジスルフリルクロライドの合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた500mL容の4つ口フラスコに、塩化チオニル217.0g(1.8モル)を仕込み、0℃下にてアミド硫酸58.3g(0.6モル)を2時間かけて滴下し、ついでクロロ硫酸75.5g(0.7モル)を2時間かけて滴下した。続いて、加熱還流下、12時間撹拌した後、減圧留去して粗生成物132gを得た。得られた粗生成物を減圧蒸留により分留し、イミドジスルフリルクロライド124.5gを得た。イミドジスルフリルクロライドの収率は、アミド硫酸に対して97%であった。
Example 1
(Synthesis of imidodisulfuryl chloride)
A 500 mL four-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 217.0 g (1.8 mol) of thionyl chloride, and 58.3 g (0. 6 mol) was added dropwise over 2 hours, and then 75.5 g (0.7 mol) of chlorosulfuric acid was added dropwise over 2 hours. Subsequently, the mixture was stirred for 12 hours under reflux with heating, and then distilled off under reduced pressure to obtain 132 g of a crude product. The obtained crude product was fractionated by distillation under reduced pressure to obtain 124.5 g of imidodisulfuryl chloride. The yield of imidodisulfyl chloride was 97% with respect to amidosulfuric acid.

(イミドスルホン酸アミド化合物(化合物1)の合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた200mL容の4つ口フラスコに、メチルアニリン11.8g(0.11モル)、トリエチルアミン14.1g(0.l4モル)、及び、メチルt−ブチルエーテル80gを仕込み、0℃まで冷却した。続いて、得られたイミドジスルフリルクロライド10.7g(0.05モル)を滴下し、温度を徐々に室温に上げ、一晩撹拌した後、水25gを添加して分液し、得られた有機層から減圧留去によりメチルt−ブチルエーテルを除去した。ヘプタン20gを添加し、加熱還流下1時間撹拌した後、室温まで冷却し、結晶を析出させた。得られた結晶をろ過し、減圧乾燥することにより、前記式(2)で表されるイミドスルホン酸アミド化合物(化合物1)15.6g(0.04モル)を得た。化合物1の収率は、イミドジスルフリルクロライドに対して88%であった。
(Synthesis of imidosulfonic acid amide compound (compound 1))
In a 200 mL four-necked flask equipped with a stirrer, a condenser, a thermometer and a dropping funnel, 11.8 g (0.11 mol) of methylaniline, 14.1 g (0.14 mol) of triethylamine, and methyl t -80 g of butyl ether was charged and cooled to 0 ° C. Subsequently, 10.7 g (0.05 mol) of the obtained imidodisulfuryl chloride was dropped, the temperature was gradually raised to room temperature, and the mixture was stirred overnight. Methyl t-butyl ether was removed from the organic layer by distillation under reduced pressure. After adding 20 g of heptane and stirring for 1 hour under heating and refluxing, the mixture was cooled to room temperature to precipitate crystals. The obtained crystals were filtered and dried under reduced pressure to obtain 15.6 g (0.04 mol) of an imide sulfonic acid amide compound (Compound 1) represented by the formula (2). The yield of Compound 1 was 88% with respect to imidodisulfuryl chloride.

(非水電解液の調製)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全重量に対し、非水電解液用添加剤として作製した化合物1を、含有割合が0.5質量%となるように添加し、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte So that the content ratio of the compound 1 prepared as an additive for a non-aqueous electrolyte is 0.5% by mass with respect to the total weight of the solution composed of the mixed non-aqueous solvent and the electrolyte. This was added to prepare a non-aqueous electrolyte.

(実施例2)
「非水電解液の調製」において、化合物1の含有割合を1.0質量%となるようにしたこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 2)
In “Preparation of Nonaqueous Electrolyte”, a nonaqueous electrolyte was prepared in the same manner as in Example 1 except that the content ratio of Compound 1 was 1.0% by mass.

(実施例3)
(イミドスルホン酸アミド化合物(化合物2)の合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた100mL容の4つ口フラスコに、15%ブチルリチウムヘキサン溶液6g(0.01モル)、及び、テトラヒドロフラン10.0gを仕込み、0℃まで冷却した後、ジイソプロピルアミン1.5g(0.01モル)を30分かけて滴下した。実施例1と同様にして得られた化合物1を5.0g(0.01モル)テトラヒドロフランに溶解した溶液を2時間かけて滴下し、10時間撹拌した。析出した結晶をろ過し、減圧乾燥することにより、前記式(3)で表されるイミドスルホン酸アミド化合物(化合物2)4.2g(0.01モル)を得た。化合物1に対して化合物2の収率は83%(イミドジスルフリルクロライドに対して73%)であった。
(Example 3)
(Synthesis of imidosulfonic acid amide compound (compound 2))
A 100 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel was charged with 6 g (0.01 mol) of 15% butyllithium hexane solution and 10.0 g of tetrahydrofuran, and cooled to 0 ° C. Then, 1.5 g (0.01 mol) of diisopropylamine was added dropwise over 30 minutes. A solution prepared by dissolving Compound 1 obtained in the same manner as in Example 1 in 5.0 g (0.01 mol) of tetrahydrofuran was added dropwise over 2 hours and stirred for 10 hours. The precipitated crystals were filtered and dried under reduced pressure to obtain 4.2 g (0.01 mol) of an imide sulfonic acid amide compound (Compound 2) represented by the formula (3). The yield of Compound 2 with respect to Compound 1 was 83% (73% with respect to imidodisulfuryl chloride).

