JP2014194325A - Heating cooker - Google Patents

Heating cooker Download PDF

Info

Publication number
JP2014194325A
JP2014194325A JP2013071391A JP2013071391A JP2014194325A JP 2014194325 A JP2014194325 A JP 2014194325A JP 2013071391 A JP2013071391 A JP 2013071391A JP 2013071391 A JP2013071391 A JP 2013071391A JP 2014194325 A JP2014194325 A JP 2014194325A
Authority
JP
Japan
Prior art keywords
heating
heating chamber
heated
weight
food
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013071391A
Other languages
Japanese (ja)
Other versions
JP5668774B2 (en
Inventor
Mariko Matsumoto
真理子 松本
Shigeyuki Nagata
滋之 永田
Takahiro Kanai
孝博 金井
Naoya Sugiyama
直也 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2013071391A priority Critical patent/JP5668774B2/en
Publication of JP2014194325A publication Critical patent/JP2014194325A/en
Application granted granted Critical
Publication of JP5668774B2 publication Critical patent/JP5668774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Ovens (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems with conventional heating cookers that a heating target is heated based on the weight of the heating target and is not often appropriately heated and cooked depending on the form of the heating target (for example, whether the weight ratio of fat regions to the entire weight of a food item is high or whether the weight ratio of a container to the entire weight of the heating target consisting of a food item and the container is high).SOLUTION: A heating cooker comprises: an upper surface heating heater 5, a convection heater 6, and a high-frequency generator 7 for heating a heating target; an infrared sensor 13 for measuring a temperature of the heating target; an internal thermistor 14 for detecting an internal temperature of a heating chamber; a weight sensor 18 for measuring a weight of the heating target; a pressure sensor 19 for measuring an internal air pressure of the heating chamber; a shutter 21 for hermetically closing the heating chamber; and a control device 101 for controlling the heating means 5 to 7. The heating means are controlled for heating and cooking on the basis of a result of estimating a fat rate or container weight ratio of the heating target.

Description

本発明は、食品の加熱調理に使用する加熱調理器に関する。   The present invention relates to a cooking device used for cooking food.

従来の加熱調理器においては、庫内に収納した被加熱物の重量を測定する重量測定手段を設け、この重量測定手段で測定した被加熱物の重量に基づいて加熱時間を算出し、加熱調理を行う構成にしている(例えば、特許文献1参照)。   In a conventional cooking device, a weight measuring means for measuring the weight of the object to be heated stored in the cabinet is provided, and the heating time is calculated based on the weight of the object to be heated measured by the weight measuring means, and cooking is performed. (For example, refer patent document 1).

実開平2−20005号公報Japanese Utility Model Publication No. 2-20005

従来の加熱調理器では、被加熱物の重量に基づいて加熱時間を設定していたので、食品に適切な加熱調理ができなかった。
被加熱物が互いに比重の異なる部位の混合物であって、例えば、豚肉の場合、同一重量でも豚バラ肉と豚モモ赤身肉では一方は脂肪率35%、他方は脂肪率4%と大きく異なるので、混合物である被加熱物にとって適切な加熱調理ができなかった。
また、同様に、例えば、被加熱物が互いに比重の異なる皿等の容器とこの容器に入れられた食品との場合、一旦皿重量を測定して調理器に記憶させ、その後食品を皿に乗せて加熱する必要があり、レンジ使用者には手間が増えていた。
In the conventional cooking device, since the heating time is set based on the weight of the object to be heated, cooking suitable for food cannot be performed.
For example, in the case of pork, the heated material is a mixture of parts with different specific gravities. For example, pork belly and pork peach lean meat have a fat percentage of 35% and the other has a fat percentage of 4%. , Cooking suitable for the heated object which is a mixture was not able to be performed.
Similarly, for example, in the case where the object to be heated is a container such as a dish with different specific gravities and the food contained in the container, the weight of the dish is once measured and stored in the cooker, and then the food is placed on the dish. It was necessary to heat the oven and it was time-consuming for the range user.

上記のように従来の加熱調理器は、被加熱物の重量に基づいて加熱しており、被加熱物の形態(例えば、食品内に占める脂肪部位の重量割合の大小、食品と容器とからなる被加熱物に占める容器の重量割合の大小)によっては、適切に加熱調理されないという問題点があった。   As described above, the conventional cooking device is heated based on the weight of the object to be heated, and is composed of the form of the object to be heated (for example, the weight ratio of the fat portion in the food, the food and the container). Depending on the weight ratio of the container in the object to be heated, there is a problem that cooking is not properly performed.

この発明は、上述のような課題を解決するためになされたもので、被加熱物の形態に対応して、適切な加熱を行うことができる加熱調理器を得ることを目的とする。   This invention was made | formed in order to solve the above subjects, and it aims at obtaining the heating cooker which can perform suitable heating corresponding to the form of to-be-heated material.

この発明に係る加熱調理器においては、被加熱物を収納する加熱室と、加熱室内の被加熱物を加熱する加熱手段と、被加熱物の重量を検知する重量検知手段と、被加熱物の体積を推定する体積推定手段と、重量検知手段の検知結果と体積推定手段の推定結果とに基づいて、加熱手段を制御する制御手段とを備えたものである。   In the heating cooker according to the present invention, the heating chamber for storing the object to be heated, the heating means for heating the object to be heated in the heating chamber, the weight detecting means for detecting the weight of the object to be heated, and the heating object Volume estimation means for estimating the volume, and control means for controlling the heating means based on the detection result of the weight detection means and the estimation result of the volume estimation means are provided.

この発明に係る加熱調理器によれば、被加熱物に適切な加熱調理を行うことが可能となる。   According to the cooking device according to the present invention, it is possible to perform cooking suitable for the object to be heated.

この発明の実施の形態1を示す加熱調理器の外観斜視図である。It is an external appearance perspective view of the heating cooker which shows Embodiment 1 of this invention. この発明の実施の形態1を示す加熱調理器の中央縦断面図である。It is a center longitudinal cross-sectional view of the heating cooker which shows Embodiment 1 of this invention. この発明の実施の形態1を示す加熱調理器の制御ブロック図である。It is a control block diagram of the heating cooker which shows Embodiment 1 of this invention. この発明の実施の形態1を示す加熱調理器のオーブン制御フローチャートである。It is an oven control flowchart of the heating cooker which shows Embodiment 1 of this invention. この発明の実施の形態1を示す加熱調理器のレンジ制御フローチャートである。It is a range control flowchart of the heating cooker which shows Embodiment 1 of this invention. この発明の実施の形態1を示す加熱調理器の脂肪率の計算結果である。It is a calculation result of the fat percentage of the heating cooker which shows Embodiment 1 of this invention. この発明の実施の形態1を示す加熱調理器の容器重量率の計算結果である。It is a calculation result of the container weight ratio of the heating cooker which shows Embodiment 1 of this invention. この発明の実施の形態2を示す加熱調理器のオーブン制御フローチャートである。It is an oven control flowchart of the heating cooker which shows Embodiment 2 of this invention. この発明の実施の形態2を示す加熱調理器のレンジ制御フローチャートである。It is a range control flowchart of the heating cooker which shows Embodiment 2 of this invention. この発明の実施の形態3を示す加熱調理器の加熱方式の制御フローチャートである。It is a control flowchart of the heating system of the heating cooker which shows Embodiment 3 of this invention.

実施の形態1.
以下、本発明の実施の形態1について、図1〜図7を用いて説明する。
図1は、この発明を実施するための実施の形態1における加熱調理器の外観斜視図を示すものであり、図2は、この発明を実施するための実施の形態1における加熱調理器の中央縦断面図を示すものである。
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS.
FIG. 1 shows an external perspective view of a heating cooker according to Embodiment 1 for carrying out the present invention, and FIG. 2 shows the center of the heating cooker according to Embodiment 1 for carrying out the present invention. A longitudinal cross-sectional view is shown.

図1及び図2において、本実施の形態1に係る加熱調理器は、本体1と本体1の前面に設けられた扉4とから構成されている。本体1は主に、食品3が収納される加熱室2と、加熱手段である上面加熱ヒータ5、コンベクションヒータ6及び高周波発生部7と、食品3の温度を検知する赤外線センサ13と、加熱室2全体の温度を検知する庫内サーミスタ14と、被加熱物の重量を測定するレール設置重量センサ18a及び床設置重量センサ18bと、加熱室2内の空気圧を測定する圧力センサ19と、加熱室2内の空気を加圧する加圧手段としての給気ポンプ20とで構成されている。   1 and 2, the heating cooker according to the first embodiment includes a main body 1 and a door 4 provided on the front surface of the main body 1. The main body 1 mainly includes a heating chamber 2 in which the food 3 is stored, an upper surface heater 5 as a heating means, a convection heater 6 and a high-frequency generator 7, an infrared sensor 13 for detecting the temperature of the food 3, and a heating chamber. 2, a thermistor 14 for detecting the temperature of the whole, a rail installation weight sensor 18a and a floor installation weight sensor 18b for measuring the weight of the object to be heated, a pressure sensor 19 for measuring the air pressure in the heating chamber 2, and a heating chamber 2 and an air supply pump 20 as pressurizing means for pressurizing the air in 2.

