JP2014190977A - Temperature measurement structure and shelf hanging detection method - Google Patents

Temperature measurement structure and shelf hanging detection method Download PDF

Info

Publication number
JP2014190977A
JP2014190977A JP2013069872A JP2013069872A JP2014190977A JP 2014190977 A JP2014190977 A JP 2014190977A JP 2013069872 A JP2013069872 A JP 2013069872A JP 2013069872 A JP2013069872 A JP 2013069872A JP 2014190977 A JP2014190977 A JP 2014190977A
Authority
JP
Japan
Prior art keywords
protective tube
temperature
melting furnace
temperature measuring
measuring structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013069872A
Other languages
Japanese (ja)
Other versions
JP5774626B2 (en
Inventor
Tetsuhisa Komada
哲久 駒田
Masahiro Nishimura
雅弘 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiko Refractories Co Ltd
Shinko Metal Products Co Ltd
Original Assignee
Taiko Refractories Co Ltd
Shinko Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiko Refractories Co Ltd, Shinko Metal Products Co Ltd filed Critical Taiko Refractories Co Ltd
Priority to JP2013069872A priority Critical patent/JP5774626B2/en
Publication of JP2014190977A publication Critical patent/JP2014190977A/en
Application granted granted Critical
Publication of JP5774626B2 publication Critical patent/JP5774626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of securing safety during an operation and achieving energy saving and improvement of the quality of a molten metal in a metal melting furnace.SOLUTION: A temperature measuring structure 100 includes: a fire-resistant base member 20 engaged with a fire brick in a state that a lower end part 20a is inserted to an opening part 13 opened in a fire brick 12 laid on the furnace floor 11 of a melting furnace 10; a fire-resistant protecting tube 30 connecting a lower end opening part 31 to a hole part 21 provided in a direction roughly vertical to the base member 20 and erected on the base member 20 in a state that an upper end part 32 is blocked; a plurality of temperature sensors 41, 42 arranged in the protecting tube 30; and an alumina-based dry stamp layer 50 formed on the fire-resistant fire brick 12 in a state that the protecting tube 30 and the base material 20 are embedded to the roughly same height as that of the upper end part 32 of the protecting pipe 30.

Description

本発明は、金属溶解炉内の溶融金属の内部温度を連続的に測定するのに好適な測温構造及びこれを用いた棚吊り検知方法に関する。   The present invention relates to a temperature measuring structure suitable for continuously measuring the internal temperature of molten metal in a metal melting furnace and a shelf hanging detection method using the same.

金属溶解炉の操業において、溶解炉内の溶融金属の内部温度を正確に把握することは、安全操業及び溶湯品質管理を徹底する上で極めて重要である。このため、従来、様々な測温技術が開発されているが、本発明に関連するものとして、例えば、特許文献1記載の測温装置あるいは特許文献2記載の温度測定装置がある。   In the operation of a metal melting furnace, accurately grasping the internal temperature of the molten metal in the melting furnace is extremely important for thorough safety operation and molten metal quality control. For this reason, various temperature measuring techniques have been developed in the past, but there are, for example, a temperature measuring device described in Patent Document 1 or a temperature measuring device described in Patent Document 2 as those relating to the present invention.

特許文献1記載の測温装置は、先端部が閉塞された中空部を有する筒形状のセラミックス製の保護管と、この保護管の中空部に配置された温度センサとを備え、溶融金属が収容された溶融容器を構成する耐火煉瓦の内側に積層される耐火部材に保護管を埋め込むとともに、保護管の後端を耐火煉瓦に固定した状態で使用するものである。この測温装置は、溶融金属を低コストで、応答性良く正確に、しかも連続的に測温することができるという長所を有している。   The temperature measuring device described in Patent Document 1 includes a cylindrical ceramic protective tube having a hollow portion with a closed end portion, and a temperature sensor disposed in the hollow portion of the protective tube, and accommodates molten metal. The protective tube is embedded in a refractory member laminated inside the refractory brick constituting the molten container, and the rear end of the protective tube is fixed to the refractory brick. This temperature measuring device has the advantage of being able to measure the temperature of molten metal accurately at low cost with good responsiveness and continuously.

特許文献2記載の温度測定装置は、溶融金属と接触する管前端面に開口し、その管前端面から管後端面まで管軸に沿って形成された細径の貫通孔を有する耐熱管と、溶融金属の温度を検知する光ファイバーと、光ファイバーからの温度情報を基に溶融金属の算出する温度算出部とを備えている。   The temperature measuring device described in Patent Document 2 is open to the front end surface of the tube that comes into contact with the molten metal, and has a heat-resistant tube having a small diameter through-hole formed along the tube axis from the front end surface of the tube to the rear end surface of the tube, An optical fiber for detecting the temperature of the molten metal and a temperature calculation unit for calculating the molten metal based on temperature information from the optical fiber are provided.

ところで、操業中の金属溶解炉においては、投入された原料金属のうち、溶解炉の底部付近に位置する原料金属が溶解して溶湯となる一方、表層部分に位置する原料金属が未溶解のまま架橋状態となる、所謂、「棚吊り」という現象が発生することがある。棚吊りが発生したまま加熱を続けると、電気エネルギーなどの無駄が生じるだけでなく、過加熱された溶湯と架橋部分との間に形成される高温空気層の圧力が著しく上昇し、架橋部分が爆裂して重大事故を招くことがある。   By the way, in the metal melting furnace in operation, among the charged raw metal, the raw metal located near the bottom of the melting furnace is melted to become a molten metal, while the raw metal located in the surface layer portion remains undissolved. A so-called “shelf hanging” phenomenon may occur in which a cross-linked state occurs. If heating is continued with shelves generated, not only electric energy is wasted, but also the pressure of the high-temperature air layer formed between the overheated molten metal and the bridging part increases significantly, It can explode and cause a serious accident.

棚吊りの発生を防止するには、溶解炉内に投入された原料金属の表層部分の溶解状況を絶えず目視確認する必要があるが、順調な溶解過程にある原料金属の表層部分と、棚吊りが発生しているときの原料金属の表層部分とは外観上識別し難いので、棚吊りの発生の有無を一般作業者の目視観察のみで判断することは困難である。このため、現場では熟練作業者の勘に基づいて判断が行われているが、完璧を期すのは困難である。そこで、溶解炉内の溶湯の温度を測定することにより、熟練作業者の勘に頼ることなく、棚吊りの発生を回避する技術が提案されている(例えば、特許文献3参照。)。   In order to prevent the occurrence of shelf hanging, it is necessary to constantly check the melting state of the surface layer portion of the raw material metal charged into the melting furnace. Since it is difficult to distinguish from the surface layer portion of the raw material metal when the occurrence of the occurrence of shelves, it is difficult to determine the presence or absence of the shelf hanging only by visual observation of a general worker. For this reason, judgments are made on the site based on the intuition of skilled workers, but it is difficult to achieve perfection. Then, the technique which avoids generation | occurrence | production of shelf hanging is proposed by measuring the temperature of the molten metal in a melting furnace, without depending on the intuition of a skilled worker (for example, refer patent document 3).