(非水電解液の調製)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全重量に対し、非水電解液用添加剤として作製した化合物2を、含有割合が1.0質量%となるように添加し、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte So that the content ratio of the compound 2 prepared as an additive for the non-aqueous electrolyte is 1.0% by mass with respect to the total weight of the solution composed of the mixed non-aqueous solvent and the electrolyte. This was added to prepare a non-aqueous electrolyte.

(実施例4)
(イミドスルホン酸アミド化合物(化合物3)の合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた200mL容の4つ口フラスコに、メチルベンジルアミン13.3g(0.11モル)、トリエチルアミン14.1g(0.l4モル)、及び、メチルt−ブチルエーテル80gを仕込み、0℃まで冷却した。続いて、実施例1と同様にして得られたイミドジスルフリルクロライド10.7g(0.05モル)を滴下し、温度を徐々に室温に上げ、一晩撹拌した後、水25gを添加して分液し、得られた有機層から減圧留去によりメチルt−ブチルエーテルを除去した。ヘプタン20gを添加し、加熱還流下1時間撹拌した後、室温まで冷却し、結晶を析出させた。得られた結晶をろ過し、減圧乾燥することにより、前記式(4)で表されるイミドスルホン酸アミド化合物(化合物3)17.3g(0.05モル)を得た。化合物3の収率は、イミドジスルフリルクロライドに対して90%であった。
Example 4
(Synthesis of imidosulfonic acid amide compound (compound 3))
In a 200 mL four-necked flask equipped with a stirrer, a condenser, a thermometer and a dropping funnel, 13.3 g (0.11 mol) of methylbenzylamine, 14.1 g (0.14 mol) of triethylamine, and methyl 80 g of t-butyl ether was charged and cooled to 0 ° C. Subsequently, 10.7 g (0.05 mol) of imide disulfuryl chloride obtained in the same manner as in Example 1 was added dropwise, the temperature was gradually raised to room temperature, stirred overnight, and then 25 g of water was added. Liquid separation was performed, and methyl t-butyl ether was removed from the obtained organic layer by distillation under reduced pressure. After adding 20 g of heptane and stirring for 1 hour under heating and refluxing, the mixture was cooled to room temperature to precipitate crystals. The obtained crystals were filtered and dried under reduced pressure to obtain 17.3 g (0.05 mol) of an imide sulfonic acid amide compound (Compound 3) represented by the formula (4). The yield of Compound 3 was 90% with respect to imidodisulfuryl chloride.

(非水電解液の調製)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全重量に対し、非水電解液用添加剤として作製した化合物3を、含有割合が1.0質量%となるように添加し、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte So that the content ratio of the compound 3 prepared as an additive for the non-aqueous electrolyte is 1.0% by mass with respect to the total weight of the solution composed of the mixed non-aqueous solvent and the electrolyte. This was added to prepare a non-aqueous electrolyte.

(実施例5)
(イミドスルホン酸アミド化合物(化合物4)の合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた100mL容の4つ口フラスコに、15%ブチルリチウムヘキサン溶液6g(0.01モル)、及び、テトラヒドロフラン10.0gを仕込み、0℃まで冷却した後、ジイソプロピルアミン1.5g(0.01モル)を30分かけて滴下した。実施例4と同様にして得られた化合物3を5.4g(0.01モル)テトラヒドロフランに溶解した溶液を2時間かけて滴下し、10時間撹拌した。析出した結晶をろ過し、減圧乾燥することにより、前記式(5)で表されるイミドスルホン酸アミド化合物(化合物4)4.9g(0.01モル)を得た。化合物3に対して化合物4の収率は90%(イミドジスルフリルクロライドに対して81%)であった。
(Example 5)
(Synthesis of imidosulfonic acid amide compound (compound 4))
A 100 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel was charged with 6 g (0.01 mol) of 15% butyllithium hexane solution and 10.0 g of tetrahydrofuran, and cooled to 0 ° C. Then, 1.5 g (0.01 mol) of diisopropylamine was added dropwise over 30 minutes. A solution prepared by dissolving Compound 3 obtained in the same manner as in Example 4 in 5.4 g (0.01 mol) of tetrahydrofuran was added dropwise over 2 hours and stirred for 10 hours. The precipitated crystals were filtered and dried under reduced pressure to obtain 4.9 g (0.01 mol) of an imide sulfonic acid amide compound (Compound 4) represented by the formula (5). The yield of Compound 4 with respect to Compound 3 was 90% (81% with respect to imidodisulfuryl chloride).

(非水電解液の調製)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全重量に対し、非水電解液用添加剤として作製した化合物4を、含有割合が1.0質量%となるように添加し、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte So that the content ratio of the compound 4 prepared as an additive for the non-aqueous electrolyte is 1.0% by mass with respect to the total weight of the solution composed of the mixed non-aqueous solvent and the electrolyte. This was added to prepare a non-aqueous electrolyte.