加熱室2は、脱臭塗料などが塗られた金属板を箱状に形成して構成されている。
本体1の前面には扉4が設けられ、扉4には調理中に加熱室2内を見るための窓4aやチョーク構造など高周波漏洩低減手段4bが設けられている。扉4の前面中央には、扉4の開閉時に使用者が持つ凸状の取っ手4cが設けられ、図示しないヒンジによって本体1前面(つまりは使用者側)に縦開きに開けることができる。このように扉4を開けるような構成にすることにより、扉4を開けるために必要な力は少なくて済む。なお、取っ手4cは扉4の上方に設置してあれば良く、例えば両手を使って開けられるように扉4の左右、または使用者が如何様にも開けやすいように扉4上面の端から端まで亘って設置されていてもよい。
The heating chamber 2 is configured by forming a metal plate coated with deodorizing paint or the like into a box shape.
A door 4 is provided on the front surface of the main body 1, and the door 4 is provided with high-frequency leakage reduction means 4 b such as a window 4 a for viewing the inside of the heating chamber 2 during cooking and a choke structure. A convex handle 4c held by the user when the door 4 is opened and closed is provided in the center of the front surface of the door 4, and can be opened vertically on the front surface of the main body 1 (that is, the user side) by a hinge (not shown). By adopting such a configuration that opens the door 4, less force is required to open the door 4. The handle 4c only needs to be installed above the door 4. For example, the left and right sides of the door 4 can be opened with both hands, or the end of the top surface of the door 4 can be easily opened by the user. May be installed.

上面加熱ヒータ5は加熱手段の一つであり、加熱室2の天井面に固定されている。上面加熱ヒータ5はニクロム線をマイカ板に巻きつけたものを鉄板に密着したいわゆるフラットヒータで形成し、これにより加熱室2内を均一に加熱でき、かつ清掃性も良いように構成されている。
コンベクションヒータ6は、加熱室2の背面に設けられたファン6aと、ファン6a近傍に取り付けられたガラス管ヒータからなる送風空気加熱ヒータ6bとで構成されている。コンベクションヒータ6の動作は、ファン6aによって加熱室2内の空気を加熱室2背面に設けられた吸気孔2bから吸引し、吸気孔2bから吸引された空気を送風空気加熱ヒータ6bが加熱し、送風空気加熱ヒータ6bによって加熱された熱風は加熱室2背面に設けられた送気孔2aから加熱室2内に戻って、加熱室2内に収納された食品3を加熱する。
The upper surface heater 5 is one of heating means, and is fixed to the ceiling surface of the heating chamber 2. The upper surface heater 5 is formed of a so-called flat heater in which a nichrome wire is wound around a mica plate and is in close contact with an iron plate, so that the inside of the heating chamber 2 can be heated uniformly and has good cleaning properties. .
The convection heater 6 includes a fan 6a provided on the back surface of the heating chamber 2, and a blown air heater 6b composed of a glass tube heater attached near the fan 6a. The operation of the convection heater 6 is as follows. The air in the heating chamber 2 is sucked by the fan 6a from the suction hole 2b provided on the back of the heating chamber 2, and the air sucked from the suction hole 2b is heated by the blowing air heater 6b. The hot air heated by the blast air heater 6 b returns to the heating chamber 2 from the air supply hole 2 a provided on the back surface of the heating chamber 2, and heats the food 3 stored in the heating chamber 2.

高周波発生部7は、高周波発生器であるマグネトロン7aと、商用交流電源からの交流電力を例えば全波整流してマグネトロン7aへ供給し駆動させる電源回路7bからなる。マグネトロン7aは、マグネトロン7aから加熱室2の床下に向かって伸びる導波管8の一端に接続されている。一方、この導波管8の他端には、加熱室2下部に設けられたアンテナ室9に接続されている。マグネトロン7aとアンテナ室9とは、導波管8で連通されており、マグネトロン7aで発生されたマイクロ波は導波管8を通ってアンテナ室9に導かれる。アンテナ室9内には、マイクロ波の進行方向を調節するアンテナ10が設けられ、アンテナ室9に導かれたマイクロ波はアンテナ10を介して加熱室2の内部に放射される。アンテナ10はモータ11によって回転可能に設けられている。このような構成にすることにより、マグネトロン7aが発生するマイクロ波は、加熱室2内に均一に放射され、本実施の形態1の加熱調理器は、加熱室2内に置かれた食品3を均一に加熱することができる。   The high frequency generator 7 includes a magnetron 7a, which is a high frequency generator, and a power supply circuit 7b that drives, for example, full-wave rectification of AC power from a commercial AC power supply to the magnetron 7a. The magnetron 7 a is connected to one end of a waveguide 8 that extends from the magnetron 7 a toward the bottom of the heating chamber 2. On the other hand, the other end of the waveguide 8 is connected to an antenna chamber 9 provided in the lower portion of the heating chamber 2. The magnetron 7 a and the antenna chamber 9 are communicated with each other through the waveguide 8, and the microwave generated by the magnetron 7 a is guided to the antenna chamber 9 through the waveguide 8. An antenna 10 for adjusting the traveling direction of the microwave is provided in the antenna chamber 9, and the microwave guided to the antenna chamber 9 is radiated into the heating chamber 2 through the antenna 10. The antenna 10 is rotatably provided by a motor 11. With such a configuration, the microwave generated by the magnetron 7a is uniformly radiated into the heating chamber 2, and the heating cooker according to the first embodiment causes the food 3 placed in the heating chamber 2 to be radiated. It can be heated uniformly.

角皿スライド用のレール12は、加熱室2の両側壁に凸状に設けられている。赤外線センサ13は加熱室2の側面に設けられ、食品3の温度を非接触で検知する。庫内サーミスタ14は、加熱室2全体の温度を加熱室2の右奥空気温度を測ることで検知している。具体的には、庫内サーミスタ14による温度測定値と加熱時における加熱室2内の温度分布との相関を事前に評価することで実現している。庫内サーミスタ14が右奥に設けられているのは、奥の方が外気の影響を受けにくいためと、右側にメイン基板が設置されているため配線がより容易で安価に済むことがある。図示していないが、電源・制御基板上には冷却用ファンが配置されており、このファンで外気を導入することで高周波発生部7を含む電源・制御基板は冷却される。また、この外気を送風口15から加熱室2へ吹き出すことで、送風口15の近傍に配置された赤外線センサ13は冷却される。送風口15から加熱室2に導入された空気は、例えばグリル調理などのときに食品3から出る煙とともに排気口16から庫外へ放出される。   The square plate slide rail 12 is provided in a convex shape on both side walls of the heating chamber 2. The infrared sensor 13 is provided on the side surface of the heating chamber 2 and detects the temperature of the food 3 in a non-contact manner. The internal thermistor 14 detects the temperature of the entire heating chamber 2 by measuring the air temperature in the right back of the heating chamber 2. Specifically, this is realized by evaluating in advance the correlation between the temperature measurement value by the internal thermistor 14 and the temperature distribution in the heating chamber 2 during heating. The internal thermistor 14 is provided on the right side because wiring is easier and less expensive because the inner side is less affected by outside air and the main board is installed on the right side. Although not shown, a cooling fan is disposed on the power / control board, and the power / control board including the high-frequency generator 7 is cooled by introducing outside air with the fan. Moreover, the infrared sensor 13 arrange | positioned in the vicinity of the ventilation port 15 is cooled by blowing this external air from the ventilation port 15 to the heating chamber 2. FIG. The air introduced into the heating chamber 2 from the blower port 15 is discharged to the outside from the exhaust port 16 together with smoke emitted from the food 3 at the time of grill cooking, for example.

シャッター17は、排気口16を遮蔽するためにあり、図示しないが同じものが送風口15にもあり、双方のシャッターを閉めることで加熱室2は密閉される。被加熱物の重量を測る重量センサとしては、レール12に設けたレール設置重量センサ18aと、加熱室2内の床面に設けた床設置重量センサ18bとがある。圧力センサ19は加熱室2内の気圧、すなわち空気圧をを測定し、送風口15の近傍に設けることで温度が低く保たれ易いためセンサ寿命を長く保つことができる。また、図示しない制御基板に近いため、配線が最も短く接続が容易かつ低コストで済む位置である。給気ポンプ20は、送風口15と排気口16をシャッターで遮蔽後、あらかじめ定められた量の空気を加熱室2に給気することで、加熱室2内の空気を加圧する。   The shutter 17 is provided to shield the exhaust port 16. Although not shown, the same one is also provided in the blower port 15, and the heating chamber 2 is sealed by closing both shutters. As weight sensors for measuring the weight of the object to be heated, there are a rail installation weight sensor 18 a provided on the rail 12 and a floor installation weight sensor 18 b provided on the floor surface in the heating chamber 2. The pressure sensor 19 measures the air pressure in the heating chamber 2, that is, the air pressure, and is provided in the vicinity of the air blowing port 15, so that the temperature can be easily kept low, so that the sensor life can be kept long. Further, since it is close to a control board (not shown), it is the position where the wiring is the shortest and connection is easy and low cost. The air supply pump 20 pressurizes the air in the heating chamber 2 by supplying a predetermined amount of air to the heating chamber 2 after shielding the air blowing port 15 and the exhaust port 16 with a shutter.

また、図示しないが、扉4の前面には加熱調理器の運転を操作する操作部があり、電源のオンオフスイッチや取り消しボタン、自動メニューの選択ボタン、温度や加熱モードの選択スイッチ、加熱調理中の加熱室2内の温度、選択した加熱設定やメニューが視認できる表示部が備えられている。高周波発生部7近傍には、この加熱調理器の動作を制御する制御基板がある。   Although not shown, there is an operation unit for operating the cooking device on the front surface of the door 4. The power on / off switch, cancel button, automatic menu selection button, temperature / heating mode selection switch, cooking in progress There is provided a display unit for visually checking the temperature in the heating chamber 2 and the selected heating setting and menu. In the vicinity of the high-frequency generator 7, there is a control board that controls the operation of the cooking device.