特開2008−267986号公報JP 2008-267986 A 特開2008−45971号公報JP 2008-45971 A 特開平6−82171号公報JP-A-6-82171

実操業中の溶解炉内においては、高温の溶解金属と高温の大気とが交互に入れ替わる状態が連続的に繰り返されるので、温度センサを内蔵した保護管は溶解炉内において過酷な雰囲気に曝される結果、高温大気によって酸化されたり、溶融金属中で溶損されたりしている。このため、溶解炉の操業中に、保護管の酸化や溶損などが原因で、正確な温度測定ができなくなったり、測定不能となったりすることがある。   In the melting furnace in actual operation, the state where the high-temperature molten metal and high-temperature air are alternately switched is repeated continuously, so that the protective tube with the built-in temperature sensor is exposed to a harsh atmosphere in the melting furnace. As a result, it is oxidized by high-temperature air or melted in molten metal. For this reason, during operation of the melting furnace, accurate temperature measurement may become impossible or impossible due to oxidation or melting damage of the protective tube.

また、実際の溶解炉は連続的に操業されることが多く、溶解炉を形成する耐火材自体も高温状態に維持されるので、温度センサを内蔵した保護管と耐火材との接触領域においては、両者を形成する素材同士が反応して、保護管が損傷し、保護機能を失うことが多かった。   In addition, the actual melting furnace is often operated continuously, and the refractory material forming the melting furnace itself is maintained at a high temperature, so in the contact area between the protective tube containing the temperature sensor and the refractory material In many cases, the materials forming the two materials react with each other, damage the protective tube, and lose the protective function.

このような問題は、特許文献1記載の測温装置あるいは特許文献2記載の温度測定装置などを使用することにより、ある程度まで解消することができるのであるが、本発明の属する技術分野においては、操業中の安全性の確保、省エネルギー及び溶湯品質向上に対する要請は年々高まっており、特許文献1記載の測温装置や特許文献2記載の温度測定装置などは、その要請に充分対応できていない面もあるのが実状である。   Such a problem can be solved to some extent by using the temperature measuring device described in Patent Document 1 or the temperature measuring device described in Patent Document 2, but in the technical field to which the present invention belongs, The demand for ensuring safety during operation, energy saving, and improving the quality of the molten metal is increasing year by year, and the temperature measuring device described in Patent Document 1 and the temperature measuring device described in Patent Document 2 do not sufficiently meet the demand. There is a real situation.

一方、操業中の溶解炉内で発生することがある棚吊り現象については、特許文献3記載の技術を利用することによって予防することができるのであるが、安全性を確保する観点からは、完璧が求められている。   On the other hand, the shelf hanging phenomenon that may occur in the melting furnace during operation can be prevented by using the technique described in Patent Document 3, but from the viewpoint of ensuring safety, it is perfect. Is required.

そこで、本発明が解決しようとする課題は、金属の溶解炉において、省エネルギー及び溶湯品質向上を図り、操業中の安全性も確保することができる技術を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a technique capable of saving energy and improving molten metal quality and ensuring safety during operation in a metal melting furnace.

本発明の測温構造は、溶解炉の炉床部に敷設された耐火煉瓦に開設された開口部に下端部を挿入した状態で前記耐火煉瓦に係止された耐火性の基台部材と、前記基台部材に略鉛直方向に設けられた穴部に下端開口部を挿入するとともに上端部を閉塞した状態で前記基台部材上に立設された耐火性の保護管と、前記保護管内に配置された温度センサと、前記保護管の上端部と略同等高さまで前記保護管を埋設した状態で前記耐火煉瓦上に形成された耐火材層と、を備えたことを特徴とする。   The temperature measuring structure of the present invention is a refractory base member locked to the refractory brick in a state where a lower end portion is inserted into an opening portion opened in the refractory brick laid on the hearth of the melting furnace, A fireproof protective tube erected on the base member in a state where a lower end opening is inserted into a hole provided in the base member in a substantially vertical direction and the upper end is closed, and the protective tube It is characterized by comprising a temperature sensor arranged, and a refractory material layer formed on the refractory brick in a state where the protective tube is buried to a height substantially equal to the upper end of the protective tube.

このような構成とすれば、溶解炉の炉床部に位置する温度センサにより、溶解炉内の溶湯の温度を応答性良く、連続測温することが可能となるため、得られた測温データに基づいて溶解炉の加熱エネルギーを制御し、余剰な加熱を回避することができるので、省エネルギーを図ることができる。さらに、溶解炉内の溶融金属の内部温度を連続的かつ正確に測定することにより、溶解炉の操業状態を安定に保ち、溶湯品質管理を徹底することができるので、溶湯品質向上も図ることができる。   With such a configuration, the temperature sensor located on the hearth of the melting furnace makes it possible to continuously measure the temperature of the molten metal in the melting furnace with good responsiveness. Since the heating energy of the melting furnace can be controlled based on the above and excessive heating can be avoided, energy saving can be achieved. Furthermore, by continuously and accurately measuring the internal temperature of the molten metal in the melting furnace, it is possible to keep the operating state of the melting furnace stable and to thoroughly control the molten metal quality, so that the molten metal quality can be improved. it can.

ここで、前記保護管を窒化ケイ素、炭化ケイ素、酸化アルミニウム、酸化イットリウムのうちのいずれか1以上を含むセラミックスで形成することが望ましい。このような構成とすれば、保護管の酸化や溶損及び保護管と耐火材層との反応を防止することができるので、耐久性の向上に有効である。   Here, it is desirable that the protective tube is formed of ceramics including any one or more of silicon nitride, silicon carbide, aluminum oxide, and yttrium oxide. Such a configuration is effective in improving durability because the protection tube can be prevented from being oxidized or melted and reaction between the protection tube and the refractory material layer.

また、前記保護管内に少なくとも2個の温度センサを前記保護管の軸心方向に変位させて配置することが望ましい。このような構成とすれば、溶解炉内の溶融金属の底面(底層部分)からの距離が異なる少なくとも2個の温度センサにより、同時並行状態で温度を計測することが可能となるので、測温精度をさらに向上させることができる。また、溶湯侵入などにより上方の温度センサに異常が発生した場合、下方の温度センサでそれを検知することができるので、迅速な対応が可能となる。   In addition, it is desirable that at least two temperature sensors be displaced in the axial direction of the protective tube in the protective tube. With such a configuration, it becomes possible to measure the temperature in a parallel state by at least two temperature sensors having different distances from the bottom surface (bottom layer portion) of the molten metal in the melting furnace. The accuracy can be further improved. In addition, when an abnormality occurs in the upper temperature sensor due to molten metal intrusion or the like, it can be detected by the lower temperature sensor, so that a quick response is possible.

さらに、前記温度センサを絶縁性の管状体に収容した状態で前記保護管内に配置することが望ましい。   Furthermore, it is desirable to arrange the temperature sensor in the protective tube in a state of being housed in an insulating tubular body.

一方、前記保護管の上端部の厚さを、当該保護管の外径より大きく、且つ、前記耐火材層の厚さの30%以下とすることが望ましい。   On the other hand, it is desirable that the thickness of the upper end portion of the protective tube is larger than the outer diameter of the protective tube and not more than 30% of the thickness of the refractory material layer.