(実施例6)
(イミドスルホン酸アミド化合物(化合物5)の合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた200mL容の4つ口フラスコに、4−フルオロ−N−メチルアニリン13.8g(0.11モル)、トリエチルアミン14.1g(0.l4モル)、及び、メチルt−ブチルエーテル80gを仕込み、0℃まで冷却した。続いて、実施例1と同様にして得られたイミドジスルフリルクロライド10.7g(0.05モル)を滴下し、温度を徐々に室温に上げ、一晩撹拌した後、水25gを添加して分液し、得られた有機層から減圧留去によりメチルt−ブチルエーテルを除去した。ヘプタン20gを添加し、加熱還流下1時間撹拌した後、室温まで冷却し、結晶を析出させた。得られた結晶をろ過し、減圧乾燥することにより、下記式(6)で表されるイミドスルホン酸アミド化合物(化合物5)16.4g(0.04モル)を得た。化合物5の収率は、イミドジスルフリルクロライドに対して90%であった。
(Example 6)
(Synthesis of imidosulfonic acid amide compound (compound 5))
In a 200 mL four-necked flask equipped with a stirrer, a condenser, a thermometer and a dropping funnel, 13.8 g (0.11 mol) of 4-fluoro-N-methylaniline and 14.1 g (0.14 mol) of triethylamine were added. ) And 80 g of methyl t-butyl ether were charged and cooled to 0 ° C. Subsequently, 10.7 g (0.05 mol) of imide disulfuryl chloride obtained in the same manner as in Example 1 was added dropwise, the temperature was gradually raised to room temperature, stirred overnight, and then 25 g of water was added. Liquid separation was performed, and methyl t-butyl ether was removed from the obtained organic layer by distillation under reduced pressure. After adding 20 g of heptane and stirring for 1 hour under heating and refluxing, the mixture was cooled to room temperature to precipitate crystals. The obtained crystals were filtered and dried under reduced pressure to obtain 16.4 g (0.04 mol) of an imide sulfonic acid amide compound (Compound 5) represented by the following formula (6). The yield of Compound 5 was 90% based on imidodisulfuryl chloride.

(非水電解液の調製)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全重量に対し、非水電解液用添加剤として作製した化合物5を、含有割合が1.0質量%となるように添加し、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte The compound 5 prepared as an additive for a non-aqueous electrolyte is 1.0% by mass with respect to the total weight of the solution composed of the mixed non-aqueous solvent and the electrolyte. This was added to prepare a non-aqueous electrolyte.

(実施例7)
(イミドスルホン酸アミド化合物(化合物6)の合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた100mL容の4つ口フラスコに、15%ブチルリチウムヘキサン溶液6g(0.01モル)、及び、テトラヒドロフラン10.0gを仕込み、0℃まで冷却した後、ジイソプロピルアミン1.5g(0.01モル)を30分かけて滴下した。得られた化合物5を5.5g(0.01モル)テトラヒドロフランに溶解した溶液を2時間かけて滴下し、10時間撹拌した。析出した結晶をろ過し、減圧乾燥することにより、前記式(7)で表されるイミドスルホン酸アミド化合物(化合物6)4.4g(0.01モル)を得た。化合物5に対して化合物6の収率は74%(イミドジスルフリルクロライドに対して67%)であった。
(Example 7)
(Synthesis of Imidosulfonic Acid Amide Compound (Compound 6))
A 100 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel was charged with 6 g (0.01 mol) of 15% butyllithium hexane solution and 10.0 g of tetrahydrofuran, and cooled to 0 ° C. Then, 1.5 g (0.01 mol) of diisopropylamine was added dropwise over 30 minutes. A solution obtained by dissolving 5.5 g (0.01 mol) of the obtained compound 5 in tetrahydrofuran was added dropwise over 2 hours and stirred for 10 hours. The precipitated crystals were filtered and dried under reduced pressure to obtain 4.4 g (0.01 mol) of an imide sulfonic acid amide compound (Compound 6) represented by the formula (7). The yield of Compound 6 with respect to Compound 5 was 74% (67% with respect to imidodisulfuryl chloride).

(非水電解液の調製)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全重量に対し、非水電解液用添加剤として作製した化合物6を、含有割合が1.0質量%となるように添加し、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte So that the content ratio of the compound 6 prepared as the additive for the non-aqueous electrolyte is 1.0% by mass with respect to the total weight of the solution composed of the mixed non-aqueous solvent and the electrolyte. This was added to prepare a non-aqueous electrolyte.

(実施例8)
(イミドスルホン酸アミド化合物(化合物7)の合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた200mL容の4つ口フラスコに、アニリン10.2g(0.11モル)、トリエチルアミン14.1g(0.l4モル)、及び、メチルt−ブチルエーテル80gを仕込み、0℃まで冷却した。続いて、実施例1と同様にして得られたイミドジスルフリルクロライド10.7g(0.05モル)を滴下し、温度を徐々に室温に上げ、一晩撹拌した後、水25gを添加して分液し、得られた有機層から減圧留去によりメチルt−ブチルエーテルを除去した。ヘプタン20gを添加し、加熱還流下1時間撹拌した後、室温まで冷却し、結晶を析出させた。得られた結晶をろ過し、減圧乾燥することにより、前記式(8)で表されるイミドスルホン酸アミド化合物(化合物7)13.1g(0.04モル)を得た。化合物7の収率は、イミドジスルフリルクロライドに対して90%であった。
(Example 8)
(Synthesis of imidosulfonic acid amide compound (compound 7))
In a 200 mL four-necked flask equipped with a stirrer, a condenser, a thermometer and a dropping funnel, 10.2 g (0.11 mol) of aniline, 14.1 g (0.14 mol) of triethylamine, and methyl t- 80 g of butyl ether was charged and cooled to 0 ° C. Subsequently, 10.7 g (0.05 mol) of imide disulfuryl chloride obtained in the same manner as in Example 1 was added dropwise, the temperature was gradually raised to room temperature, stirred overnight, and then 25 g of water was added. Liquid separation was performed, and methyl t-butyl ether was removed from the obtained organic layer by distillation under reduced pressure. After adding 20 g of heptane and stirring for 1 hour under heating and refluxing, the mixture was cooled to room temperature to precipitate crystals. The obtained crystals were filtered and dried under reduced pressure to obtain 13.1 g (0.04 mol) of an imide sulfonic acid amide compound (Compound 7) represented by the formula (8). The yield of compound 7 was 90% based on imidodisulfuryl chloride.

