JP2014194219A - Overcooling prevention member of cylinder bore wall, and internal combustion engine - Google Patents

Overcooling prevention member of cylinder bore wall, and internal combustion engine Download PDF

Info

Publication number
JP2014194219A
JP2014194219A JP2014111243A JP2014111243A JP2014194219A JP 2014194219 A JP2014194219 A JP 2014194219A JP 2014111243 A JP2014111243 A JP 2014111243A JP 2014111243 A JP2014111243 A JP 2014111243A JP 2014194219 A JP2014194219 A JP 2014194219A
Authority
JP
Japan
Prior art keywords
cylinder bore
cooling water
bore wall
prevention member
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014111243A
Other languages
Japanese (ja)
Other versions
JP5830134B2 (en
Inventor
Kazuaki Nishio
和晃 西尾
Akihiro Yoshimura
章宏 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2014111243A priority Critical patent/JP5830134B2/en
Publication of JP2014194219A publication Critical patent/JP2014194219A/en
Application granted granted Critical
Publication of JP5830134B2 publication Critical patent/JP5830134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an overcooling prevention member of a cylinder bore wall, which enhances the uniformity of wall temperature of the cylinder bore wall and is easily insertable in a groove-like cooling water flow passage around the cylinder bore wall, and to provide an internal combustion engine.SOLUTION: An overcooling prevention member is installed in a groove-like cooling water flow passage formed around the cylinder bore wall of a cylinder block of an internal combustion engine and has a contact surface 1 which swells through contact with cooling water of 70°C or more and contacts with the wall surface on a groove-like cooling water flow passage side of the cylinder bore wall.

Description

本発明は、内燃機関のシリンダブロックのシリンダボア壁周りに形成される溝状冷却水流路内に容易に設置できる過冷却防止部材及びそれを備える内燃機関に関する。   The present invention relates to a supercooling prevention member that can be easily installed in a grooved cooling water passage formed around a cylinder bore wall of a cylinder block of an internal combustion engine, and an internal combustion engine including the same.

内燃機関では、ボア内のピストンの上死点で燃料の爆発が起こり、その爆発によりピストンが押し下げられるという構造上、シリンダボア壁の上側は温度が高くなり、下側は温度が低くなる。そのため、シリンダボア壁の上側と下側では、熱変形量に違いが生じ、上側は大きく膨張し、一方、下側の膨張が小さくなる。   In the internal combustion engine, fuel explosion occurs at the top dead center of the piston in the bore, and the piston is pushed down by the explosion, so that the temperature is high on the upper side of the cylinder bore wall and the temperature is lower on the lower side. Therefore, there is a difference in the amount of thermal deformation between the upper side and the lower side of the cylinder bore wall, and the upper side expands greatly, while the lower side expansion decreases.

その結果、ピストンのシリンダボア壁との摩擦抵抗が大きくなり、これが、燃費を下げる要因となっているので、シリンダボア壁の上側と下側とで熱変形量の違いを少なくすることが求められている。   As a result, the frictional resistance between the piston and the cylinder bore wall increases, and this is a factor that reduces fuel consumption. .

そこで、従来より、シリンダボア壁の壁温を均一にするために、溝状冷却水流路内にスペーサーを設置し、溝状冷却水流路内の冷却水の水流を調節して、冷却水によるシリンダボア壁の上側の冷却効率と及び下側の冷却効率を制御することが試みられてきた。例えば、特許文献1には、内燃機関のシリンダブロックに形成された溝状冷却用熱媒体流路内に配置されることで該溝状冷却用熱媒体流路内を複数の流路に区画する流路区画部材であって、前記溝状冷却用熱媒体流路の深さに満たない高さに形成され、前記溝状冷却用熱媒体流路内をボア側流路と反ボア側流路とに分割する壁部となる流路分割部材と、前記流路分割部材から前記溝状冷却用熱媒体流路の開口部方向に向けて形成され、かつ先端縁部が前記溝状冷却用熱媒体流路の一方の内面を越えた形に可撓性材料で形成されていることにより、前記溝状冷却用熱媒体流路内への挿入完了後は自身の撓み復元力により前記先端縁部が前記内面に対して前記溝状冷却用熱媒体流路の深さ方向の中間位置にて接触することで前記ボア側流路と前記反ボア側流路とを分離する可撓性リップ部材と、を備えたことを特徴とする内燃機関冷却用熱媒体流路区画部材が開示されている。   Therefore, conventionally, in order to make the wall temperature of the cylinder bore wall uniform, a spacer is installed in the grooved cooling water flow path, and the flow of the cooling water in the grooved cooling water flow path is adjusted so that the cylinder bore wall caused by the cooling water Attempts have been made to control the cooling efficiency on the upper side and the cooling efficiency on the lower side. For example, in Patent Document 1, the groove-shaped cooling heat medium flow path is partitioned into a plurality of flow paths by being arranged in a groove-shaped cooling heat medium flow path formed in a cylinder block of an internal combustion engine. A channel partition member formed at a height less than the depth of the groove-shaped cooling heat medium flow channel, and the bore-side flow channel and the anti-bore side flow channel in the groove-shaped cooling heat medium flow channel And a flow path dividing member that is a wall portion that is divided into the groove-shaped cooling heat medium flow path, and a tip edge portion formed in the groove-shaped cooling heat medium flow direction toward the opening of the groove-shaped cooling heat medium flow path. By being formed of a flexible material so as to extend beyond one inner surface of the medium flow path, the leading edge portion is caused by its own bending restoring force after completion of insertion into the groove-shaped cooling heat medium flow path. Is in contact with the inner surface at an intermediate position in the depth direction of the groove-shaped cooling heat medium channel, and the bore-side channel and the A flexible lip member, the internal combustion engine cooling heat medium flow passage partition member comprising the disclosed which separates the bore side flow path.

特開2008−31939号公報(特許請求の範囲)JP 2008-31939 A (Claims)

ところが、引用文献1の内燃機関冷却用熱媒体流路区画部材によれば、ある程度のシリンダボア壁の壁温の均一化が図れるので、シリンダボア壁の上側と下側との熱変形量の違いを少なくすることができるものの、近年、更に、シリンダボア壁の上側と下側とで熱変形量の違いを少なくすることが求められている。また、シリンダボア壁周りに形成される溝状冷却水流路は、流路幅が狭いため、流路内への装着に不都合をきたすことがある。   However, according to the heat medium flow path partition member for cooling the internal combustion engine of the cited document 1, the wall temperature of the cylinder bore wall can be made uniform to some extent, so that the difference in the amount of thermal deformation between the upper side and the lower side of the cylinder bore wall is reduced. In recent years, however, it has been demanded to further reduce the difference in thermal deformation between the upper side and the lower side of the cylinder bore wall. Moreover, since the groove-shaped cooling water flow path formed around the cylinder bore wall has a narrow flow path width, it may be inconvenient for mounting in the flow path.

従って、本発明の課題は、シリンダボア壁の壁温の均一性を高くすると共に、シリンダボア壁周りの溝状冷却水流路内に容易に挿入できるシリンダボア壁の過冷却防止部材及び内燃機関を提供することにある。   Accordingly, an object of the present invention is to provide a cylinder bore wall overcooling prevention member and an internal combustion engine that can increase the uniformity of the wall temperature of the cylinder bore wall and can be easily inserted into a grooved coolant flow path around the cylinder bore wall. It is in.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、70℃以上の水と接触することで膨潤するシリンダボア壁の過冷却防止部材を、溝状冷却水流路内に設置し、冷却水が通水されることで、過冷却防止部材が熱膨潤してシリンダボア壁に接触するため、冷却水がシリンダボア壁に直接接触するのを防止して、シリンダボア壁の壁温の均一化が図れること、過冷却防止部材を溝状冷却水流路幅(挿入口の幅)より小の厚みとすることができ、溝状冷却水流路内に装着し易くなることなどを見出し、本発明を完成させた。   As a result of intensive studies to solve the problems in the conventional technology, the present inventors have provided an overcooling prevention member on the cylinder bore wall that swells by contact with water at 70 ° C. or higher in the grooved cooling water flow path. Since the supercooling prevention member is thermally swollen and comes into contact with the cylinder bore wall when the cooling water is passed through, the cooling water is prevented from coming into direct contact with the cylinder bore wall, and the wall temperature of the cylinder bore wall is prevented. It is found that the supercooling prevention member can be made thinner than the groove-shaped cooling water channel width (width of the insertion port), and can be easily mounted in the groove-shaped cooling water channel, The present invention has been completed.