次に、本実施の形態1にかかる加熱調理器の制御構成について説明する。図3は、この発明を実施するための実施の形態1における加熱調理器の制御ブロック図を示すものである。
図3において、電源on、offを司るメイン基板100から、制御装置101と電源装置102に電源が供給される。制御装置101は、操作パネル103内の入力手段104により入力された設置・入力情報によりリレー106を制御し、オーブン加熱のときは上面加熱ヒータ5およびコンベクションヒータ6に、レンジ加熱のときは高周波発生部7に電源が供給されるように制御する。また、温度検知手段である赤外線センサ13と庫内サーミスタ14とからは同時にそれぞれの温度情報を取得しており、庫内温度または食品温度の過昇温防止のためにリレー106のon、off制御を実施する。さらに、重量センサ18での加熱室2に収納した被加熱物の重量測定、加熱室2の空気圧の測定前後のシャッター21の開閉、シャッター21を閉にし加熱室を密閉した時の圧力センサ19による加熱室の空気圧測定、密閉した加熱室へ空気を給気するための給気ポンプ20の動作も制御装置101からの指示によって実施する。運転の結果や入力情報などは報知手段105にて報知され、使用者に加熱調理器の状態が伝えられる。なお、ここでシャッター21は、図2のシャッター17と図示しない送風口15のシャッターを含むものである。
Next, the control configuration of the heating cooker according to the first embodiment will be described. FIG. 3 shows a control block diagram of the heating cooker in the first embodiment for carrying out the present invention.
In FIG. 3, power is supplied to the control device 101 and the power supply device 102 from the main board 100 that controls power on and off. The control device 101 controls the relay 106 according to the installation / input information input by the input means 104 in the operation panel 103, and generates high frequency for the top heater 5 and the convection heater 6 during oven heating, and during range heating. Control is performed so that power is supplied to the unit 7. In addition, the temperature information is simultaneously acquired from the infrared sensor 13 as the temperature detection means and the thermistor 14 in the cabinet, and the relay 106 is turned on / off to prevent excessive temperature rise in the cabinet temperature or food temperature. To implement. Further, the weight sensor 18 measures the weight of the object to be heated stored in the heating chamber 2, opens and closes the shutter 21 before and after the measurement of the air pressure in the heating chamber 2, and the pressure sensor 19 when the shutter 21 is closed and the heating chamber is sealed. The operation of the air supply pump 20 for measuring the air pressure of the heating chamber and supplying air to the sealed heating chamber is also performed according to an instruction from the control device 101. The result of operation, input information, and the like are notified by the notification means 105, and the state of the heating cooker is transmitted to the user. Here, the shutter 21 includes the shutter 17 of FIG. 2 and the shutter of the air outlet 15 (not shown).

次に、この発明を実施するための実施の形態1における加熱調理器のオーブン加熱制御動作について説明する。
まずは、被加熱物が、例えば食用肉のように、脂肪部位とそれ以外の非脂肪部位とからなる混合物である場合について説明する。ここで、脂肪率を被加熱物である食品の総重量に占める脂肪部位の重量割合と定義する。
基本的に、食品の脂肪率を推定するのは、ユーザーがオーブンまたはグリル加熱を選択した場合である。これは、オーブンまたはグリル加熱では、基本的に肉は容器に入れず加熱調理器付属の天板に焼き網に乗せて加熱するためである。脂が少ない肉は表面がパサパサにならないよう低温で表面を焦がさないように焼き、脂の多い肉では肉そのものの脂を使いながらフライ状の加熱になることも狙っており、脂がよく落ちるよう高温で焼くなど、肉の脂肪率によって異なる加熱制御が必要になる。
Next, the oven heating control operation of the heating cooker in the first embodiment for carrying out the present invention will be described.
First, the case where a to-be-heated material is a mixture which consists of a fat part and other non-fat parts like edible meat is demonstrated. Here, the fat percentage is defined as the weight ratio of the fat portion to the total weight of the food that is to be heated.
Basically, the fat percentage of the food is estimated when the user selects oven or grill heating. This is because in the oven or grill heating, the meat is basically not heated in the container but heated on the grill plate on the top plate attached to the heating cooker. Meat with low fat is baked so that the surface does not scorch at a low temperature so that the surface does not become crumbly, and meat with high fat also aims to be fried while using the fat of the meat itself, so that the fat falls well Different heating control is required depending on the fat percentage of meat such as baking at high temperature.

図4は、この発明を実施するための実施の形態1における加熱調理器のオーブン制御フローチャートを示すものである。
図4において、ステップS1で、食品3を加熱室2に入れて扉4を閉め、ステップS2で、扉4の前面にある図示しない操作部で加熱方法『オーブン』を選択する。そして、ステップS3で、扉4の前面にある図示しない操作部で加熱スタートボタンを押すことで加熱制御が開始し、ステップS4で排気口16のシャッター17および図示しない送風口15のシャッターが閉まり、加熱室2は密閉状態となる。重量センサ18aまたは18bで加熱室2に収納された食品3の重量を測定する。ステップS5で給気ポンプ20の動作を開始し、ステップS6、S7であらかじめ定められた給気量に達するまでの時間をカウントし給気する。これにより、加熱室2内の空気は加圧される。給気が終了したらステップS8へ進み、給気後の空気圧を測定して加熱室2の食品3を除いた残容積を推定し、食品3の体積を求める。食品3の体積と重量、あらかじめ定められた脂肪部位の密度とそれ以外の部位である非脂肪部位の密度とから、食品3全体に占める脂肪部位の重量割合である脂肪率を算出し、あらかじめ設定した式や表からに応じた加熱温度や加熱時間を設定する。ステップS9でシャッターを開き、加熱時の排煙ができるようにして、赤外線センサ13で食品温度を、庫内サーミスタ14で庫内温度を検知し、加熱開始前の初期状態として図示しない制御基板上の記憶部に記憶する。ステップS10で設定した加熱時間までオーブン加熱し、ステップS11で加熱を終了し、ユーザーにブザーや操作部の表示点滅などで報知する。なお、図4のフローチャート内で使用している各変数の定義は、次の通りになる。
すなわち、t[sec]は現時点の経過時間積算値、t_old[sec]は1ステップ前の経過時間積算値、Δt[sec]は予め設定してあった1ステップの時間、t_end[sec]は給気時間である。
FIG. 4 shows an oven control flowchart of the heating cooker in the first embodiment for carrying out the present invention.
In FIG. 4, in step S <b> 1, the food 3 is placed in the heating chamber 2 and the door 4 is closed, and in step S <b> 2, a heating method “oven” is selected by an operation unit (not shown) on the front surface of the door 4. Then, in step S3, the heating control is started by pressing a heating start button with an operation unit (not shown) on the front surface of the door 4, and in step S4, the shutter 17 of the exhaust port 16 and the shutter of the blower port 15 (not shown) are closed, The heating chamber 2 is sealed. The weight of the food 3 stored in the heating chamber 2 is measured by the weight sensor 18a or 18b. In step S5, the operation of the air supply pump 20 is started, and the time until the air supply amount predetermined in steps S6 and S7 is reached is counted and supplied. Thereby, the air in the heating chamber 2 is pressurized. When the supply of air is completed, the process proceeds to step S8, the air pressure after supply is measured, the remaining volume of the heating chamber 2 excluding the food 3 is estimated, and the volume of the food 3 is obtained. From the volume and weight of the food 3, the density of the predetermined fat part and the density of the non-fat part that is the other part, the fat percentage that is the weight ratio of the fat part in the whole food 3 is calculated and set in advance. Set the heating temperature and heating time according to the formula and table. In step S9, the shutter is opened so that smoke can be exhausted during heating, the food temperature is detected by the infrared sensor 13, and the internal temperature is detected by the internal thermistor 14, and an initial state before heating is started on a control board (not shown). Is stored in the storage unit. The oven is heated until the heating time set in step S10, the heating is ended in step S11, and the user is notified by a buzzer or a blinking display on the operation unit. The definition of each variable used in the flowchart of FIG. 4 is as follows.
That is, t [sec] is the current elapsed time integrated value, t_old [sec] is the elapsed time integrated value one step before, Δt [sec] is a preset time for one step, and t_end [sec] is the supply It's ki time.

次に、脂肪率の推定方法について、式(1)〜式(4)を用いて詳細に説明する。なお、ここでは脂肪部位の密度Rou_fatは900.7[kg/m]、それ以外の非脂肪部位の密度Rou_meatは1100.0[kg/m]として計算する。
容積V_oven[m]の加熱室2に重量W_food[kg]で、脂肪率Rate_fat[wt%]の食品3を入れて密閉し空気圧P1[Pa]を測定する。
Next, the fat percentage estimation method will be described in detail using equations (1) to (4). Here, the density Rou_fat of the fat part is calculated as 900.7 [kg / m 3 ], and the density Rou_meat of other non-fat parts is calculated as 1100.0 [kg / m 3 ].
A food 3 having a fat rate Rate_fat [wt%] and a weight W_food [kg] is placed in a heating chamber 2 having a volume V_oven [m 3 ] and sealed, and the air pressure P1 [Pa] is measured.

まず、本実施の形態1に係る加熱調理器を製作する工場での大気圧P1[Pa]が,本実施の形態1に係る加熱調理器を使用する場所での大気圧P2[Pa]と同等である場合を想定した推定方法について述べる。工場において製品の出荷前に加熱室2に天板のみを入れた状態(=食品体積は0[m]で、加熱室2の内容積がV_oven_0[m])で、工場において圧力センサ19で測定した大気圧P1[Pa](測定後,制御基板の記憶部に記憶)、天板のみを入れた状態でのオーブン容量V_oven_0[m]、給気ポンプの給気量ΔV[m]をもとに、式(1)でボイルの法則より、圧力と体積の積一定(PV=const.)から算出したP2_oven_0[Pa]を制御基板の記憶部に記憶する。これにより、オーブンレンジの計算負荷を軽減する。
P2_oven_0=P1×(V_oven_0+ΔV)/V_oven_0…式(1)
First, the atmospheric pressure P1 [Pa] at the factory that manufactures the cooking device according to the first embodiment is equivalent to the atmospheric pressure P2 [Pa] at the place where the heating cooking device according to the first embodiment is used. An estimation method assuming the case of In the state where only the top plate is put in the heating chamber 2 before shipment of the product in the factory (= the food volume is 0 [m 3 ] and the internal volume of the heating chamber 2 is V_even — 0 [m 3 ]), the pressure sensor 19 in the factory The atmospheric pressure P1 [Pa] measured in step 1 (measured and stored in the storage unit of the control board), the oven capacity V_even — 0 [m 3 ] with only the top plate inserted, and the air supply amount ΔV [m 3 ] of the air supply pump ], P2_even — 0 [Pa] calculated from the constant product of pressure and volume (PV = const.) According to Boyle's law in equation (1) is stored in the storage unit of the control board. This reduces the computational load of the microwave oven.
P2_even_0 = P1 × (V_even_0 + ΔV) / V_even_0 (1)