(非水電解液の調製)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全重量に対し、非水電解液用添加剤として作製した化合物7を、含有割合が1.0質量%となるように添加し、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte So that the content ratio of the compound 7 prepared as an additive for the non-aqueous electrolyte is 1.0% by mass with respect to the total weight of the solution composed of the mixed non-aqueous solvent and the electrolyte. This was added to prepare a non-aqueous electrolyte.

(実施例9)
(イミドスルホン酸アミド化合物(化合物8)の合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた200mL容の4つ口フラスコに、ジベンジルアミン21.7g(0.11モル)、トリエチルアミン14.1g(0.l4モル)、及び、メチルt−ブチルエーテル80gを仕込み、0℃まで冷却した。続いて、実施例1と同様にして得られたイミドジスルフリルクロライド10.7g(0.05モル)を滴下し、温度を徐々に室温に上げ、一晩撹拌した後、水25gを添加して分液し、得られた有機層から減圧留去によりメチルt−ブチルエーテルを除去した。ヘプタン30gを添加し、加熱還流下1時間撹拌した後、室温まで冷却し、結晶を析出させた。得られた結晶をろ過し、減圧乾燥することにより、前記式(9)で表されるイミドスルホン酸アミド化合物(化合物8)20.8g(0.04モル)を得た。化合物8の収率は、イミドジスルフリルクロライドに対して75%であった。
Example 9
(Synthesis of imidosulfonic acid amide compound (compound 8))
In a 200 mL four-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel, 21.7 g (0.11 mol) of dibenzylamine, 14.1 g (0.14 mol) of triethylamine, and methyl 80 g of t-butyl ether was charged and cooled to 0 ° C. Subsequently, 10.7 g (0.05 mol) of imide disulfuryl chloride obtained in the same manner as in Example 1 was added dropwise, the temperature was gradually raised to room temperature, stirred overnight, and then 25 g of water was added. Liquid separation was performed, and methyl t-butyl ether was removed from the obtained organic layer by distillation under reduced pressure. After adding 30 g of heptane and stirring for 1 hour under heating and refluxing, the mixture was cooled to room temperature to precipitate crystals. The obtained crystals were filtered and dried under reduced pressure to obtain 20.8 g (0.04 mol) of an imide sulfonic acid amide compound (Compound 8) represented by the formula (9). The yield of Compound 8 was 75% based on imidodisulfuryl chloride.

(非水電解液の調製)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全重量に対し、非水電解液用添加剤として作製した化合物8を、含有割合が1.0質量%となるように添加し、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte The compound 8 prepared as an additive for a non-aqueous electrolyte is 1.0% by mass with respect to the total weight of the solution composed of the mixed non-aqueous solvent and the electrolyte. This was added to prepare a non-aqueous electrolyte.

(実施例10)
(イミドスルホン酸アミド化合物(化合物9)の合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた200mL容の4つ口フラスコに、N−メチルフェニルエチルアミン14.9g(0.11モル)、トリエチルアミン14.1g(0.l4モル)、及び、メチルt−ブチルエーテル80gを仕込み、0℃まで冷却した。続いて、実施例1と同様にして得られたイミドジスルフリルクロライド10.7g(0.05モル)を滴下し、温度を徐々に室温に上げ、一晩撹拌した後、水25gを添加して分液し、得られた有機層から減圧留去によりメチルt−ブチルエーテルを除去した。ヘプタン20gを添加し、加熱還流下1時間撹拌した後、室温まで冷却し、結晶を析出させた。得られた結晶をろ過し、減圧乾燥することにより、前記式(10)で表されるイミドスルホン酸アミド化合物(化合物9)16.9g(0.04モル)を得た。化合物9の収率は、イミドジスルフリルクロライドに対して82%であった。
(Example 10)
(Synthesis of imidosulfonic acid amide compound (compound 9))
In a 200 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel, 14.9 g (0.11 mol) of N-methylphenylethylamine, 14.1 g (0.14 mol) of triethylamine, and Then, 80 g of methyl t-butyl ether was charged and cooled to 0 ° C. Subsequently, 10.7 g (0.05 mol) of imide disulfuryl chloride obtained in the same manner as in Example 1 was added dropwise, the temperature was gradually raised to room temperature, stirred overnight, and then 25 g of water was added. Liquid separation was performed, and methyl t-butyl ether was removed from the obtained organic layer by distillation under reduced pressure. After adding 20 g of heptane and stirring for 1 hour under heating and refluxing, the mixture was cooled to room temperature to precipitate crystals. The obtained crystals were filtered and dried under reduced pressure to obtain 16.9 g (0.04 mol) of an imide sulfonic acid amide compound (Compound 9) represented by the formula (10). The yield of compound 9 was 82% based on imidodisulfuryl chloride.

(非水電解液の調製)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全重量に対し、非水電解液用添加剤として作製した化合物9を、含有割合が1.0質量%となるように添加し、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte The compound 9 prepared as an additive for a non-aqueous electrolyte is 1.0% by mass with respect to the total weight of the solution composed of the mixed non-aqueous solvent and the electrolyte. This was added to prepare a non-aqueous electrolyte.