すなわち、本発明は、内燃機関のシリンダブロックのシリンダボア壁周りに形成される溝状冷却水流路内に設置されるものであって、70℃以上の冷却水と接触することで膨潤して、該シリンダボア壁の溝状冷却水流路側の壁面に接する接触面を有することを特徴とするシリンダボア壁の過冷却防止部材を提供するものである。   That is, the present invention is installed in a groove-like cooling water flow path formed around a cylinder bore wall of a cylinder block of an internal combustion engine, and swells by contacting with cooling water of 70 ° C. or higher, An overcooling prevention member for a cylinder bore wall is provided, which has a contact surface in contact with the wall surface of the cylinder bore wall on the grooved coolant flow path side.

また、本発明は、前記シリンダボア壁の過冷却防止部材を備えることを特徴とする内燃機関を提供するものである。   The present invention also provides an internal combustion engine comprising an overcooling prevention member for the cylinder bore wall.

本発明によれば、内燃機関のシリンダボア壁の壁温の均一性を高くすることができる。そのため、シリンダボア壁の上側と下側とで熱変形量の違いを少なくすることができる。また、本発明によれば、過冷却防止部材を溝状冷却水流路幅より小の厚みとすることができ、溝状冷却水流路内に装着し易くなる。   According to the present invention, the uniformity of the wall temperature of the cylinder bore wall of the internal combustion engine can be increased. Therefore, the difference in the amount of thermal deformation between the upper side and the lower side of the cylinder bore wall can be reduced. In addition, according to the present invention, the supercooling prevention member can be made thinner than the grooved cooling water flow path width, and can be easily mounted in the grooved cooling water flow path.

第1の実施の形態例の過冷却防止部材の斜視図。The perspective view of the overcooling prevention member of the example of 1st Embodiment. 過冷却防止部材を溝状冷却水流路内に装着した際(膨潤前)の簡略平面図。The simplified top view at the time of mounting | wearing a groove-shaped cooling water flow path with a supercooling prevention member (before swelling). 図2において過冷却防止部材が冷却水と接触することにより膨張した際の簡略平面図。FIG. 3 is a simplified plan view when the overcooling prevention member expands by contacting with cooling water in FIG. 2. 図2の符号Yで示された二点鎖線部分の拡大断面図。The expanded sectional view of the dashed-two dotted line part shown with the code | symbol Y of FIG. 図1の中で示すシリンダブロックの簡略斜視図。The simplified perspective view of the cylinder block shown in FIG. (A)が図2のX-X線で切断した過冷却防止部材の断面図、(B)が図3のX-X線で切断した過冷却防止部材の断面図。(A) is a cross-sectional view of a supercooling prevention member taken along the X 1 -X 1 line in FIG. 2, cross-sectional view of a supercooling prevention member was cut with X 2 -X 2 line in FIG. 3 (B). 第2の実施の形態例の過冷却防止部材の正面図。The front view of the overcooling prevention member of the example of 2nd Embodiment. 図7の過冷却防止部材の背面図。The rear view of the overcooling prevention member of FIG. 過冷却防止部材の設置位置を示す図である。It is a figure which shows the installation position of a supercooling prevention member. シリンダボア壁の周方向を示す図である。It is a figure which shows the circumferential direction of a cylinder bore wall. 実施例及び比較例におけるシリンダボア壁の溝状冷却水流路側の壁面の温度分布を示す図。The figure which shows the temperature distribution of the wall surface at the side of the groove-shaped cooling water flow path of the cylinder bore wall in an Example and a comparative example.

次に、本発明の第1の実施の形態におけるシリンダボア壁の過冷却防止部材(以下、単に、「過冷却防止部材」とも言う。)を備える構造体及びこれを備えた内燃機関を図1〜図6を参照して説明する。図2及び図3に示すように、過冷却防止部材10が設置される車両搭載用内燃機関のオープンデッキ型のシリンダブロック11には、ピストンが上下するためのボア12、及び冷却水を流すための溝状冷却水流路14が形成されている。そして、該ボア12と該溝状冷却水流路14とを区切る壁が、シリンダボア壁13である。また、該シリンダブロック11には、該溝状冷却水流路11へ冷却水を供給するための冷却水供給口15及び冷却水を該溝状冷却水流路11から排出するための冷却水排出口16が形成されている。   Next, a structure including an overcooling prevention member (hereinafter also simply referred to as “overcooling prevention member”) for the cylinder bore wall according to the first embodiment of the present invention and an internal combustion engine including the structure are shown in FIGS. This will be described with reference to FIG. As shown in FIG. 2 and FIG. 3, a bore 12 for moving the piston up and down and a cooling water flow through the open deck type cylinder block 11 of the vehicle-mounted internal combustion engine where the overcooling prevention member 10 is installed. The groove-shaped cooling water flow path 14 is formed. A wall that divides the bore 12 and the grooved coolant flow path 14 is a cylinder bore wall 13. The cylinder block 11 has a cooling water supply port 15 for supplying cooling water to the grooved cooling water channel 11 and a cooling water discharge port 16 for discharging cooling water from the grooved cooling water channel 11. Is formed.

過冷却防止部材10は、溝状冷却水流路14内に設置されるものであって、70℃以上の冷却水と接触することで膨潤して、シリンダボア壁13の溝状冷却水流路側の壁面17に接する接触面1a〜1cを有する。すなわち、過冷却防止部材10は、溝状冷却水流路14内に設置されても、冷却水が通水されていない状態において、接触面1a〜1cは、シリンダボア壁13の溝状冷却水流路側の壁面17に接していなくてもよく、加熱された冷却水と接触することで膨潤し、接触面1a〜1cが、シリンダボア壁13の溝状冷却水流路側の壁面17に接することになる。これにより、過冷却防止部材を溝状冷却水流路幅より小の厚みとすることができ、溝状冷却水流路内に装着し易くなる。また、加熱膨張後の過冷却防止部材10は、冷却水が該溝状冷却水流路14側のシリンダボア壁13の壁面に直接接触することを防ぐことができる。   The supercooling prevention member 10 is installed in the grooved cooling water flow path 14 and swells by contacting with the cooling water at 70 ° C. or higher, and the wall surface 17 on the grooved cooling water flow path side of the cylinder bore wall 13. The contact surfaces 1a to 1c are in contact with each other. That is, even when the supercooling prevention member 10 is installed in the grooved cooling water flow path 14, the contact surfaces 1 a to 1 c are arranged on the grooved cooling water flow path side of the cylinder bore wall 13 in a state where the cooling water is not passed. It does not need to be in contact with the wall surface 17 and swells by contact with the heated cooling water, and the contact surfaces 1a to 1c come into contact with the wall surface 17 of the cylinder bore wall 13 on the grooved cooling water flow channel side. As a result, the supercooling prevention member can be made thinner than the groove-shaped cooling water channel width, and can be easily mounted in the groove-shaped cooling water channel. In addition, the supercooling prevention member 10 after heating expansion can prevent the cooling water from directly contacting the wall surface of the cylinder bore wall 13 on the groove-like cooling water flow path 14 side.

過冷却防止部材10は、本例では3つのパーツ11a〜11cに分かれており、これが樹脂成形支持体2により固定(支持)されている。過冷却防止部材10のそれぞれのパーツは、いずれもシリンダボア壁13の溝状冷却水流路14側の壁面形状に沿った凹状の板状体である。   The supercooling prevention member 10 is divided into three parts 11 a to 11 c in the present example, and these are fixed (supported) by the resin molding support 2. Each part of the supercooling prevention member 10 is a concave plate-like body along the wall surface shape of the cylinder bore wall 13 on the grooved coolant flow channel 14 side.

過冷却防止部材10は、例えば特開2004−143262号公報に記載の感熱膨張材が使用できる。感熱膨張材としては、ベースフォーム材にベースフォーム材より融点が低い熱可塑性物質を含浸させ圧縮した複合体であって、常温では少なくともその表層部に存在する熱可塑性物質の硬化物により圧縮状態が保持され、かつ加熱により熱可塑性物質の硬化物が軟化して圧縮状態が開放されるものが挙げられる。   As the overcooling prevention member 10, for example, a thermal expansion material described in JP-A-2004-143262 can be used. The heat-sensitive expansion material is a composite in which a base foam material is impregnated with a thermoplastic material having a melting point lower than that of the base foam material and is compressed, and at room temperature, the compression state is at least due to a cured product of the thermoplastic material existing in the surface layer portion. Examples thereof include those that are held and heated to soften a cured product of the thermoplastic substance and release the compressed state.