次に、ユーザーの使用する環境で、食品3の脂肪率を推定するための計算方法を説明する。
脂肪率Rate_fat[wt%]が未知の食品3を加熱室2に入れ、食品3の重量W_food[kg]を重量センサ18aまたは18bで測定する。本実施の形態1に係る加熱調理器を製作する工場での大気圧P1[Pa]が、本実施の形態1に係る加熱調理器を使用する場所での大気圧P2[Pa]とが同等であるから、ユーザー使用場所での大気圧P2=P1としてP2は測定しない。基板に記憶されたP1をP2として計算する。次に、給気ポンプ20で一定量ΔV[m]の空気を密閉した加熱室2に給気し、このときの加熱室2内の空気圧P2_oven_mes[Pa]を測定して食品3の体積を除いたオーブン残容積V_oven_mes[m]を式(2)で算出し、食品の体積を式(3)で算出する。この結果をもとに、式(4)で食品3の脂肪率Rate_fat[wt%]を算出する。式(4)は、人体の体脂肪率を算出するためのSiriの式として広く用いられている式であり、人体重量と人体体積から得られる体密度をもとに体脂肪率を計算する式であり、食品に対しても適用できる。式(4)に基づいて計算すると、例えば肉300gで図6のような相関グラフが得られる。
V_oven_mes=((P2_oven_0−P1)×V_oven_0)
/(P2_oven_mes−P1) …式(2)
V_food_mes=V_oven−V_oven_mes …式(3)
Rate_fat=(4.95/((W_food×10
/(V_food_mes×10))−4.5)×100…式(4)
Next, a calculation method for estimating the fat percentage of the food 3 in the environment used by the user will be described.
The food 3 whose fat percentage Rate_fat [wt%] is unknown is put into the heating chamber 2, and the weight W_food [kg] of the food 3 is measured by the weight sensor 18a or 18b. The atmospheric pressure P1 [Pa] at the factory where the cooking device according to the first embodiment is manufactured is equivalent to the atmospheric pressure P2 [Pa] at the place where the heating cooking device according to the first embodiment is used. Therefore, P2 is not measured with the atmospheric pressure P2 = P1 at the user use place. P1 stored on the substrate is calculated as P2. Next, air of a constant amount ΔV [m 3 ] is supplied to the sealed heating chamber 2 by the air supply pump 20, and the air pressure P 2 _even_mes [Pa] in the heating chamber 2 at this time is measured to determine the volume of the food 3. The removed oven remaining volume V_even_mes [m 3 ] is calculated by Equation (2), and the volume of the food is calculated by Equation (3). Based on this result, the fat rate Rate_fat [wt%] of the food 3 is calculated by Equation (4). Formula (4) is a formula widely used as the Siri formula for calculating the body fat percentage of the human body, and is a formula for calculating the body fat percentage based on the body density obtained from the human body weight and the human body volume. It can be applied to food. When calculated based on the equation (4), for example, a correlation graph as shown in FIG. 6 is obtained with 300 g of meat.
V_even_mes = ((P2_even_0−P1) × V_even_0)
/ (P2_even_mes-P1) (2)
V_food_mes = V_even−V_even_mes Expression (3)
Rate_fat = (4.95 / ((W_food × 10 3 )
/ (V_food_mes × 10 6 )) − 4.5) × 100 (4)

次に、被加熱物が、食品とこの食品が入れられる容器とからなる混合物である場合について説明する。ここで、被加熱物の全体重量に占める容器の重量の割合を容器重量率と定義する。基本的にこの容器重量率を推定することが必要な場合は、レンジ加熱を選択した場合である。レンジ加熱では、基本的に食品3を容器に入れた状態で加熱するものであり、脂落ちよりも食品の量によることなく適切な温度に温められることが必要とされるためである。   Next, the case where a to-be-heated material is a mixture which consists of a foodstuff and the container into which this foodstuff is put is demonstrated. Here, the ratio of the weight of the container to the total weight of the object to be heated is defined as the container weight ratio. Basically, it is necessary to estimate the container weight ratio when the range heating is selected. This is because in the range heating, the food 3 is basically heated in a container, and it is required to be heated to an appropriate temperature without depending on the amount of food rather than removing fat.

図5は、この発明を実施するための実施の形態1における加熱調理器のレンジ制御フローチャートを示すものである。なお、図4のオーブン加熱制御と同じ動作制御のものは同一のステップ番号を付している。
図5において、ステップS1で、被加熱物(食品3と陶磁器などでできた容器)を加熱室2に入れて扉4を閉める。ステップS12で、扉4の前面にある図示しない操作部で加熱方法『レンジ』を選択する。そして、ステップS3で、扉4の前面にある図示しない操作部で加熱スタートボタンを押すことで加熱制御が開始する。ステップS13で排気口16のシャッター17および図示しない送風口15のシャッターが閉まり、加熱室2は密閉状態となり、重量センサ18aまたは18bで加熱室2に収納された被加熱物の重量を測定する。ステップS5で給気ポンプ20の動作を開始し、ステップS6、S7であらかじめ定められた給気量に達するまでの時間をカウントし給気する。給気が終了したらステップS14へ進み、給気後の空気圧を測定して加熱室2内の被加熱物を除いた残容積を推定し、被加熱物の体積を求める。被加熱物の体積と重量、あらかじめ定められた食品の密度や容器の密度から容器重量率を算出し、あらかじめ設定した式や表から容器重量率に応じた加熱時間を設定する。ステップS9でシャッターを開き、加熱時の蒸気排出ができるようにして、赤外線センサ13で食品温度を、庫内サーミスタ14で庫内温度を検知し、加熱開始前の初期状態として図示しない制御基板上の記憶部に記憶する。ステップS15で設定した加熱時間までレンジ加熱し、ステップS11で加熱を終了し、ユーザーにブザーや操作部の表示点滅などで報知する。なお、図5のフローチャート内で使用している変数の定義は、図4と同じである。
FIG. 5 shows a range control flowchart of the heating cooker in the first embodiment for carrying out the present invention. Note that the same step numbers are assigned to the same operation control as the oven heating control of FIG.
In FIG. 5, in step S1, an object to be heated (a container made of food 3 and ceramics) is placed in the heating chamber 2 and the door 4 is closed. In step S <b> 12, the heating method “range” is selected by an operation unit (not shown) on the front surface of the door 4. In step S3, heating control is started by pressing a heating start button with an operation unit (not shown) on the front surface of the door 4. In step S13, the shutter 17 of the exhaust port 16 and the shutter of the blower port 15 (not shown) are closed, the heating chamber 2 is sealed, and the weight of the object to be heated stored in the heating chamber 2 is measured by the weight sensor 18a or 18b. In step S5, the operation of the air supply pump 20 is started, and the time until the air supply amount predetermined in steps S6 and S7 is reached is counted and supplied. When the supply of air is completed, the process proceeds to step S14, where the air pressure after the supply of air is measured to estimate the remaining volume excluding the object to be heated in the heating chamber 2, and the volume of the object to be heated is obtained. The container weight ratio is calculated from the volume and weight of the object to be heated, the density of the predetermined food and the density of the container, and the heating time corresponding to the container weight ratio is set from a preset formula or table. In step S9, the shutter is opened so that steam can be discharged during heating, the food temperature is detected by the infrared sensor 13, and the internal temperature is detected by the internal thermistor 14. On the control board (not shown) as an initial state before the heating is started. Is stored in the storage unit. The range is heated up to the heating time set in step S15, the heating is terminated in step S11, and the user is notified by a buzzer or a blinking display on the operation unit. The definition of variables used in the flowchart of FIG. 5 is the same as that of FIG.

次に、被加熱物(食品と容器)の容器重量率の推定方法について、式(5)〜式(7)を用いて詳細に説明する。なお、ここでは食品密度Rou_foodは1100.0[kg/m3]、容器密度Rou_ceraは陶磁器密度相当の2900[kg/m3]として計算する。工場から製品の出荷前に加熱室2に何も入れない状態での容積V_mo_0[m]で、給気ポンプを動作して加熱室2内の空気圧P2_mo_0[Pa]を取得・記憶するのは式(1)と同様である。 Next, a method for estimating the container weight ratio of the object to be heated (food and container) will be described in detail using equations (5) to (7). Here, the food density Rou_food is calculated as 1100.0 [kg / m3], and the container density Rou_cera is calculated as 2900 [kg / m3] corresponding to the ceramic density. It is to obtain and store the air pressure P2_mo_0 [Pa] in the heating chamber 2 by operating the air supply pump with the volume V_mo_0 [m 3 ] in a state where nothing is put into the heating chamber 2 before shipment of products from the factory. It is the same as that of Formula (1).

次に、ユーザーの使用する環境で、被加熱物の容器重量率を推定するための計算方法を説明する。
容器重量率Rate_cera[wt%]が未知である被加熱物の重量W_foodcera[kg]を重量センサ18aまたは18bで、給気前の空気圧P1[Pa]は圧力センサ19で測定する。次に、給気ポンプ20で一定量ΔV[m]の空気を密閉した加熱室2に給気し、このときの加熱室2内の空気圧P2_mo_mes[Pa]を測定して被加熱物の体積を除いた残容積V_mo_mes[m]を式(5)で算出し、被加熱物の体積を式(6)で算出する。この結果をもとに、式(7)で被加熱物の重量W_foodcera[kg]に容器の占める容器重量率Rate_cera[wt%]を算出する。このとき、容器が陶磁器密度相当であり、食品密度と大きく異なるためSiriの式など体脂肪率を計算する式を適用できない。このため、容器重量率Rate_cera[wt%]は、例えば平面の式を用いて、被加熱物の重量W_foodcera[kg]と体積V_foodcera_mes[m]とから求められる。各々の変数にかけられる定数は、あらかじめサンプル食品と使用する容器とで算出し、制御基板の記憶部に記録した値である。式(7)に基づいて計算すると、例えば容器と食品の全重量0.5〜1kgの間で、図7のような相関グラフが得られる。なお、全重量をある一定範囲で区分し、その区分に応じた計算式を設けると、より精度の高い検知ができる。
V_mo_mes=((P2_mo_0−P1)×V_mo_0)
/(P2_mo_mes−P1) …式(5)
V_foodcera_mes=V_mo−V_mo_mes …式(6)
Rate_cera=103×W_foodcera−212666
×V_foodcera_mes+75 …式(7)
Next, a calculation method for estimating the container weight ratio of the object to be heated in the environment used by the user will be described.
The weight W_foodcera [kg] of the object to be heated whose container weight rate Rate_cera [wt%] is unknown is measured by the weight sensor 18 a or 18 b, and the air pressure P1 [Pa] before supply is measured by the pressure sensor 19. Next, air of a certain amount ΔV [m 3 ] is supplied to the sealed heating chamber 2 by the air supply pump 20, and the air pressure P2_mo_mes [Pa] in the heating chamber 2 at this time is measured to measure the volume of the object to be heated. The remaining volume V_mo_mes [m 3 ] excluding is calculated by the equation (5), and the volume of the heated object is calculated by the equation (6). Based on this result, the container weight ratio Rate_cera [wt%] occupied by the container to the weight W_foodcera [kg] of the object to be heated is calculated by Expression (7). At this time, since the container is equivalent to the ceramic density and is greatly different from the food density, the formula for calculating the body fat percentage such as the Siri formula cannot be applied. For this reason, the container weight ratio Rate_cera [wt%] is obtained from the weight W_foodcera [kg] and the volume V_foodcera_mes [m 3 ] of the object to be heated, for example, using a plane equation. The constant applied to each variable is a value calculated in advance for the sample food and the container to be used and recorded in the storage unit of the control board. When calculated based on the equation (7), for example, a correlation graph as shown in FIG. 7 is obtained between the total weight of the container and the food of 0.5 to 1 kg. If the total weight is divided in a certain range and a calculation formula corresponding to the division is provided, detection with higher accuracy can be performed.
V_mo_mes = ((P2_mo_0−P1) × V_mo_0)
/ (P2_mo_mes-P1) (5)
V_foodcera_mes = V_mo−V_mo_mes Expression (6)
Rate_cera = 103 × W_foodocera-2122666
× V_foodcera_mes + 75 (7)

なお、以上では、被加熱物が例えば食用肉のように脂肪部位とそれ以外の非脂肪部位とからなる混合物である場合と、被加熱物が食品とこの食品が入れられる容器とからなる混合物である場合とについて説明したが、被加熱物が互いに比重のことなる部位からなる混合物であれば、これ以外のものであっても良いのは言うまでもない。比重のことなる二種類の部位からなる混合物を加熱する場合は、どちらか一方の部位について非加熱物内に占める重量割合である部位比率を推定することになる。例えば、被加熱物が魚であれば、鰯や秋刀魚は脂肪が多く、鱈は脂肪が少ないので、本実施の形態の加熱調理器を用いれば、適切な加熱が可能となる。   Note that, in the above, the object to be heated is, for example, a mixture composed of a fat part and other non-fat parts like edible meat, and the object to be heated is a mixture composed of a food and a container in which the food is put. As described above, it goes without saying that other materials may be used as long as the objects to be heated are composed of parts having specific gravity. In the case of heating a mixture composed of two kinds of parts having different specific gravities, the part ratio that is the weight ratio of one of the parts in the non-heated material is estimated. For example, if the object to be heated is fish, salmon and sword fish have a lot of fat and salmon has a small amount of fat. Therefore, if the heating cooker of the present embodiment is used, appropriate heating is possible.

実施の形態2.
以下、本発明の実施の形態2について、図1〜図3、図8、図9を用いて説明する。なお、図1〜図3に示す加熱調理器の構成は、実施の形態1からの変更は無いので説明を省略する。
Embodiment 2. FIG.
Hereinafter, Embodiment 2 of the present invention will be described with reference to FIGS. 1 to 3, 8, and 9. In addition, since the structure of the heating cooker shown in FIGS. 1-3 is not changed from Embodiment 1, description is abbreviate | omitted.

実施の形態1では最も簡易な脂肪率や容器重量率の推定方法を加熱調理器に適用した場合について述べた。しかし、製品の出荷前にあらかじめ測定・記憶する方法では、当該実施の加熱調理器を製造する工場における大気圧P1[Pa]とユーザーのいる地域における大気圧P2[Pa]が異なる場合(例えば、工場は平地だがユーザー居住域は高地の場合。)は誤差が生じる。実施の形態2では、その誤差を回避するため、全測定をユーザーの使用環境で実施する制御方法について述べる。   In the first embodiment, the simplest method for estimating the fat percentage and the container weight percentage is applied to the cooking device. However, in the method of measuring and storing in advance before product shipment, when the atmospheric pressure P1 [Pa] in the factory that manufactures the cooker is different from the atmospheric pressure P2 [Pa] in the user's area (for example, If the factory is flat, but the user's living area is high), errors will occur. In the second embodiment, a control method for performing all measurements in the user's usage environment in order to avoid the error will be described.

図8は、この発明を実施するための実施の形態2における加熱調理器のオーブン制御フローチャートを示すものである。なお、図4と同じ動作制御のものは、同一のステップ番号を付している。
図8において、ステップS1で、食品3を加熱室2に入れて扉4を閉め、ステップS2で、扉4の前面にある図示しない操作部で加熱方法『オーブン』を選択する。そして、ステップS3で、扉4の前面にある図示しない操作部で加熱スタートボタンを押すことで加熱制御が開始し、ステップS16で排気口16のシャッター17および図示しない送風口15のシャッターを閉めて給気前の空気圧を測定する。加熱室2は密閉状態となり重量センサ18aまたは18bで加熱室2に収納された食品3の重量を測定して、脂肪率を0とみなした場合の食品3の体積を計算して、加熱室2の残容積と給気後の空気圧を推定する。以下、ステップS5〜S11、及び図8のフローチャート内で使用している変数の定義は、図4と同じである。
FIG. 8 shows an oven control flowchart of the heating cooker in the second embodiment for carrying out the present invention. In addition, the same step number is attached | subjected to the thing of the same operation control as FIG.
In FIG. 8, food 3 is put into the heating chamber 2 in step S1 and the door 4 is closed. In step S2, a heating method “oven” is selected by an operation unit (not shown) on the front surface of the door 4. Then, in step S3, the heating control is started by pressing a heating start button with an operation unit (not shown) on the front surface of the door 4, and in step S16, the shutter 17 of the exhaust port 16 and the shutter of the blower port 15 (not shown) are closed. Measure the air pressure before supplying air. The heating chamber 2 is hermetically sealed, the weight of the food 3 stored in the heating chamber 2 is measured by the weight sensor 18a or 18b, and the volume of the food 3 when the fat percentage is regarded as 0 is calculated. The remaining volume of air and the air pressure after supply are estimated. Hereinafter, the definitions of variables used in steps S5 to S11 and the flowchart of FIG. 8 are the same as those in FIG.

次に、脂肪率の推定方法について、式(8)〜式(11)を用いて詳細に説明する。なお、ここでは脂肪部位の密度Rou_fatは900.7[kg/m]、それ以外の部位の密度Rou_meatは1100.0[kg/m]として計算する。 Next, the fat percentage estimation method will be described in detail using equations (8) to (11). Here, the density Rou_fat of the fat part is calculated as 900.7 [kg / m 3 ], and the density Rou_meat of the other part is calculated as 1100.0 [kg / m 3 ].

容積V_oven[m]の加熱室2に重量W_food[kg]で脂肪率Rate_fat[wt%]の食品3を入れて密閉し、空気圧P2[Pa]を測定する。 A food product 3 having a weight W_food [kg] and a fat rate Rate_fat [wt%] is placed in a heating chamber 2 having a volume V_even [m 3 ] and sealed, and the air pressure P2 [Pa] is measured.

食品3の脂肪率Rate_fat[wt%]が未知の食品3を加熱室2に入れると、食品3の重量W_food[kg]は重量センサ18aまたは18bで測定される。脂肪率を0と仮定して計算した食品3の体積V_food_sup[m]から加熱室2の残容積V_oven_sup[m]を算出し、 体積V_food_supである食品が入った状態で給気ポンプ20で一定量ΔV[m]の空気を密閉した加熱室2に給気したときの加熱室2内の空気圧P2_oven_sup[Pa]を式(8)にて算出する。 When the food 3 having an unknown fat rate Rate_fat [wt%] of the food 3 is put into the heating chamber 2, the weight W_food [kg] of the food 3 is measured by the weight sensor 18a or 18b. The remaining volume V_even_sup [m 3 ] of the heating chamber 2 is calculated from the volume V_food_sup [m 3 ] of the food 3 calculated on the assumption that the fat percentage is 0, and the air supply pump 20 enters the food having the volume V_food_sup with the volume V_food_sup. The air pressure P2_even_sup [Pa] in the heating chamber 2 when air of a certain amount ΔV [m 3 ] is supplied to the sealed heating chamber 2 is calculated by the equation (8).

式(1)では加熱室2内に何も入っていない状態で給気ポンプ20を動作したときの空気圧をボイルの法則より推定したのは、工場出荷時には加熱室2に何も入れずに空気圧を測定しておくことが最も容易だからである。実際にユーザーが使用する環境において、あらかじめ加熱室2が空の状態で空気圧を測定するといった作業がわずらわしく感じられる可能性が大きいため、ユーザーの一連の調理動作の中で測定できる方法として考案したのが式(8)を使用した計算による方法である。
P2_oven_sup=P2×(V_oven_sup+ΔV)
/V_oven_sup …式(8)
In Equation (1), the air pressure when the air supply pump 20 is operated in a state where nothing is in the heating chamber 2 is estimated from Boyle's law. This is because it is the easiest to measure. In the environment actually used by the user, there is a high possibility that the work of measuring the air pressure with the heating chamber 2 empty in advance is likely to be bothersome, so it was devised as a method that can be measured during a series of cooking operations by the user. Is a calculation method using equation (8).
P2_even_sup = P2 × (V_even_sup + ΔV)
/ V_even_sup (8)

次に、給気ポンプ20で一定量ΔV[m]の空気を密閉した加熱室2に給気し、このときの加熱室2内の空気圧P2_mes[Pa]を測定して食品3の体積を除いたオーブン残容積V_oven_mes[m]を式(9)で算出し、食品3の体積V_food_mesを式(10)で算出する。脂肪率Rate_fat[wt%]を式(11)で算出する。なお、式(10)と式(11)は、実施の形態1に示した式(3)と式(4)と同じである。
V_oven_mes=((P2_oven_sup−P2)
×V_oven_sup)/(P2_oven_mes−P2)…式(9)
V_food_mes=V_oven−V_oven_mes …式(10)
Rate_fat=(4.95/((W_food×10
/(V_food_mes×10))−4.5)×100…式(11)
Next, air of a certain amount ΔV [m 3 ] is supplied to the sealed heating chamber 2 by the air supply pump 20, and the air pressure P2_mes [Pa] in the heating chamber 2 at this time is measured to determine the volume of the food 3 The removed oven remaining volume V_even_mes [m 3 ] is calculated by Equation (9), and the volume V_food_mes of the food 3 is calculated by Equation (10). The fat percentage Rate_fat [wt%] is calculated by the equation (11). Equations (10) and (11) are the same as equations (3) and (4) shown in the first embodiment.
V_even_mes = ((P2_even_sup-P2)
* V_even_sup) / (P2_even_mes-P2) ... Formula (9)
V_food_mes = V_even−V_even_mes (10)
Rate_fat = (4.95 / ((W_food × 10 3 )
/ (V_food_mes × 10 6 )) − 4.5) × 100 (11)

次に、本発明の実施の形態2における加熱調理器のレンジ加熱制御動作について説明する。図9は、この発明を実施するためのの実施の形態2における加熱調理器のレンジ制御フローチャートを示すものである。なお、図5のレンジ加熱制御と同じ動作制御のものは同一のステップ番号を付している。   Next, the range heating control operation of the heating cooker according to the second embodiment of the present invention will be described. FIG. 9 shows a range control flowchart of the heating cooker in the second embodiment for carrying out the present invention. In addition, the same step number is attached | subjected to the thing of the same operation control as the range heating control of FIG.

図9において、ステップS1で、被加熱物(食品3と陶磁器などでできた容器)を加熱室2に入れて扉4を閉める。ステップS12で、扉4の前面にある図示しない操作部で加熱方法『レンジ』を選択する。そして、ステップS3で、扉4の前面にある図示しない操作部で加熱スタートボタンを押すことで加熱制御が開始し、ステップS17で排気口16のシャッター17および図示しない送風口15のシャッターが閉まり、給気前の空気圧を測定する。加熱室2は密閉状態となり重量センサ18aまたは18bで加熱室2に収納された被加熱物の重量を測定して、容器重量率が0(=食品のみ)とみなした場合の食品体積を計算して加熱室2の残容積と給気後の空気圧を推定する。ステップS5以降は、図5の説明に同じである。なお、図9のフローチャート内で使用している変数の定義は、図4と同じである。   In FIG. 9, in step S <b> 1, an object to be heated (a container made of food 3 and ceramics) is placed in the heating chamber 2 and the door 4 is closed. In step S <b> 12, the heating method “range” is selected by an operation unit (not shown) on the front surface of the door 4. Then, in step S3, heating control is started by pressing a heating start button on the operation unit (not shown) on the front surface of the door 4, and in step S17, the shutter 17 of the exhaust port 16 and the shutter of the blower port 15 (not shown) are closed, Measure the air pressure before supplying air. The heating chamber 2 is hermetically sealed, the weight sensor 18a or 18b is used to measure the weight of the object to be heated, and the food volume when the container weight ratio is considered to be 0 (= food only) is calculated. Thus, the remaining volume of the heating chamber 2 and the air pressure after supplying air are estimated. Step S5 and subsequent steps are the same as those in FIG. In addition, the definition of the variable used in the flowchart of FIG. 9 is the same as FIG.

次に、容器重量率の推定方法について、式(12)〜式(15)を用いて詳細に説明する。なお、ここでは食品密度Rou_foodは1100.0[kg/m3]、容器密度Rou_ceraは陶磁器密度相当の2900[kg/m3]として計算する。   Next, the container weight ratio estimation method will be described in detail using Expressions (12) to (15). Here, the food density Rou_food is calculated as 1100.0 [kg / m3], and the container density Rou_cera is calculated as 2900 [kg / m3] corresponding to the ceramic density.

容積V_mo[m]の加熱室2に、容器重量率Rate_cera[wt%]が未知である被加熱物(食品3と容器)を入れて密閉し、重量センサ18aまたは18bで被加熱物の重量W_foodcera[kg]を測定し、給気前の空気圧P2[Pa]を測定する。そして、被加熱物の重量W_foodcera[kg]が全て食品、すなわち容器重量率を0(=食品のみ)と仮定して計算した被加熱物の体積V_foodcera_sup[m]から加熱室2の残容積V_mo_sup[m]を算出する。給気ポンプ20で一定量ΔV[m]の空気を密閉した加熱室2に給気したときの加熱室2内の空気圧P2_mo_sup[Pa]を式(12)にて算出する。
P2_mo_sup=P2×(V_mo_sup+ΔV)
/V_mo_sup …式(12)
An object to be heated (food 3 and container) whose container weight rate Rate_cera [wt%] is unknown is placed in the heating chamber 2 of the volume V_mo [m 3 ] and sealed, and the weight of the object to be heated is measured by the weight sensor 18a or 18b. W_foodcera [kg] is measured, and the air pressure P2 [Pa] before air supply is measured. Then, the weight W_foocera [kg] of the heated object is all food, that is, the remaining volume V_mo_sup of the heating chamber 2 from the heated object volume V_foodcera_sup [m 3 ] calculated assuming that the container weight ratio is 0 (= food only). [M 3 ] is calculated. The air pressure P2_mo_sup [Pa] in the heating chamber 2 when air of a certain amount ΔV [m 3 ] is supplied to the sealed heating chamber 2 by the air supply pump 20 is calculated by the equation (12).
P2_mo_sup = P2 × (V_mo_sup + ΔV)
/ V_mo_sup (12)

次に、給気ポンプ20で一定量ΔV[m]の空気を密閉した加熱室2に給気し、このときの加熱室2内の空気圧P2_mo_mes[Pa]を測定して食品3と容器の体積を除いた残容積V_mo_mes[m]を式(13)で算出する。食品と容器からなる被加熱物の体積を式(14)で算出し、その結果をもとに被加熱物の重量W_foodcera[kg]に容器の占める容器重量率Rate_cera[wt%]を式(15)で算出する。なお、式(14)と式(15)は、実施の形態1で示した式(6)、式(7)と同じである。
V_mo_mes=((P2_mo_sup−P2)×V_mo_sup)
/(P2_mo_mes−P2) …式(13)
V_foodcera_mes=V_mo−V_mo_mes …式(14)
Rate_cera=103×W_foodcera−212666
×V_foodcera_mes+75 …式(15)
Next, air of a certain amount ΔV [m 3 ] is supplied to the sealed heating chamber 2 by the air supply pump 20, and the air pressure P2_mo_mes [Pa] in the heating chamber 2 at this time is measured to measure the food 3 and the container. The remaining volume V_mo_mes [m 3 ] excluding the volume is calculated by Equation (13). The volume of the heated object composed of the food and the container is calculated by the equation (14), and based on the result, the container weight ratio Rate_cera [wt%] occupied by the container to the weight W_foocera [kg] of the heated object is calculated by the equation (15). ). Equations (14) and (15) are the same as Equations (6) and (7) shown in the first embodiment.
V_mo_mes = ((P2_mo_sup−P2) × V_mo_sup)
/ (P2_mo_mes-P2) ... Formula (13)
V_foodcera_mes = V_mo−V_mo_mes Equation (14)
Rate_cera = 103 × W_foodocera-2122666
× V_foodcera_mes + 75 (15)

実施の形態3.
以下、本発明の実施の形態3について、図1〜図3、図10を用いて説明する。なお、図1〜図3に示す加熱調理器の構成は、実施の形態1からの変更は無いので説明を省略する。
Embodiment 3 FIG.
Hereinafter, Embodiment 3 of the present invention will be described with reference to FIGS. 1 to 3 and FIG. 10. In addition, since the structure of the heating cooker shown in FIGS. 1-3 is not changed from Embodiment 1, description is abbreviate | omitted.

実施の形態1および2における加熱方法の設定ステップS10及びS15では、レンジ又はオーブンのどちらか一方を使用していた。実施の形態3では、食品の脂肪率に応じてレンジとオーブンの両方の加熱方法を使用することで、食品に適切な加熱をオーブンだけの加熱時間より短時間で行うことが可能となる制御方法について述べる。
レンジとオーブンの両方の加熱方法を使用する場合、食品温度が一定温度になるまでレンジ加熱し、それ以降はオーブン加熱のみにするもので、オーブン加熱のみで食品外側から加熱する方法に比べ加熱時間が短くて済む加熱方法である。
In setting steps S10 and S15 of the heating method in the first and second embodiments, either the range or the oven is used. In the third embodiment, by using both the heating method of the range and the oven in accordance with the fat percentage of the food, it is possible to perform heating appropriate for the food in a shorter time than the heating time of the oven alone. Is described.
When using both the range and oven heating methods, the range is heated until the food temperature reaches a certain temperature, and after that, only oven heating is performed. Is a short heating method.

図10は、この発明を実施するための実施の形態3における加熱調理器の加熱方式の制御フローチャートを示すものである。脂肪率の推定方法として実施の形態2の説明を用いているが、実施の形態1の方法でもよい。
図10において、ステップS1で、食品3を加熱室2に入れて扉4を閉める。ステップS18で、扉4の前面にある図示しない操作部でレンジ加熱とオーブン加熱の自動切換えがある加熱方法、例えば『レンジグリル』などの表記を選択する。以下、ステップS3、16、5〜9は図8の説明に同じである。そして、ステップS19で脂肪率に応じた設定時間分ほどレンジ加熱し、ステップS20でオーブン加熱に切り替わる。そして指定した時間のオーブン加熱後、ステップS11で加熱終了したことをユーザーに報知音などで報知する。この加熱方法では、食品の脂肪率を推定後にレンジとオーブンが稼動するが、食品内部まで迅速に高温になることで脂の粘度が低下し流出し易い状態になるので、脂肪率が高いと判定された場合にはレンジ加熱時間を長くして食品中心までの温度をより高くしてからオーブン加熱に切り替えることで、脂落ちを促進できる。このときオーブン加熱時間も延長することでさらなる脂落ちを促進させてもよい。なお、脂肪率が低いときはレンジ加熱時間を短くして食品中心までの温度をより低い状態でオーブン加熱に切り替えれば、食品組織の変性による水分流出が抑制された状態で表面が焼き固められるため、ジューシーな仕上がりが得られる。このときオーブン加熱時間も短縮することで表面もよりソフトな状態に仕上げてもよい。なお、図10のフローチャート内で使用している変数の定義は、図4と同じである。
FIG. 10 shows a control flowchart of the heating method of the heating cooker in the third embodiment for carrying out the present invention. Although the description of the second embodiment is used as the fat percentage estimation method, the method of the first embodiment may be used.
In FIG. 10, the food 3 is put into the heating chamber 2 and the door 4 is closed at step S1. In step S18, a heating method with automatic switching between range heating and oven heating, for example, “range grill” or the like is selected by an operation unit (not shown) on the front surface of the door 4. Hereinafter, Steps S3, 16, and 5-9 are the same as those in FIG. In step S19, range heating is performed for a set time corresponding to the fat percentage, and in step S20, switching to oven heating is performed. Then, after the oven heating for the specified time, the user is notified of the heating end in step S11 with a notification sound or the like. In this heating method, the range and the oven are operated after the fat percentage of the food is estimated, but the fat viscosity decreases and the spillage tends to flow out quickly due to high temperature inside the food, so it is determined that the fat percentage is high. In such a case, fat removal can be promoted by switching to oven heating after increasing the temperature to the center of the food by lengthening the range heating time. At this time, further oil removal may be promoted by extending the oven heating time. If the fat percentage is low, shortening the range heating time and switching to oven heating at a lower temperature up to the food center will cause the surface to be baked and solidified in a state in which moisture outflow due to food tissue denaturation is suppressed. A juicy finish is obtained. At this time, the surface may be finished in a softer state by shortening the oven heating time. Note that the definitions of variables used in the flowchart of FIG. 10 are the same as those in FIG.

上記の実施の形態1〜3において、食品3の初期温度や重量を判定する回数は、1回でもよいが、より正確さを期するために複数回行ってもよい。また、ある温度上昇率を設定しておいて、その温度上昇のために必要とした時間で食品3の初期温度や量を判定してもよい。   In the above first to third embodiments, the initial temperature and weight of the food 3 may be determined once, but may be performed a plurality of times in order to obtain more accuracy. Alternatively, a certain temperature increase rate may be set, and the initial temperature or amount of the food 3 may be determined based on the time required for the temperature increase.

また、食品3の加熱をオーブンとレンジにしたが、オーブンの他に温度制御のないヒータ加熱であるグリル、マイクロ波を照射しながらヒータ加熱をするハイブリッド調理などにも適用できることは自明である。   Although the food 3 is heated in the oven and the oven, it is obvious that the food 3 can be applied to a grill that is heater heating without temperature control, hybrid cooking that heats the heater while irradiating microwaves, and the like.

また、上面加熱ヒータ5のヒータ種類を限定するものではなく、例えばガラス管ヒータを用いて加熱する際のふく射成分を増加し、より食品3表面の加熱速度を速め、例えば肉の表面を焼き固め肉汁に含まれるおいしさを逃がさずに調理できるようにしてもよい。また、より安価な加熱手段としてシーズヒータを用いてもよい。また、扉4に設けられた高周波漏洩量低減手段4bは、実施の形態1の方式に限定されるものでなく、高周波の漏洩を防ぐことができるものであれば良い。また、食品3の加熱は特に実施例に限定するものではなく、例えば食品3に通電して起きる自己発熱によるジュール加熱などを用いてもよい。   Moreover, the heater type of the upper surface heater 5 is not limited. For example, the radiation component at the time of heating using a glass tube heater is increased, the heating speed of the surface of the food 3 is further increased, for example, the meat surface is baked and hardened. You may enable it to cook without escaping the deliciousness contained in gravy. A sheathed heater may be used as a cheaper heating means. Further, the high-frequency leakage reduction means 4b provided in the door 4 is not limited to the method of the first embodiment, and may be any device that can prevent high-frequency leakage. The heating of the food 3 is not particularly limited to the embodiment, and for example, Joule heating by self-heating generated by energizing the food 3 may be used.

また、上記の全ての実施の形態では体積推定方法を給気ポンプで空気を給気したときの圧力を測定し、体積を推定する方法を示したが、これに限定するものではない。例えば、減圧ポンプを利用し、加熱室2の気圧降下の変化度合いからも推定できる。また、加熱室2を密閉して一定量の無害なガス(N2、O2など)を加熱室2に送り込み、そのガス濃度により体積を推定してもよい。また、低周波音を発するスピーカーと音圧を測定するマイクロホンを設け、音圧の変化から体積を推定してもよい。また、画像センサの検出値から体積を推定してもよく、この方法であれば加熱室2を密閉構造が不要になる。   In all the embodiments described above, the volume estimation method has been described by measuring the pressure when air is supplied by the supply pump, and estimating the volume. However, the present invention is not limited to this. For example, it can be estimated from the degree of change in the pressure drop in the heating chamber 2 using a vacuum pump. Alternatively, the heating chamber 2 may be sealed and a certain amount of harmless gas (N 2, O 2, etc.) may be sent into the heating chamber 2 and the volume estimated from the gas concentration. Further, a speaker that emits low frequency sound and a microphone that measures sound pressure may be provided, and the volume may be estimated from the change in sound pressure. In addition, the volume may be estimated from the detection value of the image sensor. With this method, the heating chamber 2 does not need to be sealed.

なお、本明細書の実施例では圧力センサを送風口近傍に設けたが、他に適切な位置があればそこに設置してもよいことは自明である。
また、体積を推定する時の給気量も限定するものではなく、圧力の変化と食品体積比が明確化できる量であればよい。
In addition, in the Example of this specification, although the pressure sensor was provided in the ventilation port vicinity, if there exists another suitable position, it is obvious that you may install there.
Further, the amount of air supply when estimating the volume is not limited, and any amount may be used as long as the change in pressure and the food volume ratio can be clarified.

また、本明細書では重量センサは食品を設置する位置毎に設けたが、加熱調理器本体の足に取り付け、全体の重量の差を測定してもよい。これにより、重量センサの使用個数を減らす、高温耐性のないより安価なセンサの使用が可能になる、といったメリットがある。   Further, in this specification, the weight sensor is provided for each position where food is placed, but the weight sensor may be attached to the legs of the main body of the heating cooker and the difference in weight of the whole may be measured. As a result, there are advantages that the number of weight sensors used is reduced and that a cheaper sensor having no high temperature resistance can be used.

また、『脂落としモード』ボタンを設けることで、ユーザーに本実施例の選択を任せるようにしてもよい。これにより、ユーザーがどのような仕上がりを期待するか調理前に認識できるため、仕上がり状態に、より明確な満足感を提供できる。   Further, by providing a “grease removal mode” button, the user may be left to select the present embodiment. Thereby, since what kind of finish the user expects can be recognized before cooking, a clearer satisfaction can be provided for the finished state.

また、上記実施例は略密閉式の容器とその容器内に収めた収納物を加熱できる手段がついているものであれば同様の効果を得ることができる。例えば、同じ加熱調理器であるオーブントースター、フィッシュロースター、炊飯器、ガスコンロやIHクッキングヒータなどに設けられた魚焼きグリルなどである。   Moreover, the said Example can acquire the same effect, if the substantially airtight container and the means which can heat the storage thing accommodated in the container are attached. For example, there are an oven toaster, a fish roaster, a rice cooker, a grilled fish provided in a gas stove, an IH cooking heater, and the like, which are the same cooking device.