(実施例11)
(イミドスルホン酸アミド化合物(化合物10)の合成)
撹拌機、冷却管、温度計及び滴下ロートを備え付けた200mL容の4つ口フラスコに、純度60%水素化ナトリウム1.1g(0.03モル)、テトラヒドロフラン15gを仕込み、0℃まで冷却した。続いて、テトラヒドロフラン10gに化合物1を3.6g(0.01モル)溶解させた溶液を2時間かけて滴下し、1時間撹拌した後にヨードメタン2.8g(0.02モル)を30分かけて滴下した。温度を徐々に室温に上げ、一晩撹拌した後、水25gを添加して分液し、得られた有機層から減圧留去によりテトラヒドロフランを除去した。ヘプタン10gおよびトルエン3gを添加し、加熱還流下1時間撹拌した後、室温まで冷却し、結晶を析出させた。得られた結晶をろ過し、減圧乾燥することにより、前記式(11)で表されるイミドスルホン酸アミド化合物(化合物10)2.1g(0.01モル)を得た。化合物10の収率は、化合物1に対して58%(イミドジスルフリルクロライドに対して51%)であった。
(Example 11)
(Synthesis of Imidosulfonic Acid Amide Compound (Compound 10))
A 200 mL four-necked flask equipped with a stirrer, a condenser, a thermometer and a dropping funnel was charged with 1.1 g (0.03 mol) of 60% pure sodium hydride and 15 g of tetrahydrofuran, and cooled to 0 ° C. Subsequently, a solution in which 3.6 g (0.01 mol) of Compound 1 was dissolved in 10 g of tetrahydrofuran was added dropwise over 2 hours. After stirring for 1 hour, 2.8 g (0.02 mol) of iodomethane was added over 30 minutes. It was dripped. After gradually raising the temperature to room temperature and stirring overnight, 25 g of water was added for liquid separation, and tetrahydrofuran was removed from the resulting organic layer by distillation under reduced pressure. After adding 10 g of heptane and 3 g of toluene and stirring for 1 hour under heating and refluxing, the mixture was cooled to room temperature to precipitate crystals. The obtained crystals were filtered and dried under reduced pressure to obtain 2.1 g (0.01 mol) of an imide sulfonic acid amide compound (Compound 10) represented by the formula (11). The yield of Compound 10 was 58% with respect to Compound 1 (51% with respect to imidodisulfuryl chloride).

(非水電解液の調製)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全重量に対し、非水電解液用添加剤として作製した化合物10を、含有割合が1.0質量%となるように添加し、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte So that the content ratio of the compound 10 prepared as the additive for the non-aqueous electrolyte is 1.0% by mass with respect to the total weight of the solution composed of the mixed non-aqueous solvent and the electrolyte. This was added to prepare a non-aqueous electrolyte.

(比較例1)
化合物1を用いなかったこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 1)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 1 was not used.

(比較例2)
化合物1に代えて、1,3−プロパンスルトンを含有割合が1.0質量%となるように添加したこと以外は、実施例2と同様にして非水電解液を調製した。
(Comparative Example 2)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 2 except that 1,3-propane sultone was added in such a manner that the content ratio was 1.0% by mass instead of Compound 1.

(比較例3)
化合物1に代えて、ビニレンカーボネート(VC)を含有割合が1.0質量%となるように添加したこと以外は、実施例2と同様にして非水電解液を調製した。
(Comparative Example 3)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 2 except that vinylene carbonate (VC) was added so that the content ratio was 1.0% by mass instead of Compound 1.

(比較例4)
ビニレンカーボネート(VC)の含有割合を2.0質量%となるようにしたこと以外は、比較例3と同様にして非水電解液を調製した。
(Comparative Example 4)
A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 3 except that the content of vinylene carbonate (VC) was 2.0% by mass.

(比較例5)
化合物1に代えて、フルオロエチレンカーボネート(FEC)を含有割合が1.0質量%となるように添加したこと以外は、実施例2と同様にして非水電解液を調製した。
(Comparative Example 5)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 2 except that fluoroethylene carbonate (FEC) was added so that the content ratio was 1.0% by mass instead of Compound 1.

(比較例6)
フルオロエチレンカーボネート(FEC)の含有割合を2.0質量%となるようにしたこと以外は、比較例5と同様にして非水電解液を調製した。
(Comparative Example 6)
A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 5 except that the content ratio of fluoroethylene carbonate (FEC) was 2.0% by mass.

<評価>
(LUMOエネルギーの測定)
実施例で得られた化合物1〜10について、LUMO(最低空分子軌道)エネルギーを測定するため、Gaussian03ソフトウェアにより、半経験的分子軌道計算を行った。軌道計算により得られた化合物1〜10のLUMOエネルギーを表1に示した。
<Evaluation>
(Measurement of LUMO energy)
For compounds 1-10 obtained in the examples, semi-empirical molecular orbital calculations were performed with Gaussian 03 software to measure LUMO (lowest unoccupied molecular orbital) energy. Table 1 shows LUMO energies of Compounds 1 to 10 obtained by orbit calculation.

