JP2014194077A - Method for manufacturing oriented electromagnetic steel sheet - Google Patents

Method for manufacturing oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2014194077A
JP2014194077A JP2014037040A JP2014037040A JP2014194077A JP 2014194077 A JP2014194077 A JP 2014194077A JP 2014037040 A JP2014037040 A JP 2014037040A JP 2014037040 A JP2014037040 A JP 2014037040A JP 2014194077 A JP2014194077 A JP 2014194077A
Authority
JP
Japan
Prior art keywords
mass
annealing
steel sheet
rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014037040A
Other languages
Japanese (ja)
Other versions
JP5839204B2 (en
Inventor
Masanori Takenaka
雅紀 竹中
Takeshi Imamura
今村  猛
Ryuichi Suehiro
龍一 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014037040A priority Critical patent/JP5839204B2/en
Publication of JP2014194077A publication Critical patent/JP2014194077A/en
Application granted granted Critical
Publication of JP5839204B2 publication Critical patent/JP5839204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an oriented electromagnetic steel sheet having low iron loss, small variation of iron loss in a coil and high productivity.SOLUTION: In a method for manufacturing an oriented electromagnetic steel sheet that comprises a series of processes including hot rolling of a steel raw material containing C:0.002 to 0.10 mass%, Si:2.0 to 8.0 mass% and Mn:0.005 to 1.0 mass%, cold rolling to obtain a cold rolled sheet having a final thickness without hot rolled sheet firing or after conducting hot rolled sheet firing, primary recycling firing with decarbonization firing, then applying a firing separation agent to a surface of the steel sheet, and finish firing, final cold rolling is conducted by a tandem rolling, a heating process of the primary recycling firing is conducted by a rapid heating at 50°C/s or more from 200 to 700°C, and a retention treatment for retaining any temperature between 250°C or more and less than 550°C in the heating process for 0.5 to 10 seconds is conducted 1 to 4 times.

Description

本発明は、方向性電磁鋼板の製造方法に関し、具体的には、鉄損が低くかつコイル内の鉄損のばらつきが小さい方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet, and more specifically to a method for producing a grain-oriented electrical steel sheet with low iron loss and small variation in iron loss within a coil.

電磁鋼板は、変圧器やモータの鉄心材料として広く用いられている軟磁性材料であり、中でも、方向性電磁鋼板は、結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積し、磁気特性に優れているため、主として大型の変圧器の鉄心等に使用されている。変圧器における無負荷損(エネルギーロス)を低減するためには、鉄損が低いことが必要である。   Electrical steel sheets are soft magnetic materials that are widely used as core materials for transformers and motors. Among them, grain oriented electrical steel sheets are highly integrated in the {110} <001> orientation, which is called the Goss orientation. Because of its excellent magnetic properties, it is mainly used for iron cores of large transformers. In order to reduce the no-load loss (energy loss) in the transformer, it is necessary that the iron loss is low.

方向性電磁鋼板における鉄損低減方法としては、Si含有量の増加や、板厚の低減、結晶方位の配向性向上、鋼板表面への張力付与、鋼板表面の平滑化、二次再結晶組織の細粒化などが有効であることが知られている。   Iron loss reduction method for grain-oriented electrical steel sheets includes increasing Si content, reducing plate thickness, improving crystal orientation orientation, imparting tension to the steel sheet surface, smoothing the steel sheet surface, secondary recrystallization texture It is known that fine graining is effective.

これらの方法のうち、二次再結晶粒を細粒化する技術としては、脱炭焼鈍時に急速加熱したり、脱炭焼鈍直前に急速加熱する熱処理を施したりすることで、一次再結晶集合組織を改善する方法が提案されている。例えば、特許文献1には、最終板厚まで圧延した冷延板を脱炭焼鈍する際、PH2O/PH2が0.2以下の非酸化性雰囲気中で、100℃/s以上で700℃以上の温度に急速加熱することで、低鉄損の方向性電磁鋼板を得る技術が開示されている。また、特許文献2には、雰囲気中の酸素濃度を500ppm以下とし、かつ、加熱速度100℃/s以上で800〜950℃に急速加熱し、続いて急速加熱後の温度より低い775〜840℃の温度に保定し、さらに、815〜875℃の温度に保定することで、低鉄損の方向性電磁鋼板を得る技術が開示されている。また、特許文献3には、600℃以上の温度域を95℃/s以上の昇温速度で800℃以上に加熱し、かつ、この温度域の雰囲気を適正に制御することによって、被膜特性と磁気特性に優れる電磁鋼板を得る技術が開示されている。さらに、特許文献4には、熱延板中のAlNとしてのN量を25ppm以下に制限し、かつ脱炭焼鈍時に加熱速度80℃/s以上で700℃以上まで加熱することで、低鉄損の方向性電磁鋼板を得る技術が開示されている。 Among these methods, the technology for refining secondary recrystallized grains includes rapid heating at the time of decarburization annealing, or heat treatment to be rapidly heated immediately before decarburization annealing, thereby providing a primary recrystallization texture. A method for improving the above has been proposed. For example, in Patent Document 1, when decarburizing and annealing a cold-rolled sheet rolled to the final sheet thickness, in a non-oxidizing atmosphere where P H2O / PH2 is 0.2 or less, the temperature is 100 ° C./s or more and 700 ° C. A technique for obtaining a grain-oriented electrical steel sheet with low iron loss by rapid heating to the above temperature is disclosed. Patent Document 2 discloses that the oxygen concentration in the atmosphere is set to 500 ppm or less, and is rapidly heated to 800 to 950 ° C. at a heating rate of 100 ° C./s or higher, and subsequently 775 to 840 ° C. lower than the temperature after the rapid heating. A technique for obtaining a grain-oriented electrical steel sheet with low iron loss by holding at a temperature of 815 ° C. and further holding at a temperature of 815 to 875 ° C. is disclosed. Patent Document 3 discloses that the film characteristics and the film characteristics are obtained by heating a temperature range of 600 ° C. or higher to 800 ° C. or higher at a rate of temperature increase of 95 ° C./s or more and appropriately controlling the atmosphere in this temperature range. A technique for obtaining an electrical steel sheet having excellent magnetic properties is disclosed. Furthermore, in Patent Document 4, the amount of N as AlN in the hot-rolled sheet is limited to 25 ppm or less, and heating at a heating rate of 80 ° C./s to 700 ° C. or more during decarburization annealing reduces low iron loss. A technique for obtaining a grain-oriented electrical steel sheet is disclosed.

急速加熱することで一次再結晶集合組織を改善するこれらの技術は、急速加熱する温度範囲を室温から700℃以上とし、昇温速度を一義的に規定するものである。この技術思想は、再結晶温度近傍までを短時間で昇温することで、通常の加熱速度であれば優先的に形成されるγファイバー(<111>//ND方位)の発達を抑制し、二次再結晶の核となる{110}<001>組織の発生を促進することで、一次再結晶集合組織を改善しようとするものである。そして、この技術の適用により、二次再結晶後の結晶粒(Goss方位粒)が細粒化し、鉄損特性が改善される。   In these techniques for improving the primary recrystallization texture by rapid heating, the temperature range for rapid heating is from room temperature to 700 ° C. or higher, and the rate of temperature rise is uniquely defined. This technical idea suppresses the development of γ fibers (<111> // ND orientation) that are preferentially formed at a normal heating rate by raising the temperature to near the recrystallization temperature in a short time, The primary recrystallization texture is intended to be improved by promoting the generation of a {110} <001> structure that becomes the nucleus of secondary recrystallization. By applying this technique, the crystal grains (Goss-oriented grains) after the secondary recrystallization are refined, and the iron loss characteristics are improved.

特開平07−062436号公報Japanese Patent Laid-Open No. 07-062436 特開平10−298653号公報Japanese Patent Laid-Open No. 10-298653 特開2003−027194号公報JP 2003-027194 A 特開平10−130729号公報Japanese Patent Laid-Open No. 10-130729

しかしながら、発明者らの知見によれば、昇温速度を高くした場合には、昇温時の鋼板内部の温度ムラに起因すると思われる鉄損特性のばらつきが大きくなるという問題がある。製品出荷時の鉄損評価には、一般に、鋼板の全幅の鉄損を平均した値が用いられているため、ばらつきが大きいと、鋼板全体の鉄損が低く評価されることとなり、所期した急速加熱の効果が得られなくなる。   However, according to the knowledge of the inventors, when the rate of temperature increase is increased, there is a problem that the variation in iron loss characteristics, which is considered to be caused by temperature unevenness inside the steel sheet at the time of temperature increase, becomes large. The iron loss evaluation at the time of product shipment generally uses the average value of the iron loss of the full width of the steel sheet. Therefore, if the variation is large, the iron loss of the entire steel sheet will be evaluated low, which is expected. The effect of rapid heating cannot be obtained.