ベースフォーム材としては、ゴム、エラストマー、熱可塑性樹脂及び熱硬化性樹脂など各種高分子材料が挙げられる。これら高分子材料としては、例えば天然ゴム、CR(クロロプレンゴム)、SBR(スチレンブタジエンゴム)、NBR(ニトリル・ブタジエンゴム)、EPDM(エチレン・プロピレン・ジエン三元共重合体)、シリコーンゴム、フッ素ゴム、アクリルゴムなどの各種合成ゴム、軟質ウレタン等の各種エラストマー、硬質ウレタン、フェノール樹脂、メラミン樹脂などの各種熱硬化性樹脂が挙げられる。合成ゴムを用いる場合は、架橋してベースフォーム材とする。特に、熱硬化性樹脂や架橋ゴムからなるベースフォーム材は、常温と加熱時との剛性の変化が少ないため好ましい。また、軟質ウレタンを主成分とするベースフォーム材は安価であり、クッション材として広く使用されており容易に入手できることから特に好ましい。また、熱可塑性樹脂からなるベースフォーム材であっても、その軟化温度が内部に含浸させる熱可塑性物質の軟化温度よりも高ければ、ベースフォーム材として使用できる。   Examples of the base foam material include various polymer materials such as rubber, elastomer, thermoplastic resin, and thermosetting resin. Examples of these polymer materials include natural rubber, CR (chloroprene rubber), SBR (styrene butadiene rubber), NBR (nitrile butadiene rubber), EPDM (ethylene / propylene / diene terpolymer), silicone rubber, fluorine Examples include various synthetic rubbers such as rubber and acrylic rubber, various elastomers such as soft urethane, and various thermosetting resins such as hard urethane, phenol resin, and melamine resin. When synthetic rubber is used, the base foam material is crosslinked. In particular, a base foam material made of a thermosetting resin or a crosslinked rubber is preferable because there is little change in rigidity between normal temperature and heating. A base foam material mainly composed of soft urethane is particularly preferable because it is inexpensive, widely used as a cushioning material, and easily available. Further, even a base foam material made of a thermoplastic resin can be used as a base foam material if its softening temperature is higher than the softening temperature of the thermoplastic substance impregnated therein.

熱可塑性物質は、ガラス転移点または融点または軟化温度の何れが120℃未満であるものを使用することが好ましい。上記に挙げたベースフォーム材の中には、形状回復のために120℃以上に加熱した場合に劣化して弾性復元力が失われ、形状復元性が発現しないものもある。また、形状回復のために形状記憶性フォーム材を全体にわたり120℃以上に加熱するにはかなりの時間を要するため、加熱能力の高い加熱装置を用いる必要が出てくる。なお、融点およびガラス転位点は、示差走査熱量分析(DSC)によって測定すること可能である。また、軟化温度はJIS K 7120に規定されている空気加熱法によって測定が可能である。   It is preferable to use a thermoplastic material whose glass transition point, melting point or softening temperature is less than 120 ° C. Some of the above-mentioned base foam materials are deteriorated when heated to 120 ° C. or more for shape recovery and lose elastic restoring force, and do not exhibit shape restoring properties. In addition, since it takes a considerable time to heat the shape memory foam material to 120 ° C. or more for the shape recovery, it is necessary to use a heating device having a high heating capacity. The melting point and glass transition point can be measured by differential scanning calorimetry (DSC). The softening temperature can be measured by an air heating method defined in JIS K 7120.

熱可塑性物質としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリアクリル酸エステル、スチレン-ブタジエン共重合体、塩素化ポリエチレン、ポリフッ化ビニリデン、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-塩化ビニル-アクリル酸エステル共重合体、エチレン-酢酸ビニル-アクリル酸エステル共重合体、エチレン-酢酸ビニル-塩化ビニル共重合体、ナイロン、アクリロニトリル-ブタジエン共重合体、ポリアクリロニトリル、ポリ塩化ビニル、ポリクロロプレン、ポリブタジエン、熱可塑性ポリイミド、ポリアセタール、ポリフェニレンサルファイド、ポリカーボネート、熱可塑性ポリウレタンなどの熱可塑性樹脂、低融点ガラスフリット、でんぷん、はんだ、ワックスなどの各種熱可塑性化合物が挙げられる。   Examples of the thermoplastic substance include polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyacrylate, styrene-butadiene copolymer, chlorinated polyethylene, polyvinylidene fluoride, and ethylene-vinyl acetate. Copolymer, ethylene-vinyl acetate-vinyl chloride-acrylic acid ester copolymer, ethylene-vinyl acetate-acrylic acid ester copolymer, ethylene-vinyl acetate-vinyl chloride copolymer, nylon, acrylonitrile-butadiene copolymer , Thermoplastic resins such as polyacrylonitrile, polyvinyl chloride, polychloroprene, polybutadiene, thermoplastic polyimide, polyacetal, polyphenylene sulfide, polycarbonate, thermoplastic polyurethane, low melting glass frit, starch, Various thermoplastic compounds such as solder and wax may be mentioned.

熱可塑性物質をベースフォーム材に含浸させるには、あらゆる手法を用いることが可能であり、いずれの手法を用いても形状記憶性の感熱膨張材が得られる。しかしながら、溶媒中に溶解あるいは分散した熱可塑性物質をベースフォーム材に浸して、溶媒を乾燥させる方法が最も容易に実施することが可能であり、ベースフォーム材の熱劣化が起こりにくいため好ましい。その場合、例えば、溶媒中に熱可塑性物質が分散あるいは溶解しているエマルジョン中にベースフォーム材を浸し、溶媒を乾燥させることによってベースフォーム材に熱可塑性物質を含浸させることができる。溶媒としては、水、有機溶剤などあらゆる溶媒を使用することができるが、乾燥時の毒性が低いことから、溶媒としては水を使用することが好ましい。また、水に熱可塑性樹脂が分散しているエマルジョンは、市販され、比較的入手が容易であることから、本発明による感熱膨張材の熱可塑性物質の原料としては好ましい。更に、エマルジョンの熱可塑性物質の濃度を適宜変更することにより、ベースフォーム材への熱可塑性物質の含浸量をコントロールすることができる。   Any method can be used to impregnate the base foam material with the thermoplastic material, and any method can be used to obtain a shape-memory heat-sensitive expansion material. However, a method in which a thermoplastic material dissolved or dispersed in a solvent is immersed in the base foam material and the solvent is dried is most easily implemented, and is preferable because thermal deterioration of the base foam material hardly occurs. In that case, for example, the base foam material can be impregnated with the thermoplastic material by immersing the base foam material in an emulsion in which the thermoplastic material is dispersed or dissolved in the solvent and drying the solvent. As the solvent, any solvent such as water or an organic solvent can be used. However, it is preferable to use water as the solvent because of low toxicity during drying. In addition, an emulsion in which a thermoplastic resin is dispersed in water is commercially available and is relatively easy to obtain. Therefore, it is preferable as a raw material for the thermoplastic material of the heat-sensitive expansion material according to the present invention. Furthermore, the amount of the thermoplastic substance impregnated into the base foam material can be controlled by appropriately changing the concentration of the thermoplastic substance in the emulsion.

感熱膨張材としては、特に、熱可塑性物質含有のEPDMゴムが好ましい。ベースフォーム材としてのEPDMゴムは、架橋が容易であり、かつ価格と耐熱性のバランスが良好である点で好ましい。熱可塑性物質含有EPDMゴムは、概ね70℃以上で膨張し、その膨張率は、3〜5倍である。   As the heat-sensitive expansion material, an EPDM rubber containing a thermoplastic substance is particularly preferable. EPDM rubber as a base foam material is preferable in that it is easily cross-linked and has a good balance between price and heat resistance. The thermoplastic substance-containing EPDM rubber expands at about 70 ° C. or more, and its expansion rate is 3 to 5 times.

過冷却防止部材10の厚みは、過冷却防止部材の材質、溝状冷却水流路の幅や大きさ、冷却水の温度や流量等により適宜選択されるが、水による熱膨張前で、好ましくは1〜6mm、特に好ましくは2〜4mmである。なお、膨張後は、シリンダボア壁面との隙間が埋まるように、過冷却防止部材10の厚みと溝状冷却水流路の幅が決定される。   The thickness of the supercooling prevention member 10 is appropriately selected according to the material of the supercooling prevention member, the width and size of the grooved cooling water flow path, the temperature and flow rate of the cooling water, etc. 1-6 mm, particularly preferably 2-4 mm. In addition, after expansion, the thickness of the supercooling prevention member 10 and the width of the grooved coolant flow path are determined so that the gap with the cylinder bore wall surface is filled.