Figure 2014194871
Figure 2014194871

表1より、本発明にかかるイミドスルホン酸アミド化合物(化合物1〜10)のLUMOエネルギーは負の値を示す約−0.40eVから約−0.67eVであり、これらのイミドスルホン酸アミド化合物は、低いLUMOエネルギーを有していることがわかる。そのため、化合物1〜10を非水電解液用添加剤として非水電解液二次電池等の蓄電デバイスに用いた場合、非水電解液の溶媒(例えば、環状カーボネートや鎖状カーボネート:LUMOエネルギー約1.2eV)よりも先に化合物1〜10の電気化学的還元が起こり、電極上にSEIが形成されるため電解液中の溶媒の分解を抑制することができる。その結果、高い抵抗を示す溶媒の分解被膜が電極上に形成されにくくなり電池特性の向上が期待される。
以上より、本発明にかかるイミドスルホン酸アミド化合物は充分に低いLUMOエネルギーを有しており、非水電解液二次電池等の蓄電デバイスの電極上に安定なSEIを形成する新規の非水電解液用添加剤として有効であることを示している。
From Table 1, the LUMO energy of the imide sulfonic acid amide compounds (compounds 1 to 10) according to the present invention is from about −0.40 eV to about −0.67 eV showing a negative value, and these imide sulfonic acid amide compounds are It can be seen that it has low LUMO energy. Therefore, when the compounds 1 to 10 are used as an additive for a non-aqueous electrolyte in an electricity storage device such as a non-aqueous electrolyte secondary battery, the solvent of the non-aqueous electrolyte (for example, cyclic carbonate or chain carbonate: about LUMO energy) Electrochemical reduction of compounds 1 to 10 occurs prior to 1.2 eV), and SEI is formed on the electrode, so that decomposition of the solvent in the electrolyte can be suppressed. As a result, it is difficult to form a decomposition film of a solvent exhibiting high resistance on the electrode, and an improvement in battery characteristics is expected.
As described above, the imidosulfonic acid amide compound according to the present invention has a sufficiently low LUMO energy, and a novel nonaqueous electrolysis that forms stable SEI on the electrode of an electricity storage device such as a nonaqueous electrolyte secondary battery. It shows that it is effective as a liquid additive.

(電池の作製)
正極活物質としてLiMn、及び、導電性付与剤としてカーボンブラックを乾式混合し、バインダーとしてポリフッ化ビニリデン(PVDF)を溶解させたN−メチル−2−ピロリドン(NMP)中に均一に分散させ、スラリーを作製した。得られたそのスラリーを正極集電体となるアルミ金属箔(角型、厚さ20μm)上に塗布後、NMPを蒸発させることにより正極シートを作製した。得られた正極シート中の固形分比率は、質量比で、正極活物質:導電性付与剤:PVDF=80:10:10とした。
一方、負極シートとして、市販の黒鉛塗布電極シート(宝泉社製)を用いた。
各実施例及び各比較例で得られた非水電解液中にて、負極シートと正極シートとを、ポリエチレンからなるセパレータを介して積層し、円筒型二次電池を作製した。
(Production of battery)
Disperse uniformly in N-methyl-2-pyrrolidone (NMP) in which LiMn 2 O 4 as a positive electrode active material and carbon black as a conductivity imparting agent are dry mixed and polyvinylidene fluoride (PVDF) is dissolved as a binder To prepare a slurry. The obtained slurry was applied on an aluminum metal foil (square shape, thickness 20 μm) serving as a positive electrode current collector, and then NMP was evaporated to prepare a positive electrode sheet. The solid content ratio in the obtained positive electrode sheet was a mass ratio of positive electrode active material: conductivity imparting agent: PVDF = 80: 10: 10.
On the other hand, as the negative electrode sheet, a commercially available graphite coated electrode sheet (manufactured by Hosen Co., Ltd.) was used.
In the non-aqueous electrolyte obtained in each example and each comparative example, the negative electrode sheet and the positive electrode sheet were laminated via a separator made of polyethylene to produce a cylindrical secondary battery.

(放電容量維持率及び内部抵抗比の測定)
得られた各円筒型二次電池に対して、25℃において、充電レートを0.3C、放電レートを0.3C、充電終止電圧を4.2V、及び、放電終止電圧を2.5Vとして充放電サイクル試験を行った。200サイクル後の放電容量維持率(%)及び内部抵抗比を表2に示した。なお、200サイクル後の「放電容量維持率(%)」とは、200サイクル試験後の放電容量(mAh)を、10サイクル試験後の放電容量(mAh)で割った値に100をかけたものである。また、200サイクル後の「内部抵抗比」とは、サイクル試験前の抵抗を1としたときの、200サイクル試験後の抵抗を相対値で示したものである。
(Measurement of discharge capacity maintenance ratio and internal resistance ratio)
Each cylindrical secondary battery obtained was charged at 25 ° C. with a charge rate of 0.3 C, a discharge rate of 0.3 C, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V. A discharge cycle test was conducted. Table 2 shows the discharge capacity retention rate (%) and the internal resistance ratio after 200 cycles. The “discharge capacity retention rate (%)” after 200 cycles is obtained by multiplying the value obtained by dividing the discharge capacity (mAh) after the 200 cycle test by the discharge capacity (mAh) after the 10 cycle test by 100. It is. The “internal resistance ratio” after 200 cycles represents the resistance after the 200 cycle test as a relative value when the resistance before the cycle test is 1.

Figure 2014194871
Figure 2014194871

表2から、実施例のイミドスルホン酸アミド化合物を含む非水電解液を用いた円筒型二次電池は、比較例の非水電解液を用いた円筒型二次電池と比較して、電極表面上に充放電サイクルに対して安定なSEIを形成していることがわかる。また、実施例のイミドスルホン酸アミド化合物を用いた非水電解液は、比較例の非水電解液に比べて、内部抵抗比が低い値を維持しており、サイクル時による内部抵抗の増加を抑制できることが分かる。 From Table 2, the cylindrical secondary battery using the non-aqueous electrolyte containing the imide sulfonic acid amide compound of the example was compared with the cylindrical secondary battery using the non-aqueous electrolyte of the comparative example. It can be seen that a stable SEI is formed with respect to the charge / discharge cycle. In addition, the non-aqueous electrolyte using the imide sulfonic acid amide compound of the example maintains a low internal resistance ratio compared to the non-aqueous electrolyte of the comparative example, and increases the internal resistance due to the cycle. It turns out that it can suppress.