また、前記保護管の上端部の厚さを当該保護管の他の部分の厚さより大とすることが望ましい。   Further, it is desirable that the thickness of the upper end portion of the protective tube is larger than the thickness of the other portion of the protective tube.

さらに、前記保護管の上端部に当該保護管の軸心と直交する平面部を設けることが望ましい。   Furthermore, it is desirable to provide a flat portion perpendicular to the axis of the protective tube at the upper end of the protective tube.

次に、本発明の棚吊り検知方法は、前述した測温構造のいずれかを溶解炉の炉床領域に構築し、前記溶解炉内に収容されている溶融金属の内部温度を前記温度センサで連続的に測定し、前記温度センサの測定値が予め設定された値を超えたときに警報信号を発することを特徴とする。   Next, in the shelf hanging detection method of the present invention, any one of the temperature measuring structures described above is constructed in the hearth region of the melting furnace, and the internal temperature of the molten metal accommodated in the melting furnace is determined by the temperature sensor. A continuous measurement is performed, and an alarm signal is issued when the measured value of the temperature sensor exceeds a preset value.

操業中の溶解炉内で棚吊りが発生したとき、溶湯の温度が過度に上昇することが確認されている。そこで、前記構成とすれば、溶解炉の炉床部に位置する温度センサで連続的に測温される溶解炉内の溶湯温度が予め設定された値を超えたときに発される警報信号により、棚吊りの発生を検知して、迅速に対応することができるので、棚吊りに起因する事故を防止し、操業中の安全性を確保することができる。また、棚吊りの発生を検知した後、溶解炉の加熱を停止するなどの対応が可能となれば、余剰な加熱を回避することができるので、省エネルギーを図ることができる。なお、前記警報信号が発されるときに、同時に警報音や警報光を出したり、溶解炉の加熱手段を自動停止したりするような構成とすることもできる。   It has been confirmed that the temperature of the molten metal rises excessively when shelf hanging occurs in the melting furnace during operation. Therefore, with the above configuration, an alarm signal is generated when the temperature of the molten metal in the melting furnace continuously measured by a temperature sensor located in the hearth of the melting furnace exceeds a preset value. Since the occurrence of shelf hanging can be detected and dealt with quickly, accidents caused by shelf hanging can be prevented and safety during operation can be ensured. Further, if it becomes possible to stop the heating of the melting furnace after detecting the occurrence of the shelf hanging, excessive heating can be avoided, so that energy saving can be achieved. In addition, when the said alarm signal is emitted, it can also be set as the structure which outputs an alarm sound and alarm light simultaneously, or the heating means of a melting furnace is stopped automatically.

本発明により、金属の溶解炉において、省エネルギー及び溶湯品質向上を図ることができ、操業中の安全性も確保することができる技術を提供することができる。   According to the present invention, in a metal melting furnace, it is possible to provide a technique capable of saving energy and improving the quality of molten metal and ensuring safety during operation.

本発明の第1実施形態である測温構造を使用した溶解炉を示す一部省略垂直断面図である。1 is a partially omitted vertical sectional view showing a melting furnace using a temperature measuring structure according to a first embodiment of the present invention. 図1の一部拡大図であるIt is a partially expanded view of FIG. 図2に示す領域の一部省略分解斜視図である。FIG. 3 is an exploded perspective view in which a part of the region shown in FIG. 2 is omitted. 図2中のA−A線における断面図である。It is sectional drawing in the AA in FIG. 図2中の温度センサ及び管状体を示す一部省略側面図である。FIG. 3 is a partially omitted side view showing a temperature sensor and a tubular body in FIG. 2. 図5中の矢線B方向から見た図である。It is the figure seen from the arrow B direction in FIG. 図1に示す測温構造を用いて得られた計測値と経過時間との関係を示すグラフである。It is a graph which shows the relationship between the measured value obtained using the temperature measuring structure shown in FIG. 1, and elapsed time. 本発明の第2実施形態である測温構造を使用した溶解炉を示す一部省略垂直断面図である。It is a partially omitted vertical sectional view showing a melting furnace using a temperature measuring structure according to a second embodiment of the present invention. 図8の一部拡大図である。FIG. 9 is a partially enlarged view of FIG. 8. 図9中の温度センサ及び管状体を示す一部省略側面図である。FIG. 10 is a partially omitted side view showing the temperature sensor and the tubular body in FIG. 9. 本発明の第3実施形態である測温構造を使用した溶解炉を示す一部拡大垂直断面図である。It is a partially expanded vertical sectional view which shows the melting furnace using the temperature measuring structure which is 3rd Embodiment of this invention.

以下、図1〜図7に基づいて、本発明の第1実施形態である測温構造100について説明する。図1〜図6に示すように、本実施形態の測温構造100は、溶解炉10の炉床部11に敷設された耐火煉瓦12に開設された開口部13に下端部20aを挿入した状態で耐火煉瓦12に係止された耐火性の基台部材20と、基台部材20に略鉛直方向に設けられた穴部21に下端開口部31を連結するとともに上端部32を閉塞した状態で基台部材20上に立設された耐火性の保護管30と、保護管30内に配置された複数の温度センサ41,42と、保護管30の上端部32と略同等高さまで保護管30及び基台部材20を埋設した状態で耐火煉瓦12上に形成された耐火材層であるアルミナ系ドライスタンプ層50と、を備えている。   Hereinafter, based on FIGS. 1-7, the temperature measuring structure 100 which is 1st Embodiment of this invention is demonstrated. As shown in FIGS. 1-6, the temperature measuring structure 100 of this embodiment is the state which inserted the lower end part 20a in the opening part 13 established in the refractory brick 12 laid in the hearth part 11 of the melting furnace 10. As shown in FIG. With the fire-resistant base member 20 locked to the fire-resistant brick 12 and the lower end opening 31 connected to the hole 21 provided in the base member 20 in a substantially vertical direction and the upper end 32 closed. A protective tube 30 that stands up on the base member 20, a plurality of temperature sensors 41 and 42 disposed in the protective tube 30, and the protective tube 30 up to a height substantially equal to the upper end portion 32 of the protective tube 30. And an alumina-based dry stamp layer 50 which is a refractory material layer formed on the refractory brick 12 in a state where the base member 20 is embedded.

溶解炉10は、有底円筒状の鉄扉14に銅輻射板15を敷設し、この銅輻射板15上に複数の耐火煉瓦12を積層して耐火煉瓦層60を形成し、耐火煉瓦層60上にアルミナ系ドライスタンプ層50を形成することによって製作されている。溶解炉10内のドライスタンプ層50で覆われた領域内で溶融金属Mが形成される。また、溶融金属Mの漏れを検知するための湯漏れセンサ17がアルミナ系ドライスタンプ層50に配置されている。   In the melting furnace 10, a copper radiating plate 15 is laid on a bottomed cylindrical iron door 14, and a plurality of refractory bricks 12 are laminated on the copper radiating plate 15 to form a refractory brick layer 60. It is manufactured by forming an alumina-based dry stamp layer 50 on the surface. The molten metal M is formed in the region covered with the dry stamp layer 50 in the melting furnace 10. Further, a hot water leak sensor 17 for detecting a leak of the molten metal M is disposed on the alumina-based dry stamp layer 50.