また、上記特許文献に代表される従来技術では、磁気特性を向上させるため、最終冷間圧延においては、圧延途中において100℃以上の温度で1分以上保持する時効処理を少なくとも1回以上付与することを基本思想としている。上記時効処理を実操業において実施するためには、リバースミルで圧延するのが好ましい。しかし、リバース圧延では、鋼板をコイルに巻き取り中にマンドレルに接触する内巻部からの抜熱や、巻き取り後のコイル外周面からの放熱により冷却してしまう。そのため、コイル長手方向両端部では所望の時効効果を得ることができず、鉄損特性が劣化してしまう。また、タンデム圧延に比べて生産性が劣るという問題がある。   Moreover, in the prior art represented by the said patent document, in order to improve a magnetic characteristic, in the last cold rolling, the aging treatment which hold | maintains at a temperature of 100 degreeC or more for 1 minute or more in the middle of rolling is provided at least once or more. This is the basic idea. In order to carry out the aging treatment in actual operation, it is preferable to roll with a reverse mill. However, in reverse rolling, the steel sheet is cooled by removing heat from the inner winding part that contacts the mandrel during winding of the steel sheet on the coil, or by heat radiation from the outer peripheral surface of the coil after winding. Therefore, a desired aging effect cannot be obtained at both ends of the coil in the longitudinal direction, and the iron loss characteristic is deteriorated. Moreover, there is a problem that productivity is inferior compared with tandem rolling.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、従来技術に比べて低鉄損でかつコイル内の鉄損のばらつきが小さく、しかも生産性が高い方向性電磁鋼板の製造方法を提案することにある。   The present invention has been made in view of the above-described problems of the prior art, and its purpose is a low iron loss compared to the prior art, a small variation in iron loss in the coil, and a high productivity direction. The purpose of this invention is to propose a method for producing a heat-resistant electrical steel sheet.

発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、一次再結晶焼鈍の加熱過程において急速加熱する際、回復が起こる温度領域で所定時間保持する保定処理を施すことで、鋼板内部の温度が均一化され、急速加熱の効果を鋼板の全幅にわたって得られるとともに、<111>//ND方位が優先的に回復を起こして一次再結晶後の<111>//ND方位が減少し、代わりにGoss核が増加し、二次再結晶後の再結晶がより細粒化される結果、低鉄損でかつコイル内の鉄損のばらつきが小さい方向性電磁鋼板を得ることができることを見出した。また、上記熱処理を施すことで、従来、必須とされていた最終冷間圧延途中での時効処理を付与しなくても、コイル長手方向全長にわたって良好な鉄損特性が得られることを知見し、本発明を開発するに至った。   The inventors have intensively studied to solve the above problems. As a result, when performing rapid heating in the heating process of primary recrystallization annealing, the temperature inside the steel sheet is made uniform by applying a holding treatment that holds for a predetermined time in the temperature range where recovery occurs, and the effect of rapid heating is reduced to the full width of the steel sheet <111> // ND orientation preferentially recovers and <111> // ND orientation after primary recrystallization decreases, and Goss nuclei increase instead, after secondary recrystallization. As a result of the recrystallization being further refined, it has been found that a grain-oriented electrical steel sheet having low iron loss and small variation in iron loss within the coil can be obtained. In addition, by applying the above heat treatment, it has been found that good iron loss characteristics can be obtained over the entire length in the longitudinal direction of the coil without applying an aging treatment in the middle of the final cold rolling, which has conventionally been essential, The present invention has been developed.

すなわち、本発明は、C:0.002〜0.10mass%、Si:2.0〜8.0mass%およびMn:0.005〜1.0mass%を含有する鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、最終冷間圧延をタンデム圧延で行い、かつ、上記一次再結晶焼鈍の加熱過程における200〜700℃間を50℃/s以上で急速加熱するとともに、上記加熱過程の250℃以上550℃未満の間のいずれかの温度で0.5〜10秒間保持する保定処理を1〜4回施すことを特徴とする方向性電磁鋼板の製造方法である。   That is, the present invention hot-rolls a steel material containing C: 0.002 to 0.10 mass%, Si: 2.0 to 8.0 mass%, and Mn: 0.005 to 1.0 mass%. After rolling and hot-rolled sheet annealing or hot-rolled sheet annealing, cold rolling is performed once or two or more times with intermediate annealing between them to form a cold-rolled sheet with the final thickness, and decarburized annealing In the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which an annealing separator is applied to the steel sheet surface after the primary recrystallization annealing also serves as a finish annealing, and the final cold rolling is performed by tandem rolling, and In the heating process of the primary recrystallization annealing, rapid heating is performed at a temperature of 200 to 700 ° C. at 50 ° C./s or more, and 0.5 to 10 at any temperature between 250 ° C. and less than 550 ° C. in the heating process. Apply the retention process for 1 to 4 times. Is a manufacturing method of a grain-oriented electrical steel sheet characterized by and.

また、本発明は、C:0.002〜0.10mass%、Si:2.0〜8.0mass%およびMn:0.005〜1.0mass%を含有する鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、最終冷間圧延をタンデム圧延で行い、かつ、前記一次再結晶焼鈍の加熱過程における200〜700℃間を50℃/s以上で急速加熱するとともに、
前記加熱過程の250℃以上550℃未満の間のいずれかの温度で0.5〜10秒間保持する保定処理を1〜4回施した後、さらに、前記加熱過程の550℃以上700℃未満の間のいずれかの温度で0.5〜3秒間保持する保定処理を1または2回施すことを特徴とする方向性電磁鋼板の製造方法である。
Moreover, this invention hot-rolls and heat-rolls the steel raw material containing C: 0.002-0.10 mass%, Si: 2.0-8.0mass%, and Mn: 0.005-1.0mass%. After rolling and hot-rolled sheet annealing or hot-rolled sheet annealing, cold rolling is performed once or two or more times with intermediate annealing between them to form a cold-rolled sheet with the final thickness, and decarburized annealing In the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which an annealing separator is applied to the steel sheet surface after the primary recrystallization annealing also serves as a finish annealing, and the final cold rolling is performed by tandem rolling, and In the heating process of the primary recrystallization annealing, between 200 and 700 ° C. is rapidly heated at 50 ° C./s or more,
After the holding process of holding for 0.5 to 10 seconds at any temperature between 250 ° C. and less than 550 ° C. in the heating process 1 to 4 times, and further, 550 ° C. to less than 700 ° C. in the heating process It is a manufacturing method of a grain-oriented electrical steel sheet characterized by performing a holding process of holding for 0.5 to 3 seconds at any temperature in between, once or twice.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記C,SiおよびMnの他に、Al:0.010〜0.050mass%、N:0.003〜0.020mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.03mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする。   Moreover, the said steel raw material used for the manufacturing method of the grain-oriented electrical steel sheet of this invention is Al: 0.010-0.050 mass%, N: 0.003-0.020 mass% other than said C, Si, and Mn. , Se: 0.003 to 0.030 mass% and / or S: 0.002 to 0.03 mass%, with the remainder having a component composition composed of Fe and inevitable impurities.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記C,SiおよびMnの他に、Se:0.003〜0.030mass%およびS:0.002〜0.03mass%のうちから選ばれる1種または2種を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする。   In addition to the C, Si and Mn, the steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention is Se: 0.003-0.030 mass% and S: 0.002-0.03 mass%. It contains 1 type or 2 types chosen from these, The remainder has the component composition which consists of Fe and an unavoidable impurity.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記C,SiおよびMnの他に、Al:0.01mass%未満、N:0.0050mass%未満、Se:0.0030mass%未満およびS:0.0050mass%未満を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする。   In addition to the C, Si and Mn, the steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention includes Al: less than 0.01 mass%, N: less than 0.0050 mass%, Se: 0.0030 mass. % And S: less than 0.0050 mass%, with the remainder having a component composition consisting of Fe and inevitable impurities.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.10mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.010mass%、Nb:0.0010〜0.010mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   Moreover, in addition to the said component composition, the said steel raw material used for the manufacturing method of the grain-oriented electrical steel sheet of this invention is further Ni: 0.010-1.50 mass%, Cr: 0.01-0.50 mass%, Cu : 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0 .50 mass%, Mo: 0.005-0.10 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.010 mass%, Nb: 0.0010-0.010 mass%, V: 1 type or 2 types or more chosen from 0.001-0.010mass% and Ta: 0.001-0.010mass% are contained, It is characterized by the above-mentioned.

本発明によれば、最終冷間圧延をタンデム圧延で行った後、一次再結晶焼鈍において急速加熱する際、回復が起こる温度領域で所定時間保定してやることで、低鉄損でかつ鉄損値のばらつきが小さい方向性電磁鋼板を生産性よく製造することが可能となる。   According to the present invention, after the final cold rolling is performed by tandem rolling, when rapid heating is performed in the primary recrystallization annealing, it is maintained for a predetermined time in a temperature range where recovery occurs, thereby reducing the iron loss value and the iron loss value. It becomes possible to manufacture grain-oriented electrical steel sheets with small variations with high productivity.

本発明の一次再結晶焼鈍における昇温パターンを説明する図である。It is a figure explaining the temperature rising pattern in the primary recrystallization annealing of this invention. 一次再結晶焼鈍の加熱途中における保定処理時間が鉄損W17/50に及ぼす影響を示すグラフである。It is a graph which shows the influence which the holding process time in the middle of the heating of primary recrystallization annealing has on the iron loss W17 / 50 . 一次再結晶焼鈍の加熱途中における保定処理温度が鉄損W17/50に及ぼす影響を示すグラフである。It is a graph which shows the influence which the retention process temperature in the middle of the heating of primary recrystallization annealing has on the iron loss W17 / 50 .

まず、本発明を開発する契機となった実験について説明する。
<実験1>
C:0.060mass%、Si:3.32mass%、Mn:0.066mass%を含有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1400℃の温度に再加熱し、熱間圧延して板厚2.2mmの熱延板とし、1050℃×60秒の熱延板焼鈍を施した後、一次冷間圧延して中間板厚1.8mmとし、1120℃×80秒の中間焼鈍を施した後、タンデム圧延もしくはリバース圧延して最終板厚0.23mmの冷延板とした。この際、タンデム圧延およびリバース圧延ともに、圧延時の加工発熱による鋼板最高温度は200℃に制御した。
First, an experiment that triggered the development of the present invention will be described.
<Experiment 1>
C: 0.060 mass%, Si: 3.32 mass%, Mn: 0.066 mass% Steel is melted and made into a steel slab by a continuous casting method, and then reheated to a temperature of 1400 ° C. Rolled to a hot-rolled sheet with a thickness of 2.2 mm, subjected to hot-rolled sheet annealing at 1050 ° C. × 60 seconds, and then subjected to primary cold rolling to an intermediate plate thickness of 1.8 mm, intermediate at 1120 ° C. × 80 seconds After annealing, tandem rolling or reverse rolling was performed to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm. At this time, in both tandem rolling and reverse rolling, the maximum temperature of the steel sheet due to processing heat generated during rolling was controlled at 200 ° C.