本発明によれば、蓄電デバイスに用いた場合に、電極表面上に安定な固体電解質界面を形成して電池の寿命や容量等の電池特性を改善することができる非水電解液用添加剤を提供することができる。また、本発明によれば、該非水電解液用添加剤を用いた非水電解液、及び、該非水電解液を用いた蓄電デバイスを提供することができる。 According to the present invention, when used in an electricity storage device, a non-aqueous electrolyte additive that can form a stable solid electrolyte interface on the electrode surface to improve battery characteristics such as battery life and capacity. Can be provided. Moreover, according to this invention, the nonaqueous electrolyte using this additive for nonaqueous electrolytes, and the electrical storage device using this nonaqueous electrolyte can be provided.

1 蓄電デバイス
2 正極集電体
3 正極活物質層
4 正極板
5 負極集電体
6 負極活物質層
7 負極板
8 非水電解液
9 セパレータ
DESCRIPTION OF SYMBOLS 1 Power storage device 2 Positive electrode current collector 3 Positive electrode active material layer 4 Positive electrode plate 5 Negative electrode current collector 6 Negative electrode active material layer 7 Negative electrode plate 8 Nonaqueous electrolyte 9 Separator

Claims (11)

下記式(1)で表されるイミドスルホン酸アミド化合物からなることを特徴とする非水電解液用添加剤。
Figure 2014194871
式(1)中、R及びRは、それぞれ独立し、置換されていてもよいフェニル基を示す。R及びRは、それぞれ独立し、水素、置換されていてもよい炭素数1〜6のアルキル基、又は、−RX(Rは、置換されていてもよい炭素数1〜6のアルキレン基を示し、Xは、置換されていてもよいフェニル基又はフェノキシ基を示す)を示す。R及びRは、それぞれ独立し、置換されていてもよい炭素数0〜6のアルキレン基を示す。Mは、水素、リチウム、炭素数1〜6のアルキル基を示す。
A non-aqueous electrolyte additive comprising an imide sulfonic acid amide compound represented by the following formula (1).
Figure 2014194871
In formula (1), R 1 and R 2 each independently represent an optionally substituted phenyl group. R 3 and R 4 are each independently hydrogen, an optionally substituted alkyl group having 1 to 6 carbon atoms, or —R 7 X (R 7 is an optionally substituted carbon atom having 1 to 6 carbon atoms). And X represents an optionally substituted phenyl group or phenoxy group). R 5 and R 6 are each independently an optionally substituted alkylene group having 0 to 6 carbon atoms. M represents hydrogen, lithium, or an alkyl group having 1 to 6 carbon atoms.
下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、下記式(5)で表される化合物、下記式(6)で表される化合物、下記式(7)で表される化合物、下記式(8)で表される化合物、下記式(9)で表される化合物、下記式(10)で表される化合物、及び、下記式(11)で表される化合物からなる群より選択される少なくとも1種のイミドスルホン酸アミド化合物からなることを特徴とする請求項1記載の非水電解液用添加剤。
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
A compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), a compound represented by the following formula (5), and the following formula (6) A compound represented by the following formula (7), a compound represented by the following formula (8), a compound represented by the following formula (9), a compound represented by the following formula (10), and The additive for non-aqueous electrolyte according to claim 1, comprising at least one imide sulfonic acid amide compound selected from the group consisting of compounds represented by the following formula (11).
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
Figure 2014194871
イミドスルホン酸アミド化合物は、最低空分子軌道エネルギーが−2.8〜0.0eVであることを特徴とする請求項1又は2記載の非水電解液用添加剤。 The additive for non-aqueous electrolyte according to claim 1 or 2, wherein the imidosulfonic acid amide compound has a minimum unoccupied molecular orbital energy of -2.8 to 0.0 eV. 請求項1、2又は3記載の非水電解液用添加剤、非水溶媒、及び、電解質を含有することを特徴とする非水電解液。 A non-aqueous electrolyte comprising the additive for a non-aqueous electrolyte according to claim 1, 2, or 3, a non-aqueous solvent, and an electrolyte. 非水溶媒は、非プロトン性溶媒であることを特徴とする請求項4記載の非水電解液。 The nonaqueous electrolytic solution according to claim 4, wherein the nonaqueous solvent is an aprotic solvent. 非プロトン性溶媒は、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、ラクトン、ラクタム、環状エーテル、鎖状エーテル、及び、これらのハロゲン誘導体からなる群より選択される少なくとも1種であることを特徴とする請求項5記載の非水電解液。 The aprotic solvent is at least one selected from the group consisting of cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, lactones, lactams, cyclic ethers, chain ethers, and halogen derivatives thereof. The non-aqueous electrolyte according to claim 5, wherein 電解質は、リチウム塩を含有することを特徴とする請求項4、5又は6記載の非水電解液。 The non-aqueous electrolyte according to claim 4, 5 or 6, wherein the electrolyte contains a lithium salt. リチウム塩は、LiAlCl、LiBF、LiPF、LiClO、LiAsF、及び、LiSbFからなる群より選択される少なくとも1種であることを特徴とする請求項7記載の非水電解液。 Lithium salt, LiAlCl 4, LiBF 4, LiPF 6, LiClO 4, LiAsF 6, and the nonaqueous electrolytic solution according to claim 7, wherein the at least one selected from the group consisting of LiSbF 6. 請求項4、5、6、7又は8記載の非水電解液、正極、及び、負極を備えたことを特徴とする蓄電デバイス。 An electricity storage device comprising the nonaqueous electrolytic solution according to claim 4, 5, 6, 7 or 8, a positive electrode, and a negative electrode. 蓄電デバイスがリチウムイオン電池であることを特徴とする請求項9記載の蓄電デバイス。 The power storage device according to claim 9, wherein the power storage device is a lithium ion battery. 蓄電デバイスがリチウムイオンキャパシタであることを特徴とする請求項9記載の蓄電デバイス。 The power storage device according to claim 9, wherein the power storage device is a lithium ion capacitor.
JP2013070407A 2013-03-28 2013-03-28 Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device Active JP6081263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070407A JP6081263B2 (en) 2013-03-28 2013-03-28 Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070407A JP6081263B2 (en) 2013-03-28 2013-03-28 Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device