図2,図3に示すように、基台部材20は、円柱状の挿入部20bと、挿入部20b上に若干偏心した状態で一体的に形成された挿入部20bより外径の小さい円柱状の突出部20cと、を備えている。突出部20cの上面から挿入部20bに向かって穴部21が開設され、穴部21の下方は、挿入部20b下面に開口するセンサ挿入穴22に同軸上で連通している。   As shown in FIGS. 2 and 3, the base member 20 has a columnar insertion portion 20b and a columnar shape having an outer diameter smaller than that of the insertion portion 20b integrally formed in a state slightly decentered on the insertion portion 20b. Projecting portion 20c. A hole 21 is formed from the upper surface of the protruding portion 20c toward the insertion portion 20b, and the lower portion of the hole 21 is coaxially connected to a sensor insertion hole 22 opened on the lower surface of the insertion portion 20b.

溶解炉10内に形成された耐火煉瓦層50の最上部分の略中央に位置する耐火煉瓦12の上面12aに円形の開口部13が開設されており、この開口部13内に基台部材20の挿入部20bを挿入することによって、基台部材20が耐火煉瓦12に取り付けられている。これにより、挿入部20bの上面20dが耐火煉瓦12の上面12aと略同一平面をなし、耐火煉瓦12の上面12aから突出部20cが略鉛直方向に起立した状態となる。   A circular opening 13 is formed in the upper surface 12 a of the refractory brick 12 located at the approximate center of the uppermost portion of the refractory brick layer 50 formed in the melting furnace 10, and the base member 20 is formed in the opening 13. The base member 20 is attached to the refractory brick 12 by inserting the insertion portion 20b. Thereby, the upper surface 20d of the insertion portion 20b is substantially flush with the upper surface 12a of the refractory brick 12, and the projecting portion 20c stands up from the upper surface 12a of the refractory brick 12 in a substantially vertical direction.

保護管30は、窒化ケイ素、炭化ケイ素、酸化アルミニウム及び酸化イットリウムのサブミクロン粉末を原料として焼成された複合セラミックスで形成され、その上端部32の厚さ32tをその他の部分である周壁部33の厚さ33tより大としている。図4,図5に示すように、複数の温度センサ41,42は絶縁性の管状体40に収容された状態で、保護管30の軸心30cを含む領域に形成された空洞部34内に保護管30の軸心30c方向に変位した状態で配置されている。また、保護管30の上端部32には、当該保護管30の軸心30cと直交する平面部35が設けられている。従って、複数の温度センサ41,42は保護管30に内蔵された状態となっている。   The protective tube 30 is formed of a composite ceramic that is fired using a submicron powder of silicon nitride, silicon carbide, aluminum oxide, and yttrium oxide as a raw material, and the thickness 32t of the upper end portion 32 of the peripheral wall portion 33 that is the other portion. The thickness is larger than 33t. As shown in FIGS. 4 and 5, the plurality of temperature sensors 41 and 42 are accommodated in an insulating tubular body 40 and are contained in a cavity 34 formed in a region including the axis 30 c of the protective tube 30. It arrange | positions in the state displaced to the axial center 30c direction of the protective tube 30. FIG. Further, the upper end portion 32 of the protective tube 30 is provided with a flat portion 35 orthogonal to the axis 30 c of the protective tube 30. Therefore, the plurality of temperature sensors 41 and 42 are built in the protective tube 30.

図4,図5及び図6に示すように、管状体40には、その軸心40cと平行な4つの孔43,44が軸心40cの周りに等間隔に形成されている。管状体40の先端部40a寄りの部分には、軸心40c方向に変位した二つの位置に略蒲鉾形状の切欠き部45,46が設けられている。二つの孔43は先端部40a側の切欠部45に開口し、二つの孔44は切欠部45より下方側の切欠部46に開口している。   As shown in FIGS. 4, 5 and 6, the tubular body 40 is formed with four holes 43 and 44 parallel to the axis 40c at equal intervals around the axis 40c. At portions near the distal end portion 40a of the tubular body 40, substantially bowl-shaped notches 45 and 46 are provided at two positions displaced in the direction of the axis 40c. The two holes 43 open to the notch 45 on the tip 40 a side, and the two holes 44 open to the notch 46 below the notch 45.

温度センサ41,42はいずれも熱電対であり、一方の温度センサ41は一対の金属線41aをそれぞれ孔43に挿通し、接点部41bを切欠部45内に配置した状態で管状体40に収容され、他方の温度センサ42は一対の金属線42aをそれぞれ孔44に挿通し、接点部42bを切欠部46内に配置した状態で管状体40に収容されている。   The temperature sensors 41 and 42 are both thermocouples, and one temperature sensor 41 is accommodated in the tubular body 40 with a pair of metal wires 41a inserted through the holes 43 and the contact portions 41b disposed in the notches 45, respectively. The other temperature sensor 42 is accommodated in the tubular body 40 with the pair of metal wires 42a inserted into the holes 44 and the contact portions 42b disposed in the notches 46, respectively.

図1,図2に示すように、測温構造100においては、温度センサ41,42を内蔵した保護管30が溶解炉10の炉床部11に配置され、保護管30の上端部32に設けられた平面35とアルミナ系ドライスタンプ層50の上面50aとが略同一平面をなすように形成されているため、溶解炉10内の溶融金属Mの内部温度を連続的かつ正確に測定することができ、応答性にも優れている。   As shown in FIG. 1 and FIG. 2, in the temperature measuring structure 100, a protective tube 30 including temperature sensors 41 and 42 is disposed on the hearth 11 of the melting furnace 10 and provided at the upper end 32 of the protective tube 30. Since the formed flat surface 35 and the upper surface 50a of the alumina-based dry stamp layer 50 are formed so as to be substantially in the same plane, the internal temperature of the molten metal M in the melting furnace 10 can be continuously and accurately measured. It is also excellent in responsiveness.

また、溶解炉10の炉床部11に位置する温度センサ41,42により、溶解炉10内の溶融金属Mの温度を応答性良く、連続測温することができるので、得られた測温データに基づいて溶解炉10の加熱エネルギーを制御すれば、余剰加熱を回避することが可能となり、省エネルギーを図ることができる。さらに、溶解炉10内の溶融金属Mの内部温度を連続的かつ正確に測定することにより、溶解炉10の操業状態を安定に保ち、溶湯品質管理を徹底することができるので、溶湯品質向上も図ることができる。   In addition, the temperature sensors 41 and 42 located on the hearth 11 of the melting furnace 10 can continuously measure the temperature of the molten metal M in the melting furnace 10 with good responsiveness. If the heating energy of the melting furnace 10 is controlled based on the above, excessive heating can be avoided and energy saving can be achieved. Furthermore, by continuously and accurately measuring the internal temperature of the molten metal M in the melting furnace 10, the operation state of the melting furnace 10 can be kept stable and the molten metal quality can be thoroughly controlled. Can be planned.