過冷却防止部材構造体は、過冷却防止部材10と過冷却防止部材10を固定する樹脂成形支持体2よりなる。樹脂成形支持体2は、図1に示すように、ひとつの大きな凹状の板状部材21aと、板状部材21aより小さなふたつの凹状の板状部材21b、21cが連結された平面視が波状の本体部2であって、溝状冷却水流路14の流路高さより小の高さのものである。凹状の板状部材21aには、大きな過冷却防止部材10aが固定され、凹状の板状部材21b、21cには、過冷却防止部材10aより小さな過冷却防止部材10b、10cが取り付けられている。すなわち、本例の過冷却防止部材10は、真ん中のシリンダボア壁13の周方向の大部分に熱膨潤後、当接し、両側のシリンダボア壁13の周方向の約半分に熱膨潤後、当接するものである。   The supercooling prevention member structure includes a supercooling prevention member 10 and a resin molded support 2 that fixes the supercooling prevention member 10. As shown in FIG. 1, the resin-molded support 2 has a corrugated plan view in which one large concave plate-like member 21a and two concave plate-like members 21b and 21c smaller than the plate-like member 21a are connected. The main body 2 has a height smaller than the channel height of the grooved cooling water channel 14. A large supercooling prevention member 10a is fixed to the concave plate-like member 21a, and supercooling prevention members 10b and 10c smaller than the supercooling prevention member 10a are attached to the concave plate-like members 21b and 21c. In other words, the supercooling prevention member 10 of this example is in contact with the majority of the circumferential direction of the middle cylinder bore wall 13 after thermal swelling, and is in contact with about half of the circumferential direction of the cylinder bore walls 13 on both sides after thermal swelling. It is.

樹脂成形支持体2の本体部21に、過冷却防止部材10を固定する方法としては、特に制限されないが、接着剤を用いる方法が例示される。   Although it does not restrict | limit especially as a method of fixing the supercooling prevention member 10 to the main-body part 21 of the resin molding support body 2, The method using an adhesive agent is illustrated.

凹状の板状部材である過冷却防止部材10a〜10cの厚さは、樹脂成形支持体2に取り付け後、樹脂成形支持体2を含めた全体厚さが、溝状冷却水流路14の流路幅より僅かに小さくすることが、溝状冷却水流路14への装着が容易になるとともに、70℃以上の温度になった冷却水と接触した後、膨張してシリンダボア壁13の溝状冷却水流路側の壁面に確実に接触することになる点で好ましい。   The thickness of the overcooling preventing members 10a to 10c, which are concave plate-like members, is the total thickness including the resin-molded support 2 after being attached to the resin-molded support 2, and the channel of the groove-shaped cooling water channel 14 Setting the width slightly smaller than the width facilitates mounting on the grooved cooling water flow path 14 and expands after contacting with the cooling water having a temperature of 70 ° C. or higher, thereby causing the grooved cooling water flow in the cylinder bore wall 13 to flow. This is preferable in that it surely comes into contact with the road-side wall.

樹脂成形支持体2の本体部21は、図1の左右方向の両端において、高さ方向に延びる本体部21の厚さより大の厚みの縦リブ22を有し、図1の左右方向の中央において、高さ方向であって、且つ過冷却防止部材10を回避して延びる本体部21の厚さより大の厚みの縦リブ24を有する。すなわち、左右方向の真ん中の縦リブ24は上下方向に連続しておらず、上方部と下方部にそれぞれ分離して配置されている。縦リブ22、24はボアの周方向の中心に位置するもので、溝状冷却水流路14内に装着後、シリンダボア径方向の動きを規制することができる。また、縦リブ22、24におけるシリンダボア壁側の突出部は、シリンダボア壁13側の流路幅を狭めて、ゴム材である過冷却防止部材10の水の流れによる変形を防止することができる。   The main body portion 21 of the resin-molded support 2 has vertical ribs 22 having a thickness larger than the thickness of the main body portion 21 extending in the height direction at both ends in the left-right direction in FIG. The vertical rib 24 has a thickness greater than the thickness of the main body 21 extending in the height direction and avoiding the overcooling prevention member 10. That is, the middle vertical rib 24 in the left-right direction is not continuous in the up-down direction, and is arranged separately in the upper part and the lower part. The vertical ribs 22 and 24 are located at the center in the circumferential direction of the bore, and can be regulated in the cylinder bore radial direction after being installed in the grooved coolant flow path 14. Moreover, the protrusion part by the side of the cylinder bore wall in the vertical ribs 22 and 24 can narrow the flow path width by the side of the cylinder bore wall 13, and can prevent the deformation | transformation by the flow of the water of the supercooling prevention member 10 which is a rubber material.

樹脂成形支持体2は、本体部21のシリンダボア間において上部に延びる突出部3を更に有する。突出部3は、樹脂成形支持体2を装着及び脱着する際の摘み部として機能するとともに、2つのシリンダボア壁間(くびれ部)の冷却を促進する機能を奏する。突出部3を含めた樹脂成形支持体2は、全体が溝状冷却水流路14内に入り込む。また、突出部3の厚みは、本体部21の厚みより小であれば、形状などは特に制限されないが、図1及び図4に示すように、略V字断面形状であるものが、ラジオペンチ等でつまみ易くなる。また、突出部3は、略V字断面形状とすることで、シリンダボア間の略V字形状の隙間に入り込むことができ、冷却水の流れに抵抗でき、設置安定性が高まる(図4参照)。   The resin-molded support 2 further has a protrusion 3 that extends upward between the cylinder bores of the main body 21. The protruding portion 3 functions as a knob when the resin-molded support 2 is attached and detached, and has a function of promoting cooling between the two cylinder bore walls (necked portion). The entire resin-molded support body 2 including the protruding portion 3 enters the groove-shaped cooling water flow path 14. The shape of the protruding portion 3 is not particularly limited as long as it is smaller than the thickness of the main body portion 21. However, as shown in FIGS. It becomes easy to pinch with etc. Moreover, the protrusion part 3 can be made into the substantially V-shaped clearance gap between the cylinder bores by having a substantially V-shaped cross-sectional shape, can resist the flow of cooling water, and the installation stability is improved (see FIG. 4). .

また、突出部3は、図4に示すように、右翼部31と左翼部32を有する略V字断面形状であるため、突出部3のシリンダボア壁側の冷却水流れを速めることができる。すなわち、冷却水(図中、矢印方向)は、右翼部31の先端で、右翼部31を境としてシリンダボア壁側の流れaとシリンダボア壁とは反対側の流れbに分かれる。右翼部31のシリンダボア側を流れる冷却水aは、右翼部31とシリンダボア壁13間の隙間が狭いため、流速が大となり、シリンダボア壁13の冷却を促進する。そして、シリンダボア間を超えた水の流れは、そのままシリンダボア壁13に沿って流れる(符号a)。これにより、左翼部32側のシリンダボア壁13の冷却効果を低下させることがない。本例の樹脂成形支持体2は、本体部21の過冷却防止部材10a〜10cを過冷却防止領域に配置し、突起部3を冷却促進領域に配置する。樹脂成形支持体2において、過冷却防止部材10a〜10cの配置位置や突起部3の配置位置は、本体部21の高さや過冷却防止部材10a〜10cの取り付け高さを適宜設定することで行う。 Moreover, since the protrusion part 3 is a substantially V-shaped cross-sectional shape which has the right wing part 31 and the left wing part 32 as shown in FIG. 4, the cooling water flow by the side of the cylinder bore wall of the protrusion part 3 can be accelerated. That is, the cooling water (in the direction of the arrow in the figure) is separated into a flow a on the cylinder bore wall side and a flow b on the opposite side of the cylinder bore wall at the tip of the right wing portion 31. The cooling water a 1 that flows on the cylinder bore side of the right wing portion 31 has a narrow gap between the right wing portion 31 and the cylinder bore wall 13, so that the flow rate becomes large and the cooling of the cylinder bore wall 13 is promoted. Then, the flow of water beyond between the cylinder bores flows directly along the cylinder bore wall 13 (code a 2). Thereby, the cooling effect of the cylinder bore wall 13 on the left wing portion 32 side is not lowered. In the resin-molded support body 2 of this example, the supercooling prevention members 10a to 10c of the main body 21 are arranged in the supercooling prevention region, and the protrusions 3 are arranged in the cooling promotion region. In the resin molding support 2, the arrangement positions of the supercooling prevention members 10a to 10c and the arrangement positions of the protrusions 3 are performed by appropriately setting the height of the main body 21 and the mounting height of the supercooling prevention members 10a to 10c. .