次いで、上記冷延板を、50vol%H−50vol%Nの湿潤雰囲気下で840℃×80秒の脱炭焼鈍を伴う一次再結晶焼鈍を施した。なお、上記一次再結晶焼鈍は、840℃までの加熱過程における200〜700℃間の昇温速度を100℃/sとし、さらにその加熱途中の450℃の温度において0〜30秒間保持する保定処理を施した。ここで、上記100℃/sの昇温速度とは、図1に示したように、200℃から700℃まで到達する時間から保定時間t、t除いたt1、およびtにおける平均昇温速度((700−200)/(t+t+t))のことをいう(以降、同様)。
その後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、乾燥した後、二次再結晶させた後、水素雰囲気下で1200℃×7時間の純化処理を行う仕上焼鈍を施し、製品板(コイル)とした。
Next, the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization annealing at 840 ° C. for 80 seconds in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 . The primary recrystallization annealing is a holding treatment in which the rate of temperature increase between 200 and 700 ° C. in the heating process up to 840 ° C. is 100 ° C./s, and the temperature is maintained at 450 ° C. during the heating for 0 to 30 seconds. Was given. Here, as shown in FIG. 1, the rate of temperature increase of 100 ° C./s is t 1, t 3 and t 5 excluding the holding time t 2 and t 4 from the time to reach 200 ° C. to 700 ° C. Means the average heating rate ((700−200) / (t 1 + t 3 + t 5 )) (hereinafter the same).
Thereafter, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, dried, then recrystallized secondarily, and then subjected to a finish annealing in which a purification treatment is performed at 1200 ° C. for 7 hours in a hydrogen atmosphere. (Coil).

斯くして得た製品コイルの長手方向中央部および両端部の各部位から、板幅方向に幅100mm×長さ520mmの試験片を各10枚ずつ採取し、JIS C2556に記載の方法で鉄損W17/50を測定し、各々の位置の平均値(両端部は先端と後端の平均値)を求めた。この鉄損測定方法によれば、鉄損のばらつきが板幅方向にある場合には、測定値が悪化するので、ばらつきを含めて鉄損を評価できると考えられるからである。その結果を、図2に、450℃における保定処理時間と鉄損W17/50との関係として示した。この図から、保定時間が0.5〜10秒の範囲で鉄損が低減していること、また、上記範囲においては、タンデム圧延のコイル尾端部での鉄損劣化が抑制されていることがわかる。 Ten test pieces each having a width of 100 mm and a length of 520 mm in the plate width direction were sampled from the longitudinal center and both ends of the product coil thus obtained, and the iron loss was measured by the method described in JIS C2556. W 17/50 was measured, and the average value of each position (both ends are average values of the front end and the rear end) was obtained. This is because, according to this iron loss measurement method, when the variation in iron loss is in the sheet width direction, the measured value is deteriorated, so it is considered that the iron loss can be evaluated including the variation. The result is shown in FIG. 2 as the relationship between the retention time at 450 ° C. and the iron loss W 17/50 . From this figure, the iron loss is reduced in the range of the holding time of 0.5 to 10 seconds, and in the above range, the iron loss deterioration at the coil tail end portion of the tandem rolling is suppressed. I understand.

<実験2>
実験1で得られた最終板厚0.27mmの冷延板に、50vol%H−50vol%Nの湿潤雰囲気下で840℃×80秒の脱炭焼鈍を伴う一次再結晶焼鈍を施した。なお、上記一次再結晶焼鈍の加熱過程における昇温速度は100℃/sとし、その加熱過程の200〜700℃の温度範囲の任意の温度で1回、2秒間保持する保定処理を施した。 その後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布・乾燥した後、二次再結晶させた後、水素雰囲気下で1200℃×7時間の純化処理を行う仕上焼鈍を施した。
<Experiment 2>
The cold rolled sheet having a final thickness of 0.27 mm obtained in Experiment 1 was subjected to primary recrystallization annealing with decarburization annealing at 840 ° C. for 80 seconds in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 . . In addition, the temperature increase rate in the heating process of the said primary recrystallization annealing was 100 degreeC / s, and the holding process which hold | maintains for 2 seconds once at the arbitrary temperature of the temperature range of 200-700 degreeC of the heating process was performed. Thereafter, an annealing separator mainly composed of MgO was applied to the steel sheet surface and dried, followed by secondary recrystallization, followed by a finish annealing in which a purification treatment was performed at 1200 ° C. for 7 hours in a hydrogen atmosphere.

斯くして得た製品板から実験1と同様にして試験片を採取し、JIS C2556に記載の方法で鉄損W17/50を測定した。その結果を、図3に、保定処理温度と鉄損W17/50との関係として示した。この図から、タンデム圧延を行い、かつ、一次再結晶焼鈍の加熱過程における保定処理温度を250〜550℃の範囲とすることで、コイル両端部の鉄損が改善されて、コイル中央部との鉄損差がほぼ解消されることがわかる。 A test piece was collected from the product plate thus obtained in the same manner as in Experiment 1, and the iron loss W 17/50 was measured by the method described in JIS C2556. The results are shown in FIG. 3 as the relationship between the retention treatment temperature and the iron loss W 17/50 . From this figure, by performing tandem rolling and setting the holding treatment temperature in the heating process of primary recrystallization annealing to a range of 250 to 550 ° C., the iron loss at both ends of the coil is improved, It can be seen that the iron loss difference is almost eliminated.

上記<実験1>および<実験2>のように、一次再結晶焼鈍の急速加熱過程の適正温度で適正時間保持する保定処理を施すことで、鉄損が低減する理由については、まだ十分に明らかとなっていないが、発明者らは、次のように考えている。   The reason why the iron loss is reduced by applying the retention treatment at the appropriate temperature in the rapid heating process of the primary recrystallization annealing as in <Experiment 1> and <Experiment 2> is still sufficiently clear. However, the inventors think as follows.

急速加熱処理は、前述したように、再結晶集合組織における<111>//ND方位の発達を抑制し、二次再結晶の核となるGoss方位粒({110}<001>)の発生を促進する効果がある。というのは、一般に、冷間圧延では、<111>//ND方位は、他の方位に比較して多くの歪が導入されるため、蓄積される歪エネルギーが高い状態にある。そのため、通常の昇温速度で加熱する一次再結晶焼鈍では、蓄積された歪エネルギーが高い<111>//ND方位の圧延組織から優先的に再結晶を起こす。再結晶では、通常、<111>//ND方位の圧延組織からは<111>//ND方位粒が出現するため、再結晶後の組織は<111>//ND方位が主方位となる。   As described above, the rapid heat treatment suppresses the development of the <111> // ND orientation in the recrystallization texture, and the generation of Goss orientation grains ({110} <001>) serving as the nucleus of secondary recrystallization. There is an effect to promote. This is because, generally, in cold rolling, the <111> // ND orientation introduces a larger amount of strain than other orientations, so that the accumulated strain energy is high. For this reason, in primary recrystallization annealing in which heating is performed at a normal temperature increase rate, recrystallization occurs preferentially from a <111> // ND-oriented rolling structure in which accumulated strain energy is high. In recrystallization, since grains with <111> // ND orientation usually appear from a rolled structure with <111> // ND orientation, the structure after recrystallization has the <111> // ND orientation as the main orientation.

しかし、急速加熱を行うと、再結晶によって放出されるエネルギーよりも多くの熱エネルギーが付与されることから、比較的蓄積された歪エネルギーの低いGoss方位でも再結晶が起こるようになり、相対的に再結晶後の<111>//ND方位が減少し、Goss方位({110}<001>)が増加する。Goss方位が多くなると、二次再結晶においても多くのGoss方位粒が出現するため、二次再結晶粒が細粒化し、鉄損が低減する。これが、従来技術における急速加熱を行う理由である。   However, since rapid heating gives more thermal energy than that released by recrystallization, recrystallization occurs even in the Goss orientation with a relatively low strain energy. <111> // ND orientation after recrystallization decreases, and Goss orientation ({110} <001>) increases. When the Goss orientation increases, many Goss orientation grains appear in the secondary recrystallization, so the secondary recrystallization grains become finer and the iron loss is reduced. This is the reason for the rapid heating in the prior art.

ここで、急速加熱の途中で、回復が起こる温度に所定時間保持する保定処理を施した場合には、歪エネルギーが高い<111>//ND方位が優先的に回復を起こす。そのため、<111>//ND方位の圧延組織から生じる<111>//ND方位の再結晶を起こす駆動力が選択的に低下し、それ以外の方位が再結晶を起こすようになる。その結果、再結晶後の<111>//ND方位が相対的にさらに減少する。ただし、保定処理の保持温度が高過ぎたり、保持時間が10秒を超えたりすると、広い範囲で回復が起こってしまうため、回復組織がそのまま残り、上記の一次再結晶組織とは異なる組織となってしまう。その結果、二次再結晶に大きな悪影響を与え、鉄損特性が劣化してしまう。   Here, in the middle of rapid heating, when a retention treatment is performed to maintain the temperature at which recovery occurs for a predetermined time, the <111> // ND orientation with high strain energy recovers preferentially. Therefore, the driving force causing recrystallization of <111> // ND orientation generated from the rolled structure of <111> // ND orientation is selectively reduced, and other orientations cause recrystallization. As a result, the <111> // ND orientation after recrystallization is relatively further reduced. However, if the retention temperature is too high or if the retention time exceeds 10 seconds, recovery occurs over a wide range, so that the recovered structure remains as it is, and the structure is different from the primary recrystallized structure described above. End up. As a result, the secondary recrystallization is greatly adversely affected and the iron loss characteristics are deteriorated.