また、図2に示すように、保護管30の上端部32の厚さ32tを周壁部33の厚さ33tより大とするとともに、溶解炉10の操業中、保護管30は、温度測定に必要な最小限部分である平面部35のみを溶融金属Mに接触させているので、保護管30が高温大気によって酸化されたり、溶融金属Mで溶損されたりすることが少なくなり、優れた耐久性を発揮する。さらに、保護管30は、窒化ケイ素、炭化ケイ素、酸化アルミニウム及び酸化イットリウムのサブミクロン粉末を原料として焼成された複合セラミックスで形成されているため、前述した酸化及び溶損を防止できるだけでなく、高温状態にあるアルミナ系ドライスタンプ層50との反応も生じず、耐久性に優れている。   Further, as shown in FIG. 2, the thickness 32t of the upper end portion 32 of the protective tube 30 is made larger than the thickness 33t of the peripheral wall portion 33, and the protective tube 30 is necessary for temperature measurement during operation of the melting furnace 10. Since only the minimal flat portion 35 is in contact with the molten metal M, the protective tube 30 is less likely to be oxidized or melted by the high temperature air, and has excellent durability. Demonstrate. Further, since the protective tube 30 is formed of a composite ceramic fired using silicon nitride, silicon carbide, aluminum oxide and yttrium oxide submicron powders as a raw material, not only the above-described oxidation and melting damage can be prevented, but also high temperature. The reaction with the alumina-based dry stamp layer 50 in the state does not occur, and the durability is excellent.

さらに、複数の温度センサ41,42は絶縁性の管状体40に収容された状態で、保護管30の軸心30cを含む領域に形成された空洞部34内に保護管30の軸心30c方向に変位した状態で配置されているので、溶解炉10内の溶融金属Mの底面からの距離が異なる複数の温度センサ41,42により同時並行状態で温度を計測することが可能であり、優れた測温精度を得ることができる。また、溶湯侵入などにより上方の温度センサ41に異常が発生した場合、下方の温度センサ42でそれを検知することができるので、迅速な対応が可能となる。   Further, the plurality of temperature sensors 41 and 42 are accommodated in the insulating tubular body 40, and the direction of the axis 30 c of the protective tube 30 is within the cavity 34 formed in the region including the axis 30 c of the protective tube 30. It is possible to measure the temperature in a parallel state by a plurality of temperature sensors 41 and 42 having different distances from the bottom surface of the molten metal M in the melting furnace 10. Temperature measurement accuracy can be obtained. In addition, when an abnormality occurs in the upper temperature sensor 41 due to intrusion of the molten metal or the like, it can be detected by the lower temperature sensor 42, so that a quick response can be made.

次に、測温構造100を構成する温度センサ41,42による測定値と経過時間との関係をグラフ化すると、図7に示すような結果が得られる。溶解炉10が正常に操業されているときは、温度センサ41,42の測定値は図7中の通常温度域の範囲(例えば、1200〜1400℃の範囲)で昇降しながら推移する。   Next, when the relationship between the measured values by the temperature sensors 41 and 42 constituting the temperature measuring structure 100 and the elapsed time is graphed, a result as shown in FIG. 7 is obtained. When the melting furnace 10 is operating normally, the measured values of the temperature sensors 41 and 42 change while moving up and down in a normal temperature range (for example, a range of 1200 to 1400 ° C.) in FIG.

一方、操業中の溶解炉10内で棚吊りが発生すると、図7中の破線部分Xで示すように、溶湯Mの温度が過度に上昇していき、通常温度域の上限(例えば、1400℃)を超えて危険温度域(例えば、1500℃以上の範囲)に入ることが経験的に確認されている。   On the other hand, when shelf hanging occurs in the melting furnace 10 in operation, the temperature of the molten metal M rises excessively as shown by the broken line portion X in FIG. 7, and the upper limit of the normal temperature range (for example, 1400 ° C.). ) Has been empirically confirmed to enter a dangerous temperature range (for example, a range of 1500 ° C. or more).

そこで、本実施形態においては、溶解炉10内の溶融金属Mの内部温度を温度センサ41,42で連続的に測定し、温度センサ41,42の測定値が予め設定された値(例えば、1400℃)を超えたときには警報信号を発する構成としている。従って、操業中の溶解炉10内で棚吊りが発生したとき、現場の作業者は前記警報信号で直ちにそれを検知することができ、その後は迅速に対応策を講ずることが可能となるので、棚吊りに起因する事故を防止し、操業中の安全性を確保することができる。   Therefore, in the present embodiment, the internal temperature of the molten metal M in the melting furnace 10 is continuously measured by the temperature sensors 41 and 42, and the measured values of the temperature sensors 41 and 42 are set to preset values (for example, 1400). When the temperature exceeds (° C.), an alarm signal is generated. Therefore, when a shelf hang occurs in the melting furnace 10 in operation, an on-site worker can immediately detect it with the alarm signal, and thereafter, it is possible to take a countermeasure quickly. Accidents caused by hanging the rack can be prevented, and safety during operation can be ensured.

さらに、前記警報信号が発されたとき、それに基づいて、溶解炉10の加熱機能を自動停止したり、緩和させたりする手段を設ければ、余剰な加熱を回避することができるので、省エネルギーを図ることができる。なお、前述した「予め設定された値」は棚吊りが発生したことを検知する判断基準となる温度であるが、溶解炉10の構造や規模あるいは溶融金属Mの種類などに応じて適宜、設定することができる。   Furthermore, when the alarm signal is issued, excessive heating can be avoided by providing means for automatically stopping or relaxing the heating function of the melting furnace 10 based on the warning signal. Can be planned. The above-mentioned “preset value” is a temperature used as a criterion for detecting the occurrence of the hanging of the shelf, but is set as appropriate according to the structure and scale of the melting furnace 10 or the type of the molten metal M. can do.

次に、図8〜図10及び図11に基づいて、本発明の第2実施形態である測温構造200及び第3実施形態である測温構造300について説明する。なお、測温構造200において、前述した測温構造100と共通する部分については、図1〜図6中の符号と同符号を付して説明を省略する。   Next, based on FIG. 8 to FIG. 10 and FIG. 11, a temperature measuring structure 200 that is the second embodiment of the present invention and a temperature measuring structure 300 that is the third embodiment will be described. In addition, in the temperature measurement structure 200, about the part which is common in the temperature measurement structure 100 mentioned above, the code | symbol same as the code | symbol in FIGS.

図8,図9に示すように、測温構造200においては、溶解炉10の炉床部11に敷設された耐火煉瓦12に開設された開口部13に下端部20aを挿入した状態で耐火煉瓦12に係止された耐火性の基台部材20と、基台部材20に略鉛直方向に設けられた穴部21に下端開口部71を連結するとともに上端部72を閉塞した状態で基台部材20上に立設された耐火性の保護管70と、保護管70内に配置された複数の温度センサ41,42と、保護管70の上端部72の平面部75と略同等高さまで保護管70及び基台部材20を埋設した状態で耐火煉瓦12上に形成された耐火材層であるアルミナ系ドライスタンプ層50と、を備えている。   As shown in FIG. 8 and FIG. 9, in the temperature measuring structure 200, the refractory brick with the lower end portion 20 a inserted in the opening portion 13 opened in the refractory brick 12 laid on the hearth portion 11 of the melting furnace 10. The base member in a state where the lower end opening portion 71 is connected to the hole portion 21 provided in the base member 20 in a substantially vertical direction and the upper end portion 72 is closed. 20 and a plurality of temperature sensors 41, 42 disposed in the protective tube 70, and a protective tube up to substantially the same height as the flat portion 75 of the upper end portion 72 of the protective tube 70. 70 and an alumina-based dry stamp layer 50 which is a refractory material layer formed on the refractory brick 12 in a state where the base member 20 is embedded.