本例の内燃機関は、過冷却防止部材10を備える。すなわち、本例の内燃機関は、過冷却防止部材10a〜10cを固定した樹脂成形支持体2を、内燃機関のシリンダブロック11のシリンダボア壁13周りに形成される溝状冷却水流路14内に設置したものである。そして、冷却水が通水されていない状態では、過冷却防止部材10a〜10cは、シリンダボア壁面17に接触しておらず(図6(A))、冷却水が通水された後、冷却水温度が上昇した状態において、熱膨張して、シリンダボア壁面17に接触する(図6(B))。なお、冷却水が通水されていない状態において、過冷却防止部材10a〜10cの一部はシリンダボア壁面17に接触していてもよい。溝状冷却水流路14の溝幅は狭いものであるため、過冷却防止部材10a〜10cを装着した後、加温された冷却水と接触する前(膨張前)であっても不可避的に過冷却防止部材10a〜10cの接触面1a〜1cとシリンダボア壁面17とが接触することがあるからである。   The internal combustion engine of this example includes a supercooling prevention member 10. That is, in the internal combustion engine of this example, the resin-molded support body 2 to which the supercooling prevention members 10a to 10c are fixed is installed in the grooved cooling water flow path 14 formed around the cylinder bore wall 13 of the cylinder block 11 of the internal combustion engine. It is a thing. In the state where the cooling water is not passed, the supercooling prevention members 10a to 10c are not in contact with the cylinder bore wall surface 17 (FIG. 6A), and after the cooling water is passed, In a state where the temperature has risen, it thermally expands and contacts the cylinder bore wall surface 17 (FIG. 6B). It should be noted that some of the supercooling prevention members 10 a to 10 c may be in contact with the cylinder bore wall surface 17 in a state where the cooling water is not passed. Since the groove width of the groove-shaped cooling water flow path 14 is narrow, it is unavoidably excessive even after the supercooling preventing members 10a to 10c are mounted and before contact with the heated cooling water (before expansion). This is because the contact surfaces 1a to 1c of the cooling preventing members 10a to 10c and the cylinder bore wall surface 17 may come into contact with each other.

本例の内燃機関は、該シリンダブロック、該過冷却防止部材及び該固定部材の他に、ピストン、シリンダヘッド、ヘッドガスケット等を有する。   The internal combustion engine of this example includes a piston, a cylinder head, a head gasket, and the like in addition to the cylinder block, the overcooling prevention member, and the fixing member.

本例の内燃機関では、本発明の過冷却防止部材により、該シリンダボア壁の周方向の全部に配置されていてもよいが、本発明の過冷却防止部材を設置するときの作業性、熱膨張率による変形、設置部の冷却水流の下流側における水の淀みによる保温効果等を考慮して、図9に例示するように、該シリンダボア壁の周方向の一部に、本発明の過冷却防止部材に覆われていない部分があってもよい。なお、図9では、黒く塗りつぶした部分が、過冷却防止部材10の設置位置(膨張後)を示す。また、該シリンダボア壁の周方向23とは、図10に示すように、該シリンダボア壁13の外周を囲む方向であり、該シリンダボア壁13を横から見たときの該シリンダボア壁13の左右方向である。なお、図9中、左端の過冷却防止部材10のように、ひとつのボア壁17の周方向の一部に配置するような場合、図1の示すような突起部3の設置を省略することができる。図10中、(A)は該シリンダボア壁13のみを示す平面図であり、(B)は該シリンダボア壁13のみを示す正面図である。   In the internal combustion engine of the present example, the supercooling prevention member of the present invention may be disposed in the whole circumferential direction of the cylinder bore wall. However, workability and thermal expansion when the supercooling prevention member of the present invention is installed. In consideration of the deformation due to the rate, the heat retaining effect due to the water stagnation on the downstream side of the cooling water flow in the installation portion, etc., as shown in FIG. 9, the overcooling prevention of the present invention is partially applied to the circumferential direction of the cylinder bore wall. There may be a portion not covered by the member. In FIG. 9, the blackened portion indicates the installation position (after expansion) of the supercooling prevention member 10. Further, as shown in FIG. 10, the circumferential direction 23 of the cylinder bore wall is a direction surrounding the outer periphery of the cylinder bore wall 13, and in the left-right direction of the cylinder bore wall 13 when the cylinder bore wall 13 is viewed from the side. is there. In addition, in FIG. 9, when arrange | positioning to a part of circumferential direction of one bore wall 17 like the supercooling prevention member 10 of the left end, installation of the projection part 3 as shown in FIG. 1 is abbreviate | omitted. Can do. 10A is a plan view showing only the cylinder bore wall 13 and FIG. 10B is a front view showing only the cylinder bore wall 13.

本例の内燃機関において、該シリンダボア壁の上下方向において、本発明の過冷却防止部材の接触面の設置位置は、溝状冷却水流路14の下方2/3に相当する領域である。シリンダボア壁においては、上死点では温度が高く、下死点では温度が低いため、温度の低い溝状冷却水流路14の下方2/3に相当する領域を保温すれば、シリンダボア壁の壁温を概ね均一にできる。   In the internal combustion engine of this example, the installation position of the contact surface of the supercooling prevention member of the present invention is an area corresponding to the lower 2/3 of the grooved coolant flow path 14 in the vertical direction of the cylinder bore wall. In the cylinder bore wall, the temperature is high at the top dead center and the temperature is low at the bottom dead center. Therefore, if the region corresponding to the lower 2/3 of the low-temperature groove-like cooling water flow path 14 is kept warm, the wall temperature of the cylinder bore wall Can be made substantially uniform.

従来の内燃機関では、該シリンダボア壁の下側部分は、燃料が爆発する上側部分に比べ、温度が低いため、冷却水により冷却され易い。そのため、該シリンダボア壁の上側部分と下側部分とでは、温度差が大きくなっていた。   In the conventional internal combustion engine, the lower part of the cylinder bore wall has a lower temperature than the upper part where the fuel explodes, and is thus easily cooled by the cooling water. Therefore, the temperature difference is large between the upper part and the lower part of the cylinder bore wall.

それに対して、過冷却防止部材10が設置されている内燃機関では、過冷却防止部材10が冷却水と接触して熱膨張し、シリンダボア壁に当接するため、冷却水がシリンダボア壁13に直接接触することが防がれるので、シリンダボア壁13の下側部分の温度が、上側部分に比べ、低くなり過ぎるのを防ぐことができる。更に、過冷却防止部材10を取り付けた樹脂成形支持体2が設置されている内燃機関では、シリンダボア壁13の上側部分(冷却領域)に突起部3が位置するように、下側部分(過冷却防止領域)に過冷却防止部材10が位置するように設置すれば、冷却領域を好適に冷却し、過冷却防止領域を好適に過冷却を防止できる。そのため、シリンダボア壁13の上側部分と下側部分との温度差を少なくすることができる。これらのことにより、本発明のシリンダボア壁の過冷却防止部材は、シリンダボア壁の壁温を均一にしてボアの熱変形による歪みを少なくすることができる。   On the other hand, in the internal combustion engine in which the supercooling prevention member 10 is installed, the supercooling prevention member 10 comes into contact with the cooling water and thermally expands and comes into contact with the cylinder bore wall, so that the cooling water directly contacts the cylinder bore wall 13. Therefore, the temperature of the lower part of the cylinder bore wall 13 can be prevented from becoming too low compared to the upper part. Furthermore, in the internal combustion engine in which the resin-molded support body 2 to which the overcooling prevention member 10 is attached is installed, the lower portion (overcooling) so that the protrusion 3 is located in the upper portion (cooling region) of the cylinder bore wall 13. If the supercooling prevention member 10 is placed in the prevention region), the cooling region can be suitably cooled, and the overcooling prevention region can be suitably prevented from being overcooled. Therefore, the temperature difference between the upper part and the lower part of the cylinder bore wall 13 can be reduced. By these things, the overcooling prevention member of the cylinder bore wall of the present invention can make the wall temperature of the cylinder bore wall uniform and reduce distortion due to thermal deformation of the bore.