なお、上記考えによれば、加熱途中の回復が起こる温度で短時間の保定処理を施すことによる磁気特性向上効果が得られるのは、従来のラジアントチューブ等を用いた昇温速度(10〜20℃/s)よりも速い昇温速度、具体的には50℃/s以上の昇温速度の場合に限られると考えられる。そこで、本発明においては、一次再結晶焼鈍の200〜700℃の温度範囲における昇温速度を50℃/s以上と規定する。   In addition, according to the said idea, the magnetic property improvement effect by performing a short-time holding | maintenance process at the temperature where recovery | restoration in the middle of a heating is acquired is the temperature increase rate (10-20) using the conventional radiant tube etc. It is considered that the rate of temperature increase is higher than (° C./s), specifically, a rate of temperature increase of 50 ° C./s or more. Therefore, in the present invention, the rate of temperature rise in the temperature range of 200 to 700 ° C. for primary recrystallization annealing is defined as 50 ° C./s or more.

一方、一次再結晶焼鈍時に急速加熱を行うことのデメリットとしては、昇温中の初期酸化に費やされる時間が短くなるため、一次再結晶焼鈍後のサブスケール構造が変化して、仕上焼鈍中に被膜不良が生じて二次再結晶不良を起こし、磁気特性が劣化することがある。しかし、本発明では、昇温中に250℃以上550℃未満の間の温度で保定するので、多少なりとも急速加熱時に適正な初期酸化が行われ、被膜の劣化を軽減し、磁気特性の低下をある程度は抑制することができる。   On the other hand, as a demerit of performing rapid heating during primary recrystallization annealing, the time spent on initial oxidation during temperature rise is shortened, so the subscale structure after primary recrystallization annealing changes and during final annealing A film defect may occur, resulting in a secondary recrystallization defect, and the magnetic properties may deteriorate. However, in the present invention, since the temperature is maintained at a temperature between 250 ° C. and less than 550 ° C. during the temperature rise, proper initial oxidation is performed at the time of rapid heating, reducing the deterioration of the film and reducing the magnetic properties. Can be suppressed to some extent.

しかし、被膜改善による磁気特性改善効果をより確実に得るためには、上記考えからすれば、昇温途中の回復が起こる温度域(250℃以上550℃未満)と、初期酸化が活発となる温度域(550℃以上700℃未満)のそれぞれの温度域において保定処理を施すことが好ましいといえる。   However, in order to more reliably obtain the effect of improving the magnetic properties by improving the film, based on the above consideration, a temperature range (250 ° C. or higher and lower than 550 ° C.) in which recovery during the temperature rise occurs, and a temperature at which initial oxidation becomes active. It can be said that it is preferable to perform the retaining treatment in each temperature range (550 ° C. or more and less than 700 ° C.).

回復が起こる温度域(250℃以上550℃未満)での保定処理は、回復を起こさせるため、少なくとも0.5秒の保持が必要である。しかし、回復し過ぎると、その後、再結晶しなくなるおそれがあるため、長くても10秒以内に抑えるのが好ましい。また、この温度域での保定処理は複数回行ってもよいが、回数が多くなると、回復が進行し過ぎて再結晶が生じなくなるおそれがあるので4回以内に収めるのが好ましい。また、複数回の保定処理を行った場合は、合計の保定時間は10秒以内とするのがより好ましい。   The holding treatment in the temperature range where the recovery occurs (250 ° C. or more and less than 550 ° C.) needs to be held for at least 0.5 seconds in order to cause the recovery. However, if it recovers too much, it may not be recrystallized thereafter, so it is preferable to keep it within 10 seconds at the longest. In addition, the retention treatment in this temperature range may be performed a plurality of times, but if the number of times increases, it is preferable that the number of times is within 4 times because recovery may proceed excessively and recrystallization will not occur. In addition, when a plurality of holding processes are performed, the total holding time is more preferably within 10 seconds.

また、初期酸化が活発となる温度域(550℃以上700℃未満)における保定処理は、被膜改善効果を得るためには、0.5秒以上保持するのが好ましい。しかし、この温度域は再結晶が起こる温度域となるため、再結晶を回避する観点から、保定時間は3秒以内とするのが好ましい。同様に、この温度域での保定処理回数は、2回までとするのが好ましい。   Moreover, it is preferable to hold | maintain the retention process in the temperature range (550 degreeC or more and less than 700 degreeC) where initial oxidation becomes active, in order to acquire a film improvement effect, for 0.5 second or more. However, since this temperature range is a temperature range where recrystallization occurs, the retention time is preferably within 3 seconds from the viewpoint of avoiding recrystallization. Similarly, the number of holding treatments in this temperature range is preferably up to 2.

また、上記一次再結晶焼鈍の前工程である最終冷間圧延をタンデム圧延することで、従来のリバース圧延で鉄損が劣化していたコイル長手方向両端部においても鉄損が改善される理由については、まだ十分に明らかとなっていないが、発明者らは、次のように考えている。   Regarding the reason why the iron loss is improved at both ends in the coil longitudinal direction where the iron loss has deteriorated in the conventional reverse rolling by tandem rolling the final cold rolling, which is the previous step of the primary recrystallization annealing. Are not yet fully understood, but the inventors consider as follows.

リバース圧延では、冷間圧延中の動的歪時効と、圧延パス間でコイルに巻かれた状態で高温に保持されることによる転位への固溶元素(C,N等)の固着(コットレルロッキング)が起こる。このコットレルロッキングによって、次の圧延パスでの動的歪時効がさらに促進され、製品板の低鉄損化に有利な{110}<001>の一次再結晶方位粒の起源が形成されると考えられる。しかし、コイル内径のマンドレルとの接触部やコイル外周部のコイル長手方向両端部では、巻き取り中の抜熱や放熱によって温度が低下するため、固溶元素の拡散速度が低下する。加えて、次の圧延パスまでの待機時間が長いため、転位密度が低下し、コットレル雰囲気の形成が不十分となる。その結果、コイル長手方向両端部では、動的歪時効が十分に起こらず、鉄損特性の劣化を引き起こすものと考えられる。   In reverse rolling, dynamic strain aging during cold rolling and fixation of solid solution elements (C, N, etc.) to dislocations by being held at a high temperature while being wound around a coil between rolling passes (Cottrell locking) ) Occurs. This cotrel locking further promotes dynamic strain aging in the next rolling pass, and is considered to form the origin of {110} <001> primary recrystallized grains that are advantageous for reducing the iron loss of the product plate. It is done. However, at the contact portion of the inner diameter of the coil with the mandrel and at both ends in the coil longitudinal direction of the outer periphery of the coil, the temperature decreases due to heat removal and heat dissipation during winding, so the diffusion rate of the solid solution element decreases. In addition, since the waiting time until the next rolling pass is long, the dislocation density is lowered and the formation of the Cottrell atmosphere becomes insufficient. As a result, it is considered that dynamic strain aging does not occur sufficiently at both ends in the longitudinal direction of the coil, causing deterioration of iron loss characteristics.

一方、タンデム圧延では、コットレルロッキングは起こらないが、リバース圧延よりも次パスまでの時間が極めて短いため、前パスで導入された転位密度を十分保持したまま次のパスが行われるので、リバース圧延よりも圧延前の転位密度が高い状態となる。その結果、冷間圧延中の動的歪時効の効果が十分に発現するものと考えられる。さらに、タンデム圧延は、原理的に、コイル同士の溶接接合部まで含めてコイルを連続的に圧延できるため、リバース圧延よりもコイル長手方向で均一な組織を造り込むことができるので、リバース圧延で問題となっているコイル長手方向両端部での鉄損劣化も抑制される。
本発明は、上記実験結果に基き開発したものである。
On the other hand, in tandem rolling, cot rel-locking does not occur, but since the time to the next pass is much shorter than in reverse rolling, the next pass is performed while maintaining the dislocation density introduced in the previous pass sufficiently. As a result, the dislocation density before rolling becomes higher. As a result, it is considered that the effect of dynamic strain aging during cold rolling is sufficiently developed. Furthermore, in principle, tandem rolling can continuously roll the coil including the welded joint between the coils, so that a uniform structure can be built in the coil longitudinal direction than reverse rolling. The iron loss deterioration at both ends of the coil in the longitudinal direction, which is a problem, is also suppressed.
The present invention has been developed based on the above experimental results.

次に、本発明の方向性電磁鋼板の素材に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.002〜0.10mass%
Cは、0.002mass%に満たないと、Cによる粒界強化効果が失われ、スラブに割れが生じるなどして、製造に支障を来たすようになる。一方、0.10mass%を超えると、脱炭焼鈍で、Cを磁気時効の起こらない0.005mass%以下に低減することが困難となる。よって、Cは0.002〜0.10mass%の範囲とする。好ましくは0.010〜0.080mass%の範囲である。
Next, the component composition of the steel material (slab) used for the material of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.002-0.10 mass%
If C is less than 0.002 mass%, the grain boundary strengthening effect due to C is lost, and cracks occur in the slab, which causes problems in production. On the other hand, when it exceeds 0.10 mass%, it becomes difficult to reduce C to 0.005 mass% or less at which no magnetic aging occurs by decarburization annealing. Therefore, C is in the range of 0.002 to 0.10 mass%. Preferably it is the range of 0.010-0.080 mass%.