Publications (2)

Publication Number Publication Date
JP2014194871A true JP2014194871A (en) 2014-10-09
JP6081263B2 JP6081263B2 (en) 2017-02-15

Family

ID=51839975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070407A Active JP6081263B2 (en) 2013-03-28 2013-03-28 Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device

Country Status (1)

Country Link
JP (1) JP6081263B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065145A1 (en) * 2015-10-15 2017-04-20 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
CN110212243A (en) * 2019-05-31 2019-09-06 惠州市赛能电池有限公司 A kind of nonaqueous electrolytic solution and its application in lithium battery
CN111834662A (en) * 2020-08-31 2020-10-27 珠海冠宇电池股份有限公司 Interface functional layer, preparation method thereof and lithium ion battery
CN111883835A (en) * 2020-07-24 2020-11-03 香河昆仑化学制品有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery
CN112467214A (en) * 2020-11-30 2021-03-09 远景动力技术(江苏)有限公司 Electrolyte solution and lithium ion battery using same
JP7484009B2 (en) 2020-11-03 2024-05-15 エルジー エナジー ソリューション リミテッド Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175427A (en) * 2011-07-07 2013-09-05 Sumitomo Seika Chem Co Ltd Disulfonic acid benzylamide compound, additive for nonaqueous electrolyte, nonaqueous electrolyte and electricity storage device
JP2013227267A (en) * 2012-03-28 2013-11-07 Sumitomo Seika Chem Co Ltd Halogen atom-containing disulfonic acid ester compound, additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device
JP2014013728A (en) * 2012-07-05 2014-01-23 Sumitomo Seika Chem Co Ltd Additive for nonaqueous electrolyte, nonaqueous electrolyte and electricity storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175427A (en) * 2011-07-07 2013-09-05 Sumitomo Seika Chem Co Ltd Disulfonic acid benzylamide compound, additive for nonaqueous electrolyte, nonaqueous electrolyte and electricity storage device
JP2013227267A (en) * 2012-03-28 2013-11-07 Sumitomo Seika Chem Co Ltd Halogen atom-containing disulfonic acid ester compound, additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device
JP2014013728A (en) * 2012-07-05 2014-01-23 Sumitomo Seika Chem Co Ltd Additive for nonaqueous electrolyte, nonaqueous electrolyte and electricity storage device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065145A1 (en) * 2015-10-15 2017-04-20 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
CN110212243A (en) * 2019-05-31 2019-09-06 惠州市赛能电池有限公司 A kind of nonaqueous electrolytic solution and its application in lithium battery
CN110212243B (en) * 2019-05-31 2022-04-29 惠州市赛能电池有限公司 Non-aqueous electrolyte and application thereof in lithium battery
CN111883835A (en) * 2020-07-24 2020-11-03 香河昆仑化学制品有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery
CN111834662A (en) * 2020-08-31 2020-10-27 珠海冠宇电池股份有限公司 Interface functional layer, preparation method thereof and lithium ion battery
JP7484009B2 (en) 2020-11-03 2024-05-15 エルジー エナジー ソリューション リミテッド Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
CN112467214A (en) * 2020-11-30 2021-03-09 远景动力技术(江苏)有限公司 Electrolyte solution and lithium ion battery using same
CN112467214B (en) * 2020-11-30 2022-03-01 远景动力技术(江苏)有限公司 Electrolyte solution and lithium ion battery using same

Also Published As

Publication number Publication date
JP6081263B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6472888B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP6081264B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
WO2021208955A1 (en) Electrolyte additive, secondary battery electrolyte, secondary battery and terminal
JP6081263B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
WO2018016195A1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
JP2015005328A (en) Electrolyte for nonaqueous electrolyte battery, and nonaqueous electrolyte battery employing the same
JP2014194870A (en) Boron-containing sulfonic ester compound, additive agent for nonaqueous electrolytic solution, nonaqueous electrolytic solution, and electric power storage device
JP5982200B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2016192381A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device
TWI694630B (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
JP5877109B2 (en) Phosphorus-containing sulfonic acid ester compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device
JP6081262B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP6066645B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP6017803B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP5986829B2 (en) Halogen atom-containing disulfonate compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device
JP5953146B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2015191807A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte and power storage device
JP2015191806A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte and power storage device
JP5877110B2 (en) Phosphorus-containing sulfonic acid amide compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device
JP2008235146A (en) Nonaqueous secondary battery
JP2015191808A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte and power storage device
TW201924129A (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
JP7166258B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
JP2018190569A (en) Nonaqueous electrolyte solution for battery, additive agent for battery, and lithium secondary battery
JP2015015097A (en) Additive agent for nonaqueous electrolytic solution, nonaqueous electrolytic solution, and electric power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R150 Certificate of patent or registration of utility model

Ref document number: 6081263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250