図8,図9に示すように、保護管70は、保護管30と同様、窒化ケイ素、炭化ケイ素酸化アルミニウム及び酸化イットリウムのサブミクロン粉末を原料として焼成された複合セラミックスで形成され、その上端部72の厚さ72tをその他の部分である周壁部73の厚さ73tより大としている。複数の温度センサ41,42は絶縁性の管状体80に収容された状態で、保護管70の軸心70cを含む領域に形成された空洞部74内に保護管70の軸心70方向に変位した状態で配置されている。また、保護管70の上端部72には、当該保護管70の軸心70cと直交する平面部75が設けられている。さらに、保護管70の上端部72の厚さ72tを、当該保護管70の外径70aより大きく、且つ、耐火材層(アルミナ系ドライスタンプ層50)の厚さ50tの30%以下としている。   As shown in FIGS. 8 and 9, the protective tube 70 is formed of a composite ceramic that is fired from a submicron powder of silicon nitride, silicon carbide aluminum oxide, and yttrium oxide, as with the protective tube 30. The thickness 72t of 72 is made larger than the thickness 73t of the peripheral wall portion 73 which is the other part. The plurality of temperature sensors 41 and 42 are displaced in the direction of the axis 70 of the protective tube 70 in the cavity 74 formed in the region including the axis 70c of the protective tube 70 while being accommodated in the insulating tubular body 80. It is arranged in the state. Further, the upper end portion 72 of the protective tube 70 is provided with a flat portion 75 orthogonal to the axis 70 c of the protective tube 70. Furthermore, the thickness 72t of the upper end portion 72 of the protective tube 70 is larger than the outer diameter 70a of the protective tube 70 and 30% or less of the thickness 50t of the refractory material layer (alumina-based dry stamp layer 50).

図10に示すように、管状体80には、その軸心80cと平行な4つの孔83,84が軸心80cの周りに等間隔に形成されている。管状体80の先端部80a寄りの部分には、軸心80c方向に変位した二つの位置にそれぞれ略蒲鉾形状の切欠部85,86が設けられている。二つの孔83は先端部80a側の切欠部85に開口し、二つの孔84は切欠部85より下方側の切欠部86に開口している。   As shown in FIG. 10, in the tubular body 80, four holes 83 and 84 parallel to the axis 80c are formed at equal intervals around the axis 80c. At portions near the distal end portion 80a of the tubular body 80, substantially bowl-shaped notches 85 and 86 are provided at two positions displaced in the direction of the axial center 80c. The two holes 83 open to the notch 85 on the tip 80 a side, and the two holes 84 open to the notch 86 below the notch 85.

一方の温度センサ41は一対の金属線41aをそれぞれ孔83に挿通し、接点部41bを切欠部85内に配置した状態で管状体80に収容され、他方の温度センサ42は一対の金属線42aをそれぞれ孔84に挿通し、接点部42bを切欠部86内に配置した状態で管状体80に収容されている。また、温度センサ41の接点部41bの頂点部は切欠部85の上端部分(管状体80の先端部80a)と同じ高さに配置され、温度センサ42の接点部42bの頂点部は切欠部86の上端部分と同じ高さに配置されている。従って、図9に示すように、温度センサ41,42が収容された管状体80を保護管70の空洞部74内に組み込んだとき、温度センサ41の接点部41bの頂点部は保護管70の空洞部74の天井面(上端部72の下面76)に当接した状態となる。   One temperature sensor 41 is accommodated in the tubular body 80 with the pair of metal wires 41a inserted into the holes 83 and the contact portions 41b disposed in the notches 85, and the other temperature sensor 42 is paired with the pair of metal wires 42a. Are inserted into the holes 84 and accommodated in the tubular body 80 in a state in which the contact portions 42b are disposed in the notches 86. Further, the apex portion of the contact portion 41 b of the temperature sensor 41 is disposed at the same height as the upper end portion of the notch portion 85 (the tip portion 80 a of the tubular body 80), and the apex portion of the contact portion 42 b of the temperature sensor 42 is the notch portion 86. It is arranged at the same height as the upper end portion of. Therefore, as shown in FIG. 9, when the tubular body 80 in which the temperature sensors 41 and 42 are accommodated is incorporated in the cavity portion 74 of the protective tube 70, the apex portion of the contact portion 41 b of the temperature sensor 41 is the protective tube 70. It will be in the state contact | abutted to the ceiling surface (lower surface 76 of the upper end part 72) of the cavity part 74. FIG.

図8〜図10に示す測温構造200においては、温度センサ41,42を内蔵した保護管70の上端部71の厚さ72tを当該保護管70の外径70aより大きく、且つ、耐火材層(アルミナ系ドライスタンプ層50)の厚さ50tの30%以下としているため、溶解炉10(図8参照)内の溶融金属Mの内部温度を連続的かつ正確に測定することができ、応答性及び耐久性にも優れている。   In the temperature measuring structure 200 shown in FIGS. 8 to 10, the thickness 72 t of the upper end 71 of the protective tube 70 containing the temperature sensors 41 and 42 is larger than the outer diameter 70 a of the protective tube 70, and the refractory material layer. Since the thickness of the (alumina-based dry stamp layer 50) is 30% or less of the thickness 50t, the internal temperature of the molten metal M in the melting furnace 10 (see FIG. 8) can be continuously and accurately measured, and the responsiveness. And excellent durability.

また、溶解炉10の炉床部11に位置する温度センサ41,42により、溶解炉10内の溶融金属Mの温度を応答性良く、連続測温することができるので、前述したように、棚吊りが発生したときの溶融金属Mの温度上昇を的確に感知して迅速な対応を講ずることが可能となり、棚吊りに起因する事故を未然に防止し、操業中の安全性を確保することができる。また、棚吊りの発生を感知し、溶解炉余剰な加熱を回避することができるので、省エネルギーを図ることができる。さらに、溶解炉10内の溶融金属Mの内部温度を連続的かつ正確に測定することにより、溶湯品質管理を徹底することができるので、溶湯品質向上にも有効である。   Moreover, since the temperature of the molten metal M in the melting furnace 10 can be continuously measured with high responsiveness by the temperature sensors 41 and 42 located in the hearth part 11 of the melting furnace 10, as described above, the shelf It is possible to accurately detect the temperature rise of the molten metal M when suspension occurs and take quick action, prevent accidents caused by shelf suspension, and ensure safety during operation. it can. Moreover, since the occurrence of shelf hanging can be detected and excessive heating of the melting furnace can be avoided, energy saving can be achieved. Furthermore, by continuously and accurately measuring the internal temperature of the molten metal M in the melting furnace 10, the molten metal quality can be thoroughly controlled, which is effective for improving the molten metal quality.