次に、第2の実施の形態例の過冷却防止部材1dを備える過冷却防止部材構造体を図7及び図8を参照して説明する。図7及び図8において、図1〜図6と同一構成要素には同一符号を付して、その説明を省略し、異なる点について主に説明する。すなわち、過冷却防止部材10dを備える構造体において、過冷却防止部材10を備える構造体と異なる点は、過冷却防止部材のパーツの数と、樹脂成形支持体の形状と、樹脂成形支持体と過冷却防止部材の固定方法である。すなわち、過冷却防止部材10dを備える構造体は、1パーツの過冷却防止部材10dと、窓枠状の樹脂成形支持体2bと、金属製の枠体40と、3つの帯状の留め金31a、31b、32とからなる。   Next, a supercooling prevention member structure including the supercooling prevention member 1d according to the second embodiment will be described with reference to FIGS. 7 and 8, the same components as those in FIGS. 1 to 6 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. That is, the structure provided with the supercooling prevention member 10d is different from the structure provided with the supercooling prevention member 10 in that the number of parts of the supercooling prevention member, the shape of the resin molding support, the resin molding support, It is the fixing method of a supercooling prevention member. That is, the structure including the overcooling prevention member 10d includes one part of the overcooling prevention member 10d, a window frame-shaped resin molded support 2b, a metal frame 40, and three belt-shaped clasps 31a. 31b and 32.

過冷却防止部材10dは、凹状の板状体であり、過冷却防止部材10b、10cと同様の形状を有する。過冷却防止部材10dは、左右の留め板41及び上下の爪状留め板42を有する凹状の金属製の枠体40に、緩みなしで嵌め込まれている。これにより、過冷却防止部材10dと金属製の枠体40は一体化している。また、金属製の枠体40の裏面は、図8中、左右方向の中央において帯状の留め金32が固定されており、フック状の上端及び下端が金属製の枠体40の上下端から外側にそれぞれ延びている。また、金属製の枠体40の裏面は、図8中、左右方向の端寄りにおいてそれぞれ帯状の留め金31a、31bが固定されており、フック状の上端及び下端が金属製の枠体40の上下端から外側に延びている。また、窓枠状の樹脂成形支持体2bは、過冷却防止部材10dよりやや大きい中央がくり抜かれた貫通穴50cを有し、上部には3つの帯状の留め金31a、31b、32の上部先端が係合するスリット50aが形成され、下部には3つの帯状の留め金31a、31b、32の下部先端が係合するスリット50bが形成されている。そして、3つの帯状の留め金31a、31b、32の上部先端のフックを上部のスリット50aに係止させ、3つの帯状の留め金31a、31b、32の下部先端のフックを下部のスリット50bに係止さることで、窓枠状の樹脂成形支持体2bに、過冷却防止部材10dを固定させている。これにより、シリンダボアの径方向及び冷却水の流れ方向の動きを規制でき、設置安定性が高まる。このような過冷却防止部材10dの接触面(表面)1dは、加熱された冷却水による熱膨張前において、金属製の枠体40の表面から僅かに内側に位置している(凹んでいる状態)ものの、内燃機関のシリンダブロック11のシリンダボア壁13周りに形成される溝状冷却水流路14内に設置し、熱のついた冷却水に接触することで、過冷却防止部材10dが熱膨張することで、接触面1dは金属製の枠体40からはみ出し、シリンダボア壁11の溝状冷却水流路14側の壁面17に接するようになる。   The overcooling prevention member 10d is a concave plate-like body and has the same shape as the overcooling prevention members 10b and 10c. The overcooling preventing member 10d is fitted loosely into a concave metal frame 40 having left and right retaining plates 41 and upper and lower claw-shaped retaining plates 42. Thereby, the overcooling prevention member 10d and the metal frame 40 are integrated. In addition, a band-shaped clasp 32 is fixed to the back surface of the metal frame 40 in the center in the left-right direction in FIG. 8, and the hook-shaped upper end and lower end are outside the upper and lower ends of the metal frame 40. Respectively. Further, in the back surface of the metal frame body 40, band-shaped clasps 31a and 31b are respectively fixed near the ends in the left-right direction in FIG. It extends outward from the upper and lower ends. Further, the window frame-shaped resin molded support 2b has a through hole 50c whose center is slightly larger than the supercooling prevention member 10d, and the upper ends of the three belt-shaped clasps 31a, 31b, 32 at the upper part. Is formed, and a slit 50b is formed at the lower portion for engaging the lower ends of the three belt-like clasps 31a, 31b, 32. Then, the hooks at the upper ends of the three belt-shaped clasps 31a, 31b, 32 are locked to the upper slit 50a, and the hooks at the lower ends of the three belt-shaped clasps 31a, 31b, 32 are moved to the lower slit 50b. By locking, the overcooling preventing member 10d is fixed to the window frame-shaped resin molded support 2b. Thereby, the movement of the radial direction of a cylinder bore and the flow direction of a cooling water can be controlled, and installation stability increases. Such a contact surface (surface) 1d of the overcooling prevention member 10d is located slightly inward from the surface of the metal frame body 40 (indented) before thermal expansion by the heated cooling water. However, the supercooling prevention member 10d is thermally expanded by being installed in the groove-like cooling water flow path 14 formed around the cylinder bore wall 13 of the cylinder block 11 of the internal combustion engine and contacting the hot cooling water. Thus, the contact surface 1d protrudes from the metal frame 40 and comes into contact with the wall surface 17 of the cylinder bore wall 11 on the grooved coolant flow channel 14 side.

第2の実施の形態例の過冷却防止部材構造体によれば、過冷却防止部材10dを、溝状冷却水流路14に挿入する際、帯状の留め金31a、31bの両端のフック部の背面が、溝状冷却水流路14のシリンダボア壁13とは反対側の壁面18に接触するため摩擦抵抗を受けることがあるが、容易に挿入できる。また、過冷却防止部材10dが設置されている内燃機関では、過冷却防止部材10dが加熱された冷却水と接触して熱膨張し、シリンダボア壁に当接するため、冷却水がシリンダボア壁に直接接触することが防がれるので、シリンダボア壁の下側部分(過冷却防止領域)の温度が、上側部分に比べ、低くなり過ぎるのを防ぐことができる。   According to the supercooling prevention member structure of the second embodiment, when the supercooling prevention member 10d is inserted into the groove-like cooling water flow path 14, the back surfaces of the hook portions at both ends of the belt-like clasps 31a and 31b. However, since it contacts the wall surface 18 on the opposite side to the cylinder bore wall 13 of the groove-shaped cooling water flow path 14, it may receive frictional resistance, but can be easily inserted. In the internal combustion engine in which the supercooling prevention member 10d is installed, the supercooling prevention member 10d comes into contact with the heated cooling water and thermally expands and comes into contact with the cylinder bore wall, so that the cooling water directly contacts the cylinder bore wall. Therefore, it is possible to prevent the temperature of the lower portion (overcooling prevention region) of the cylinder bore wall from becoming excessively lower than that of the upper portion.

過冷却防止部材10dは、図7及び図8の形態に限定されず、樹脂成形支持体2bは、第1の実施の形態例の樹脂形成体支持体2のような、3つのシリンダボア壁をカバーするような形状のものであってもよい。この場合、第1の実施の形態例の樹脂形成体支持体2のような、ボア間に突起部3を有していてもよい。また、本発明の過冷却防止部材は、金属製の支持体に支持されたものであってもよい。このようなものとしては、例えば、図7及び図8の形態において、樹脂形成体支持体2の使用を省略したものである。   The supercooling prevention member 10d is not limited to the form shown in FIGS. 7 and 8, and the resin-molded support 2b covers three cylinder bore walls like the resin-formed support 2 in the first embodiment. It may be of a shape that does. In this case, you may have the projection part 3 between bores like the resin-formation body support body 2 of 1st Embodiment. The overcooling prevention member of the present invention may be supported by a metal support. As such a thing, use of the resin formation body support body 2 is abbreviate | omitted in the form of FIG.7 and FIG.8, for example.

実施例
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.

(壁面との密着性等の確認試験)
図1〜図6に示す形状であって、下記仕様の過冷却防止部材を作成した。この過冷却防止部材を、図2に示す形状であって、下記仕様の試験用3気筒内燃機関の観察窓付きシリンダブロックのシリンダボア壁周りに形成される溝状冷却水流路内に設置し、冷却水を流した。冷却水を流した後、過冷却防止部材が冷却水の流れで動くか否か、過冷却防止部材の接触面が溝状冷却水流路側の壁面に密着しているか否かを、連続して、観察窓から観察した。その結果、過冷却防止部材は、溝状冷却水流路内に設置した後に冷却水に触れることで温度が上昇し膨張して、シリンダボア壁に十分密着した。また、過冷却防止部材は冷却水の流れの中で動くことはなかった。
(Confirmation test for adhesion to wall surface)
A supercooling prevention member having the shape shown in FIGS. 1 to 6 and having the following specifications was prepared. This supercooling prevention member is installed in a groove-like cooling water flow path formed around the cylinder bore wall of the cylinder block with the observation window of the test three-cylinder internal combustion engine having the following specifications as shown in FIG. Water was poured. After flowing the cooling water, whether the supercooling prevention member moves in the flow of the cooling water, whether the contact surface of the supercooling prevention member is in close contact with the wall surface on the grooved cooling water flow path side, continuously, It observed from the observation window. As a result, the supercooling prevention member was installed in the grooved cooling water flow path and then contacted with the cooling water, the temperature increased and expanded, and was sufficiently adhered to the cylinder bore wall. Further, the supercooling prevention member did not move in the flow of the cooling water.

(過冷却防止部材)
・感熱膨張材;熱可塑性物質を含浸させたエチレン-プロピレン-ジエン共重合ゴムであり、70℃の水と接触することで、体積が3倍膨張することを予め確認したもの。
・過冷却防止部材を含む樹脂成形支持体の最大厚み;6.4mm
・樹脂成形支持体の高さ;50mm
(Overcooling prevention member)
-Thermally-expandable material: an ethylene-propylene-diene copolymer rubber impregnated with a thermoplastic material, which has been confirmed in advance to expand in volume three times by contact with water at 70 ° C.
-Maximum thickness of resin-molded support including overcooling prevention member: 6.4 mm
・ Resin molding support height: 50 mm

(試験用内燃機関)
・溝状冷却水流路の流路幅;8.4mm
・溝状冷却水流路の流路高さ(上下方向の高さ);90mm
・過冷却防止部材の設置位置;下端が溝状冷却水流路の下方から5mmの位置
・供給冷却水温度;20〜40℃
(Test internal combustion engine)
-Channel width of grooved cooling water channel; 8.4mm
-Channel height (vertical height) of grooved cooling water channel: 90mm
・ Installation position of the supercooling prevention member: Position where the lower end is 5 mm from the lower side of the grooved cooling water flow path ・ Supply cooling water temperature; 20 to 40 ° C.

(数値流体力学的解析結果)
壁面との密着性等の確認試験後、冷却水の流れが安定した状態を解析条件として、公知の数値流体力学的(Computational Fluid Dynamics)解析を行った。その結果を図11に示す。図11中、中央の温度分布は3気筒の中、真ん中のシリンダボア壁面のもの、左側及び右側の温度分布はこれに隣接するシリンダボア壁面のものである。また、図11中、実施例1の符号Aで示す囲み部分は過冷却防止部材が密着している部分である。
(Numerical hydrodynamic analysis results)
After a confirmation test for adhesion to the wall surface, etc., a known computational fluid dynamics analysis was performed under the condition that the cooling water flow was stable. The result is shown in FIG. In FIG. 11, the temperature distribution at the center is that of the cylinder bore wall surface in the middle of the three cylinders, and the temperature distribution on the left and right sides is that of the cylinder bore wall surface adjacent thereto. In FIG. 11, the encircled portion indicated by the symbol A in Example 1 is a portion where the overcooling prevention member is in close contact.

比較例1
過冷却防止部材の使用を省略した以外は、実施例1と同様の方法により、数値流体力学的解析を行った。その結果を図11に示す。
Comparative Example 1
A numerical hydrodynamic analysis was performed in the same manner as in Example 1 except that the use of the supercooling prevention member was omitted. The result is shown in FIG.

比較例2
過冷却防止部材に代えて、特開2008−31939号公報に記載の可撓性リップ部材(スペーサー部材)10gを使用した以外は、実施例1と同様の方法により、数値流体力学的解析を行った。比較例2は、実施例1の過冷却防止部材を設置した部分において、冷却水量を制限したものである。その結果を図11に示す。
Comparative Example 2
In place of the supercooling prevention member, numerical fluid dynamic analysis was performed by the same method as in Example 1 except that 10 g of a flexible lip member (spacer member) described in JP-A-2008-31939 was used. It was. The comparative example 2 restrict | limits the amount of cooling water in the part in which the overcooling prevention member of Example 1 was installed. The result is shown in FIG.

図11の結果から明らかなように、過冷却防止部材が接触する壁面において、実施例1は比較例1及び2に比べて、6〜8℃上昇し、当該壁面の過冷却を防止していることが判る。また、実施例1では、シリンダボア壁の溝状冷却水流路側の壁面の温度は、上下方向において、5℃の差であり、概ね均一であることが判る。また、膨張前の過冷却防止部材は、厚みが溝状冷却水流路の流路幅より小であるため、該流路内に容易に挿入できた。   As is apparent from the results of FIG. 11, Example 1 is 6 to 8 ° C. higher than Comparative Examples 1 and 2 on the wall surface with which the supercooling prevention member is in contact, and prevents overcooling of the wall surface. I understand that. Moreover, in Example 1, the temperature of the wall surface of the cylinder bore wall on the grooved coolant flow channel side is a difference of 5 ° C. in the vertical direction, and is found to be substantially uniform. Moreover, since the thickness of the supercooling prevention member before expansion is smaller than the channel width of the groove-like cooling water channel, it can be easily inserted into the channel.

本発明によれば、内燃機関のシリンダボア壁の上側と下側との変形量の違いを少なくすることができるので、ピストンの摩擦を低くすることができるため、省燃費の内燃機関を提供できる。   According to the present invention, since the difference in deformation amount between the upper side and the lower side of the cylinder bore wall of the internal combustion engine can be reduced, the friction of the piston can be reduced, so that a fuel-saving internal combustion engine can be provided.

1、1a〜1d 接触面
2 樹脂成形支持体
3 突出部
10、11a〜11d 過冷却防止部材
11 シリンダブロック
12 ボア
13 シリンダボア壁
14 溝状冷却水流路
15 冷却水供給口
16 冷却水排出口
17 シリンダボア壁の溝状冷却水流路側の壁面
18 溝状冷却水流路のシリンダボア壁とは反対側の壁面
21、21a〜21c (樹脂成形支持体の)本体部
22、24 縦リブ
23 該シリンダボア壁の周方向
DESCRIPTION OF SYMBOLS 1, 1a-1d Contact surface 2 Resin molding support body 3 Protruding part 10, 11a-11d Overcooling prevention member 11 Cylinder block 12 Bore 13 Cylinder bore wall 14 Groove-shaped cooling water flow path 15 Cooling water supply port 16 Cooling water discharge port 17 Cylinder bore Wall surface 18 on the groove-like cooling water flow path side wall surface 21, 21 a to 21 c on the opposite side to the cylinder bore wall of the groove-shaped cooling water flow path Main body portions 22, 24 (of the resin-molded support) Vertical rib 23 Circumferential direction of the cylinder bore wall

すなわち、本発明は、内燃機関のシリンダブロックのシリンダボア壁周りに形成される溝状冷却水流路内に設置されるものであって、70℃以上の冷却水と接触することで膨潤して、該シリンダボア壁の溝状冷却水流路側の壁面に接する凹状の接触面を有するものであり、樹脂成形された支持体に支持されたものであり、該支持体はシリンダボア壁の全周の一部で、且つ少なくとも隣接する2つのシリンダボア壁に対応する周方向長さを有し、該凹状の接触面は少なくとも隣接する2つのシリンダボア壁にそれぞれ接することを特徴とするシリンダボア壁の過冷却防止部材を提供するものである。 That is, the present invention is installed in a groove-like cooling water flow path formed around a cylinder bore wall of a cylinder block of an internal combustion engine, and swells by contacting with cooling water of 70 ° C. or higher, It has a concave contact surface in contact with the wall surface of the cylinder bore wall on the groove-like cooling water flow path side, and is supported by a resin-molded support, which is a part of the entire circumference of the cylinder bore wall, And providing a cylinder bore wall overcooling preventing member having a circumferential length corresponding to at least two adjacent cylinder bore walls, the concave contact surfaces contacting at least two adjacent cylinder bore walls, respectively. Is.

Claims (1)

内燃機関のシリンダブロックのシリンダボア壁周りに形成される溝状冷却水流路内に設置されるものであって、70℃以上の冷却水と接触することで膨潤して、該シリンダボア壁の溝状冷却水流路側の壁面に接する接触面を有することを特徴とするシリンダボア壁の過冷却防止部材。





It is installed in a groove-shaped cooling water flow path formed around a cylinder bore wall of a cylinder block of an internal combustion engine, and swells by contacting with cooling water at 70 ° C. or higher, and groove cooling of the cylinder bore wall An overcooling prevention member for a cylinder bore wall having a contact surface in contact with a wall surface on the water flow path side.





JP2014111243A 2014-05-29 2014-05-29 Overcooling prevention member for cylinder bore wall and internal combustion engine Active JP5830134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111243A JP5830134B2 (en) 2014-05-29 2014-05-29 Overcooling prevention member for cylinder bore wall and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111243A JP5830134B2 (en) 2014-05-29 2014-05-29 Overcooling prevention member for cylinder bore wall and internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010141284A Division JP5593136B2 (en) 2010-06-22 2010-06-22 Overcooling prevention member for cylinder bore wall and internal combustion engine

Publications (2)

Publication Number Publication Date
JP2014194219A true JP2014194219A (en) 2014-10-09
JP5830134B2 JP5830134B2 (en) 2015-12-09

Family

ID=51839597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111243A Active JP5830134B2 (en) 2014-05-29 2014-05-29 Overcooling prevention member for cylinder bore wall and internal combustion engine

Country Status (1)

Country Link
JP (1) JP5830134B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125443A (en) * 2015-01-07 2016-07-11 マツダ株式会社 Water jacket spacer of engine and cylinder block of engine including the same
JP2016156277A (en) * 2015-02-23 2016-09-01 内山工業株式会社 Restriction member
JP2016180314A (en) * 2015-03-23 2016-10-13 内山工業株式会社 Regulation member
WO2018097057A1 (en) * 2016-11-22 2018-05-31 内山工業株式会社 Spacer
US10006400B2 (en) 2015-12-07 2018-06-26 Hyundai Motor Company Block insert and cylinder structure of vehicle engine including the same
KR101905946B1 (en) * 2016-03-07 2018-10-08 현대자동차주식회사 A structure of insert for seperating flow, a method for manufacturing the same and a method for mounting the same
US20180328277A1 (en) * 2015-11-05 2018-11-15 Nichias Corporation Cylinder bore wall heat insulation device, internal combustion engine, and automobile
WO2018225735A1 (en) * 2017-06-07 2018-12-13 ニチアス株式会社 Water jacket spacer, cylinder bore wall insulator, internal combustion engine, and vehicle
CN109790797A (en) * 2016-09-21 2019-05-21 霓佳斯株式会社 Thermal protective aid, internal combustion engine and the automobile of cylinder holes wall
JP2020067052A (en) * 2018-10-25 2020-04-30 内山工業株式会社 Spacer and its manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030297A (en) * 2003-07-11 2005-02-03 Aisan Ind Co Ltd Spacer for water jacket, and cylinder block having the spacer
JP2005256661A (en) * 2004-03-10 2005-09-22 Toyota Motor Corp Cooling structure of cylinder block
JP2006090195A (en) * 2004-09-22 2006-04-06 Aisan Ind Co Ltd Cooling system of internal combustion engine
JP2007071039A (en) * 2005-09-05 2007-03-22 Uchiyama Mfg Corp Water jacket spacer
JP2007107426A (en) * 2005-10-12 2007-04-26 Toyota Industries Corp Cooling fluid passage structure for internal combustion engine
JP2007127066A (en) * 2005-11-04 2007-05-24 Toyota Motor Corp Cooling structure and water passage forming member for internal combustion engine
JP2008031939A (en) * 2006-07-31 2008-02-14 Toyota Motor Corp Heat medium channel partition member for cooling internal combustion engine, internal combustion engine cooling mechanism and internal combustion engine cooling mechanism forming method
US20100031902A1 (en) * 2007-10-10 2010-02-11 Brunswick Corporation Outboard motor cooling system with inserts to affect operating temperatures

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030297A (en) * 2003-07-11 2005-02-03 Aisan Ind Co Ltd Spacer for water jacket, and cylinder block having the spacer
JP2005256661A (en) * 2004-03-10 2005-09-22 Toyota Motor Corp Cooling structure of cylinder block
JP2006090195A (en) * 2004-09-22 2006-04-06 Aisan Ind Co Ltd Cooling system of internal combustion engine
JP2007071039A (en) * 2005-09-05 2007-03-22 Uchiyama Mfg Corp Water jacket spacer
JP2007107426A (en) * 2005-10-12 2007-04-26 Toyota Industries Corp Cooling fluid passage structure for internal combustion engine
JP2007127066A (en) * 2005-11-04 2007-05-24 Toyota Motor Corp Cooling structure and water passage forming member for internal combustion engine
JP2008031939A (en) * 2006-07-31 2008-02-14 Toyota Motor Corp Heat medium channel partition member for cooling internal combustion engine, internal combustion engine cooling mechanism and internal combustion engine cooling mechanism forming method
US20100031902A1 (en) * 2007-10-10 2010-02-11 Brunswick Corporation Outboard motor cooling system with inserts to affect operating temperatures

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125443A (en) * 2015-01-07 2016-07-11 マツダ株式会社 Water jacket spacer of engine and cylinder block of engine including the same
JP2016156277A (en) * 2015-02-23 2016-09-01 内山工業株式会社 Restriction member
JP2016180314A (en) * 2015-03-23 2016-10-13 内山工業株式会社 Regulation member
US20180328277A1 (en) * 2015-11-05 2018-11-15 Nichias Corporation Cylinder bore wall heat insulation device, internal combustion engine, and automobile
US10662873B2 (en) * 2015-11-05 2020-05-26 Nichias Corporation Cylinder bore wall heat insulation device, internal combustion engine, and automobile
US10006400B2 (en) 2015-12-07 2018-06-26 Hyundai Motor Company Block insert and cylinder structure of vehicle engine including the same
KR101905946B1 (en) * 2016-03-07 2018-10-08 현대자동차주식회사 A structure of insert for seperating flow, a method for manufacturing the same and a method for mounting the same
CN109790797A (en) * 2016-09-21 2019-05-21 霓佳斯株式会社 Thermal protective aid, internal combustion engine and the automobile of cylinder holes wall
WO2018097057A1 (en) * 2016-11-22 2018-05-31 内山工業株式会社 Spacer
WO2018225735A1 (en) * 2017-06-07 2018-12-13 ニチアス株式会社 Water jacket spacer, cylinder bore wall insulator, internal combustion engine, and vehicle
JP2020067052A (en) * 2018-10-25 2020-04-30 内山工業株式会社 Spacer and its manufacturing method
JP7201990B2 (en) 2018-10-25 2023-01-11 内山工業株式会社 Spacer and its manufacturing method

Also Published As

Publication number Publication date
JP5830134B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5593136B2 (en) Overcooling prevention member for cylinder bore wall and internal combustion engine
JP5830134B2 (en) Overcooling prevention member for cylinder bore wall and internal combustion engine
JP2012007479A (en) Heat retention member for cylinder bore wall, internal combustion engine and automobile
JP6283011B2 (en) Cylinder bore wall insulation, internal combustion engine and automobile
JP6533531B2 (en) Water jacket spacer, internal combustion engine and automobile
JP5588902B2 (en) Cylinder bore wall thermal insulation structure, cylinder bore wall thermal insulation method, internal combustion engine and automobile
JP6297393B2 (en) Cylinder bore wall insulation, internal combustion engine and automobile
JP6283010B2 (en) Cylinder bore wall insulation, internal combustion engine and automobile
WO2016158043A1 (en) Water jacket spacer
JPWO2016104444A1 (en) Water jacket cooling water flow compartment, internal combustion engine and automobile
JP5468476B2 (en) Thermal insulation structure for cylinder bore wall and internal combustion engine
JP5948268B2 (en) Insulating member for cylinder bore wall
JP2018084145A (en) Thermal insulation unit for cylinder bore wall, internal combustion engine and automobile
JP6710169B2 (en) Internal combustion engine
KR102142817B1 (en) Heat insulation of cylinder bore wall, internal combustion engine and automobile
JP6243068B2 (en) Insulating member for cylinder bore wall, internal combustion engine and automobile
JP6216731B2 (en) Insulating member for cylinder bore wall, internal combustion engine and automobile
JP5830049B2 (en) Assembling method of heat retaining member of cylinder bore wall
JP6793694B2 (en) Cylinder bore wall warmers, internal combustion engines and automobiles
JP2016156277A (en) Restriction member
JP2015203315A (en) Heat insulating tool for cylinder bore wall, internal combustion engine, and automobile
JP2020026779A (en) Heat retention tool of cylinder bore wall, internal combustion engine, and motor vehicle
JP2020153247A (en) Cooling water flow control tool, internal combustion engine, and automobile
WO2018225733A1 (en) Cylinder bore wall warming tool
JP2021055655A (en) Heat insulating tool of cylinder bore wall

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151023

R150 Certificate of patent or registration of utility model

Ref document number: 5830134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250