1 本体、2 加熱室、3 食品、5 上面加熱ヒータ、6 コンベクションヒータ、6a ファン、6b 送風空気加熱ヒータ、7 高周波発生部、7a マグネトロン、7b 電源回路、13 赤外線センサ、14 庫内サーミスタ、15 送風口、16 排気口、17 シャッター、18a レール設置重量センサ、18b 床設置重量センサ、19 圧力センサ、20 給気ポンプ、101 制御装置 DESCRIPTION OF SYMBOLS 1 Main body, 2 Heating chamber, 3 Foodstuffs, 5 Top surface heater, 6 Convection heater, 6a Fan, 6b Blow air heater, 7 High frequency generating part, 7a Magnetron, 7b Power supply circuit, 13 Infrared sensor, 14 Inside thermistor Blower, 16 Exhaust, 17 Shutter, 18a Rail installation weight sensor, 18b Floor installation weight sensor, 19 Pressure sensor, 20 Air supply pump, 101 Control device

Claims (6)

被加熱物を収納する加熱室と、
前記加熱室内の前記被加熱物を加熱する加熱手段と、
前記被加熱物の重量を検知する重量検知手段と、
前記被加熱物の体積を推定する体積推定手段と、
前記重量検知手段の検知結果と前記体積推定手段の推定結果とを基に、前記加熱手段を制御する制御手段と、
を備えた加熱調理器。
A heating chamber for storing an object to be heated;
Heating means for heating the object to be heated in the heating chamber;
Weight detection means for detecting the weight of the object to be heated;
Volume estimation means for estimating the volume of the object to be heated;
Control means for controlling the heating means based on the detection result of the weight detection means and the estimation result of the volume estimation means;
A cooking device equipped with.
前記制御手段は、
前記重量検知手段の検知結果と前記体積推定手段の推定結果とから前記被加熱物内に占める脂肪部位の重量割合である脂肪率を推定し、当該脂肪率を基に制御すること
を特徴とする請求項1に記載の加熱調理器。
The control means includes
A fat percentage that is a weight ratio of a fat portion in the heated object is estimated from a detection result of the weight detection means and an estimation result of the volume estimation means, and control is performed based on the fat percentage. The cooking device according to claim 1.
前記制御手段は、
前記重量検知手段の検知結果と前記体積推定手段の推定結果とから前記被加熱物内に占める容器の重量割合である容器重量率を推定し、当該容器重量率を基に制御すること
を特徴とする請求項1に記載の加熱調理器。
The control means includes
A container weight ratio that is a weight ratio of a container in the heated object is estimated from a detection result of the weight detection means and an estimation result of the volume estimation means, and control is performed based on the container weight ratio. The cooking device according to claim 1.
前記体積推定手段は、
前記加熱室を密閉するための密閉手段と、
前記加熱室の内部の空気を加圧する加圧手段と、
前記加熱室内の空気圧を検知する空気圧検知手段と、
を備えると共に、
前記加熱室を前記密閉手段で密閉後、前記加圧手段による前記加熱室内の空気圧の増加を前記空気圧検知手段で検知し、前記被加熱物の体積を推定すること
を特徴とする請求項1乃至3のいずれか1項に記載の加熱調理器。
The volume estimation means includes
Sealing means for sealing the heating chamber;
A pressurizing means for pressurizing the air inside the heating chamber;
Air pressure detection means for detecting the air pressure in the heating chamber;
With
The volume of the object to be heated is estimated by detecting an increase in air pressure in the heating chamber by the pressurizing means after the sealing of the heating chamber by the sealing means, and estimating the volume of the object to be heated. The heating cooker according to any one of 3 above.
前記体積推定手段は、
前記加熱室を密閉するための密閉手段と、
前記加熱室の内部の空気を減圧する減圧手段と、
前記加熱室内の空気圧を検知する空気圧検知手段と
を備えると共に、
前記加熱室を前記密閉手段で密閉後、前記減圧手段による前記加熱室内の空気圧の減少を前記空気圧検知手段で検知し、前記被加熱物の体積を推定すること
を特徴とする請求項1乃至3のいずれか1項に記載の加熱調理器。
The volume estimation means includes
Sealing means for sealing the heating chamber;
Decompression means for decompressing the air inside the heating chamber;
An air pressure detecting means for detecting the air pressure in the heating chamber,
The volume of the object to be heated is estimated by detecting a decrease in air pressure in the heating chamber by the pressure reducing means after the sealing of the heating chamber by the sealing means, and estimating the volume of the object to be heated. The cooking device according to any one of the above.
前記加熱室に空気を送り込むための送風口と、
前記加熱室内の空気を排出するための排気口とを備え、
前記密閉手段は、前記送風口を遮蔽するための送風口遮蔽手段と、
前記排気口を遮蔽するための排気口遮蔽手段と、
を備えた請求項4又は5に記載の加熱調理器。
An air outlet for sending air into the heating chamber;
An exhaust port for discharging the air in the heating chamber,
The sealing means includes an air outlet shielding means for shielding the air outlet;
An exhaust port shielding means for shielding the exhaust port;
A heating cooker according to claim 4 or 5, comprising:
JP2013071391A 2013-03-29 2013-03-29 Cooker Active JP5668774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071391A JP5668774B2 (en) 2013-03-29 2013-03-29 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071391A JP5668774B2 (en) 2013-03-29 2013-03-29 Cooker

Publications (2)

Publication Number Publication Date
JP2014194325A true JP2014194325A (en) 2014-10-09
JP5668774B2 JP5668774B2 (en) 2015-02-12

Family

ID=51839680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071391A Active JP5668774B2 (en) 2013-03-29 2013-03-29 Cooker

Country Status (1)

Country Link
JP (1) JP5668774B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196246A1 (en) * 2020-12-21 2022-06-23 Koninklijke Fabriek Inventum B.V. Content volume measurement
US11553817B2 (en) 2016-12-08 2023-01-17 Koninklijke Philips N.V. Food processing apparatus, control device and operating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110848747B (en) * 2018-08-21 2022-01-21 青岛海尔智能技术研发有限公司 Gas stove control method and device, gas stove, computer equipment and storage medium

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544941A (en) * 1991-08-09 1993-02-23 Sharp Corp Cooking appliance
JPH06109252A (en) * 1992-09-24 1994-04-19 Brother Ind Ltd Reduced pressure type high frequency heating device
JPH06193882A (en) * 1992-12-22 1994-07-15 Matsushita Electric Ind Co Ltd Cooker
JPH0675429B2 (en) * 1986-10-22 1994-09-21 松下電器産業株式会社 Heating device
JPH109582A (en) * 1996-06-25 1998-01-16 Hitachi Home Tec Ltd Frozen food thawing apparatus
JPH1163509A (en) * 1997-08-26 1999-03-05 Sharp Corp Heating cooker
JP3364405B2 (en) * 1997-02-28 2003-01-08 シャープ株式会社 microwave
JP2003056852A (en) * 2001-08-09 2003-02-26 Hitachi Hometec Ltd Cooking apparatus
JP2004065360A (en) * 2002-08-02 2004-03-04 Matsushita Electric Ind Co Ltd Cooker
JP2005173675A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Article management and health management system
JP2006023078A (en) * 2005-09-02 2006-01-26 Matsushita Electric Ind Co Ltd Heating cooker using superheated steam and operation method therefor
JP2008196788A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heating cooker, electromagnetic induction cooker, and its program
JP2013096688A (en) * 2011-11-07 2013-05-20 Panasonic Corp Heating cooker

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675429B2 (en) * 1986-10-22 1994-09-21 松下電器産業株式会社 Heating device
JPH0544941A (en) * 1991-08-09 1993-02-23 Sharp Corp Cooking appliance
JPH06109252A (en) * 1992-09-24 1994-04-19 Brother Ind Ltd Reduced pressure type high frequency heating device
JPH06193882A (en) * 1992-12-22 1994-07-15 Matsushita Electric Ind Co Ltd Cooker
JPH109582A (en) * 1996-06-25 1998-01-16 Hitachi Home Tec Ltd Frozen food thawing apparatus
JP3364405B2 (en) * 1997-02-28 2003-01-08 シャープ株式会社 microwave
JPH1163509A (en) * 1997-08-26 1999-03-05 Sharp Corp Heating cooker
JP2003056852A (en) * 2001-08-09 2003-02-26 Hitachi Hometec Ltd Cooking apparatus
JP2004065360A (en) * 2002-08-02 2004-03-04 Matsushita Electric Ind Co Ltd Cooker
JP2005173675A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Article management and health management system
JP2006023078A (en) * 2005-09-02 2006-01-26 Matsushita Electric Ind Co Ltd Heating cooker using superheated steam and operation method therefor
JP2008196788A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heating cooker, electromagnetic induction cooker, and its program
JP2013096688A (en) * 2011-11-07 2013-05-20 Panasonic Corp Heating cooker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11553817B2 (en) 2016-12-08 2023-01-17 Koninklijke Philips N.V. Food processing apparatus, control device and operating method
US20220196246A1 (en) * 2020-12-21 2022-06-23 Koninklijke Fabriek Inventum B.V. Content volume measurement
US11732898B2 (en) * 2020-12-21 2023-08-22 B/E Aerospace, Inc. Content volume measurement

Also Published As

Publication number Publication date
JP5668774B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
US20230038969A1 (en) Cooking apparatus and control method thereof
EP3365605B1 (en) Method and household appliance for controlling humidity
US10253989B2 (en) Method for operating a cooking device, and such a cooking device for performing the method
US20080102175A1 (en) Cooking apparatus and method of displaying caloric information
US5945018A (en) Control system for an oven having multiple heating sources for the preparation of food
US9689576B2 (en) Oven appliance and a method for operating an oven appliance
US9927127B2 (en) Oven appliance and a method for operating an oven appliance
JP5668774B2 (en) Cooker
US8563901B2 (en) Method and apparatus for top heat bake assist in a gas oven appliance
JP2012247092A (en) Heating cooker
US20160040892A1 (en) Oven appliance and a method for operating an oven appliance
JP5414770B2 (en) Heating cooker, food temperature adjusting device, food initial temperature estimating device, and food initial temperature estimating method
JP2009284926A (en) Cooking range
JP5456076B2 (en) High frequency heating device
JP2017156053A (en) Heating cooker
JP2008017959A (en) Cooker
KR100211343B1 (en) Heating cooker
JP7398986B2 (en) heating cooker
JP2015072094A (en) Heating cooker
JP6581538B2 (en) Induction heating cooker
JP5367135B2 (en) Induction heating cooker
JP2017194172A (en) High frequency heating cooker
JP6335670B2 (en) Cooker
JP2011187177A (en) Induction heating cooker
JP2018194270A (en) Heating cooker

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5668774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250