さらに、前述したように、複数の温度センサ41,42は絶縁性の管状体80に収容された状態で、保護管70の軸心70cを含む領域に形成された空洞部74内に保護管70の軸心70c方向に変位した状態で配置されているので、測温精度も良好である。   Furthermore, as described above, the plurality of temperature sensors 41, 42 are accommodated in the insulating tubular body 80, and the protective tube 70 is formed in the hollow portion 74 formed in the region including the axis 70 c of the protective tube 70. Therefore, the temperature measuring accuracy is also good.

図7,図8に示すように、溶解炉10の測温構造200において各部のサイズは限定しないが、本実施形態においては、溶解炉10の内径10a(溶融金属Mが収容されている部分の内径)が1100mm、耐火材層(アルミナ系ドライスタンプ層50)の厚さ50tが160mm、保護管70の上端の平面部75から基台部材20の下端部20aまでの長さLが180mm、耐火煉瓦層60の厚さ60tが130mm、銅輻射板15の厚さが15mm、鉄扉14の厚さが20mmであり、保護管70の外径70aを22mmとし、上端部72の厚さ72tを25mmとしている。   As shown in FIGS. 7 and 8, the size of each part in the temperature measuring structure 200 of the melting furnace 10 is not limited, but in the present embodiment, the inner diameter 10 a of the melting furnace 10 (the portion in which the molten metal M is accommodated). The inner diameter is 1100 mm, the thickness of the refractory material layer (alumina-based dry stamp layer 50) is 160 mm, the length L from the flat portion 75 at the upper end of the protective tube 70 to the lower end portion 20 a of the base member 20 is 180 mm, The thickness 60t of the brick layer 60 is 130mm, the thickness of the copper radiation plate 15 is 15mm, the thickness of the iron door 14 is 20mm, the outer diameter 70a of the protective tube 70 is 22mm, and the thickness 72t of the upper end 72 is 25mm. It is said.

次に、図10に基づいて、本発明の第3実施形態である測温構造300について説明する。図10に示すように、測温構造300は、図8に示す測温構造200を構成する管状体80を管状体90に置き換えたものである。管状体90は、図8に示す管状体80の一方の切欠部86を省略し、先端部90a側に切欠部85を設け、接点部41bを切欠部85内に配置した状態で温度センサ41が管状体90に収容されている。その他の部分の構造、機能などは測温構造200と同様である。   Next, based on FIG. 10, the temperature measuring structure 300 which is 3rd Embodiment of this invention is demonstrated. As shown in FIG. 10, the temperature measurement structure 300 is obtained by replacing the tubular body 80 constituting the temperature measurement structure 200 shown in FIG. 8 with a tubular body 90. The tubular body 90 omits one notch 86 of the tubular body 80 shown in FIG. 8, the notch 85 is provided on the tip 90 a side, and the temperature sensor 41 is in a state where the contact 41 b is disposed in the notch 85. The tubular body 90 is accommodated. Other structures and functions are the same as those of the temperature measuring structure 200.

図10に示す測温構造300においては、1個の温度センサ41を用いているため、製造コストを低減することができるほか、簡素な構造でありながら、精度の良い連続測温値を得ることができる。   In the temperature measurement structure 300 shown in FIG. 10, since one temperature sensor 41 is used, the manufacturing cost can be reduced, and an accurate continuous temperature measurement value can be obtained while being a simple structure. Can do.

なお、図1〜図10に基づいて説明した測温構造100,200,300及び測温方法は本発明を例示するものであり、本発明の測温構造及び測温方法は前述した測温構造100,200,300及び測温方法に限定されない。   The temperature measuring structures 100, 200, 300 and the temperature measuring method described with reference to FIGS. 1 to 10 illustrate the present invention, and the temperature measuring structure and the temperature measuring method of the present invention are the above-described temperature measuring structures. It is not limited to 100, 200, 300 and the temperature measuring method.

本発明の測温構造及びこれを用いた棚吊り検知方法は、銅や鋳鉄などの各種金属を溶解するための溶解炉を使用する様々な金属産業分野において広く利用することができる。   The temperature measuring structure and the shelf hanging detection method using the temperature measuring structure of the present invention can be widely used in various metal industries using a melting furnace for melting various metals such as copper and cast iron.

10 溶解炉
10a 内径
11 炉床部
12 耐火煉瓦
12a,20d,50a 上面
13 開口部
14 鉄扉
15 銅輻射板
16 耐火煉瓦層
17 湯漏れセンサ
20 基台部材
20a 下端部
20b 挿入部
20c 突出部
21 穴部
22 センサ挿入孔
30,70 保護管
30c,40c,80c 軸心
31,71 下端開口部
32,72 上端部
32t,33t,50t,72t,73t 厚さ
33,73 周壁部
34,74 空洞部
35,75 平面部
40,80,90 管状体
40a,80a 先端部
41,42 温度センサ
41a,42a 金属線
41b,42b 接点部
43,44 孔
45,46,85,86 切欠部
50 アルミナ系ドライスタンプ層(耐火材層)
60 耐火煉瓦層
76 下面
100 測温構造
M 溶融金属
DESCRIPTION OF SYMBOLS 10 Melting furnace 10a Inner diameter 11 Hearth part 12 Refractory brick 12a, 20d, 50a Upper surface 13 Opening part 14 Iron door 15 Copper radiation plate 16 Refractory brick layer 17 Molten water sensor 20 Base member 20a Lower end part 20b Insertion part 20c Protrusion part 21 Hole Part 22 Sensor insertion hole 30, 70 Protective tube 30c, 40c, 80c Axle 31, 71 Lower end opening part 32, 72 Upper end part 32t, 33t, 50t, 72t, 73t Thickness 33, 73 Peripheral wall part 34, 74 Cavity part 35 , 75 Plane portion 40, 80, 90 Tubular body 40a, 80a Tip portion 41, 42 Temperature sensor 41a, 42a Metal wire 41b, 42b Contact portion 43, 44 Hole 45, 46, 85, 86 Notch portion 50 Alumina-based dry stamp layer (Fireproof material layer)
60 Refractory brick layer 76 Lower surface 100 Temperature measuring structure M Molten metal

Claims (8)