Si:2.0〜8.0mass%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。上記効果は、2.0mass%未満では十分ではなく、一方、8.0mass%を超えると、加工性が低下し、圧延して製造することが困難となる。よって、Siは2.0〜8.0mass%の範囲とする。好ましくは2.5〜4.5mass%の範囲である。
Si: 2.0 to 8.0 mass%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If the effect is less than 2.0 mass%, it is not sufficient. On the other hand, if it exceeds 8.0 mass%, the workability deteriorates and it is difficult to roll and manufacture. Therefore, Si is set to a range of 2.0 to 8.0 mass%. Preferably it is the range of 2.5-4.5 mass%.

Mn:0.005〜1.0mass%
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.005mass%未満では十分ではなく、一方、1.0mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.005〜1.0mass%の範囲とする。好ましくは0.02〜0.20mass%の範囲である。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.005 mass%, it is not sufficient. On the other hand, if it exceeds 1.0 mass%, the magnetic flux density of the product plate is lowered. Therefore, Mn is set to a range of 0.005 to 1.0 mass%. Preferably it is the range of 0.02-0.20 mass%.

上記C,SiおよびMn以外の成分については、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とに分けられる。
まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、それぞれAl:0.010〜0.050mass%、N:0.003〜0.020mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用するときには、前述した量のMnと、S:0.002〜0.030mass%および/またはSe:0.003〜0.030mass%を含有させることが好ましい。それぞれ添加量が、上記下限値より少ないと、インヒビター効果が十分に得られず、一方、上限値を超えると、インヒビター成分がスラブ加熱時に未固溶で残存し、インヒビター効果が低減し、十分な磁気特性が得られなくなる。なお、AlN系とMnS・MnSe系のインヒビターを併用してもよいことは勿論である。
Components other than C, Si and Mn are classified into cases where an inhibitor is used and cases where no inhibitor is used in order to cause secondary recrystallization.
First, when an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are changed to Al: 0.010 to 0.050 mass%, N: 0.003, respectively. It is preferable to make it contain in the range of -0.020 mass%. Moreover, when utilizing a MnS * MnSe type | system | group inhibitor, it is preferable to contain Mn of the quantity mentioned above, and S: 0.002-0.030 mass% and / or Se: 0.003-0.030 mass%. When the addition amount is less than the above lower limit value, the inhibitor effect is not sufficiently obtained. On the other hand, when the upper limit value is exceeded, the inhibitor component remains undissolved during slab heating, and the inhibitor effect is reduced. Magnetic properties cannot be obtained. Of course, an AlN-based and MnS / MnSe-based inhibitor may be used in combination.

一方、二次再結晶を生じさせるためにインヒビターを利用しない場合には、上述したインヒビター形成成分であるAl,N,SおよびSeの含有量を極力低減し、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0030mass%未満に低減した鋼素材を用いるのが好ましい。   On the other hand, when an inhibitor is not used to cause secondary recrystallization, the content of Al, N, S and Se, which are the above-described inhibitor forming components, is reduced as much as possible, Al: less than 0.01 mass%, N : It is preferable to use a steel material reduced to less than 0.0050 mass%, S: less than 0.0050 mass%, and Se: less than 0.0030 mass%.

本発明の方向性電磁鋼板に用いる鋼素材は、上記成分以外の残部は、Feおよび不可避的不純物である。
ただし、磁気特性の改善を目的として、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.10mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.010mass%、Nb:0.0010〜0.010mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を適宜含有していてもよい。
In the steel material used for the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities.
However, for the purpose of improving magnetic properties, Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.005 to 0 .50 mass%, Sb: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Bi: 0.005-0.50 mass%, Mo: 0.005-0.10 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.010 mass%, Nb: 0.0010-0.010 mass%, V: 0.001-0.010 mass%, and Ta: 0.001-0. One or more selected from 010 mass% may be contained as appropriate.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
前述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、常法の造塊−分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。上記スラブは、常法に従い、例えば、インヒビター成分を含有する場合には、1400℃程度の温度に再加熱し、一方、インヒビター成分を含まない場合には、1250℃以下の温度に再加熱した後、熱間圧延に供する。なお、インヒビター成分を含有しない場合には、鋳造後、スラブを再加熱することなく直ちに熱間圧延に供してもよい。また、薄鋳片の場合には、熱間圧延を省略してそのまま以後の工程に進めてもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
A steel material (slab) may be manufactured by a conventional ingot-bundling rolling method or a continuous casting method after melting the steel having the above-described component composition by a conventional refining process, or directly. A thin slab having a thickness of 100 mm or less may be manufactured by a casting method. The slab is reheated to a temperature of about 1400 ° C. according to a conventional method, for example, when an inhibitor component is contained, and after reheating to a temperature of 1250 ° C. or less when no inhibitor component is contained. Used for hot rolling. In addition, when not containing an inhibitor component, you may use for hot rolling immediately after casting, without reheating a slab. In the case of a thin slab, the hot rolling may be omitted and the process may proceed as it is.

次いで、熱間圧延して得た熱延板は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の温度は、良好な磁気特性を得るためには、800〜1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶粒の成長が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり、整粒の一次再結晶組織を得ることが難しくなるからである。   Next, the hot-rolled sheet obtained by hot rolling is subjected to hot-rolled sheet annealing as necessary. The temperature of this hot rolled sheet annealing is preferably in the range of 800 to 1150 ° C. in order to obtain good magnetic properties. If it is less than 800 degreeC, the band structure formed by hot rolling will remain, it will become difficult to obtain the primary recrystallized structure of a sized grain, and the growth of a secondary recrystallized grain will be inhibited. On the other hand, when the temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it becomes difficult to obtain a primary recrystallized structure of sized particles.

熱延後あるいは熱延板焼鈍後の鋼板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結晶粒が細かくなり、さらに、一次再結晶組織におけるGoss核が減少して製品板の磁気特性が低下する。一方、1200℃を超えると、熱延板焼鈍と同様、結晶粒が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなるからである。   The steel sheet after hot-rolling or after hot-rolled sheet annealing is made into a cold-rolled sheet having a final sheet thickness by one or more cold rolling or two or more cold rollings sandwiching intermediate annealing. The annealing temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. When the temperature is lower than 900 ° C., the recrystallized grains after the intermediate annealing become finer, and the Goss nuclei in the primary recrystallized structure are reduced to deteriorate the magnetic properties of the product plate. On the other hand, when the temperature exceeds 1200 ° C., the crystal grains become too coarse as in the hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of the sized grains.

また、最終板厚とする冷間圧延(最終冷間圧延)は、前述したように、本発明の効果を得るためには、タンデム圧延(一方向圧延)で行う必要がある。なお、一次再結晶集合組織を改善し、磁気特性をより向上させるためには、鋼板温度を100℃〜300℃に上昇して圧延する温間圧延を採用することが好ましい。   Further, as described above, the cold rolling (final cold rolling) with the final plate thickness needs to be performed by tandem rolling (unidirectional rolling) in order to obtain the effect of the present invention. In order to improve the primary recrystallization texture and further improve the magnetic properties, it is preferable to employ warm rolling in which the steel sheet temperature is raised to 100 ° C. to 300 ° C. for rolling.

最終板厚とした冷延板は、その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施す。
この一次再結晶焼鈍における焼鈍温度は、脱炭焼鈍を伴う場合は、脱炭反応を速やかに進行させる観点から、800〜900℃の範囲とするのが好ましく、また、雰囲気は湿潤雰囲気とするのが好ましい。ただし、脱炭が不要なC:0.005mass%以下の鋼素材を用いる場合は、この限りではない。また、一次再結晶焼鈍と脱炭焼鈍を別々に行ってもよい。
The cold-rolled sheet having the final thickness is then subjected to primary recrystallization annealing that also serves as decarburization annealing.
The annealing temperature in the primary recrystallization annealing is preferably in the range of 800 to 900 ° C. from the viewpoint of promptly proceeding the decarburization reaction when decarburization annealing is involved, and the atmosphere is a moist atmosphere. Is preferred. However, this is not the case when a steel material with C: 0.005 mass% or less that does not require decarburization is used. Moreover, you may perform a primary recrystallization annealing and a decarburization annealing separately.

ここで、本発明において重要なことは、上記一次再結晶焼鈍の加熱過程において、200〜700℃間を50℃/s以上で急速加熱するとともに、250℃以上550℃未満の間のいずれかの温度で0.5〜10秒間保持する保定処理を1〜4回施す必要があることである。ここで、上記200〜700℃の区間における昇温速度(50℃/s以上)は、前述したように、保定する時間を除いた時間における昇温速度である。また、上記保定処理は、250℃以上550℃未満の間のいずれかの温度で行えばよいが、上記温度は必ずしも一定でなくてもよく、±10℃/s以下の温度変化であれば、保定と同様の効果を得ることができるので、±10℃/sの範囲内で昇温もしくは降温してもよい。   Here, in the present invention, what is important is that in the heating process of the primary recrystallization annealing, a temperature of 200 to 700 ° C. is rapidly heated at 50 ° C./s or more, and any one of 250 ° C. or more and less than 550 ° C. That is, it is necessary to perform the holding process of holding at a temperature for 0.5 to 10 seconds 1 to 4 times. Here, the temperature increase rate (50 ° C./s or more) in the section of 200 to 700 ° C. is the temperature increase rate in the time excluding the holding time, as described above. Further, the retention treatment may be performed at any temperature between 250 ° C. and less than 550 ° C., but the temperature does not necessarily have to be constant, and if the temperature change is ± 10 ° C./s or less, Since the same effect as holding can be obtained, the temperature may be raised or lowered within a range of ± 10 ° C./s.

また、本発明において重要なことは、上記一次再結晶焼鈍における急速加熱による弊害を抑制し、被膜特性と磁気特性に優れた製品を得るためには、一次再結晶焼鈍の加熱過程における200〜700℃間を50℃/s以上で急速加熱するとともに、上記加熱過程の250℃以上550℃未満の間のいずれかの温度で0.5〜10秒間保持する保定処理を1〜4回施した後、さらに、上記加熱過程の550℃以上700℃未満の間のいずれかの温度で0.5〜3秒間保持する保定処理を1または2回施すことが好ましい。   In addition, what is important in the present invention is to suppress adverse effects due to rapid heating in the primary recrystallization annealing, and to obtain a product excellent in film properties and magnetic properties, 200 to 700 in the heating process of primary recrystallization annealing. After rapid heating at a temperature of 50 ° C./s or more between 1 ° C. and 1 to 4 times holding treatment for 0.5 to 10 seconds at any temperature between 250 ° C. and less than 550 ° C. Further, it is preferable to perform the holding treatment for holding for 0.5 to 3 seconds at any temperature between 550 ° C. and less than 700 ° C. in the heating process once or twice.

ここで、上記200〜700℃間における昇温速度は、先述したように、200〜700℃間の加熱時間から保定処理時間を差し引いた時間における昇温速度である。また、上記昇温速度は、50℃/s以上とする必要があるが、100〜400℃/sの範囲が好ましい。また、保定時間内における温度は、厳密に一定とする必要はなく、10℃/s以下の温度変化であれば、一定と見做すことができる。   Here, the temperature increase rate between 200 and 700 ° C. is the temperature increase rate during the time obtained by subtracting the retention time from the heating time between 200 and 700 ° C. as described above. Moreover, although the said temperature increase rate needs to be 50 degreeC / s or more, the range of 100-400 degreeC / s is preferable. Further, the temperature within the holding time does not need to be strictly constant, and can be considered constant as long as the temperature change is 10 ° C./s or less.

一次再結晶焼鈍を施した鋼板は、鉄損特性やトランスの騒音を重視する場合には、MgOを主体とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、仕上焼鈍を施し、Goss方位に高度に集積させた二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させるのが好ましい。一方、打抜加工性を重視し、フォルステライト被膜を形成させない場合には、焼鈍分離剤を適用しないか、あるいは、シリカやアルミナ等を主体とした焼鈍分離剤を用いて仕上焼鈍を施すのが好ましい。なお、フォルステライト被膜を形成しない場合、焼鈍分離剤の塗布に水分を持ち込まない静電塗布を行うことも有効である。また、焼鈍分離剤に代えて、耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。   For steel sheets that have undergone primary recrystallization annealing, when iron loss characteristics and transformer noise are important, an annealing separator mainly composed of MgO is applied to the steel sheet surface, dried, and then annealed in the Goss orientation. It is preferred to develop a highly integrated secondary recrystallized structure and to form a forsterite film. On the other hand, when emphasizing the punching processability and not forming the forsterite film, it is not necessary to apply an annealing separator or to perform a final annealing using an annealing separator mainly composed of silica, alumina or the like. preferable. In addition, when a forsterite film is not formed, it is also effective to perform electrostatic coating without bringing moisture into the coating of the annealing separator. Further, a heat resistant inorganic material sheet (silica, alumina, mica) may be used in place of the annealing separator.

仕上焼鈍の条件としては、フォルステライト被膜を形成させる場合には、800〜1050℃付近に20時間以上保持して二次再結晶を発現・完了させた後、1100℃以上の温度まで昇温することが好ましく、鉄損特性を重視し、純化処理を施す場合には、さらに1200℃程度の温度まで昇温するのがより好ましい。一方、フォルステライト被膜を形成させない場合には、二次再結晶が完了すればよいので、800〜1050℃までの昇温で焼鈍を終了することができる。   As a condition for finish annealing, in the case of forming a forsterite film, the temperature is raised to a temperature of 1100 ° C. or higher after the secondary recrystallization is exhibited and completed by maintaining it at 800 to 1050 ° C. for 20 hours or longer. In the case where the iron loss characteristic is emphasized and the purification process is performed, it is more preferable to raise the temperature to about 1200 ° C. On the other hand, when the forsterite film is not formed, the secondary recrystallization may be completed, so that the annealing can be completed by raising the temperature to 800 to 1050 ° C.

仕上焼鈍後の鋼板は、その後、水洗やブラッシング、酸洗等で、鋼板表面に付着した未反応の焼鈍分離剤を除去した後、平坦化焼鈍を施して形状矯正することが、鉄損の低減には有効である。これは、仕上焼鈍は、通常、コイル状態で行うため、コイルの巻き癖が付き、これが原因で、鉄損測定時に特性が劣化することがあるためである。   After finishing annealing, the steel sheet can be cleaned by washing, brushing, pickling, etc., removing unreacted annealing separator adhering to the steel sheet surface, and then flattening annealing to correct the shape, thereby reducing iron loss. Is effective. This is because the finish annealing is usually performed in a coil state, so that the coil has wrinkles and this may cause deterioration in characteristics when measuring iron loss.

さらに、鋼板を積層して使用する場合には、上記平坦化焼鈍において、あるいは、その前後において、鋼板表面に絶縁被膜を被成することが有効である。特に、鉄損の低減を図るためには、絶縁被膜として、鋼板に張力を付与する張力付与被膜を適用するのが好ましい。張力付与被膜の形成には、バインダーを介して張力被膜を塗布する方法や、物理蒸着法や化学蒸着法により無機物を鋼板表層に蒸着させる方法を採用することが、被膜密着性に優れかつ著しく鉄損低減効果が大きい絶縁被膜を形成することができるので、より好ましい。   Furthermore, in the case where the steel plates are laminated and used, it is effective to form an insulating film on the steel plate surface in the above-described flattening annealing or before and after that. In particular, in order to reduce iron loss, it is preferable to apply a tension-imparting film that imparts tension to the steel sheet as the insulating film. For the formation of a tension-imparting coating, it is possible to apply a method of applying a tension coating via a binder or a method of depositing an inorganic substance on the surface of a steel sheet by physical vapor deposition or chemical vapor deposition. Since an insulating film having a large loss reducing effect can be formed, it is more preferable.

また、鉄損をより低減するためには、磁区細分化処理を施すことが好ましい。処理方法としては、一般的に実施されている、最終製品板に溝を形成したり、電子ビーム照射やレーザ照射、プラズマ照射等によって線状または点状に熱歪や衝撃歪を導入する方法、最終板厚に冷間圧延した鋼板や中間工程の鋼板表面にエッチング加工を施して溝を形成したりする方法等を用いることができる。   Moreover, in order to further reduce the iron loss, it is preferable to perform a magnetic domain fragmentation process. As a processing method, a method of generally forming a groove in the final product plate, introducing a thermal strain or an impact strain in a linear or dotted manner by electron beam irradiation, laser irradiation, plasma irradiation, or the like, For example, a method of forming a groove by etching a steel sheet that has been cold-rolled to a final thickness or a steel sheet surface in an intermediate process can be used.

C:0.070mass%、Si:3.30mass%、Mn:0.06mass%、Al:0.025mass%、Se:0.025mass%およびN:0.010mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼を溶製し、連続鋳造法で鋼スラブとした後、1400℃の温度に再加熱し、熱間圧延して板厚2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施し、一次冷間圧延により1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、タンデムミルまたはリバースミルで二次冷間圧延(最終冷間圧延)して最終板厚0.27mmの冷延板に仕上げた。   C: 0.070 mass%, Si: 3.30 mass%, Mn: 0.06 mass%, Al: 0.025 mass%, Se: 0.025 mass% and N: 0.010 mass%, the balance being Fe and inevitable Steel having a component composition consisting of mechanical impurities is melted and made into a steel slab by a continuous casting method, then reheated to a temperature of 1400 ° C., hot-rolled into a hot rolled sheet having a thickness of 2.4 mm, and 1000 ° C. After hot-rolled sheet annealing for 50 seconds, primary cold rolling to an intermediate sheet thickness of 1.8 mm, intermediate annealing at 1100 ° C. for 20 seconds, followed by secondary cold rolling with a tandem mill or reverse mill ( (Final cold rolling) to finish a cold rolled sheet having a final thickness of 0.27 mm.

その後、上記冷延板に、50vol%H−50vol%Nの湿潤雰囲気下で、840℃×100秒の脱炭焼鈍を伴う一次再結晶焼鈍を施した。この際、850℃までの加熱過程における200〜700℃間の昇温速度を、表1に記載のごとく変化させるとともに、その加熱途中において、同じく表1に記載の温度と時間の保定処理を施した。
次いで、MgOを主体とした焼鈍分離剤を鋼板表面に塗布・乾燥した後、二次再結晶させた後、1200℃×10時間の純化処理を行う仕上焼鈍を施し、製品コイルとした。なお、仕上焼鈍の雰囲気は、純化処理する1200℃保定時はH、昇温時および降温時はNとした。
Thereafter, the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization annealing at 840 ° C. for 100 seconds in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 . At this time, the heating rate between 200 and 700 ° C. in the heating process up to 850 ° C. is changed as shown in Table 1, and the temperature and time holding treatment shown in Table 1 is applied during the heating. did.
Next, an annealing separator mainly composed of MgO was applied to the steel sheet surface and dried, followed by secondary recrystallization, and then subjected to a finish annealing at a temperature of 1200 ° C. for 10 hours to obtain a product coil. The atmosphere of the finish annealing was H 2 at the time of maintaining at 1200 ° C. for the purification treatment, and N 2 at the time of temperature increase and temperature decrease.

Figure 2014194077
Figure 2014194077

斯くして得た仕上焼鈍後の製品コイルの長手方向両端部および中央部から、コイル幅方向に幅100mm×長さ520mmの試験片を各々の位置から10枚ずつ採取し、JIS C2556に記載の方法で鉄損W17/50を測定し、それぞれの位置の平均値(コイル両端部は、先端部と後端部の平均値)を求めるとともに、コイル両端部と中央部の鉄損差を求め、その結果を表1に併記した。同表から、本発明を適用することで、タンデム圧延におけるコイル長手方向両端部の鉄損が改善され、コイル中央部の鉄損値とほぼ同レベルとなっており、コイル全長全幅に亘って低鉄損の方向性電磁鋼板が得られていることがわかる。 Ten test pieces each having a width of 100 mm and a length of 520 mm in the coil width direction were collected from each position from both ends and the center in the longitudinal direction of the product coil after finish annealing thus obtained, and described in JIS C2556. The iron loss W 17/50 is measured by the method, and the average value of each position (the coil both ends are the average value of the front end portion and the rear end portion) and the iron loss difference between the coil end portions and the center portion are obtained. The results are also shown in Table 1. From the table, by applying the present invention, the iron loss at both ends in the longitudinal direction of the coil in tandem rolling is improved, which is almost the same level as the iron loss value at the center of the coil, and low over the entire length of the coil. It can be seen that a grain-oriented electrical steel sheet with iron loss is obtained.

C:0.027mass%、Si:3.12mass%、Mn:0.09mass%、Al:0.005mass%、N:0.0037mass%、S:0.0018mass%、Sb:0.041mass%、P:0.042mass%およびMo:0.013mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼を溶製し、連続鋳造法で鋼スラブとした後、1200℃の温度に再加熱し、熱間圧延して板厚2.2mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施し、一次冷間圧延により1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、タンデムミルまたはリバースミルで二次冷間圧延(最終冷間圧延)して最終板厚0.23mmの冷延板に仕上げた。   C: 0.027 mass%, Si: 3.12 mass%, Mn: 0.09 mass%, Al: 0.005 mass%, N: 0.0037 mass%, S: 0.0018 mass%, Sb: 0.041 mass%, P : 0.042 mass% and Mo: 0.013 mass%, the remainder of which is composed of Fe and unavoidable impurities is melted and made into a steel slab by continuous casting. Heated and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.2 mm, subjected to hot-rolled sheet annealing at 1000 ° C. for 50 seconds, and made an intermediate sheet thickness of 1.8 mm by primary cold rolling to 1100 ° C. × 20 After intermediate annealing for 2 seconds, secondary cold rolling (final cold rolling) was performed by a tandem mill or a reverse mill to finish a cold rolled sheet having a final thickness of 0.23 mm.

その後、上記冷延板に、50vol%H−50vol%Nの湿潤雰囲気下で820℃×100秒の脱炭焼鈍を伴う一次再結晶焼鈍を施した。この際、820℃までの加熱過程における200〜700℃間の昇温速度を150℃/sとし、さらに、その加熱途中で、表2に記載した条件で0〜4回の保定処理を施した。
次いで、MgOを主体とした焼鈍分離剤を鋼板表面に塗布・乾燥した後、二次再結晶させた後、1200℃×10時間の純化処理を行う仕上焼鈍を施し、製品コイルとした。なお、仕上焼鈍の雰囲気は、純化処理する1200℃保定時はH、昇温時および降温時はNとした。
Thereafter, the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization annealing at 820 ° C. for 100 seconds in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 . At this time, the heating rate between 200 and 700 ° C. in the heating process up to 820 ° C. was set to 150 ° C./s, and in the middle of the heating, the holding treatment was performed 0 to 4 times under the conditions described in Table 2. .
Next, an annealing separator mainly composed of MgO was applied to the steel sheet surface and dried, followed by secondary recrystallization, and then subjected to a finish annealing at a temperature of 1200 ° C. for 10 hours to obtain a product coil. The atmosphere of the finish annealing was H 2 at the time of maintaining at 1200 ° C. for the purification treatment, and N 2 at the time of temperature increase and temperature decrease.

Figure 2014194077
Figure 2014194077

斯くして得た仕上焼鈍後の製品コイルの長手方向両端部および中央部から、コイル幅方向に幅100mm×長さ520mmの試験片を各々の位置から10枚ずつ採取し、JIS C2556に記載の方法で鉄損W17/50を測定し、それぞれの位置の平均値(コイル両端部は、先端部と後端部の平均値)を求めるとともに、コイル両端部と中央部の鉄損差を求め、その結果を表2に併記した。同表から、本発明を適用することで、タンデム圧延におけるコイル長手方向両端部の鉄損が改善され、コイル中央部の鉄損値とほぼ同レベルとなっており、コイル全長全幅に亘って低鉄損の方向性電磁鋼板が得られていることがわかる。 Ten test pieces each having a width of 100 mm and a length of 520 mm in the coil width direction were collected from each position from both ends and the center in the longitudinal direction of the product coil after finish annealing thus obtained, and described in JIS C2556. The iron loss W 17/50 is measured by the method, and the average value of each position (the coil both ends are the average value of the front end portion and the rear end portion) and the iron loss difference between the coil end portions and the center portion are obtained. The results are also shown in Table 2. From the table, by applying the present invention, the iron loss at both ends in the longitudinal direction of the coil in tandem rolling is improved, which is almost the same level as the iron loss value at the center of the coil, and low over the entire length of the coil. It can be seen that a grain-oriented electrical steel sheet with iron loss is obtained.

表3に記載の成分組成を有する符号A〜Lの鋼を溶製し、連続鋳造法で鋼スラブとし、1380℃の温度に再加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1030℃×40秒の熱延板焼鈍を施した後、タンデムミルまたはリバースミルで最終冷間圧延して最終板厚0.23mmの冷延板に仕上げた。   Steels of reference signs A to L having the composition shown in Table 3 were melted, made into a steel slab by a continuous casting method, reheated to a temperature of 1380 ° C., and then hot-rolled to heat 2.0 mm in thickness. The sheet was subjected to hot-rolled sheet annealing at 1030 ° C. for 40 seconds, and then finally cold-rolled by a tandem mill or reverse mill to finish a cold-rolled sheet having a final sheet thickness of 0.23 mm.

Figure 2014194077
Figure 2014194077

その後、50vol%H−50vol%Nの湿潤雰囲気下で840℃×60秒の脱炭焼鈍を伴う一次再結晶焼鈍を施した。この際、840℃までの加熱過程における200〜700℃間の昇温速度を80℃/sとし、さらに、その加熱途中の450℃の温度で5秒間保持する保定処理を施した。
次いで、MgOを主体とした焼鈍分離剤を鋼板表面に塗布・乾燥した後、さらに、二次再結晶させた後、1180℃×5時間の純化処理を行う仕上焼鈍を施し、製品コイルとした。なお、仕上焼鈍の雰囲気は、純化処理する1180℃保定時はH、昇温時および降温時はArとした。
Then, primary recrystallization annealing with decarburization annealing at 840 ° C. for 60 seconds was performed in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 . Under the present circumstances, the temperature increase rate between 200-700 degreeC in the heating process to 840 degreeC was 80 degreeC / s, and also the retention process hold | maintained for 5 second at the temperature of 450 degreeC in the middle of the heating was performed.
Next, after applying and drying an annealing separator mainly composed of MgO on the surface of the steel sheet, secondary recrystallization was performed, and then finishing annealing was performed to perform a purification treatment at 1180 ° C. for 5 hours to obtain a product coil. The atmosphere of the finish annealing was H 2 at the time of 1180 ° C. to be purified and Ar at the time of temperature rise and temperature drop.

斯くして得た仕上焼鈍後の製品コイルの長手方向両端部および中央部から、コイル幅方向に幅100mm×長さ520mmの試験片を各々の位置から10枚ずつ採取し、JIS C2556に記載の方法で鉄損W17/50を測定し、それぞれの位置の平均値(コイル両端部は、先端部と後端部の平均値)を求めるとともに、コイル両端部と中央部の鉄損差を求めた。その結果を表3に併記した。同表から、本発明を適用することで、タンデム圧延におけるコイル長手方向両端部の鉄損が改善され、コイル中央部の鉄損値とほぼ同レベルとなっており、コイル全長かつ全幅に亘って低鉄損の方向性電磁鋼板が得られていることがわかる。 Ten test pieces each having a width of 100 mm and a length of 520 mm in the coil width direction were collected from each position from both ends and the center in the longitudinal direction of the product coil after finish annealing thus obtained, and described in JIS C2556. The iron loss W 17/50 is measured by the method, and the average value of each position (the coil both ends are the average value of the front end portion and the rear end portion) and the iron loss difference between the coil end portions and the center portion are obtained. It was. The results are also shown in Table 3. From the same table, by applying the present invention, the iron loss at both ends of the coil in the tandem rolling direction is improved, and the iron loss value at the coil central portion is almost the same level, over the entire coil length and width. It can be seen that a grain-oriented electrical steel sheet with low iron loss is obtained.

本発明の技術は、冷延鋼板の集合組織の制御に適しているので、加工性が要求される自動車用鋼板等の製造方法にも適用することができる。   Since the technique of the present invention is suitable for controlling the texture of cold-rolled steel sheets, it can also be applied to a method for manufacturing automobile steel sheets and the like that require workability.

Claims (6)

C:0.002〜0.10mass%、Si:2.0〜8.0mass%およびMn:0.005〜1.0mass%を含有する鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
最終冷間圧延をタンデム圧延で行い、かつ、前記一次再結晶焼鈍の加熱過程における200〜700℃間を50℃/s以上で急速加熱するとともに、
前記加熱過程の250℃以上550℃未満の間のいずれかの温度で0.5〜10秒間保持する保定処理を1〜4回施すことを特徴とする方向性電磁鋼板の製造方法。
A steel material containing C: 0.002-0.10 mass%, Si: 2.0-8.0 mass%, and Mn: 0.005-1.0 mass% is hot-rolled to form a hot-rolled sheet, After re-annealing without hot-rolling or after hot-rolling annealing, cold rolling is performed once or two times or more with intermediate annealing to obtain a cold-rolled steel plate with the final thickness, which is also used for decarburization annealing. In the manufacturing method of grain-oriented electrical steel sheet comprising a series of steps of applying annealing separator to the steel sheet surface and finishing annealing after annealing.
Final cold rolling is performed by tandem rolling, and rapid heating is performed at a rate of 50 ° C./s or more between 200 to 700 ° C. in the heating process of the primary recrystallization annealing.
A method for producing a grain-oriented electrical steel sheet, characterized in that a retaining treatment is performed 1 to 4 times for 0.5 to 10 seconds at any temperature between 250 ° C. and less than 550 ° C. in the heating process.
C:0.002〜0.10mass%、Si:2.0〜8.0mass%およびMn:0.005〜1.0mass%を含有する鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
最終冷間圧延をタンデム圧延で行い、かつ、前記一次再結晶焼鈍の加熱過程における200〜700℃間を50℃/s以上で急速加熱するとともに、
前記加熱過程の250℃以上550℃未満の間のいずれかの温度で0.5〜10秒間保持する保定処理を1〜4回施した後、さらに、前記加熱過程の550℃以上700℃未満の間のいずれかの温度で0.5〜3秒間保持する保定処理を1または2回施すことを特徴とする方向性電磁鋼板の製造方法。
A steel material containing C: 0.002-0.10 mass%, Si: 2.0-8.0 mass%, and Mn: 0.005-1.0 mass% is hot-rolled to form a hot-rolled sheet, After re-annealing without hot-rolling or after hot-rolling annealing, cold rolling is performed once or two times or more with intermediate annealing to obtain a cold-rolled steel plate with the final thickness, which is also used for decarburization annealing. In the manufacturing method of grain-oriented electrical steel sheet comprising a series of steps of applying annealing separator to the steel sheet surface and finishing annealing after annealing.
Final cold rolling is performed by tandem rolling, and rapid heating is performed at a rate of 50 ° C./s or more between 200 to 700 ° C. in the heating process of the primary recrystallization annealing.
After the holding process of holding for 0.5 to 10 seconds at any temperature between 250 ° C. and less than 550 ° C. in the heating process 1 to 4 times, and further, 550 ° C. to less than 700 ° C. in the heating process A method for producing a grain-oriented electrical steel sheet, wherein a retaining treatment is performed once or twice for 0.5 to 3 seconds at any temperature in between.
前記鋼素材は、前記C,SiおよびMnの他に、Al:0.010〜0.050mass%、N:0.003〜0.020mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.03mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 In addition to the C, Si and Mn, the steel material includes Al: 0.010 to 0.050 mass%, N: 0.003 to 0.020 mass%, Se: 0.003 to 0.030 mass% and / or The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein S: 0.002 to 0.03 mass% is contained, and the remainder has a composition composed of Fe and inevitable impurities. 前記鋼素材は、前記C,SiおよびMnの他に、Se:0.003〜0.030mass%およびS:0.002〜0.03mass%のうちから選ばれる1種または2種を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 In addition to the C, Si and Mn, the steel material contains one or two selected from Se: 0.003-0.030 mass% and S: 0.002-0.03 mass%, The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the balance has a component composition comprising Fe and inevitable impurities. 前記鋼素材は、前記C,SiおよびMnの他に、Al:0.01mass%未満、N:0.0050mass%未満、Se:0.0030mass%未満およびS:0.0050mass%未満を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 The steel material contains, in addition to C, Si and Mn, Al: less than 0.01 mass%, N: less than 0.0050 mass%, Se: less than 0.0030 mass% and S: less than 0.0050 mass%, The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the balance has a component composition comprising Fe and inevitable impurities. 前記鋼素材は、前記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.10mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.010mass%、Nb:0.0010〜0.010mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜5のいずれか1項に記載の方向性電磁鋼板の製造方法。 In addition to the component composition, the steel material further includes Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.00. 005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0.005 to 0.10 mass% , B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.010 mass%, Nb: 0.0010 to 0.010 mass%, V: 0.001 to 0.010 mass%, and Ta: 0.001. It contains 1 type, or 2 or more types chosen from -0.010 mass%, The manufacturing method of the grain-oriented electrical steel sheet of any one of Claims 1-5 characterized by the above-mentioned.
JP2014037040A 2013-02-28 2014-02-27 Method for producing grain-oriented electrical steel sheet Active JP5839204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014037040A JP5839204B2 (en) 2013-02-28 2014-02-27 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013038893 2013-02-28
JP2013038893 2013-02-28
JP2014037040A JP5839204B2 (en) 2013-02-28 2014-02-27 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2014194077A true JP2014194077A (en) 2014-10-09
JP5839204B2 JP5839204B2 (en) 2016-01-06

Family

ID=51839496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037040A Active JP5839204B2 (en) 2013-02-28 2014-02-27 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5839204B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156069A (en) * 2015-02-25 2016-09-01 Jfeスチール株式会社 Method of manufacturing grain-oriented electrical steel sheet
JP2016156068A (en) * 2015-02-25 2016-09-01 Jfeスチール株式会社 Method for producing grain-oriented silicon steel sheet
JP2016156070A (en) * 2015-02-25 2016-09-01 Jfeスチール株式会社 Method of manufacturing grain-oriented electrical steel sheet
EP3214188A4 (en) * 2014-10-30 2017-09-06 JFE Steel Corporation Production method for oriented grain-electromagnetic steel sheet
JP2017186587A (en) * 2016-04-01 2017-10-12 新日鐵住金株式会社 Hot rolled sheet for unidirectional electromagnetic steel sheet and manufacturing method therefor, manufacturing method of the unidirectional electromagnetic steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105926A (en) * 1986-10-23 1988-05-11 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet
JPH06212263A (en) * 1993-01-12 1994-08-02 Nippon Steel Corp Production of grain-oriented silicon steel sheet having low iron loss
JP2003253341A (en) * 2002-03-05 2003-09-10 Jfe Steel Kk Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
JP2008001977A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet
JP2011174138A (en) * 2010-02-24 2011-09-08 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105926A (en) * 1986-10-23 1988-05-11 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet
JPH06212263A (en) * 1993-01-12 1994-08-02 Nippon Steel Corp Production of grain-oriented silicon steel sheet having low iron loss
JP2003253341A (en) * 2002-03-05 2003-09-10 Jfe Steel Kk Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
JP2008001977A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet
JP2011174138A (en) * 2010-02-24 2011-09-08 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3214188A4 (en) * 2014-10-30 2017-09-06 JFE Steel Corporation Production method for oriented grain-electromagnetic steel sheet
JP2016156069A (en) * 2015-02-25 2016-09-01 Jfeスチール株式会社 Method of manufacturing grain-oriented electrical steel sheet
JP2016156068A (en) * 2015-02-25 2016-09-01 Jfeスチール株式会社 Method for producing grain-oriented silicon steel sheet
JP2016156070A (en) * 2015-02-25 2016-09-01 Jfeスチール株式会社 Method of manufacturing grain-oriented electrical steel sheet
JP2017186587A (en) * 2016-04-01 2017-10-12 新日鐵住金株式会社 Hot rolled sheet for unidirectional electromagnetic steel sheet and manufacturing method therefor, manufacturing method of the unidirectional electromagnetic steel sheet

Also Published As

Publication number Publication date
JP5839204B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
US9738949B2 (en) Method for producing grain-oriented electrical steel sheet
JP5737483B2 (en) Method for producing grain-oriented electrical steel sheet
JP5854233B2 (en) Method for producing grain-oriented electrical steel sheet
JP6057108B2 (en) Method for producing grain-oriented electrical steel sheet
JP6103281B2 (en) Method for producing grain-oriented electrical steel sheet
US20150243419A1 (en) Method for producing grain-oriented electrical steel sheet
JP6119959B2 (en) Method for producing grain-oriented electrical steel sheet
JP5839204B2 (en) Method for producing grain-oriented electrical steel sheet
JP6004183B2 (en) Method for producing grain-oriented electrical steel sheet
JP2015183189A (en) Grain oriented magnetic steel sheet and production method of the same
JP6344263B2 (en) Method for producing grain-oriented electrical steel sheet
JP2020084303A (en) Production process of grain-oriented electromagnetic steel sheet
JP6206633B2 (en) Method for producing grain-oriented electrical steel sheet
JP5888525B2 (en) Method for producing grain-oriented electrical steel sheet
JP6143010B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
JP5854236B2 (en) Method for producing grain-oriented electrical steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP6041110B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
JP6544344B2 (en) Method of manufacturing directional magnetic steel sheet
JP2016084540A (en) Method of producing grain oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151027

R150 Certificate of patent or registration of utility model

Ref document number: 5839204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250