溶解炉の炉床部に敷設された耐火煉瓦に開設された開口部に下端部を挿入した状態で前記耐火煉瓦に係止された耐火性の基台部材と、前記基台部材に略鉛直方向に設けられた穴部に下端開口部を挿入するとともに上端部を閉塞した状態で前記基台部材上に立設された耐火性の保護管と、前記保護管内に配置された温度センサと、前記保護管の上端部と略同等高さまで前記保護管を埋設した状態で前記耐火煉瓦上に形成された耐火材層と、を備えたことを特徴とする測温構造。   A refractory base member locked to the refractory brick in a state where a lower end portion is inserted into an opening formed in the refractory brick laid on the hearth of the melting furnace, and a substantially vertical direction to the base member A fire-resistant protective tube erected on the base member in a state where the lower end opening is inserted into the hole portion provided in the closed portion and the upper end portion is closed; a temperature sensor disposed in the protective tube; A temperature measuring structure comprising: a refractory material layer formed on the refractory brick in a state where the protective tube is embedded to a height substantially equal to an upper end portion of the protective tube. 前記保護管が窒化ケイ素、炭化ケイ素、酸化アルミニウム、酸化イットリウムのうちのいずれか1以上を含むセラミックスで形成された請求項1記載の測温構造。   The temperature measuring structure according to claim 1, wherein the protective tube is formed of a ceramic containing one or more of silicon nitride, silicon carbide, aluminum oxide, and yttrium oxide. 前記保護管内に少なくとも2個の温度センサを前記保護管の軸心方向に変位させて配置した請求項1または2記載の測温構造。   The temperature measuring structure according to claim 1 or 2, wherein at least two temperature sensors are arranged in the protective tube so as to be displaced in an axial direction of the protective tube. 前記温度センサを絶縁性の管状体に収容した状態で前記保護管内に配置した請求項1〜3のいずれかに記載の測温構造。   The temperature measuring structure according to any one of claims 1 to 3, wherein the temperature sensor is disposed in the protective tube in a state of being housed in an insulating tubular body. 前記保護管の上端部の厚さを、当該保護管の外径より大きく、且つ、前記耐火材層の厚さの30%以下とした請求項1〜4のいずれかに記載の測温構造。   The temperature measuring structure according to any one of claims 1 to 4, wherein a thickness of an upper end portion of the protective tube is larger than an outer diameter of the protective tube and 30% or less of a thickness of the refractory material layer. 前記保護管の上端部の厚さを当該保護管の他の部分の厚さより大とした請求項1〜5のいずれかに記載の測温構造。   The temperature measuring structure according to any one of claims 1 to 5, wherein a thickness of an upper end portion of the protective tube is larger than a thickness of another portion of the protective tube. 前記保護管の上端部に当該保護管の軸心と直交する平面部を設けた請求項1〜6のいずれかに記載の測温構造。   The temperature measuring structure in any one of Claims 1-6 which provided the plane part orthogonal to the axial center of the said protective tube in the upper end part of the said protective tube. 請求項1〜7のいずれかに記載の測温構造を溶解炉の炉床領域に構築し、前記溶解炉内に収容されている溶融金属の内部温度を前記温度センサで連続的に測定し、前記温度センサの測定値が予め設定された値を超えたときに警報信号を発することを特徴とする棚吊り検知方法。   Constructing the temperature measuring structure according to any one of claims 1 to 7 in a hearth region of a melting furnace, continuously measuring the internal temperature of the molten metal accommodated in the melting furnace with the temperature sensor, The shelf hanging detection method characterized by issuing an alarm signal when the measured value of the temperature sensor exceeds a preset value.
JP2013069872A 2013-03-28 2013-03-28 Temperature measuring structure and shelf hanging detection method using the same Expired - Fee Related JP5774626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069872A JP5774626B2 (en) 2013-03-28 2013-03-28 Temperature measuring structure and shelf hanging detection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069872A JP5774626B2 (en) 2013-03-28 2013-03-28 Temperature measuring structure and shelf hanging detection method using the same

Publications (2)

Publication Number Publication Date
JP2014190977A true JP2014190977A (en) 2014-10-06
JP5774626B2 JP5774626B2 (en) 2015-09-09

Family

ID=51837334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069872A Expired - Fee Related JP5774626B2 (en) 2013-03-28 2013-03-28 Temperature measuring structure and shelf hanging detection method using the same

Country Status (1)

Country Link
JP (1) JP5774626B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091585A (en) * 2015-01-21 2015-11-25 湖北文理学院 Medium-frequency power supply furnace provided with thermodetector
WO2021068654A1 (en) * 2019-10-08 2021-04-15 浙江瑞麒科技股份有限公司 Furnace hearth temperature monitoring and alarming apparatus for reverberatory furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420955U (en) * 1987-07-23 1989-02-01
JPH0293291A (en) * 1988-09-24 1990-04-04 Texaco Dev Corp Temperature monitor for reactor
JPH0267234U (en) * 1988-11-11 1990-05-22
JPH10194820A (en) * 1996-12-26 1998-07-28 Kyocera Corp Heat and corrosion resistant protective tube
JP2000213997A (en) * 1999-01-20 2000-08-04 Japan High Grade Cast Iron Association Thermocouple device
JP2008267986A (en) * 2007-04-20 2008-11-06 Taiko Rozai Kk Temperature measuring device, fusing device, method of manufacturing fusing device, and fusing device monitoring system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420955U (en) * 1987-07-23 1989-02-01
JPH0293291A (en) * 1988-09-24 1990-04-04 Texaco Dev Corp Temperature monitor for reactor
JPH0267234U (en) * 1988-11-11 1990-05-22
JPH10194820A (en) * 1996-12-26 1998-07-28 Kyocera Corp Heat and corrosion resistant protective tube
JP2000213997A (en) * 1999-01-20 2000-08-04 Japan High Grade Cast Iron Association Thermocouple device
JP2008267986A (en) * 2007-04-20 2008-11-06 Taiko Rozai Kk Temperature measuring device, fusing device, method of manufacturing fusing device, and fusing device monitoring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091585A (en) * 2015-01-21 2015-11-25 湖北文理学院 Medium-frequency power supply furnace provided with thermodetector
WO2021068654A1 (en) * 2019-10-08 2021-04-15 浙江瑞麒科技股份有限公司 Furnace hearth temperature monitoring and alarming apparatus for reverberatory furnace

Also Published As

Publication number Publication date
JP5774626B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5774626B2 (en) Temperature measuring structure and shelf hanging detection method using the same
ITMI20081886A1 (en) SPECIAL THERMOCOUPLE FOR BURNERS
TW201440922A (en) Wear indicator in a compound system made of fireproof ceramic bricks
IT201900003507A1 (en) PERFECTED TEMPERATURE SENSOR FOR GAS BURNER AND ASSEMBLY OF SUCH SENSOR AND BURNER
JP2008267986A (en) Temperature measuring device, fusing device, method of manufacturing fusing device, and fusing device monitoring system
JP2008286609A (en) Temperature measuring device
JP2005121561A (en) Temperature measuring device
TWI640755B (en) Temperature measuring device and method for measuring temperature of molten metal
JP6900738B2 (en) Molten metal leakage prevention device and molten metal leakage prevention method
CN206132251U (en) Silicon nitride thermocouple protection tube
CN212720839U (en) Leakage alarm device for runner brick
JP2010203719A (en) Method of detecting abnormality and water heater using the same
JP4676913B2 (en) Hot stove brick temperature measuring device and method for mounting the temperature measuring device
JP2008101933A (en) Surface temperature measuring method for steel structure
CN207498518U (en) Polycrystalline silicon ingot or purifying furnace anti-overflow monitors system
CN103500863A (en) Protective structure for sodium-sulfur cell heating furnace
JP2008070061A (en) Method and device for monitoring furnace bottom of fusion furnace
CN212362876U (en) Kiln flameout warning circuit breaker
JP2013096929A (en) Temperature measuring section structure for heating furnace
CN207268574U (en) Temperature instrumentation detects special furnace
JP5082035B2 (en) Molten metal temperature measuring device and temperature measuring method
CN203491367U (en) Protective structure for sodium-sulphur battery heating furnace
CN207570670U (en) A kind of temperature measuring equipment
JP4908337B2 (en) Thermal insulation wall for radioactive waste melting furnace
JP2630765B2 (en) Heat resistant cover

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150701

R150 Certificate of patent or registration of utility model

Ref document number: 5774626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees